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Abstract

The main goal of this paper is to describe inference in hybrid Bayesian
networks (BNs) using mixtures of polynomials (MOP) approximations of
probability density functions (PDFs). Hybrid BNs contain a mix of dis-
crete, continuous, and conditionally deterministic random variables. The
conditionals for continuous variables are typically described by conditional
PDFs. A major hurdle in making inference in hybrid BNs is marginaliza-
tion of continuous variables, which involves integrating combinations of
conditional PDFs. In this paper, we suggest the use of MOP approxima-
tions of PDFs, which are similar in spirit to using mixtures of truncated
exponentials (MTEs) approximations. MOP functions can be easily in-
tegrated, and are closed under combination and marginalization. This
enables us to propagate MOP potentials in the extended Shenoy-Shafer
architecture for inference in hybrid BNs that can include deterministic
variables. MOP approximations have several advantages over MTE ap-
proximations of PDFs. They are easier to find, even for multi-dimensional
conditional PDFs, and are applicable for a larger class of deterministic
functions in hybrid BNs.

1 Introduction

Bayesian networks (BNs) and influence diagrams (IDs) were invented in the mid
80s (see e.g., [17], [7]) to represent and reason with large multivariate discrete
probability models and decision problems, respectively. Several efficient algo-
rithms exist to compute exact marginals of posterior distributions for discrete
BNs (see e.g., [11], [23], and [9]) and to solve discrete IDs exactly (see e.g., [16],
[20], [21], and [8]).
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The state of the art exact algorithm for mixtures of Gaussians hybrid BNs is
the Lauritzen-Jensen algorithm [10]. This requires the conditional PDFs of con-
tinuous variables to be conditional linear Gaussians, and that discrete variables
do not have continuous parents. Marginals of multivariate normal distributions
can be found easily without the need for integration. The disadvantages are
that in the inference process, continuous variables have to be marginalized be-
fore discrete ones. In some problems, this restriction can lead to large cliques
[12].

If a BN has discrete variables with continuous parents, Murphy [15] uses a
variational approach to approximate the product of the potentials associated
with a discrete variable and its parents with a conditional linear Gaussian.
[13] uses a numerical integration technique called Gaussian quadrature to ap-
proximate non-conditional linear Gaussian distributions with conditional linear
Gaussians, and this same technique can be used to approximate the product of
potentials associated with a discrete variable and its continuous parents. Mur-
phy’s and Lerner’s approach is then embedded in the Lauritzen-Jensen algorithm
[10] to solve the resulting mixtures of Gaussians BN.

Shenoy [22] proposes approximating non-conditional linear Gaussian distri-
butions by mixtures of Gaussians using a nonlinear optimization technique, and
using arc reversals to ensure discrete variables do not have continuous parents.
The resulting mixture of Gaussians BN is then solved using Lauritzen-Jensen
algorithm [10].

[14] proposes approximating PDFs by mixtures of truncated exponentials
(MTE), which are easy to integrate in closed form. Since the family of mixtures
of truncated exponentials is closed under combination and marginalization, the
Shenoy-Shafer architecture [23] can be used to solve a MTE BN. [4] proposes
using a non-linear optimization technique for finding MTE approximations for
several commonly used one-dimensional distributions. [2, 3] extend this ap-
proach to BNs with linear and non-linear deterministic variables. In the latter
case, they approximate non-linear deterministic functions by piecewise linear
ones.

In this paper, we propose using mixtures of polynomials (MOP) approxi-
mations of PDFs. Mixtures of polynomials are widely used in many domains
including computer graphics, font design, approximation theory, and numerical
analysis. They were first studied by Schoenberg [18]. When the MOP func-
tions are continuous, they are referred to as polynomial splines [19]. The use of
splines to approximate PDFs was initially suggested by [5]. For our purposes,
continuity is not an essential requirement, and we will restrict our analysis to
piecewise polynomial approximations of PDFs.

Using MOP is similar in spirit to using MTEs. MOP functions can be easily
integrated, and they are closed under combination and marginalization. Thus,
the extended Shenoy-Shafer architecture [25] can be used to make inferences in
BN with deterministic variables. However, there are several advantages of MOP
functions over MTEs.

First, we can find MOP approximations of differentiable PDFs easily by using
the Taylor series approximations. Finding MTE approximations as suggested



by [4] necessitates solving non-linear optimization problems, which is not as easy
a task as it involves navigating among local optimal solutions.

Second, for the case of conditional PDFs with several parents, finding a good
MTE approximation can be extremely difficult as it involves solving a non-linear
optimization problem in high-dimensional space for each piece. The Taylor
series expansion can also be used for finding MOP approximations of conditional
PDFs. In [24], we describe a MOP approximation for a 2-dimensional CLG
distribution.

Third, if a hybrid BN contains deterministic functions, then the MTE ap-
proach can be used directly only for linear deterministic functions. By directly,
we mean without approximating a non-linear deterministic function by a piece-
wise linear one. This is because the MTE functions are not closed under trans-
formations needed for non-linear deterministic functions. MOP functions are
closed under a larger family of deterministic functions including linear func-
tions and quotients [24]. This enables propagation in a bigger family of hybrid
BNs than is possible using MTEs.

An outline of the remainder of the paper is as follows. In Section 2, we
define MOP functions and describe how one can find MOP approximations with
illustration for the univariate normal distribution. In Section 3, we solve a small
example designed to demonstrate the feasibility of using MOP approximations
with a non-differentiable deterministic function. Finally, in Section 4, we end
with a summary and discussion of some of the challenges associated with MOP
approximations.

2 Mixtures of Polynomials Approximations

In this section, we describe MOP functions and some methods for finding MOP
approximations of PDFs. We illustrate our method for the normal distribution.
In [24], we also describe MOP approximations of the PDFs of the chi-square
distribution, and the conditional linear Gaussian distribution in two dimensions.

2.1 MOP Functions

A one-dimensional function f : R → R is said to be a mixture of polynomials

(MOP) function if it is a piecewise function of the form:

f(x) =

{

a0i + a1ix+ a2ix
2 + · · · + anix

n for x ∈ Ai, i = 1, . . . , k,

0 otherwise.
(2.1)

where A1, . . . , Ak are disjoint intervals in R that do not depend on x, and
a0i, . . . , ani are constants for all i. We will say that f is a k-piece (ignoring the
0 piece), and n-degree (assuming ani 6= 0 for some i) MOP function.

The main motivation for defining MOP functions is that such functions are
easy to integrate in closed form, and that they are closed under multiplication
and integration. They are also closed under differentiation and addition.
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An m-dimensional function f : Rm → R is said to be a MOP function if:

f(x1, . . . , xm) = f1(x1) · f2(x2) · · · fm(xm) (2.2)

where each fi(xi) is a one-dimensional MOP function as defined in Equation
(2.1). If fi(xi) is a ki-piece, ni-degree MOP function, then f is a (k1 · · · km)-
piece, (n1 + . . .+ nm)-degree MOP function. Therefore it is important to keep
the number of pieces and degrees to a minimum.

2.2 Finding MOP Approximations of PDFs

Consider the univariate standard normal PDF φ(z) = (1/
√

2π)e−z2/2. A 1-
piece, 28-degree, MOP approximation φ1p(z) of φ(z) in the interval (−3, 3) is
as follows:

φ1p(z) =

{

c−1(1 − z2/2 + z4/8 − . . .+ z28/1428329123020800) if −3 < z < 3,

0 otherwise

where c−1 ≈ 0.4. This MOP approximation was found using the Taylor series
expansion of e−z2/2, at z = 0, to degree 28, restricting it to the region (−3, 3),
verifying that φ1p(z) ≥ 0 in the region (−3, 3), and normalizing it with constant
c so that

∫

φ1p(z)dz = 1 (whenever the limits of integration are not specified,
the entire range (−∞,∞) is to be understood). We will denote these operations
by writing:

φ1p(z) =

{

TSeries[e−z2/2, z = 0, d = 28] if −3 < z < 3

0 otherwise.
(2.3)

We can verify that φ1p(z) ≥ 0 as follows. First, we plot the unnormalized
MOP approximation, denoted by, say, φu(z). From the graph, we identify ap-
proximately the regions where φu(z) could possibly be negative. Then starting
from a point in each these regions, we compute the local minimum of φu(z)
using, e.g., gradient descent. Since MOP functions are easily differentiable, the
gradients can be easily found. If φu(z) ≥ 0 at all the local minimums, then we
have verified that φ1p(z) ≥ 0. If φu(z) < 0 at a local minimum, then we need
to either increase the degree of the polynomial approximation, or increase the
number of pieces, or both.

We have some very small coefficients in the MOP approximation. Rounding
these off to a certain number of decimal places could cause numerical instability.
Therefore, it is important to keep the coefficients in their rational form.

A graph of the MOP approximation φ1p(z) overlaid on the actual PDF φ(z)
is shown in Figure 1 and it shows that there are not many differences between
the two functions in the interval (−3, 3). The main difference is that φ1p is
restricted to (−3, 3), whereas φ is not. The mean of φ1p is 0, and its variance
≈ 0.976. Most of the error in the variance is due to the restriction of the
distribution to the interval (−3, 3). If we restrict the standard normal density



Mixtures of polynomials in hybrid Bayesian networks with deterministic variables 5

Figure 1: A graph of φ1p(z) overlaid on φ(z)

φ function to the interval (−3, 3), renormalize it so that it is a PDF, then its
variance ≈ 0.973.

In some examples, working with a 28-degree polynomial may not be tractable.
In this case, we can include more pieces to reduce the degree of the polynomial.
For example, a 6-piece, 3-degree MOP approximation of φ(z) is as follows:

φ6p(z) =















































TSeries[e−z2/2, z = −5/2, d = 3] if −3 < z < −2,

TSeries[e−z2/2, z = −3/2, d = 3] if −2 ≤ z < −1,

TSeries[e−z2/2, z = −1/2, d = 3] if −1 ≤ z < 0,

TSeries[e−z2/2, z = 1/2, d = 3] if 0 ≤ z < 1,

TSeries[e−z2/2, z = 3/2, d = 3] if 1 ≤ z < 2,

TSeries[e−z2/2, z = 5/2, d = 3] if 2 ≤ z < 3,

0 otherwise.

(2.4)

Notice that φ6p is discontinuous at the end points of the intervals. Also,
E(φ6p) = 0, and V (φ6p) ≈ 0.974. The variance of φ6p is closer to the variance
of the truncated normal (≈ 0.973) than φ1p.

In some examples, for reasons of precision, we may wish to work with a
larger interval than (−3, 3) for the standard normal. For example, an 8-piece,
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4-degree MOP approximation of φ in the interval (−4, 4) is as follows:

φ8p(z) =


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













TSeries[e−z2/2, z = −7/2, d = 4] if −4 < z < −3,

TSeries[e−z2/2, z = −5/2, d = 3] if −3 ≤ z < −2,

TSeries[e−z2/2, z = −3/2, d = 3] if −2 ≤ z < −1,

TSeries[e−z2/2, z = −1/2, d = 3] if −1 ≤ z < 0,

TSeries[e−z2/2, z = 1/2, d = 3] if 0 ≤ z < 1,

TSeries[e−z2/2, z = 3/2, d = 3] if 1 ≤ z < 2,

TSeries[e−z2/2, z = 5/2, d = 3] if 2 ≤ z < 3,

TSeries[e−z2/2, z = 7/2, d = 4] if 3 ≤ z < 4,

0 otherwise.

(2.5)

Notice that the degrees of the first and the eighth pieces are 4 to avoid
φ8p(z) < 0. E(φ8p(z)) = 0, and V (φ8p(z)) ≈ 0.99985. Due to the larger
interval, the variance is closer to 1 than the variance for φ6p. If we truncate the
PDF of the standard normal to the region (−4, 4) and renormalize it, then its
variance is ≈ 0.99893.

To find a MOP approximation of the PDF of the N(µ, σ2) distribution,
where µ and σ > 0 are constants, we exploit the fact that MOP functions are
invariant under linear transformations. Thus, if f(x) is a MOP function, then
f(ax + b) is also a MOP function. If Z ∼ N(0, 1), its PDF is approximated
by a MOP function φp(z), and X = σZ + µ, then X ∼ N(µ, σ2), and a MOP
approximation of the PDF of X is given by ξ(x) = (1/σ)φp((x− µ)/σ).

3 An Example

In this section, we illustrate the use of MOP functions for solving a small hy-
brid Bayesian network (BN) with a deterministic variable. We use the extended
Shenoy-Shafer architecture described in [25]. In [24], we solve more hybrid BNs
with deterministic variables including the quotient and the product determinis-
tic functions.

Consider a BN as shown in Figure 2. X and Y are continuous variables
and W is deterministic with a non-differentiable function of X and Y , W =
max{X,Y }.

The conditional associated with W is represented by the Dirac potential
ω(x, y, w) = δ(w−max{x, y}), where δ is a Dirac delta function [6]. To compute
the marginal PDF of W , we need to evaluate the integral

fW (w) =

∫

fX(x)(

∫

fY (y)δ(w − max{x, y})dy)dx (3.1)

where fW (w), fX(x), and fY (y) are the marginal PDFs of W , X , and Y ,
respectively. Since the deterministic function is not differentiable, the integrals
in Equation (3.1) cannot be evaluated as written.
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Figure 2: A BN with a max deterministic function

One solution to finding the marginal PDF of W is to use theory of order
statistics. Let FW (w), FX(x), and FY (y) denote the marginal cumulative dis-
tribution functions (CDFs) of W , X , and Y , respectively. Then:

FW (w) = P (W ≤ w) = P (X ≤ w, Y ≤ w) = FX(w)FY (w). (3.2)

Differentiating both sides of Equation (3.2) with respect to w, we have:

fW (w) = fX(w)FY (w) + FX(w)fY (w). (3.3)

In our example, X and Y have normal PDFs, which does not have a closed
form CDF. However, using MOP approximations of the normal PDF, we can
easily compute a closed form expression for the CDFs, which will remain MOP
functions. Then, using Equation (3.3), we will have a closed-form MOP ap-
proximation for the PDF of W . Assuming we start with the 8-piece, 4-degree
MOP approximation φ8p of N(0, 1) on the interval (−4, 4) as described in Equa-
tion (2.5), we can find MOP approximations of the PDFs of N(5, 0.252) and
N(5.25, 1) as discussed in Section 2 as follows:

ξ(x) = 4φ8p(4(x− 5)), (3.4)

ψ(y) = φ8p(y − 5.25). (3.5)

Next we find the MOP approximations of the CDFs of X and Y , and then
the MOP approximation of the PDF of W using Equation (3.3). A graph of the
MOP approximation of fW (w) is shown in Figure 3.

The mean and variance of the MOP approximation of fW are computed as
5.5484 and 0.4574. [1] provides formulae for exact computation of the mean and
variance of the max of two normals as follows:

E(W ) = E(X)FZ(b) + E(Y )FZ(−b) + afZ(b), (3.6)

E(W 2) = (E(X)2 + V (X))FZ(b) + (E(Y )2 + V (Y ))FZ (−b)
+(E(X) + E(Y ))afz(b), (3.7)

where a2 = V (X) + V (Y ) − 2C(X,Y ), b = (E(X) − E(Y ))/a, and fZ and FZ

are the PDF and CDF of N(0, 1), respectively.
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Figure 3: A graph of the MOP approximation of the PDF of W

In our example, E(X) = 5, E(Y ) = 5.25, V (X) = 0.252, V (Y ) = 1,
C(X,Y ) = 0. Thus, E(W ) ≈ 5.5483, and V (W ) ≈ 0.4576. The mean and
variance of the MOP approximation of W are accurate to three decimal places.
Unfortunately, the reasoning behind this computation of the marginal of W is
not included in inference in BNs.

To obtain the marginal ofW using BN inference, we convert the max function
to a differentiable function as follows: max{X,Y } = X if X ≥ Y , and = Y if
X < Y . We include a discrete variable A with two states, a and na, where a
indicates that X ≥ Y , and make it a parent of W . The revised BN is shown in
Figure 4.

Figure 4: The revised BN for the max deterministic function

Starting with the BN in Figure 4, the marginal of W can be computed using
the extended Shenoy-Shafer architecture [25]. We start with mixed potentials
as follows:

µX(x) = (1, ξ(x)); (3.8)

µy(y) = (1, ψ(y)); (3.9)

µA(a, x, y) = (H(x− y), 1), µA(na, x, y) = (1 −H(x− y), 1); (3.10)

µW (a, x, y, w) = (1, δ(w − x)), µW (na, x, y, w) = (1, δ(w − y)). (3.11)
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In Equation (3.10), H(.) is the Heaviside function such that H(x) = 1 if x ≥ 0,
and = 0 otherwise. The Heaviside function is a MOP function.

To find the marginal of W , we sequentially delete X , Y , and A. To delete
X , first we combine µX , µA, and µW , and then marginalize X from the combi-
nation:

(µX ⊗ µA ⊗ µW )(a, x, y, w) = (H(x− y), ξ(x)δ(w − x)), (3.12)

(µX ⊗ µA ⊗ µW )(na, x, y, w) = (1 −H(x− y), ξ(x)δ(w − y)); (3.13)

(µX ⊗ µA ⊗ µW )−X(a, y, w) = (1,

∫

H(x− y)ξ(x)δ(w − x))dx)

= (1, H(w − y)ξ(w)), (3.14)

(µX ⊗ µA ⊗ µW )−X(na, y, w) = (1, δ(w − y)

∫

(1 −H(x− y))ξ(x)dx)

= (1, δ(w − y)θ(y)); (3.15)

where θ(y) =
∫

(1 −H(x− y))ξ(x)dx.

Next, we delete Y . To do so, we combine (µX ⊗ µA ⊗ µW )−X and µY , and
then marginalize Y:

((µX ⊗ µA ⊗ µW )−X ⊗ µY )(a, y, w) = (1, H(w − y)ξ(w)ψ(y)), (3.16)

((µX ⊗ µA ⊗ µW )−X ⊗ µY )(na, y, w) = (1, δ(w − y)θ(y)ψ(y)); (3.17)

((µX ⊗ µA ⊗ µW )−X ⊗ µY )−Y (a,w) = (1, ξ(w)

∫

H(w − y)ψ(y)dy)

= (1, ξ(w)ρ(w)), (3.18)

((µX ⊗ µA ⊗ µW )−X ⊗ µY )−Y (na,w) = (1, θ(w)ψ(w)); (3.19)

where ρ(w) =
∫

H(w − y)ψ(y)dy.

Finally, we delete A by marginalizing A from ((µX ⊗µA ⊗µW )−X ⊗µY )−Y :

(((µX ⊗ µA ⊗ µW )−X ⊗ µY )−Y )−A(w) = (1, ξ(w)ρ(w) + θ(w)ψ(w))

= (1, ω(w)); (3.20)

where ω(w) = ξ(w)ρ(w) + θ(w)ψ(w). ω(w) is a MOP approximation of fW (w).
Notice that

ρ(w) =

∫

H(w − y)ψ(y)dy = FY (w), and (3.21)

θ(w) =

∫

(1 −H(x− y))ξ(x)dx = 1 − P (X > w) = FX(w), (3.22)

and therefore, ω(w) = ξ(w)ρ(w)+θ(w)ψ(w) is a MOP approximation of fX(w)FY (w)+
FX(w)fY (w). We get exactly the same results as those obtained by using theory
of order statistics but using BN inference.
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4 Summary and Discussion

The biggest problem associated with inference in hybrid BNs is the integra-
tion involved in marginalization of continuous variables. As a remedy, we have
proposed MOP approximations for PDFs in the same spirit as MTE approxi-
mations [14]. Like MTE functions, MOP functions are easy to integrate, and
are closed under combination and marginalization. This allows propagation of
MOP potentials using the extended Shenoy-Shafer architecture [25].

MOP approximations have several advantages over MTE approximations of
PDFs. First, they are easy to find using the Taylor series expansion of differ-
entiable functions. Second, finding MOP approximations of multi-dimensional
conditional PDFs is also relatively straightforward using the multi-dimensional
Taylor series expansion. Third, MOP approximations are closed for a larger
family of deterministic functions including the quotient functions. Beyond these
observations, a formal empirical comparison of MOP vs. MTE approximations
is an issue that needs further study.

Some issues associated with MOP approximations that need to be investi-
gated are as follows. There is a tradeoff between the number of pieces and the
degree of the polynomial. More pieces mean smaller intervals and consequently
smaller degrees. Assuming the goal is to find marginals most efficiently, what
is the optimal number of pieces/degrees?

Another challenge is to describe the effect of pieces/terms on the errors in
the moments of marginals. It appears that most of the errors in the moments
are caused by truncating the domain of variables to some finite intervals. Thus,
it may be possible to decide on what intervals should be used if we wish to
compute marginals within some prescribed error bounds for the moments of the
marginal of variable of interest.

High degree MOP approximations lead to very small coefficients that need
to be kept in rational form. This may decrease the efficiency of computation,
and may limit the size of BN models that can be solved. One solution here is
to use more pieces, which lowers the degrees of the MOP approximations.

MOP approximations are not closed for many classes of deterministic func-
tions such as products and exponentiation. If we can expand the class of MOP
functions to include positive and negative rational exponents and maintain the
properties of MOP functions—easily integrable, closed under combination and
marginalization—then we can solve hybrid BNs with a larger class of determin-
istic functions.
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