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Abstract

The main contribution of this paper is a new definition of an expectation op-
erator for belief functions in the Dempster-Shafer (D-S) theory of evidence.
Our definition shares many of the properties of the expectation operator in
probability theory. Also, for Bayesian belief functions, our definition provides
the same expected value as the probabilistic expectation operator. A tradi-
tional method of computing expected values of real-valued functions is to first
transform a D-S belief function to a corresponding probability mass function,
and then use the expectation operator for probability mass functions. Our
expectation operator works directly with D-S belief functions. In general, our
definition provides different expected values than, e.g., if we use probabilistic
expectation using the pignistic transform or the plausibility transform of a
belief function.

1 Introduction

The main goal of this paper is to propose an expectation operator for belief func-
tions in the D-S theory of evidence [2, 6].

In probability theory, for discrete real-valued random variables characterized
by a probability mass function (PMF), the expected value of X can be regarded
as a weighted average of the states of X where the weights are the probabilities
associated with the values. Our definition is similar. As we have probabilities
associated with subsets of states, first we define the value of a subset as the weighted
average of the states of the subset where the weights are the commonality values
of the singleton states. Then the expected value of X is defined to be the weighted
average of the values of the subsets where the weights are the commonality values
of the subsets.
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A traditional method of computing expectation of real-valued functions is to
first transform a D-S belief function to a corresponding PMF, and then use the
expectation operator for PMFs. Our expectation operator works directly with D-S
belief functions. In general, our definition provides different expected values than,
e.g., if we use the pignistic transform or the plausibility transform.

An outline of the remainder of the paper is as follows. In Section 2, we review the
definition of expected value of a discrete real-valued random variable characterized
by a PMF. Also, we review some of the main properties of the definition. In Section
3, we review the representations and operations of the D-S theory of belief functions.
In Section 4, we provide our definition of the expected value of a real-valued random
variable characterized by a commonality function. For a symbolic-valued random
variable X, assuming we have a real-valued function g from the set of all non-
empty subsets of the states of X, we also provide a definition of the expected
value of g. Also, we show that our definition of expected value shares many of the
properties of the probabilistic expected value, and we compare our definition with
the probabilistic expectation using pignistic and plausibility transforms. Finally,
in Section 5, we summarize and conclude.

2 Expected Values of Discrete Probability Distri-
butions

In this section we briefly review the expectation operator for discrete random
variables with finite state space whose behavior is described by probability mass
functions.

2.1 Definition of probabilistic expectation

Suppose X is a discrete real-valued random variable with a finite state space ΩX ,
and suppose PX : ΩX → [0, 1] is a probability mass function (PMF) for X, i.e.,
PX(x) ≥ 0 for all x ∈ ΩX , and

∑
x∈ΩX

PX(x) = 1. Then the expected value of X
with respect to PX , denoted by EPX

(X), is defined as follows:

EPX
(X) =

∑
x∈ΩX

x · PX(x) (1)

Notice that as X is real-valued, the definition in Eq. (1) is well defined. Also, as
ΩX is finite, EPX

(X) always exists.

2.2 Properties of probabilistic expectation

Consider the situation in the definition of probabilistic expectation. The expecta-
tion operator has the following properties.

1. (Expected value of a constant) If X is a constant, i.e., PX(a) = 1, where a is
a real constant, then EPX

(X) = a.



2. (Expected value of a function of X) Suppose Y = gX : ΩX → R is a well-
defined function of X, where R is the set of all real numbers. Then, EPY

(Y )
is as follows:

EPY
(Y ) =

∑
x∈ΩX

gX(x) · PX(x) (2)

For convenience, the right-hand-side of Eq. (2) is denoted by EPX
(gX). This

property is referred to as the law of the unconscious statistician. If Y = gX ,
then Y is a random variable whose PMF PY is defined in terms of PMF PX
as follows:

PY (y) =
∑

x∈ΩX :gX(x)=y

PX(x) (3)

It follows from the definition of expected value that EPY
(Y ) = EPX

(gX).
The result in Eq. (2) says that EPY

(Y ) can be computed directly from the
PMF of X without computing the PMF of Y .

3. (Expected value of a linear function of X) Suppose Y = gX = aX + b where
a and b are real constants. Then EPY

(Y ) = aEPX
(X) + b.

4. (Expected value of a function of X and Y ) The law of the unconscious
statistician generalizes to the multidimensional case. Suppose X and Y
are discrete random variables with state spaces ΩX and ΩY , respectively,
with joint PMF PX,Y , i.e., PX,Y (x, y) ≥ 0 for all (x, y) ∈ ΩX × ΩY , and∑
x∈ΩX

∑
y∈ΩY

PX,Y (x, y) = 1. Then if Z = gX,Y : ΩX × ΩY → R is a
well-defined function of (X,Y ), then

EPZ
(Z) = EPX,Y

(gX,Y ) =
∑
x∈ΩX

∑
y∈ΩY

gX,Y (x, y)PX,Y (x, y) (4)

5. (Expected value of a linear function of X and Y ) If Z = gX,Y = aX+ bY + c,
where a, b, and c are real constants, then

EPZ
(Z) = aEPX,Y

(X) + bEPX,Y
(Y ) + c (5)

3 Basic Definitions in the D-S Belief Functions
Theory

In this section, we review the basic definitions in the D-S belief functions theory.
Like the various uncertainty theories, D-S belief functions theory includes func-
tional representations of uncertain knowledge, and operations for making inferences
from such knowledge. Most of this material is taken from [5].



3.1 Representations of belief functions

Belief functions can be represented in four different ways: basic probability assign-
ments (BPA), belief functions, plausibility functions, and commonality functions.
Here, we focus only on BPA and commonality functions.

Suppose X is a random variable with state space ΩX . Let 2ΩX denote the set
of all non-empty subsets of ΩX . A basic probability assignment (BPA) mX for X
is a function mX : 2ΩX → [0, 1] such that

∑
a∈2ΩX mX(a) = 1.

The non-empty subsets a ∈ 2ΩX such that mX(a) > 0 are called focal elements
of mX . An example of a BPA for X is the vacuous BPA for X, denoted by ιX ,
such that ιX(ΩX) = 1. If all focal elements of mX are singleton subsets of ΩX ,
then we say mX is Bayesian. In this case, mX is equivalent to the PMF PX for X
such that PX(x) = mX({x}) for each x ∈ ΩX .

The information in a BPA mX can also be represented by a corresponding com-
monality function QmX

that is defined as follows: QmX
(a) =

∑
b∈2ΩX : b⊇amX(b)

for all a ∈ 2ΩX . For the example above with ΩX = {x, x̄}, the commonality
function QιX corresponding to BPA ιX is given by QιX ({x}) = 1, QιX ({x̄}) = 1,
and QιX (ΩX) = 1. If mX is a Bayesian BPA for X, then QmX

is such that
QmX

(a) = mX(a) if |a| = 1, and Qm(a) = 0 if |a| > 1. QmX
is a non-increasing

function in the sense that if b ⊆ a, then QmX
(b) ≥ QmX

(a). Finally, QmX
is a

normalized function in the sense that:

∑
a∈2ΩX

(−1)|a|+1QmX
(a) =

∑
a∈2ΩX

(−1)|a|+1

 ∑
b∈2ΩX : b⊇a

mX(b)


=

∑
b∈2ΩX

mX(b)

 ∑
a∈2ΩX : a⊆b

(−1)|a|+1


=

∑
b∈2ΩX

mX(b) = 1.

Next, we describe the two main operations for making inferences.

3.2 Basic operations in the D-S theory

There are two main operations in the D-S theory—Dempster’s combination rule
and marginalization.

In the D-S theory, we can combine two BPAs m1 and m2 representing distinct
pieces of evidence by Dempster’s rule [2] and obtain the BPA m1 ⊕ m2, which
represents the combined evidence. Dempster referred to this rule as the product-
intersection rule, as the product of the BPA values are assigned to the intersection of
the focal elements, followed by normalization. Normalization consists of discarding
the probability assigned to ∅, and normalizing the remaining values so that they
add to 1. In general, Dempster’s rule of combination can be used to combine two
BPAs for arbitrary sets of variables.



Let X denote a finite set of variables. The state space of X is ×X∈XΩX . Thus,
if X = {X,Y } then the state space of {X,Y } is ΩX × ΩY .

Projection of states simply means dropping extra coordinates; for example, if
(x, y) is a state of {X,Y }, then the projection of (x, y) to X, denoted by (x, y)↓X ,
is simply x, which is a state of X.

Projection of subsets of states is achieved by projecting every state in the subset.
Suppose b ∈ 2Ω{X,Y } . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that b↓X ∈ 2ΩX .

Dempster’s rule can be defined in terms of commonality functions [6] as follows:
Suppose m1 and m2 are BPAs for X1 and X2, respectively. Suppose Qm1

and Qm2

are commonality functions corresponding to BPAs m1 and m2, respectively. The
commonality function Qm1⊕m2

corresponding to BPA m1⊕m2 for X1 ∪X2 = X is
as follows:

Qm1⊕m2(a) = K−1Qm1(a↓X1)Qm2(a↓X2), (6)

for all a ∈ 2ΩX , where the normalization constant K is as follows:

K =
∑

a∈2ΩX

(−1)|a|+1Qm1
(a↓X1)Qm2

(a↓X2). (7)

The definition of Dempster’s rule assumes that the normalization constant K is
non-zero. If K = 0, then the two BPAs m1 and m2 are said to be in total conflict
and cannot be combined. In terms of commonality functions, Dempster’s rule is
pointwise multiplication of commonality functions followed by normalization.

Marginalization in D-S theory is addition of values of BPAs. Suppose m is a
BPA for X . Then, the marginal of m for X1, where X1 ⊆ X , denoted by m↓X1 , is
a BPA for X1 such that for each a ∈ 2ΩX1 ,

m↓X1(a) =
∑

b∈2ΩX : b↓X1= a

m(b). (8)

This completes a brief description of D-S theory of belief functions. For more
details, see [6].

4 A New Definition of Expected Value for the D-S
Theory

In this section, we provide a new definition of expected value of belief functions in
the D-S theory, and describe its properties.

As in the probabilistic case, we will assume that ΩX is a finite set of real
numbers. In a PMF, we have probabilities assigned to each state x ∈ ΩX . In a
BPA mX for X and its equivalent representations, we have probabilities assigned
to subsets of states a ∈ 2ΩX . Before we define expected value of X with respect
to BPA mX , we will define a real-valued value function vmX

: 2ΩX → R for all
subsets in 2ΩX . If a = {x} is a singleton subset, then we can consider vm({x}) = x.



Remember that the elements of ΩX are real numbers. For non-singleton subsets
a ∈ 2ΩX , it makes sense to define vmX

(a) such that the following inequality holds:

min a ≤ vmX
(a) ≤ max a (9)

One way to satisfy the inequality in Eq. (9) is as follows:

vmX
(a) =

∑
x∈a x ·QmX

({x})∑
x∈aQmX

({x})
for all a ∈ 2ΩX (10)

In words, the value function vmX
(a) is the weighted average of all x ∈ a, where the

weights are the commonality numbers QmX
({x}).

4.1 Definition of expected value for D-S belief functions

Suppose mX is a BPA for X with real-valued state space ΩX , and suppose QmX

denotes the commonality function corresponding to mX . Then the expected value
of X with respect to mX , denoted by EmX

(X), is defined as follows:

EmX
(X) =

∑
a∈2ΩX

(−1)|a|+1vmX
(a) ·QmX

(a) (11)

4.2 Properties of expected values of D-S belief functions

Some important properties of our definition in Eq. (11) are as follows. Consider
the situation in the definition of expected value of D-S belief functions in Eq. (11).

1. (Consistency with probabilistic expectation) If mX is a Bayesian BPA for X,
and PX is the PMF for X corresponding to mX , i.e., PX(x) = mX({x}) for
all x ∈ ΩX , then EmX

(X) = EPX
(X).

Proof : As mX is Bayesian, QmX
(a) = mX(a) if |a| = 1, and QmX

(a) = 0 if
|a| > 1. Also, vmX

({x}) = x. Thus, EmX
(X) in Eq. (11) reduces to EPX

(X)
in Eq. (1).

2. (Expectation of a constant) If X is a constant, i.e., mX({a}) = 1, where a is
a real constant, then EmX

(X) = a.

Proof : Notice that in this case, m is Bayesian, and as this property holds for
the probabilistic case, it also holds for the D-S theory from the consistency
with probabilistic expectation property.

3. (Expected value of a function of X) Suppose Y = gX : ΩX → R is a linear
function, then EmY

(Y ) can be computed as follows:

EmY
(Y ) = EmX

(gX) =
∑

a∈2ΩX

(−1)|a|+1 gX(vmX
(a))QmX

(a) (12)



In probability theory, this property is valid for any well-defined function of X.
Our definition does not satisfy this property for any well-defined function (see
Examples 1 and 2 that follow), but it is satisfied only for a linear function
of X. This property allows us to compute the expected value of Y = gX
without first computing its commonality function.

Proof : As gX is linear, it is a 1-1 function. Therefore, ΩY = {gX(x) :
x ∈ ΩX}. Thus, the values of the commonality function QmY

for Y are the
same as the corresponding values of the commonality function Qm for X,
i.e., QmY

(aY) = QmX
(a), where aY ∈ 2ΩY is the subset that corresponds

to subset a of ΩX , i.e., aY = {gX(x) : x ∈ a}. It suffices to show that
vmY

(aY) = g(vm(a)) for all a ∈ 2ΩX . Suppose Y = gX = aX + b.

vmY
(aY ) =

∑
y∈aY y ·QmY

({y})∑
y∈aY QmY

({y})

=

∑
x∈a(ax+ b) ·QmX

({x})∑
x∈aQmX

({x})

= a

∑
x∈a x ·QmX

({x})∑
x∈aQmX

({x})
+ b

= avmX
(a) + b

= gX(vm(a))

This completes the proof.

4. (Expected value of a linear function of X) Suppose Y = gX = aX + b
where a and b are real constants, and suppose mX is a BPA for X. Then
EmY

(Y ) = aEmX
(X) + b.

Proof : From the expected value of a function of X property, it follows that
that EmY

(Y ) = EmX
(gX) = EmX

(aX + b). Thus,

EmY
(Y ) =

∑
a∈2ΩX

(−1)|a|+1(avmX
(a) + b)QmX

(a)

= a
∑

a∈2ΩX

(−1)|a|+1vmX
(a)QmX

(a) + b
∑

a∈2ΩX

(−1)|a|+1QmX
(a)

= aEmX
(X) + b.

5. (Expected value of a function of X and Y ) The law of the unconscious statisti-
cian generalizes to the multidimensional case. Suppose X and Y are discrete
random variables with state spaces ΩX and ΩY , respectively, with joint BPA
mX,Y for (X,Y ). If gX,Y : ΩX ×ΩY → R is a linear function of (X,Y ), then

Em(gX,Y ) =
∑

a∈2ΩX×ΩY

(−1)|a|+1 gX,Y (v(a))Q(a) (13)



Table 1: Expected value of a function Y = gX = X2 that is not 1-1

a ∈ 2ΩX mX(a) QmX (a) vmX (a) EmX (X) (vmX (a))2 EmX (gX)
{−1} 0.02 0.63 −1.00 0.059 1.00 1.188
{0} 0.05 0.70 0.00 0.00
{1} 0.09 0.81 1.00 1.00
{−1, 0} 0.12 0.42 −0.47 0.22
{−1, 1} 0.19 0.49 0.13 0.02
{0, 1} 0.23 0.53 0.54 0.29
{−1, 0, 1} 0.30 0.30 0.08 0.01

b ∈ 2ΩY mY (b) QmY (b) vmY (b) EmY (Y )
{1} 0.30 0.95 1.00 0.576
{0} 0.05 0.70 0.00
{1, 0} 0.65 0.65 0.58

As in the case of expected value of a function of X property, this property
holds only for the case where gX,Y is a linear function.

A proof of this property is similar to the proof of the expected value of a
function of X property, and is therefore omitted.

6. (Expected value of a linear function of X and Y ) If Z = gX,Y = aX+ bY + c,
where a, b, and c are real constants, and mX,Y is a joint BPA for (X,Y ),
then

EmZ
(Z) = EmX,Y

(aX + bY + c) = aEmX,Y
(X) + bEmX,Y

(Y ) + c (14)

A proof of this property is similar to the proof of the expected value of a linear
function of X property, and is therefore omitted.

Example 1 (Non 1-1 function) Consider a real-valued variable X with ΩX =
{−1, 0, 1}, and suppose mX is a BPA for X as shown in Table 1. Suppose Y =
gX = X2. Notice that gX is not 1-1. Then, ΩY = {1, 0}, and mY is as shown in
Table 1. For this example, EmY

(Y ) = 0.576, and EmX
(gX) = 1.188. Thus, Eq.

(12) does not hold.

Example 2 (Nonlinear 1-1 function) Consider a real-valued variable Z with
ΩX = {1, 2, 3}, and suppose mZ is a BPA for Z as shown in Table 2. Suppose
Y = gZ = log(Z). Then, ΩY = {log(1), log(2), log(3)} ≈ {0, 0.30, 0.48}, and mY

is as shown in Table 2. As the function is 1-1, the values of mY are the same as
the values of mZ . For this example, EmY

(Y ) = 0.273, and EmZ
(log(Z)) = 0.241.

Thus, Eq. (12) does not hold.



Table 2: Expected value of Y = gZ = log(Z), a nonlinear 1-1 function

a ∈ 2ΩZ mZ(a) QmZ (a) vmZ (a) EmZ (Z) log(vmZ (a)) EmZ (gZ)
{1} 0.02 0.63 1.00 2.059 0.00 0.241
{2} 0.05 0.70 2.00 0.30
{3} 0.09 0.81 3.00 0.48
{1, 2} 0.12 0.42 1.53 0.18
{1, 3} 0.19 0.49 2.12 0.33
{2, 3} 0.23 0.53 2.53 0.40
{1, 2, 3} 0.30 0.30 2.08 0.32

aY ∈ 2ΩY mY (aY ) QmY (aY ) vmY (aY ) EmY (Y )
{0} 0.02 0.63 0.00 0.273
{0.30} 0.05 0.70 0.30
{0.48} 0.09 0.81 0.48
{0, 0.30} 0.12 0.42 0.16
{0, 0.48} 0.19 0.49 0.27
{0.30, 048} 0.23 0.53 0.40
{0, 0.30, 0.48} 0.30 0.30 0.28

Example 3 (Linear function) Consider a real-valued variable X with ΩX =
{−1, 0, 1}, and suppose mX is a BPA for X as shown in Table 3. Suppose Y =
gX = 2X + 1. Then, ΩY = {−1, 1, 3}, and mY is as shown in Table 3. Notice that
as a linear function is 1-1, the values of mY are the same as the corresponding
values of mX . Also, notice that as the function gX is linear, g(vm(a)) = vmY

(aY ),
where subset aY corresponds to subset a. For this example, EmY

(Y ) = 1.117,
and EmX

(gX) = 1.117. Thus, Eq. (12) holds. Also notice that EmX
(gX) =

EmX
(2X + 1) = 2EmX

(X) + 1 = 2(0.059) + 1 = 1.117.

4.3 A definition of expected value of a real-valued function
of X

Suppose QmX
is a commonality function for X corresponding to BPA mX for X,

and ΩX may not be real-valued, but gX : 2ΩX → R is a well-defined real-valued
function of X, then we define expected value of gX with respect to mX , denoted
by EmX

(gX), as follows:

EmX
(gX) =

∑
a∈2ΩX

(−1)|a|+1 gX(a)QmX
(a) (15)

The definition of the expected value of gX with respect to mX is similar to Eqs. (12)
and (13). Such a definition may be useful in comparing preference for lotteries that
are characterized by D-S belief functions similar to von Neumann-Morgenstern’s
utility theory for probabilistic lotteries [11].



Table 3: Expected value of Y = 2X + 1, a linear function

a ∈ 2ΩX mX(a) QmX (a) vmX (a) EmX (X) 2 vmX (a)) + 1 EmX (gX)
{−1} 0.02 0.63 −1.00 0.059 −1.00 1.117
{0} 0.05 0.70 0.00 1.00
{1} 0.09 0.81 1.00 3.00
{−1, 0} 0.12 0.42 −0.47 0.05
{−1, 1} 0.19 0.49 0.12 1.24
{0, 1} 0.23 0.53 0.53 2.07
{−1, 0, 1} 0.30 0.30 0.08 1.16

aY ∈ 2ΩY mY (aY ) QmY (aY ) vmY (aY ) EmY (Y )
{−1} 0.02 0.63 −1.00 1.117
{1} 0.05 0.70 1.00
{3} 0.09 0.81 3.00
{−1, 1} 0.12 0.42 0.05
{−1, 3} 0.19 0.49 1.24
{1, 3} 0.23 0.53 2.07
{−1, 1, 3} 0.30 0.30 1.16

4.4 A comparison with expectation of pignistic and plausi-
bility transforms

As we said earlier, a traditional method of computing expectations of random
variables characterized by a D-S BPA is to first transform the BPA to a PMF,
and then use the probabilistic expectation operator. There are several methods
of transforming a BPA to a PMF. Here we focus on the pignistic [9] and the
plausibility [1] transforms.

As D-S theory is a generalization of probability theory, there is, in general, more
information in a BPA m than in the corresponding transform of m to a PMF. Thus,
by computing expectation of X whose uncertainty is described by BPA m by first
transforming m to a pignistic PMF BetPm, or to a plausibility PMF Pl Pm, there
may be loss of information.

In general, the expected value defined in this paper may yield different values
than the probabilistic expectation using pignistic or plausibility transformation.
Table 4 compares the expectation defined in this paper with probabilisitic expec-
tation using pignistic and plausibility transforms for the various BPAs described
in Tables 1, 2, and 3. Two observations. First, although the three definitions
yield different answers, they are all approximately of the same order of magnitude.
Second, all three definitions satisfy the expected value of a linear function of X
property. Thus, BPA mZ in Table 2 can be obtained from BPA mX in Table 1
using the transformation Z = X + 2. All three expected values satisfy the expected
value of a linear function of X property. Also, BPA mY in Table 3 is obtained
from BPA mX in Table 1 using the transformation Y = 2X + 1. Again, all three
expected values satisfy the expected value of a linear function of X property.



Table 4: A comparison of our expected value with probabilistic expectation using
pignistic and plausibility transforms

BPA m Em(·) EBetPm (·) EPl Pm (·)
mX in Table 1 0.059 0.125 0.084
mY in Table 1 0.576 0.625 0.576
mZ in Table 2 2.059 2.125 2.084
mY in Table 2 0.273 0.289 0.278
mY in Table 3 1.117 1.250 1.168

5 Summary and Conclusions

We propose a new definition of expected value for real-valued random variables
whose uncertainty is described by D-S belief functions. Also, if we have a random
variable with a symbolic frame of discernment, but a real-valued function defined
on the set of all non-empty subsets of the frame, then we propose a new definition
of expectation of the function in a similar manner.

Our new definition satisfies many of the properties satisfied by the probabilistic
expectation operator, which was first proposed by Christiaan Huygens [3] in the
context of the problem of points posed by Chevalier de Méré to Blaise Pascal.

The expectation operator can be used to define variance, covariance, correlation,
and higher moments of D-S belief functions [8].

If we define I(a) = log2( 1
QmX

(a) ) as the information content of observing subset

a ∈ 2ΩX whose uncertainty is described by mX , then similar to Shannon’s definition
of entropy of PMFs [7], we define entropy of BPA mX for X as an expected value
of the function I(a), i.e., H(mX) = EmX

(I(a)). This is what is proposed in [5].
This definition of entropy has many nice properties. In particular, it satisfies the
compound distributions property: H(mX ⊕mY |X) = H(mX) + H(mY |X), where
mY |X is a conditional BPA for Y given X obtained by ⊕{mY |x : x ∈ ΩX}, and
mY |x is a conditional BPA for Y given X = x.

There are several decision theories for lotteries whose uncertainty is described
by D-S belief functions theory. The most prominent ones are by Jean-Yves Jaffray
[4]/Thomas Strat [10], and Philippe Smets [9]. The proposal by Jaffray/Strat
is to first reduce a D-S belief function to an upper and lower PMFs, and then
define an expected value that is a convex combination of the upper and lower
probabilistic expectation. This proposal is justified in [4] by some axioms similar
to the axioms proposed by John von Neumann and Oskar Morgenstern [11] for
probabilistic lotteries. The proposal by Smets is to transform a D-S belief function
to a corresponding PMF called the pignistic transform, and then use von Neumann-
Morgenstern’s expected utility theory. Our definition of expected value can be used
in a decision theory for D-S theory without transforming belief functions to PMFs.
This remains to be done.
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Radim Jiroušek from The Czech Academy of Sciences [5]. Thank you, Radim!
Thanks also to Suzanna Emelio for a careful proofreading of this paper.

References

[1] B. R. Cobb and P. P. Shenoy. On the plausibility transformation method for
translating belief function models to probability models. International Journal
of Approximate Reasoning, 41(3):314–340, 2006.

[2] A. P. Dempster. Upper and lower probabilities induced by a multivalued
mapping. Annals of Mathematical Statistics, 38(2):325–339, 1967.

[3] C. Huygens. De ratiociniis in ludo aleæ. 1657 (English translation, published
in 1714).

[4] J.-Y. Jaffray. Linear utility theory for belief functons. Operations Research
Letters, 8(2):107–112, 1989.
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