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Abstract

In probability theory, compositional models are as powerful as Bayesian networks.
However, the relation between belief-function graphical models and the correspond-
ing compositional models is much more complicated due to several reasons. One of
them is that there are two composition operators for belief functions. This paper
deals with their main properties and presents sufficient conditions under which they
yield the same results.

1 Introduction

Two different composition operators for belief functions are defined in the literature
(Jiroušek et al., 2007; Jiroušek and Shenoy, 2014). Surprisingly, for directed graphical
belief function models, e.g., Almond’s ‘Captain’s problem’ (Almond, 1995), the corre-
sponding compositional models are the same (regardless of the operator used). This
unexpected finding is surprising since the two operators are designed based on different
ideas and for different purposes. Historically, the first operator (Jiroušek et al., 2007),
called the f -composition operator here, is designed to represent multivariate basic proba-
bilistic assignments (BPA) using the lowest number of parameters. The second operator
(Jiroušek et al., 2007) is consistent with the Dempster-Shafer (D-S) theory of evidence,
and therefore, we call it the d-composition operator. The d-composition operator intro-
duces conditional independence relations among the variables, similar to the probabilistic



composition operator. Thus, the class of d-compositional models is equivalent to the class
of directed probabilistic graphical models. In general, this is not true for f -compositional
models.

The idea behind the f -composition operator is to decrease the number of parameters
necessary for representing multidimensional belief functions. For example, instead of
representing one three-dimensional BPA, one represents only two two-dimensional BPAs.
In the case of binary variables it means that one can use only 2 × 2(22) = 32 instead
of 2(23) = 128 parameters. Naturally, there is no free lunch, and one has to pay for it
by restricting the class of such BPAs. One has to give up the possibility of using belief
functions whose BPAs are not factorizable.

In probability theory, there is a factorization lemma1 that says if a joint probability
distribution P for variables X,Y , and Z can be expressed in the form of a product of
two factors φ1(X,Y ) and φ2(Y, Z), then X and Z are conditionally independent given Y ,
written as X⊥⊥Z|Y . Therefore, for a probabilistic compositional model, one can identify
the induced conditional independence relations based on the factors in the model. There is
a similar result for the D-S theory (Shenoy, 1994) and thus, for the d-composition operator.
However, it is not clear what belief function theory corresponds to the f -composition
operator, and therefore the problem of identification of the conditional independence
relations for f -composition models is not obvious. However, there are other problems
associated with the d-composition operator. The result of d-composition is sometimes
undefined (see Definition 2 in Section 3).

Thus, it is not clear which composition operator is better. The user should choose the
one which suits better the purpose of the application. Both of them satisfy the properties
expected from composition operators (described in Section 3). Both composition oper-
ators have corresponding inverse decomposition operators. One of them corresponds to
the notion of conditional independence, the other to a specific way of factorization. We
will not study decompositions explicitly in this paper.

An outline of the remainder of the paper is as follows. Section 2 introduce the necessary
concepts and notation from belief function theory. Section 3 contains definitions of the two
composition operators. Section 4 has the main result of this paper. Section 5 illustrates
the main result using Almond’s captain’s problem (Almond, 1995). Section 6 has a
summary and some concluding remarks.

2 Belief Functions

Let W denote a set of variables each with finite number of states. For X ∈ W, let ΩX

denote the set of states of variable X. A basic probability assignment (BPA) for variables
U ⊆ W (or equivalently, a BPA on the Cartesian product ΩU =×X∈UΩX) is a mapping
mU : 2ΩU → [0, 1], such that

∑
a⊆ΩU

mU (a) = 1 and mU (∅) = 0.
Consider a BPA mU . If the set of the corresponding variables is clear from the context,

we omit the subscript U . We say a is a focal element of m if m(a) > 0. If m has only one

1It is not the same as the factorization lemma from the theory of categories.



focal element, we say m is deterministic. If this focal element is ΩU , i.e., m(ΩU ) = 1, we
say that m is vacuous.

Given a BPA m, the same information can be expressed by the corresponding com-
monality function (which is also defined on the power set 2Ω):

Qm(a) =
∑

b⊆Ω:b⊇a

m(b). (1)

Whenever a commonality function is given, it is possible to reconstruct the corresponding
BPA m:

m(a) =
∑

b⊆Ω:b⊇a

(−1)|b\a|Qm(b). (2)

For BPA mV , we often consider its marginal m↓UV for U ⊆ V. A similar notation is used
also for projections of states. If a ∈ ΩV , a↓U denotes the element of ΩU , which is obtained
from a by omitting the values of variables in V \ U . For a ⊆ ΩV ,

a↓U = {a↓U : a ∈ a}.

Using this notation, the marginal m↓UV of BPA mV for U ⊆ V is defined as follows:

m↓UV (b) =
∑

a⊆ΩV : a↓U=b

mV(a).

for all b ⊆ ΩU .
The projection of sets enables us to define a join of two sets. Consider two arbitrary

sets U and V of variables (they may be disjoint or overlapping, or one may be a subset of
the other). Consider two sets a ⊆ ΩU and b ⊆ ΩV . Their join is defined as

a ./ b = {c ∈ ΩU∪V : c↓U ∈ a & c↓V ∈ b}.

Notice that if U and V are disjoint, then a ./ b = a× b. If U = V, then a ./ b = a ∩ b.
In general, for c ⊆ ΩU∪V , c is a subset of c↓U ./ c↓V , which may be a proper subset. If
c↓U∩V is a singleton subset, then c = c↓U ./ c↓V .

To construct multidimensional models from low-dimensional building blocks, we need
some operators connecting two low-dimensional BPAs into one BPA. One possibility is the
classical Dempster’s combination rule, which is used to combine distinct belief functions.
Consider two BPAs mU and mV for arbitrary sets of variables U and V. Dempster’s
combination, denoted by ⊕, is defined as follows (Shafer, 1976):

(mU ⊕mV)(c) =
1

1−K
∑

a⊆ΩU ,b⊆ΩV :a./b=c

mU (a) ·mV(b), (3)

for each c ⊆ ΩU∪V , where

K =
∑

a⊆ΩU ,b⊆ΩV :a./b=∅

mU (a) ·mV(b). (4)

K can be interpreted as the amount of conflict between mU and mV . If K = 1, we say
mU and mV are in total conflict and their Dempster’s combination is undefined.



3 Composition Operator

The following definition answers the question: What do we mean by a belief function
composition operator?

Definition 1 By an composition operator . we mean any binary operator satisfying the
following four axioms. Consider arbitrary three BPAs mT , mU , and mV .

A1 (Domain): mT . mU is a BPA for T ∪ U .

A2 (Composition preserves first marginal): (mT . mU )↓T = mT .

A3 (Commutativity under consistency): If mT and mU are consistent, i.e., m↓T ∩UT =

m↓T ∩UU , then mT . mU = mU . mT .

A4 (Restricted associativity): If T ⊃ (U ∩V), or, U ⊃ (T ∩V), then (mT .mU ).mV =
mT . (mU . mV).

Notice that axioms A1, A3, A4 guarantee that the composition operator uniquely
reconstructs BPA mT ∪V from its marginals, if there exists a lossless decomposition of
mT ∪V into mT and mV . Surprisingly, it is axiom A4, which guarantees that no necessary
information from mV is lost. Axiom A2 solves the problem arising when non-consistent
basic assignments are composed. Generally, there are two ways of coping with this prob-
lem. Either find a compromise (a mixture of inconsistent pieces of knowledge) or give
preference to one of the sources. The solution expressed by axiom A2 is superior to the
other two from a computational point of view.

The following assertion (for proofs see (Jiroušek and Shenoy, 2014)) summarizes the
main properties of composition operators. Based on these, efficient computational proce-
dures were designed.

Proposition 1 For arbitrary BPAs mT ,mU ,mV the following statements hold.

1. (Reduction:) If U ⊆ T , then mT . mU = mT .

2. (Stepwise composition): If (T ∩ U) ⊆ V ⊆ U , then (mT . m
↓V
U ) . mU = mT . mU .

3. (Exchangeability): If U ⊃ (T ∩ V), then (mT . mU ) . mV = (mT . mV) . mU .

4. (Simple marginalization): If (T ∩U) ⊆ V ⊆ (T ∪U), then (mT .mU )↓V = m↓T ∩VT .

m↓U∩VU .

Before defining a composition operator for the D-S theory, notice that Dempster’s
combination rule is not a composition operator. Though it satisfies the first axiom (Do-
main), it does not satisfy the remaining three axioms. Whereas Dempster’s rule is com-
mutative and associative, a composition operator only satisfies these properties in special
situations. On the other hand, Dempster’s rule does not preserve the first marginal.
Dempster’s rule is designed to combine distinct pieces of evidence, whereas composition
is designed to combine marginals that may not be independent. Nevertheless, as shown
below, Dempster’s rule can be used to define a composition operator.



3.1 d-composition

In this paper we follow the idea introduced in (Jiroušek and Shenoy, 2018). It defines
d-composition of two BPAs mU , mV (for any U ,V) as follows.

(mU .d mV) = mU ⊕mV 	m↓U∩VV ,

where 	 denotes the inverse to Dempster’s combination rule. 	 is defined using the
corresponding commonality functions. Since it is known that the Dempster’s rule can be
stated as the product of the corresponding commonality functions (Shafer (1976)), i.e.,

Qm1⊕m2
=

1

1−K
Qm1

·Qm2
,

where K is the normalization factor from Eq. (3) defined by Eq. (4). Thus, mV 	m↓U∩VV
was computed as a BPA corresponding to the following commonality function

QmV	m↓U∩V
V

=
QmV

Qm↓U∩V
V

.

However, as shown in (Jiroušek and Shenoy, 2014), the composition operator .d sometimes
yields BPAs with negative values (such BPAs are often called pseudo-BPAs).

Example 1 Consider ΩX = {x, x̄}, ΩY = {y, ȳ}, which means that |2ΩX | = 4, and
|2ΩXY | = 16. In this example, consider a BPA mXY for (X,Y ) with only two focal
elements – see Table 1. In tables, we depict only focal elements, i.e., if a ⊆ Ω is not
included in the table, then its value is 0.

Table 1: A Simple Example mXY

a mXY (a)

{(x, y)} 0.9
{(x, y), (x, ȳ), (x̄, ȳ)} 0.1

Its marginal mX = m↓XXY has also two focal elements, namely mX({x}) = 0.9 and
mX(ΩX) = 0.1. Therefore, the corresponding commonality function is as follows:
QmX

({x}) = 1, QmX
({x̄}) = QmX

(ΩX) = 0.1. The computation of the correspond-
ing QmXY 	mX

and mXY 	mX can be seen in Table 2. �

To avoid situations when the result of a composition is not a BPA, in this paper, we
accept the possibility that the result of the operation of composition is undefined. Another
advantage of this approach is that we also avoid the necessity of using commonality
functions.

Definition 2 Suppose mU and mV are BPAs. If mV 	 m↓U∩VV is a BPA, then the
d-composition is defined as follows:

mU .d mV = mU ⊕ (mV 	m↓U∩VV ). (5)

If mV 	m↓U∩VV is not a BPA, then mU .d mV is undefined.



Table 2: Computation of (mXY 	mX)(a).

a QmXY (a) QmX (a↓X) QmXY 	mX (a) =
QmXY

(a)

QmX
(a↓X )

(mXY 	mX)(a)

{(x, y)} 1 1 1 0.9
{(x, ȳ)} 0.1 1 0.1
{(x̄, ȳ)} 0.1 0.1 1
{(x, y), (x, ȳ)} 0.1 1 0.1 -0.9
{(x, y), (x̄, ȳ)} 0.1 0.1 1
{(x, ȳ), (x̄, ȳ)} 0.1 0.1 1
ΩX,Y \ {(x̄, y)} 0.1 0.1 1 1

Remark 1 A disadvantage of this definition follows from the fact that neither the axioms
of Definition 1, nor Properties expressed in Proposition 1 generally hold exactly as they
are expressed. Namely, one has to add that they hold under the assumption that the cor-
responding compositions are defined. As an example, consider the Stepwise composition
(Property 2 from Proposition 1) with T = ∅ : If U ⊆ V, then mUV . mV = mV . Naturally,
this equality can hold only when mUV . mV is defined.

3.2 f-composition

The f -composition operator is defined as follows:

Definition 3 Consider two BPAs mU and mV . Their f -composition is a BPA mU .f mV
defined for each nonempty c ⊆ ΩU∪V by one of the following expressions:

(i) If m↓U∩VV (c↓U∩V) > 0 and c = c↓U ./ c↓V , then (mU.fmV)(c) =
mU (c↓U ) ·mV(c↓V)

m↓U∩VV (c↓U∩V)
;

(ii) If m↓U∩VV (c↓U∩V) = 0 and c = c↓U × ΩV\U , then (mU .f mV)(c) = mU (c↓U );

(iii) In all other cases, (mU .f mV)(c) = 0.

Remark 2 f -composition is always defined. Notice that if m↓U∩VV (c↓U∩V) = 0 (i.e., the
formula in case (i) is undefined), then the definition accepts a heuristic solution saying
“I do not know”.

4 Properties of Composition Operators

First, we prove the following simple assertion characterizing mV	m↓U∩VV . A similar result
is stated by Shenoy (1994) in the context of valuation-based systems.

Proposition 2 Consider nonempty sets of variables U ( V and BPA mV .
If (mV 	m↓U∩VV ) is a BPA, then the following two properties hold:



• mV = m↓UV ⊕ (mV 	m↓U∩VV );

•
(
mV 	m↓U∩VV

)↓U
is vacuous.

Proof. The first property is a direct implication of the associativity and commutativity
of the Dempster’s rule of combination, and the latter one follows immediately from the
property

W ⊇ T ⊇ W ∩ V =⇒ (mV ⊕mW)
↓T

= mV ⊕m↓TW
called “local computation” (Shenoy and Shafer, 1990). �

These two properties are often expected to hold for the conditional BPA mV\U|U .
Recall that the conditional BPA was defined by Smets (1978) and Shafer (1982) using
so-called conditional embedding. We do not need this notion in this paper, and so we do
not present the definition. Nevertheless, it may be an interesting question for the future
study to find out under what conditions mV\U|U = mV 	m↓U∩VV .

In Example 1 we presented a simple BPA mXY for which mXY 	mX was not a BPA.
It means that there are BPAs that cannot be a second argument of a d-composition. From
this, however, one cannot exclude the existence of another BPA for which the properties
from Proposition 2 hold. Thus, let us turn back to the above-presented example and show
that for mXY from Table 1 such a BPA does not exist.

Example 1 (Continued.) Let us assume that there exists two-dimensional BPA mY |X

such that for mXY from Table 1 mXY = m↓XXY ⊕mY |X . Then, under this assumption,
for all a ⊆ ΩXY

mXY (a) = (1−K)−1
∑

b⊆ΩX&c⊆ΩXY :b./c=a

m↓XXY (b) ·mY |X(c). (6)

Since {(x, y), (x, ȳ), (x̄, ȳ)} = {x, x̄} ./ {(x, y), (x, ȳ), (x̄, ȳ)}, and for no other b, c their
join b ./ c = {(x, y), (x, ȳ), (x̄, ȳ)}, it is clear that mY |X({(x, y), (x, ȳ), (x̄, ȳ)}) = (1−K)
because

0.1 = mXY ({(x, y), (x, ȳ), (x̄, ȳ)})
= (1−K)−1 m↓XXY ({(x, y), (x, ȳ), (x̄, ȳ)}↓X) ·mY |X({(x, y), (x, ȳ), (x̄, ȳ)})

= (1−K)−1 ·m↓XXY ({x, x̄}) ·mY |X({(x, y), (x, ȳ), (x̄, ȳ)})
= (1−K)−1 · 0.1 ·mY |X({(x, y), (x, ȳ), (x̄, ȳ)}).

Since {x} ./ {(x, y), (x, ȳ), (x̄, ȳ)} = {(x, y), (x, ȳ)}, it immediately follows from (6) that

mXY ({(x, y), (x, ȳ)}) ≥ (1−K)−1m↓XXY ({x}) ·mY |X({(x, y), (x, ȳ), (x̄, ȳ)})
= (1−K)−1 · 0.9 · (1−K) = 0.9,

which is in the contradiction with the assumption, because mXY ({(x, y), (x, ȳ)}) = 0. �



To simplify the notation, and to make it a bit more lucid, let us denote in the rest
of this section mV|U = mV 	m↓U∩VV . Moreover, in connection with Definition 2, we will
identify situations when BPA mV|U∩V exists and is, in a way, “adapted” to BPA mU . We
will say that mV|U∩V is tight with respect to mU if for all couples of focal elements a and
b (a is a focal element of mU , and b is a focal element of mV|U∩V) the following condition
holds:

for ∀ b ∈ b, ∃ a ∈ a, such that {a} ./ {b} 6= ∅. (7)

Proposition 3 Let two BPAs mU ,mV are such that mV|V∩U exists. If mV|V∩U is tight
with respect to mU , then

mU .f mV = mU .d mV .

Proof. Recall that for BPA mV|V∩U , the existence of which is assumed,

mV = m↓V∩UV ⊕mV|V∩U , (8)

and that the d-composition is defined

mU .d mV = mU ⊕mV|V∩U .

What are the focal elements of mU ⊕ mV|V∩U? Let a and b be arbitrary focal ele-

ments of mU and mV|V∩U , respectively. Due to Proposition 2,
(
mV|V∩U

)↓V∩U
is vacuous,

b↓V∩U = ΩV∩U , and c = a ./ b 6= ∅ is a focal element of mU ⊕ mV|V∩U . Therefore,
when computing the Dempster’s rule of combination mU ⊕ mV|V∩U , the corresponding
coefficient of conflict (see Eq. 4)

K =
∑

a⊆ΩU ,b⊆ΩV :a./b=∅

mU (a) ·mV\U|V∩U (b) = 0. (9)

The question is whether for a focal element c of mU ⊕mV|V∩U it may happen that

c = a ./ b, and either a 6= c↓U , or b 6= c↓V . Since b↓V∩U = ΩV∩U , for ∀ a ∈ a, ∃ b ∈ b,
{a} ./ {b} is a singleton from c↓U ./ c↓V and therefore a ⊆ c↓U . Similarly, the assumption
that mV|V∩U is tight with respect to mU guarantees that b ⊆ c↓V . For all c ∈ a ./ b,

c↓U ∈ a from the definition of a join, and therefore a ⊇ c↓U . Analogously, c↓V ∈ b yields
b ⊇ c↓V . So, we have proven that each focal element c of mU ⊕mV|V∩U is created by a

single pair of focal elements c↓U of mU and c↓V of mV|V∩U . Therefore (using definition
from Eq. (3) and Eq. (9)),

(mU ⊕mV|V∩U )(c)

=
∑

a⊆ΩU ,b⊆ΩV :a./b=c

mU (a) ·mV|V∩U (b) = mU (c↓U ) ·mV|V∩U (c↓V). (10)

In the same, way we get from Eq. (8) also

mV(c↓V) = (m↓V∩UV ⊕mV|V∩U )(c↓V) = m↓V∩UV (c↓V∩U ) ·mV|V∩U (c↓V), (11)



which gives that, under the given assumptions,

mV|V∩U (c↓V) =
mV(c↓V)

m↓V∩UV (c↓V∩U )
. (12)

Substituting Eq. (12) into Eq. (10), we get exactly the formula from case (i) of Def-
inition 3. The fact that case (ii) of this definition never creates a focal element of
mU ⊕ mV|V∩U follows from the fact that each couple of focal elements a and b (a is
a focal element of mU , and b is a focal element of mV|U∩V) gives rise of a focal element
a ./ b of mU ⊕ mV|V∩U . Thus, whenever case (ii) of Definition 3 is used (under the
assumptions of this assertion), then it assigns zero. �

Corollary Let two BPAs mU ,mV are such that mV|V∩U exists. If m↓V∩UV is vacuous,
or, if V ∩ U = ∅, then

mU .f mV = mU .d mV .

Example 2 In this example we show that, generally, d-composition and f -composition
of two BPAs may differ from each other. Consider three binary variables X, Y, Z, and
mXY and mZ|Y from Table 3.

Table 3: Example when mZ|Y is not tight with respect to mXY .

a mXY (a)

{(x, y)} 1.00

a mZ|Y (a)

{(ȳ, z̄), (y, z)} 1.00

a (mXY .d mZ|Y )(a)

{(x, y, z)} 1.00

a (mXY .f mZ|Y )(a)

{(x, y, z̄), (x, y, z)} 1.00

Notice that in this example, mZ|Y is not tight with respect to mXY because for
(ȳ, z̄) ∈ {(ȳ, z̄), (y, z)} there is no element a ∈ {(x, y)} such that a ./ (ȳ, z̄) 6= ∅.

5 Almond’s Captain’s Problem

Let us briefly replicate the Captain’s problem from the book by Almond (1995). As said
in Section 1, this example motivated this research. Namely, when being converted into
the form of a compositional model, it defined the same eight-dimensional BPA regardless
of the used composition operator.

For the detailed story, we refer the reader to the original book (Almond, 1995), or
the paper (Jiroušek et al., 2022) published in this proceedings. The problem concerns
the relation of eight variables presented in Table 4. Their mutual relations are in this
paper described in a slightly different way than in the cited book. Here we use three



Table 4: Variables for the Captain’s decision.

Variable # states States Description

L 2 true, false Loading is delayed?
F 2 true, false Weather forecast is foul?
W 2 true, false Weather in route is foul?
M 2 true, false Maintenance is done?
R 2 true, false Ship needs repairs at sea?
D 4 0, 1, 2, 3 Departure delay (in days)
S 4 0, 1, 2, 3 Sailing delay (in days)
A 7 0, 1, 2, 3, 4, 5, 6 Arrival delay (in days)

prior (one-dimensional) belief functions and five low-dimensional (conditional) BPAs (see
Table 5). The resulting eight-dimensional BPA is, for example, given by the formula

m{L} . m{F} . m{M} . m{D,F,L,M} . m{F,W} . m{M,R} . m{S,W,R} . m{A,D,S}. (13)

The ordering of low-dimensional BPAs in Eq. (13) is compatible with the directed graph-
ical model that underlies the Captain’s problem in the sense that the conditional for
a variable should be composed only after the conditional associated with its parents.
Formally, and not using graphs, this property can be formulated that for any composi-
tional model mU1 . mU2 . . . . . mUk corresponding to a directed graphical model, for all
j = 2, . . . , k, set Uj \ (U1 ∪ . . .∪ Uj−1) must be singleton, i.e., |Uj \ (U1 ∪ . . .∪ Uj−1)| = 1.
Thus, there are other sequences in which the low-dimensional BPAs may be composed
without influencing the resulting eight-dimensional one. All of them may be got from
Formula (13) by the application of axioms A3, A4 from Definition 1, and Property 3 from
Proposition 1. Another equivalent one is, e.g.,

m{F} . m{F,W} . m{M} . m{M,R} . m{S,W,R} . m{L} . m{D,F,L,M} . m{A,D,S}. (14)

Not presenting the lists of focal elements of the eight BPAs from Table 5, we cannot

show it, but the reader can certainly imagine that verification of the fact that m
↓{F}
{F,W}

is vacuous (and therefore m{F,W} = m{F,W} 	m
↓{F}
{F,W}), and that m{F,W} is tight with

respect to m{F} is simple. It is enough to check 2×2 couples of focal elements to verify the
latter condition. Thus, it is easy to verify the assumption of Proposition 3, and to show
that m{F} .f m{F,W} = m{F} .d m{F,W}. The fact that the analogous equality holds for
the first three terms of the formula (14) follows directly from Corollary. In a similar way,
it is not difficult to show that the eight-dimensional BPA defined by formula (14) does not
depend on which operator of composition is used. Nevertheless, one has to realize that it
is necessary to show that m{M,R} is tight with respect to m{F}.m{F,W}.m{M}, where the
latter BPA (defined as a composition of three low-dimensional BPAs) has 6 focal elements.
As a rule, the longer the compositional model, the more focal elements the corresponding
BPA has. Thus, Proposition 3 applies to small compositional models, but when one starts
considering multidimensional models composed of hundreds of low-dimensional BPAs, its
direct application is unrealistic.



Table 5: Low-dimensional BPAs for the Captain’s Problem.

Variables # focal elements Description

L 3 prior BPA
F 3 prior BPA
M 1 prior BPA: did not perform maintenance before

departure
A, D, S 1 rule calculating total delay: A = D + S

D, F, L, M 1 logical function: departure will be delayed one
day for each thing wrong

R, S, W 2 noisy logical statement: sailing time increases by
one day if something gets wrong

F, W 2 reliability of weather forecast
M, R 9 relationship between maintenance and repairs

at sea

6 Summary & Conclusions

The main result of this paper is presented as Proposition 3. It says that, in some situa-
tions, the two composition operators yield the same result. It may be interesting because
d-composition is generally of much higher computational complexity than f -composition.
Nevertheless, Proposition 3 presents only sufficient conditions, not necessary ones. The
determination of necessary conditions remains an open problem.

From the exposition, the reader could notice that the analogy between probabilistic
and belief-function graphical models is far from being straightforwards. One can always
represent any multivariate probability distribution as a directed graphical model (but the
directed graphical model may not encode all the conditional independencies in the joint
distribution). As shown in Example 1, it is not true for belief functions because there are
joint BPAs for which some conditionals do not exist. Similarly, see Remark 1 stepwise
composition need not always hold for BPAs. On the other hand, like the d-composition
operator, the probabilistic composition operator is not always defined. Surprisingly, f -
composition is always defined. It is made possible by the heuristics expressed by case (ii)
of Definition 3.
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In G. de Cooman, J. Vejnarová, and M. Zaffalon, editors, Proceedings of the Fifth
International Symposium on Imprecise Probability: Theories and Applications (ISIPTA
’07), pages 243–252, 2007.
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