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Abstract 
In this paper, we transform a PERT network into a mixtures of truncated 
exponentials Bayesian network. We use the Shenoy-Shafer architecture to 
propagate the MTE potentials in the resulting MTE PERT Bayes net and 
thus to find the marginal distribution of the project completion time. 
Finding the distribution of the project completion time is important because 
there is no closed form expression for the distribution of the maximum of 
two normal distributions and this fact, previously forced the researchers to 
make false assumptions about its distribution. In this research, we show that 
by approximating the maximum of two distributions using MTE’s a very 
accurate estimation for the project completion time can be obtained. 

 

1 Introduction 
Large projects contain a series of activities that possess precedence 
constraints which makes project completion time difficult to manage. One of 
the most famous project management techniques is Program Evaluation and 
Review Technique (PERT). PERT was invented in 1958 for the POLARIS 
missile program by the Program Evaluation branch of the Special Projects 
Office of the U. S. Navy [Malcolm et al. 1959]. PERT networks are directed 
acyclic networks where the nodes represent duration of activities and the arcs 
represent precedence constraints. The easy applicability of PERT networks 
to all kind of projects made it widely used in practice. However, although a 
project may be represented with good accuracy using PERT networks, the 
accurate estimation of the project completion time is not an easy task to 
fulfill.  
 The classical solution [Malcolm et al., 1959] for PERT networks 
assumes that all activities are independent random variables, having 
approximate beta distributions parameterized by three parameters: mean time 
m, minimum (optimistic) completion time a, and maximum (pessimistic) 
completion time b. Using the expected duration times we compute the path 
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that takes the longest time to finish (the critical path), hence the project 
completion time.  
 In order to involve uncertainty in the computation of project completion 
time and hence to improve the accuracy of the estimations, Sculli [1983] 
suggested to assume that all activity durations are independent, having the 
Gaussian distribution. This suggestion is good in the sense that it involves 
the uncertainty of activity durations in the computation of the project 
completion time. However, with this method it is also assumed that the 
distributions of the activity completion times are Gaussian. The completion 
time of an activity i is given by Ci = Max{Cj | j ∈Π(i)} + Di, where Cj 
denotes the completion time of activity j, Dj denotes the duration of activity 
j, and Π(i) denotes the parents (immediate predecessors) of activity i. The 
maximum of two independent Gaussian random variables is not Gaussian, 
but the distribution of Ci is assumed to be Gaussian with the parameters 
estimated from the parameters of the parent activities.  The current methods 
in the literature fail to recognize the true distribution of the maximum of two 
independent distributions and thus make false assumptions, like the 
maximum of two normal distributions are again normally distributed. 
Depending on the value of parameters this assumption can lead to large 
errors for the completion time of the activities which will lead to inaccurate 
estimates for the project completion time.  
 Motivated by this problem in the literature, Cinicioglu and Shenoy 
[2006] provided a new method which aims to approximate the true 
distribution of the project completion time by eliminating the false 
assumptions for the distribution of the maximum of two Gaussians. With this 
method, a PERT network is transformed into a mixtures of Gaussians 
Bayesian network and then Lauritzen-Jensen algorithm is used to make 
inferences in the resulting MoG Bayesian network. Mixtures of Gaussians 
(MoG) hybrid Bayesian networks [Lauritzen, 1992] are Bayesian networks 
with a mix of discrete and continuous variables. In MoG Bayesian networks 
the discrete variables cannot have continuous parents, and all continuous 
variables have the so-called conditional linear Gaussian distributions.  
 Representation of a PERT network as a MoG Bayesian network is 
beneficial in the sense that it eliminates the false assumption made in the 
literature which assumes that the maximum of two normally distributed 
independent random variables is again normally distributed. However, the 
transformation process of a PERT network into a MoG Bayesian network is 
cumbersome because of the restricted nature of MoG Bayesian networks. 
The inability of discrete variables to have continuous parents and the 
enforcement for continuous variables to possess conditional linear Gaussian 
distributions makes the transformation process of a PERT network into a 
MoG Bayes net too complex for practical use. 
 For that reason, in this research we work on a different method, an 
alternative to MoG Bayesian networks, which overcomes the difficulties 
involved in solving stochastic PERT networks using MoG’s, but still possess 



 3 

the advantages involved in it. The alternative we suggest in this paper for 
solving stochastic PERT networks with MoGs, is to solve them using 
mixtures of truncated exponentials (MTE). We proceed as follows: First we 
transform a PERT network into a PERT Bayes net, so we can model the 
dependencies between activity durations. Next, we transform the PERT 
Bayes net into a MTE network by approximating the activity durations using 
MTE’s. Finally using the Shenoy-Shafer architecture we propagate the MTE 
potentials and find the marginal distribution of the project completion time. 
To evaluate our method we compare the mean and variance of the marginal 
distribution of the project completion time with the exact analytic results 
using Clark’s method [1961] and the shape of our distribution with the actual 
distribution calculated by brute force using order statistics. 
  

2 Representation of a PERT network as a Bayesian network 
 
 In order to demonstrate our method of solving stochastic PERT 
networks using mixtures of truncated exponentials we will use a simple 
example of a PERT network and compute the marginal distribution of the 
project completion time. Consider the PERT network given in Figure 1 
below. This network represents a project with the activities A1, A2 and A3. S 
stands for the project start time and E stands for the project completion time. 
We assume that the project start time is zero. The precedence constraints, 
represented by arcs, are as follows: The activities A1 and A2 do not have any 
predecessors. The activity A3 can only be started after A1 is completed.  
   

A1

A2

A3

ES

A1

A2

A3

ES
 

Figure 1. An example of a stochastic PERT network with three activities 

 The distributions of activity durations are known, and we are informed 
that the activity durations A1 and A3 are positively correlated. Following the 
method described in Jenzarli[1995] this PERT network will be transformed 
into a PERT Bayesian network in four basic steps, allowing us to  model the 
dependencies between the activity durations.  
 Let Di and Ci denote the duration and the completion time of the activity 
i, respectively. As the first step of the transformation process, the activity 
durations are replaced with activity completion times. Next, activity 
durations will be added with an arrow from Di to Ci, so that each activity will 
be represented by two nodes, its duration Di and its completion time Ci. As 
the next step, notice that the completion times of the activities which do not 
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have any predecessors will be the same as their durations. Hence, these 
activities A1 and A2 will be represented just by their durations, as D1 and D2. 
Remember that we are informed that the activities D1 and D3 are positively 
correlated. As the last step of the transformation process, the dependency 
between these activity durations will be depicted by adding an arrow from D1 
to D3. We assume that the project start time is zero with probability 1 and 
each activity will be started as soon as all the preceding activities are 
completed. Accordingly, E represents the completion time of the project, 
which is the Max{D2, C3}. The resulting PERT Bayes net is given in Figure 
2 below. Notice that the deterministic variables, C3 and E, are depicted as 
double bordered ovals. The next section describes mixtures of truncated 
exponentials.  

D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(0.4, 0.01)

D3 ~ N(0.6+D1, 0.04)

D2 ~ N(1.4, 0.01)

D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(0.4, 0.01)

D3 ~ N(0.6+D1, 0.04)

D2 ~ N(1.4, 0.01)  
Figure 2: An example of a PERT Bayesian network 

  

3 Mixtures of Truncated Exponentials 
MTE’s are an alternative to discretization and Monte Carlo methods for 
solving hybrid Bayesian networks [Moral et al. , 2001; Rumi, 2003]. MTE 
potentials can be used for inference in hybrid Bayesian networks that do not 
fit the restrictive assumptions of the conditional linear Gaussian (CLG) 
model, such as networks containing discrete nodes with continuous parents.  
 A mixture of truncated exponential (MTE) [Moral et al. , 2001; Rumi, 
2003] has the following definition. 
 Let X be a mixed n-dimensional random variable. Let Y = (Y1, …, Yd) 
and Z = (Z1,…, Zc) be the discrete and continuous parts of X, respectively, 
with c + d = n. A function φ: ΩX Ra + is an MTE potential if one of the 
next two conditions holds: 
The potential φ can be written as  
 φ(x) = φ(y, z) = a0

y + 
1 1

exp( )
m c

y y
i j j

i j
a b z

= =
∑ ∑   (3.1) 

where ay
0, ay

i and by
j are real numbers for all i = 1,…,m, j = 1,…, c, y ∈ ΩY 

and z ∈ ΩZ.  
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 There is a partition Ω1, …, Ωk  of ΩX verifying that the domain of 
continuous variables, ΩZ, is divided into hypercubes, the domain of the 
discrete variables, ΩY, is divided into arbitrary sets, and such that φ is defined 
as  φ(x) = φi(x) if x ∈ Ωi, where each φi, i = 1, …, k can be written in the 
form of equation (3.1)  
 In the definition above, k is the number of pieces and m is the number of 
exponential terms in each piece of the MTE potential.  
 The nice thing about MTE’s is that any probability density function can 
be approximated by an MTE potential, which can always be marginalized in 
closed form. Consider a normally distributed random variable X with mean μ 
and variance σ2 > 0. The PDF for the normal distribution is  

fX(x) =  
21 exp 1/ 2

2
x μ
σπσ

⎧ ⎫−⎪ ⎪⎛ ⎞−⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 A general formulation for a 2-piece, 3-term unnormalized MTE potential 
which approximates the normal PDF is as follows [Cobb and Shenoy, 
2006a]. 

1

1

( 0.010564 197.055720exp{2.2568434( )}

461.439251exp{2.3434117( )}

264.793037exp{2.4043270( )}) 3

( ) ( 0.010564 197.055720exp{ 2.2568434( )}

461.439251exp{ 2.3434117( )}

x

x

x if x
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x

μσ
σ
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σ
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σ
μψ σ

σ
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−

−
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0
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otherwise
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⎪
⎨
⎪
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⎪
⎪
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⎪
⎪
⎪⎩

           (3.2) 

 
  In the following sections the PERT network example will be 
transformed into a MTE PERT Bayesian network and solved using the 
Shenoy-Shafer architecture. The operations necessary to carry out 
propagation in MTE networks using the Shenoy-Shafer architecture are 
described in the following, subsection 3.1.  

3.1 Operations in MTE Networks 
 
This section describes the operations of restriction, combination, 
marginalization, normalization, operations with linear deterministic 
equations and finding the maximum of two distributions using MTE’s. These 
operations are necessary to carry out propagation in our MTE network 
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example. The class of MTE potentials is closed under these operations which 
allows us to use the Shenoy-Shafer architecture [Shenoy and Shafer, 1990] to 
propagate the MTE potentials in the network. The definitions of restriction, 
combination, marginalization and normalization are described in Moral et al. 
[2001]. The operations with linear deterministic variables in MTE networks 
are described in Cobb and Shenoy[2005]. The operations for finding the 
maximum of two distributions using MTE’s are first described here.  

3.1.1 Restriction 

Restriction is the operation of entering evidence during the propagation. In 
restriction, known variables are substituted with their values. 
 Let φ be an MTE potential for X = Y ∪ Z. Suppose we receive the 
evidence for a set of variables X′ = Y′ ∪ Z′ ⊆ X , s.t. its values x↓Ωx′ are as 
follows: x′ = (y′, z′). After receiving the evidence the values of the variables 
are known. Accordingly, the potential φ should be updated. The new 
potential defined on ΩX\X′ is as follows: 
 φR(X′ = x′)(w) = φR(Y′ = y′, Z′ = z′)(w) = φ(x) (3.3) 
for all w ∈ ΩX\X′ such that x ∈ ΩX, x↓ΩX\X′ = w and x↓ΩX′ = x′. In this 
definition each occurrence of X′ in φ is replaced with x′. An example for 
restriction is provided in section 6.   

3.1.2  Combination 

MTE potentials are combined by pointwise multiplication. Let φ1 and φ2 be 
the MTE potentials for X1 =Y1 ∪ Z1 and X2 =Y2 ∪ Z2. The combination of φ1 
and φ2 is a new MTE potential for X = X1 ∪ X2 defined as follows: 
 φ(x) = φ1(x↓X1) φ2(x↓X2) for all x ∈ Ωx (3.4) 

3.1.3 Marginalization 

MTE potentials are marginalized by summing over discrete variables and 
integrating over continuous variables. Let φ be an MTE potential for  
X = Y ∪ Z. The MTE potentials are closed under marginalization, so the 
marginal of φ for the set of variables X′ = Y′ ∪ Z′ ⊆ X is a MTE potential 
which is computed as follows:  
 φ↓X′ (y′, z′) = 

\ \

( ( , ) )
Y Y Z Z

y
y z dzφ

′ ′
∈Ω Ω

′′∑ ∫  (3.5) 

where z = (z′, z′′), and (y′, z′) ∈ ΩX′′. The variables can be marginalized in 
any sequence, discrete before continuous or continuous before discrete as 
shown in Formula 3.5.  
 In the process of marginalization, when the limits of integration include 
linear functions, then we may end up with linear terms in the remaining 
variables. These linear terms can be replaced with an MTE approximation so 
that the result of the marginalization is again an MTE potential. For a linear 
term x defined over the domain [xmin, xmax], we replace x with  
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min
min max min

max min

min

max min

0.0726981( )( )(0.5*( 13.5070292 13.5070292 [ ]
( )

(0.0754406( )0.5*(13.5070364 13.5070364 [ ]
( )

x xx x x Exp
x x

x xExp
x x

−
+ − − +

−

− −
+ −

−

   (3.6) 

 The replacement of the linear terms ensures that MTE potentials are 
closed under marginalization.  
 

3.1.4 Normalization 

Let X =Y ∪ Z be a set of variables where Y is a discrete and Z is a continuous 
variable. Let φ′ be the MTE potential for X. Normalization constant for K is 
calculated as follows: 
 K = ( ( , ) )

Y Z
y

y z dzφ
∈Ω Ω

′∑ ∫  (3.7) 

 If join trees are initialized with normalized potentials the normalization 
constant equals to one when no evidence is observed. 

3.1.5 Linear Deterministic Equations 

If the variable being deleted is contained in a linear deterministic equation in 
the network, then the marginalization operation is different. If it is the case, 
then we solve the equation for the variable being deleted and then substitute 
this solution in the updated potentials in the network. 
 Let ψ denote the distribution of Y|x ~ fY|x and let ζ denote the equation  
Z = X + Y. Suppose we want to delete the variable Y from the network. By 
solving the equation for Y and substituting the solution in fY|x we can remove 
Y out of the combination and hence find the distribution of Z|x. The details 
are as follows: 
(ζ⊗ψ)−Y = ([Z = X + Y] ⊗ fY|x(y))−Y = ([Y = Z − X] ⊗ fY|x(y))−Y =  fY|x(z −x)  

3.1.6 Maximum of Two Distributions 

Finding the distribution of the maximum of two or more distributions has 
been the interest of many communities of researchers. Especially in the 
domains of project management, this problem occupies an important place 
since the completion time of an activity is the sum of its duration and the 
maximum between the completion times of its immediate predecessors. For 
this reason, it can be concluded that an accurate estimation of the project 
completion time is very much affected by an accurate estimation of the 
activity completion times.  
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X Y

G

X ~ fX(x) Y ~ fY(y)

G = Max{X,Y}

X Y

G

X ~ fX(x) Y ~ fY(y)

G = Max{X,Y}  
Figure 3. Maximum of two distributions 

 
 The marginal probability density function of the maximum of two 
distributions can be computed by brute force using order statistics. Consider 
the small BN given in Figure 3. X and Y are continuous variables which have 
density functions fX(x) and fY(y), respectively. G is a deterministic variable 
which is distributed as G = Max{X, Y}. Let FG denote the cumulative 
distribution function (CDF) of G, FX denote the CDF of X and FY denote the 
CDF of Y. Then, FG(g) = FX(g)FY(g). Therefore, the probability density 
function of G is given by fG(g) = (d/dg)FG(g) = fX(g) FY(g)+ FX(g) fY(g), 
where fX and fY are the PDFs of X and Y, respectively. Since there is no 
closed form expression for the CDF of a normal distribution, there is no 
closed form expression for fG(g) when X and Y are normally distributed. 
Since MTE potentials are closed under integration both FX(g) and FY(g) can 
be expressed as MTE potentials. And since MTE potentials are closed under 
multiplication and addition fG(g) can also be expressed as MTE potentials. 
Then, by using the MTE approximations of X and Y, we can obtain an MTE 
approximation for the distribution of fG(g). 
 The next section describes the transformation of our PERT Bayes net  
example into a MTE PERT Bayesian network.  

4 Transformation of a PERT Bayesian network into a MTE PERT 
Bayesian network 

The primary objective of this study is to compute the completion time of the 
project without setting any assumptions for activity distributions. This 
objective will be materialized by approximating the activity durations using 
mixtures of truncated exponentials and propagating the resulting mixtures of 
truncated exponentials network using the Shenoy-Shafer architecture. 
 Consider the PERT Bayes net given in Figure 2. Notice that it is not a 
MTE Bayesian network since the activity durations D1, D2, and D3 are all 
normally distributed. In order to transform this PERT Bayes net into a MTE 
Bayesian network all of these activities will be approximated using MTE’s. 
The MTE approximation of D1 overlaid on the actual normal distribution is 
given in Figure 4 below.  
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1

2

3

4

 
Figure 4. The actual distribution of D1 overlaid on its MTE approximation 

 
 The probability distribution for D3 is defined as D3|d1 ~ N(0.6+d1, 0.04). 
The plot for the MTE approximation for D3 is given in Figure 5 below. 

  
Figure 5. MTE approximation for D3|d1 

 

5 Fusion Algorithm 
The fusion algorithm, first described by Cannings et al. [1978], is used to 
compute the marginal for a variable using local computation [Shenoy, 1992]. 
Shenoy [1997] described the fusion algorithm as a guide to construct join 
trees where Shenoy-Shafer architecture will be used to compute the 
marginals of the variables. The basic idea of the fusion algorithm is to delete 
all the variables in the network successively, until we end up with the 
marginal distribution of the variable of interest.  
 In this research, we are interested in computing the marginal distribution 
of the project completion time. Hence, using fusion algorithm, the variables 
in the MTE PERT Bayes net will be deleted successively, until we end up 
with the marginal distribution of the project completion time, F. Though 
different deletion sequences may lead to different computational efforts, the 
outcome of the network does not get affected with the deletion sequence 
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used. In this example, we will use the deletion sequence D3, D1, (D2, C3) in 
order to find the marginal distribution of the project completion time. Figure 
6 illustrates the construction of the join tree for the PERT example.  
 The details of the messages necessary to compute the marginal 
distribution of the project completion time are as follows: 
Fusion with respect to D3:  
 Fusion w.r.t. D3, refers to removing the variable D3 from the network. 
This will be done first by combining all the potentials that contain D3 and 
next by removing D3 out of the combination by marginalizing the 
combination down to the remaining variables. Let fD3|d1

 denote the 
distribution of D3|d1. Let χ3 denote the equation for  
C3 = D1 + D3. By solving the equation for D3 and substituting D3 in fD3|d1 we 
can find the distribution of C3|d1. The details are as follows: 
 C3 = D1 + D3 
 D3 = C3 − D1 

 fC3|d1(c3) = fD3|d1(c3 −d1) 
 

{E, C3, D2}

{D3, D1}

{C3, D3, D1}

{C3, D1}{D1}

{C3, D1}

{C3} {D2}

{E}

{E, C3, D2}

{C3, D3, D1}

χ3 δ3

δ1

δ2
χE

{E, C3, D2}

{D3, D1}

{C3, D3, D1}

{C3, D1}{D1}

{C3, D1}

{C3} {D2}

{E}

{E, C3, D2}

{C3, D3, D1}

{E, C3, D2}{E, C3, D2}

{D3, D1}{D3, D1}

{C3, D3, D1}{C3, D3, D1}

{C3, D1}{C3, D1}{D1}{D1}

{C3, D1}{C3, D1}

{C3}{C3} {D2}{D2}

{E}{E}

{E, C3, D2}{E, C3, D2}

{C3, D3, D1}{C3, D3, D1}

χ3 δ3

δ1

δ2
χE

 
Figure 6. Creation of the binary join tree using the fusion algorithm. 

  
Fusion with respect to D1: 
 The variables whose domains contain D1, (D1 itself and C3|d1), are both 
continuous variables, so deleting D1 from the network involves finding the 
joint fC3, D1(c3, d1)  and integrating this combination over the domain of D1. 
The details are as follows: 
 fC3, D1(c3, d1) = fC3|d1(c3) fD1(d1) 
 (fC3, D1(c3, d1))↓C3 = ∫fC3,D1(c3, d1) dd1= fC3(c3) 
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 The expected value and variance for the marginal of C3 are calculated as 
1.4 and 0.0786. These answers are comparable with results from multivariate 
normal theory, which gives an expected value and variance of 1.4 and 0.08.  

 The next step is to find the marginal distribution of  
E = Max{C3, D2} which requires the variables, C3 and D2, to be deleted at the 
same time.  
 Figure 7 represents the current state of our network after the variables D3 
and D1 are removed from the network. As the next and final step, we have to 
find the project completion time E = Max{C3, D2} which requires the 
variables C3  and D2  to be deleted at the same time.  

C3
D2

E

C3 ~ fC3
(c3) D2 ~ N(1.4, 0.01)

E = Max{C3, D2}

C3
D2

E

C3 ~ fC3
(c3) D2 ~ N(1.4, 0.01)

E = Max{C3, D2}   
Figure 7. The conditional distribution of E after D3 and D1 are deleted from 

the network 

 As explained in subsection 3.1.6, the probability density function of FE 
is given by fE(e) = (d/de)FE(e) = fC3

(e) FD2
(e)+ FC3

(e) fD2
(e), where fC3

 and fD2
 

are the PDFs of C3 and D2, respectively. In sections 4 and 5 the PDF’s of D2 
and C3 are approximated using MTE’s. As the next step of our analysis, we 
calculate the CDF’s of both D2 and C3 which we later use for the calculation 
of the marginal distribution of the project completion time, fE(e). The plot of 
the MTE approximation for the CDF of D2 is illustrated in Figure 8 below. 
 

1.2 1.3 1.4 1.5 1.6 1.7 1.8

0.2

0.4

0.6

0.8

1.0

 
Figure 8. MTE Approximation for FD2

(e) 
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 The MTE approximation of fE(e) overlaid on the actual distribution is given 
in Figure 9 below.  
 By comparing the means and variances of the approximation with the 
exact analytic results calculated with Clark’s method [1961], we can evaluate 
the goodness of our approximation for the marginal distribution of the 
project completion time, fE(e) . Accordingly, using our method described in 
this paper the mean and the variance of the marginal distribution of E is 
calculated as 1.51883 and 0.0300638, respectively. Comparing it to 1.51968 
and 0.0306761 given by the exact analytic results, the approximation can be 
considered as quite successful.  
 

1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.5

1.0

1.5

2.0

2.5

3.0

 
 

Figure 9. Approximation of fE(e)overlaid on the actual distribution 

 After normalization, when the limits of integration include linear terms, 
then we may end up with linear terms in the remaining variables as it is the 
case with the approximation of C3 and of the CDF of D2. These linear terms 
can be approximated again using MTE potentials, which ensures that the 
result is again an MTE approximation and MTE’s are closed under 
marginalization. However, replacing the linear terms with the MTE 
potentials causes bad accuracy in our approximations. 

6 Entering Evidence in a MTE PERT Network 
In this research MTE PERT Bayes nets are described as an alternative 
method to solve stochastic PERT networks with which we can compute the 
marginal distribution of the project completion time without setting any false 
assumptions for the activity completion times. In this context, it is natural to 
question our methods described in this research and ask for the advantage 
obtained by using the methods described, instead of using straight forward 
simulation methods that are already handy.  
 With simulation methods the activity durations can be represented 
realistically. As it is the case with our methods, the activity durations can 
have any type of distribution and one can also represent the correlation 
between the activity durations. However, with straight-forward Monte Carlo 
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simulation methods we can not include the observations of continuous 
variables and update our inferences accordingly. By transforming the PERT 
network into a MTE Bayesian network and solving it using the Shenoy-
Shafer architecture we can update our network, once evidence is observed, 
and find the posterior distributions of the activities which in turn will result 
in more accurate estimates for the project completion time.  
 Consider the PERT Bayesian network given in Figure 10. This is a 
PERT Bayes net with four activities A1, A2, A3 and A4. Notice that the 
activities are depicted by their durations, as D. Suppose we know that the 
activities A1 and A2 will be performed by the same contractor. The quality of 
the work done by this contractor is distributed as fQ(q). The quality of the 
work performed by the contractor effects the duration of the activities A1 and 
A2 such that with higher quality it will take less time to complete these 
activities. In addition to these, we also have the information that the same 
contractor performs another activity similar to ours within the firm. This 
activity A4 is outside of our project but we included it in our network in 
Figure 10 anyway since it will effect our later conclusions. As you can see in 
Figure 10 the duration of activity A4 also depends on the quality of the 
contractor’s job.  

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

D1~ N(2d1− q, 1 )

Q~ fQ(q)

D2 ~ N(d2 − 2q, 2 )
D4~ N(d4 − q, 2 )

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

D1~ N(2d1− q, 1 )

Q~ fQ(q)

D2 ~ N(d2 − 2q, 2 )
D4~ N(d4 − q, 2 )  

Figure 10. Representation of the example as a PERT Bayesian network 

 The example described above can be solved using the means of 
simulation methods as well as with the methods represented throughout this 
research. However, suppose we observe that the duration of activity A4 lasted 
10 days to complete. Hence we have the evidence eD4 = 10. With the 
methods described in this dissertation this evidence can be incorporated in 
the network and the estimates for the durations can be updated accordingly, 
which is not possible using the straight forward simulation. With our method 
we can find the posterior distribution of Q after receiving the evidence eD4 
which in turn will change the estimates for the distributions of A1 and A2 and 
consequently the estimate for the project completion time. Including the 
observations in the network and updating the distributions accordingly will 
improve the quality of the inference. The PERT BN after receiving the 
evidence eD4

 is represented in Figure 11 below.  
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D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

δ1′

Q~ f′Q(q)

δ2′

eD4 = 10

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

δ1′

Q~ f′Q(q)

δ2′

eD4 = 10  
Figure 11. The PERT Bayesian network after receiving the evidence eD4 

7 Summary and Conclusions 
 
Mixtures of truncated exponentials are an alternative tool to mixtures of 
Gaussians (MoG) to make inferences in stochastic PERT networks. Both 
MoG’s and also MTE’s are able to find accurate estimations for the 
maximum of two distributions and hence for the project completion time. 
However, the inference process using MTE PERT networks, compared to 
MoG’s, is much more straightforward in the sense that the MTE PERT 
networks do not force restrictive settings like, the inability of discrete 
variables to have continuous parents as it is the case with MoG networks. 
This fact makes the use MTE PERT Bayes nets better suited for practical 
use.  
 Comparing our method to straight forward simulation on the other hand, 
the MTE PERT Bayesian networks possess the advantage that the 
observations can be integrated to the inference process. Once evidence is 
observed we can update our network accordingly and find the posterior 
distributions of the activities and thus obtain a more accurate estimation for 
the project completion time.  
 The drawback with our method is on the other hand, that the number of 
exponential terms increases rapidly as the fusion algorithm is applied which 
in turn makes the inference process more difficult to apply. Additionally, in 
the process of marginalization, when the limits of integration include linear 
functions, we may end up with linear terms in the remaining variables. These 
linear terms can be approximated using an MTE approximation and it can be 
ensured that the result is again an MTE potential. However, replacing the 
linear terms with the MTE potentials causes bad accuracy in our 
approximations. 
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