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Abstract

In 2018, Jiroušek and Shenoy proposed a definition of entropy for Dempster-
Shafer (D-S) belief functions called decomposable entropy. Here, we provide an
algorithm for computing the decomposable entropy of directed graphical D-S belief
function models. For undirected graphical belief function models, assuming that
each belief function in the model is non-informative to the others, no algorithm is
necessary. We compute the entropy of each belief function and add them together
to get the decomposable entropy of the model. Finally, the decomposable entropy
generalizes Shannon’s entropy not only for the probability of a single random variable
but also for multinomial distributions expressed as directed acyclic graphical models
called Bayesian networks.

1 Introduction

Jiroušek and Shenoy (2018a) propose a definition of entropy for Dempster-Shafer (D-S)
belief functions called decomposable entropy. Some basic properties of the decomposable
entropy are described in (Jiroušek and Shenoy, 2020). One of the main properties of
this entropy is as follows. Suppose we have a joint basic probability assignment (BPA)
mX,Y for {X,Y } that decomposes as follows: mX,Y = mX ⊕ mY |X , where mX is the
marginal of mX,Y for X, mY |X is a conditional BPA for Y given X, and ⊕ is Dempster’s
combination rule. Then, the joint decomposable entropy of mX,Y , denoted by H(mX,Y ),
is equal to H(mX) + H(mY |X), where H(mY |X) denotes the conditional decomposable
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entropy of mY |X . This decomposable property is analogous to the decomposable property
of Shannon’s entropy for joint probability mass functions that is the basis of its definition
(Shannon, 1948). There are numerous definitions of entropy for the D-S theory (see
(Jiroušek and Shenoy, 2018b) for a review), but none of these satisfy the decomposable
property and, therefore, the computation of these entropies for large graphical models
may be intractable.

Graphical belief function models can be either directed or undirected. This article
provides an algorithm for computing the decomposable entropy of directed graphical
belief function models and illustrates it using an example called the captain’s decision
problem (Almond, 1995). This problem has eight variables, and the joint state space of
the eight variables has 2,304 states.

Two distinct belief functions are said to be non-informative if the marginals of these
belief functions for the intersection of their domains are vacuous. A set of distinct belief
functions is said to be non-informative if every pair of belief functions from the set is non-
informative. No algorithm is necessary for undirected graphical belief function models
with non-informative belief functions. We compute the entropy of each belief function in
the model and add them together to get the entropy of the model. This is illustrated by
using the communication network example (Haenni and Lehmann, 2002). This problem
has forty-six binary variables with a joint state space of 246 states, and seventy non-
informative belief functions.

Finally, the decomposable entropy generalizes Shannon’s entropy for the probability of
large multinomial distributions expressed as directed acyclic graph models called Bayesian
networks. We illustrate this using the chest clinic Bayesian network example (Lauritzen
and Spiegelhalter, 1988). First, we convert all probability potentials in the example
to belief functions. In particular, we use Smets’ conditional embedding to convert the
conditional probability tables (CPTs) to conditional belief functions. These conditional
belief functions are not Bayesian. Next, we compute the decomposable entropy of the
directed graphical belief function model and show that it is the same as Shannon’s entropy
of this probability model. This example has eight binary variables with a joint state space
of 28 = 256 states.

An outline of the remainder of the article is as follows. Section 2 sketches the basic def-
initions in the D-S theory and also reviews conditional belief functions. Section 3 reviews
the basic definitions and properties of decomposable entropy. This section also contains
a new property of decomposable entropy for two non-informative belief functions. Sec-
tion 4 describes an algorithm for computing the decomposable entropy of large directed
graphical belief function models. Section 5 describes three graphical belief function mod-
els. Section 6 describes some implementation details and tools used to implement the
algorithm. Finally, Section 7 provides a summary and states some unresolved issues.

2 Dempster-Shafer’s Belief Function Theory

In this section, we sketch the basics of Dempster-Shafer‘s theory of belief functions (Demp-
ster, 1968; Shafer, 1976).



2.1 Representations

There are several representations in the D-S theory of belief functions. Here we focus on
basic probability assignments and commonality functions.

Basic Probability Assignment Suppose X is a random variable with a finite state
space ΩX . Let 2ΩX denote the set of all subsets of ΩX . A basic probability assignment
(BPA) m for X is a function m : 2ΩX → [0, 1] such that:

m(∅) = 0, and (1)∑
∅̸=a∈2ΩX

m(a) = 1. (2)

m(a) represents the probability mass that is assigned exactly to subset a. Thus, no mass is
assigned to the empty subset (Eq. (1)) and the total probability assigned to all non-empty
subsets is 1 (Eq. (2)).

The non-empty subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements of
m. A BPA m with only one focal element a (with mass 1) is called determinsitic. A
deterministic BPA with focal element ΩX is called vacuous. We say m is consonant if the
focal elements of m are nested, i.e., if they can be ordered such that a1 ⊂ a2 ⊂ ... ⊂ am,
where {a1, ..., am} denotes the set of all focal elements of m. Deterministic BPAs are
trivially consonant. We say m is quasi-consonant if the intersection of all focal elements
of m is non-empty. A consonant BPA is also quasi-consonant, but not vice-versa. We say
m is Bayesian if its focal elements are singleton subsets.

Commonality Function The information in a BPA m for X can also be represented
by a corresponding commonality function (CF) Qm for X that is defined as follows:

Qm(a) =
∑

b∈2ΩX :b⊇a

m(b), for all a ∈ 2ΩX . (3)

Qm(a) represents the probability mass that could possibly move to subset a.
From Eq. (3), it follows that 0 ≤ Qm ≤ 1. From Eqs. (1)–(3), it follows that

Qm(∅) = 1. If m is a vacuous BPA for X, then Qm(a) = 1 for all a ∈ 2ΩX . CFs are
non-increasing in the sense that if a ⊆ b, then Qm(a) ≥ Qm(b). The CF Qm has exactly
the same information as in the corresponding BPA m.

2.2 Marginalization and Combination

In the D-S theory, we reduce the domain of a joint belief function using the marginalization
operation, and we combine distinct (or independent) belief functions using Dempster’s
combination rule (Dempster, 1968).



Marginalization Marginalization in D-S theory is the summation of values of BPAs.
Projection of states means dropping extra coordinates; for example, if (x, y) is a state

of (X,Y ), then the projection of (x, y) to X, denoted by (x, y)↓X , is simply x, which is a
state of X.

Projection of subsets of states is achieved by projecting every state in the subset.
Suppose b ∈ 2Ω(X,Y ) . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that b↓X ∈ 2ΩX .

Suppose m is a BPA for (X,Y ). Then, the marginal of m for X, denoted by m↓X , is
a BPA for X such that for each a ∈ 2ΩX ,

m↓X(a) =
∑

b∈2
Ω(X,Y ) :b↓X=a

m(b). (4)

It follows from Eq. (4), that if m(b) > 0, then m↓X(b↓X) > 0, for all b ∈ 2Ω(X,Y ) .

Dempster’s Combination Rule We will define Dempster’s combination rule in terms
of CFs. Suppose X1 and X2 are arbitrary (finite) sets of variables, and Q1 and Q2 are
distinct CFs for X1 and X2, respectively. Then Q1 ⊕ Q2 is a CF for X1 ∪ X2 = X given
by:

(Q1 ⊕Q2)(a) =

{
1 if a = ∅,

K−1Q1(a
↓X1)Q2(a

↓X2) otherwise,
(5)

for all a ∈ 2ΩX , where K is a normalization constant given by:

K =
∑

∅̸=a∈2
ΩX1∪X2

(−1)|a|+1Q1(a
↓X1)Q2(a

↓X2). (6)

(1 − K), where K is the normalization constant in Eq. (6), can be interpreted as a
measure of conflict in the two CFs. The definition of Dempster’s rule assumes that the
normalization constant K is non-zero. If K = 0, i.e., 1 − K = 1, then the two CFs Q1

and Q2 are said to be in total conflict and cannot be combined. If K = 1, i.e., 1−K = 0,
we say Q1 and Q2 are non-conflicting.

Non-informative Belief Functions Suppose m1 and m2 are two distinct BPAs for
X1 and X2, respectively. We say m1 and m2 are non-informative to each other if m↓X1∩X2

1

and m↓X1∩X2

2 are vacuous BPAs for X1∩X2. Notice that if m1 and m2 are non-informative
to each other, then (m1 ⊕m2)

↓X1 = m1 and (m1 ⊕m2)
↓X2 = m2. This follows from the

definition of non-informative belief functions and the local computation property (Shenoy
and Shafer, 1990).

Intuitively, Q1 doesn’t tell us anything about Q2 and vice-versa. If X1 and X2 are
disjoint, then they are trivially non-informative to each other. The definition of non-
informative belief functions can be generalized to sets of belief functions. A set of belief
functions is non-informative if every pair of belief functions from the set is non-informative
to each other. Of course, it is sufficient to check only those pairs with a non-empty
intersection of their domains.



2.3 Conditional Belief Functions

Conditional belief functions were initially studied by Smets (1978) who introduced the
notion of conditional embedding. They have been further explored in (Shafer, 1982;
Almond, 1995; Xu and Smets, 1996). Here we review the basics.

Consider a BPA m for X and a ∈ 2ΩX . Suppose that there is a BPA for Y expressing
our belief about Y if we know that X ∈ a, and denote it by mY |a. Notice that mY |a :
2ΩY → [0, 1] is a BPA for Y . We can embed this BPA for Y into a conditional BPA for
(X,Y ), which is denoted by ma,Y , so that the following two conditions hold:

1. ma,Y tells us nothing about X, i.e., m↓X
a,Y (ΩX) = 1.

2. If we combine ma,Y with the deterministic BPA mX∈a for X such that mX∈a(a) =
1 using Dempster’s rule, and marginalize the result to Y we obtain mY |a, i.e.,

(ma,Y ⊕mX∈a)
↓Y = mY |a.

One way to obtain such an embedding is suggested by Smets (1978) (see also, (Shafer,
1982), Xu and Smets (1996), and Almond (1995)), called conditional embedding. It con-
sists of taking each focal element b ∈ 2ΩY of mY |a, and converting it to the corresponding
focal element

(a× b) ∪ ((ΩX \ a)× ΩY ) ∈ 2ΩX,Y (7)

of ma,Y with the same mass. It is easy to confirm that this method of embedding satisfies
both conditions mentioned above.

When does a belief function qualify as a conditional? For example, suppose we have
a BPA m for {Y } ∪ X where {Y } ∩ X = ∅. Under what conditions does m constitute
a conditional for Y given X ? Analogous to conditional probability tables in Bayesian
networks, the answer is straightforward. Any BPA m for {Y } ∪ X such that m↓X is the
vacuous BPA for X constitutes a conditional for Y given X . Sometimes, we will let mY |X
denote such conditionals.

3 Decomposable Entropy of D-S Belief Functions

This section reviews the definitions of decomposable entropy and conditional decompos-
able entropy of belief functions in the D-S theory (Jiroušek and Shenoy, 2018a) and
describes its properties (Jiroušek and Shenoy, 2020). We also describe a new property of
decomposable entropy motivated by the need to compute the decomposable entropy of
an undirected graphical belief function model.

3.1 Decomposable Entropy

Definition 1 (Entropy of a CF Q) Suppose Q is a CF for X with state-space ΩX .
Then, the decomposable entropy of Q, denoted by H(Q), is defined as

H(Q) =
∑

a∈2ΩX

(−1)|a|Q(a) log(Q(a)). (8)



The definition of entropy of Q in Eq. (8) is well-defined as it follows from the definition
of a CF in Eq. (3) that for all a ∈ 2ΩX , Q(a) ≥ 0. IfQ(a) = 0, we will follow the convention
that Q(a) log(Q(a)) = 0 as limθ→0+ θ log(θ) = 0. Thus, in computing the entropy H(Q)
as defined in Def. 1, it is sufficient that the summation in the right-hand side of Eq. (8)
is restricted to a ∈ 2ΩX such that Q(a) > 0.

3.2 Conditional Decomposable Entropy

Definition 2 (Conditional entropy of QY |X) Suppose QX is a CF for X, and sup-
pose QY |X is a conditional CF for (X,Y ). Then, the conditional decomposable entropy
of QY |X , denoted by H(QY |X), is defined as follows:

H(QY |X) =
∑

a∈2ΩX,Y

(−1)|a| QX(a↓X)QY |X(a) log(QY |X(a)). (9)

Notice that as QX(a↓X)QY |X(a) = QX,Y (a) for all a ∈ 2ΩX,Y , we can rewrite Eq. (9) as
follows:

H(QY |X) =
∑

a∈2ΩX,Y

(−1)|a| QX,Y (a) log(QY |X(a)) (10)

3.3 Properties of Decomposable Entropy

A list of relevant properties of the decomposable entropy is as follows. For formal proofs,
see (Jiroušek and Shenoy, 2020).

Property 1 (Compound distributions) Suppose QX is a CF for X, and suppose
QY |X is a conditional CF for (X,Y ). Let QX,Y = QX ⊕QY |X . Then,

H(QX,Y ) = H(QX) +H(QY |X). (11)

Property 2 (Quasi-consonant BPAs have 0 decomposable entropy) Suppose m
is a quasi-consonant BPA. Then H(m) = 0. As vacuous, deterministic, and consonant
BPAs are also quasi-consonant, their decomposable entropies are also 0.

Suppose PX is a probability mass function (PMF) for X such that PX(x) > 0 for
all x ∈ ΩX , and PY |X is a conditional probability table (CPT) for Y given X, i.e.,
PY |X(x, y) = PY |x(y), where PY |x is the conditional PMF for Y given X = x for all
(x, y) ∈ ΩX,Y . Let PX,Y = PX ⊗ PY |X (⊗ denotes probabilistic combination, which is
pointwise multiplication followed by normalization). Let mX denote the Bayesian BPA
corresponding to PX , let mY |x denote the Bayesian conditional BPA for Y corresponding
to the conditional PMF PY |x for Y given X = x. Let mx,Y denote the conditional BPA
for (X,Y ) obtained by conditional embedding of mY |x. Let mY |X denote

⊕
x∈ΩX

mx,Y .
Let mX,Y denote mX ⊕mY |X . Notice that mx,Y and mY |X are not Bayesian BPAs.



Property 3 (Strong probability consistency) Consider the situation described in the
preceding paragraph. Let Hs(PX,Y ) and Hs(PX) denote Shannon’s entropy of PMFs PX,Y

and PX , respectively, and let Hs(PY |X) denote Shannon’s conditional entropy of the CPT
PY |X . Then, mX,Y is a Bayesian BPA for (X,Y ) corresponding to PMF PX,Y such that:

H(mX,Y ) = Hs(PX,Y ), (12)

H(mX) = Hs(PX), (13)

H(mY |X) = Hs(PY |X). (14)

The following theorem generalizes Property 1. It is a new property not discussed in
(Jiroušek and Shenoy, 2020). It is motivated by the need to compute the entropy of an
undirected belief function graphical model.

Theorem 1 (Entropy of non-informative belief functions) Suppose Q1 and Q2 are
distinct CFs for X1, and X2, respectively, such that they are non-informative for each
other. Then,

H(Q1 ⊕Q2) = H(Q1) +H(Q2) (15)

A proof of this property can be found in a longer version of this paper (Jiroušek et al.,
2022).

4 An Algorithm

This section describes an algorithm for computing the decomposable entropy of a directed
graphical belief function.

Suppose we have a directed acyclic graphG consisting of a set of variables {X1, . . . , Xn}
as nodes, and a set of directed edges. Let PaG(Xk) denote the parents of Xk in graph
G. Associated with each node Xk is a conditional BPA mk for Xk ∪ PaG(Xk) that is a
conditional for Xk given PaG(Xk). If PaG(Xk) = ∅, then the conditional for Xk is the
prior belief function for Xk. If PaG(Xk) ̸= ∅, then we will assume that mk is a conditional

BPA for Xk ∪ PaG(Xk), i.e., m
↓Xk

k is a vacuous BPA for Xk.
Notice that if we have evidence for a variable that is different from priors or condi-

tionals in a directed graphical belief function model, we need to disregard such evidence.
For example, suppose we have a directed acyclic graph X → Y with a BPA m1 for X, a
conditional BPA m2 for {X,Y } that constitutes a conditional for Y |X so that m↓X

2 is the
vacuous BPA for X, and a BPA m3 for Y that represents some evidence for Y . It follows
from the compound distributions property that H(m1 ⊕ m2) = H(m1) + H(m2). But,
in general, H(m1 ⊕m2 ⊕m3) ̸= H(m1) +H(m2) +H(m3). For this reason, we need to
disregard evidence in computing the decomposable entropy of a directed graphical belief
function model.



Algorithm First, we start with a sequence (X1, . . . Xn) such that if there is a directed
arc Xi → Xj in G, then Xi precedes Xj in the sequence. As G is acyclic, such a sequence
always exists, but it may not be unique.
Do k = 1, . . . , n:

• If PaG(Xk) = ∅, then H(mk) is computed using Definition 1.

• If PaG(Xk) ̸= ∅, then first we find the marginal (
⊕k−1

i=1 mi)
↓PaG(Xk) using local

computation (Shenoy and Shafer, 1990). Next, we find the conditional decomposable
entropy of mk, H(mk), using Definition 2.

End Do;
The decomposable entropy of the joint belief function H(

⊕n
k=1 mk) =

∑n
k=1 H(mk).

This follows from the compound distributions property of decomposable entropy.

5 Three Examples

This section computes the decomposable entropy of three graphical belief function models.

Captain’s Problem The captain’s problem is from Almond (1995). A ship’s captain is
concerned about how many days his ship may be delayed before arrival at a destination.
The arrival delay is the sum of departure delay and sailing delay. Departure delay may be
a result of maintenance (at most one day), loading delay (at most one day), or a forecast
of bad weather (at most one day). Sailing delay may result from bad weather (at most
one day) and whether repairs are needed at sea (at most one day). If maintenance is
done before sailing, chances of repairs at sea are less likely. The weather forecast says a
slight chance of bad weather (0.2) and a good chance of good weather (0.6). The forecast
is 80% reliable. The captain knows the loading delay and whether maintenance is done
before departure. Fig. 1 shows the directed acyclic graph associated with this problem.
Table 1 shows the variables, their state spaces, and the associated conditionals. What is
the decomposable entropy of this belief function model?

As ϕ2 is an evidence for F , we ignore this belief function. First, notice that ϕ1 and
σ are consonant, and µ, δ, and α are deterministic. So the decomposable entropies of
these BPAs are zeroes. The decomposable entropies of the remaining BPAs are as follows.
H(λ) ≈ 0.3958, H(ρ1 ⊕ ρ2) ≈ 0.0729, Thus, the decomposable entropy of the captain’s
problem (ignoring the evidence ϕ2) is 0.3958 + 0.0729 = 0.4687.

Communication Network This example is from Haenni and Lehmann (2002). Fig.
2 shows an undirected graph associated with this example. We have a grid of 44 =
8 + 9 + 10 + 9 + 8 communication nodes arranged in 19 columns and 5 rows. There are
68 links, and each link has 90% reliability. Nodes A and B are connected to the grid with
links having 80% reliability. What is the decomposable entropy of this graphical model?

Consider the variables in the grid with 19 columns and 5 rows. Let X13 denote the
variable in column 1, row 3 and let X22 denote the variable in column 2 and row 2. Let



Figure 1: The directed acyclic graph for the captains’s problem. The Greek alphabets
adjacent to a variable denote the prior or conditional or evidence associated with the
variable.

Figure 2: The undirected graph for the communication network example.

Ω13 = {t13, f13}, and and let Ω22 = {t22, f22}. The BPA m13−22 associated with the edge
between X13 and X22 is as follows:

m13−22({(t13, t22), (f13, f22)}) = 0.9,m13−22(Ω13 × Ω22) = 0.1.

The BPAs associated with the remaining 67 links are similar. The edges between A
and X33 and between B and X38 are also similar, except that the reliability is 0.8 instead
of 0.9. As these BPAs are consonant, the decomposable entropy of all 70 BPAs are zeroes.
Also, notice that the BPAs m13−22 and m12−24 associated with the corresponding edges
satisfy the conditions in Theorem 1. As all the BPAs in this example have the same
structure, it follows that the set of all BPAs is non-informative. Thus, the decomposable
entropy of the communication network model is 0.



Table 1: The variables, their state spaces, and associated conditionals in the captain’s
problem.

Variable Name State Space, Ω Associated Conditional

W Actual weather {gw, bw} vacuous for W
F Forecasted weather {gf , bf} ϕ1 for F |W (consonant)
L Loading delay? {tl, fl} λ for L
M Maintenance done? {tm, fm} µ for M (deterministic)
R Repair at sea needed? {tr, fr} ρ1 ⊕ ρ2 for R|M
D Departure delay (in days) {0, 1, 2, 3} δ for D|{F,L,M} (deterministic)
S Sailing delay (in days) {0, 1, 2, 3} σ for S|{W,R} (consonant)
A Arrival delay (in days) {0, 1, 2, 3, 4, 5, 6} α for A|{D,S} (deterministic)

Chest Clinic This example is from Lauritzen and Spiegelhalter (1988). Fig. 3 shows a
Bayesian network that is represented as a directed graphical belief function model. There
are eight binary variables, and not all probabilities in the joint probability distribution
are positive. Fig. 3 also shows the conditional probability tables (CPTs). These are rep-
resented as BPAs using conditional embedding, and most of these BPAs are not Bayesian.
The decomposable entropies of the conditionals are as follows (computed using the algo-
rithm in Section 4):

H(P (A)) ≈ 0.0808, H(P (T |A)) ≈ 0.0828, H(P (S)) = 1, H(P (L|S)) ≈ 0.2749,

H(P (B|S)) ≈ 0.9261, H(P (E|L, T )) = 0, H(P (X|E)) ≈ 0.2770, H(P (B|DE)) ≈ 0.6471.

Thus, the decomposable entropy of the directed graphical belief function model is approx-
imately 3.2887, which is the same as Shannon’s entropy of the corresponding Bayesian
network.

Figure 3: The directed acyclic graph and the CPTs for the chest clinic example.



6 Notes on Implementation

We performed all experiments in R. We have created an R package to work with belief
functions, which we plan to complete and publish for use by other users. The package
is based on relational databases as implemented in the R package data.table (Dowle and
Srinivasan, 2021). Each belief function is an object with three different tables. The first
table, called the coding table, consists of random variables and their states. The columns
correspond to the random variables in the domain X of the belief function, the rows
to the elements of their joint state space ×X∈XΩX . Each row is labeled with a unique
identifier. The second table, called focal element table, stores each focal element as a set
of states using identifiers from the coding table. The third table, called mass table, assigns
a probability mass to each focal element.

Regarding computing the marginal of the joint in the algorithm described in Section
4, an implementation using local computation is available in the Belief Function Machine
environment in Matlab (Giang and Shenoy, 2003). We implemented this algorithm in R.

7 Summary & Conclusions

The primary goal of this article is to describe an algorithm for computing the decom-
posable entropy of directed graphical belief function models. The decomposable entropy
has a property that if we construct a joint BPA for two variables (X,Y ) by Dempster’s
combination of a BPA for mX for X and a conditional BPA mY |X for Y given X, then
the decomposable entropy of mX,Y = mX ⊕mY |X is equal to the decomposable entropy
of mX plus the decomposable conditional entropy of mY |X .

The decomposable entropy is defined using commonality functions. If a graphical
model has a clique whose state space is large, then computing the decomposable entropy
of the clique may be intractable. For example, in the captain’s problem, the conditional
for arrival delay has three variables with a joint space of 4×4×7 = 112 states. Fortunately
this conditional is deterministic, and the decomposable entropy of deterministic BPAs is
0. If this conditional wasn’t deterministic or consonant or quasi-consonant, and the joint
commonality function for these three variables had non-zero values for each of the 2112

subsets, then the computation of the exact decomposable entropy of the conditional would
be intractable. In such cases, we may have to resort to some approximate methods. This
is yet to be done.
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R. Jiroušek, V. Kratochv́ıl, and P. P. Shenoy. Computing the decomposable entropy of
graphical belief function models. Working Paper 340, University of Kansas School of
Business, Lawrence, KS 66045, USA, 2022. URL https://pshenoy.ku.edu/Papers/

WP340.pdf.

S. L. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical
Society, series B, 50(2):157–224, 1988.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

G. Shafer. Belief functions and parametric models. Journal of the Royal Statistical Society,
Series B, 44(3):322–352, 1982.

C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423, 1948.

P. P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. In
R. D. Shachter, T. Levitt, J. F. Lemmer, and L. N. Kanal, editors, Uncertainty in
Artificial Intelligence 4, Machine Intelligence and Pattern Recognition Series, vol. 9,
pages 169–198, Amsterdam, 1990. North-Holland.

P. Smets. Un modele mathematico-statistique simulant le processus du diagnostic medical.
PhD thesis, Free University of Brussels, 1978.

H. Xu and P. Smets. Reasoning in evidential networks with conditional belief functions.
International Journal of Approximate Reasoning, 14(2–3):155–185, 1996.


