
Inference in Hybrid Bayesian

Networks with Mixtures of

Truncated Exponentials

Barry R. Cobb

School of Business

University of Kansas

brcobb@ku.edu

Prakash P. Shenoy

School of Business

University of Kansas

pshenoy@ku.edu

Abstract

Mixtures of truncated exponentials (MTE) potentials are an alterna-
tive to discretization for solving hybrid Bayesian networks. Any prob-
ability density function can be approximated with an MTE potential,
which can always by marginalized in closed form. This allows propaga-
tion to be done exactly using the Shenoy-Shafer architecture for comput-
ing marginals, with no restrictions on the construction of a join tree. This
paper presents a 4-piece MTE potential that approximates an arbitrary
normal probability density function with any mean and a positive vari-
ance. The properties of this MTE potential are presented, along with
examples that demonstrate its use in solving hybrid Bayesian networks.
Assuming that the joint density exists, MTE potentials can be used for in-
ference in hybrid Bayesian networks that do not fit the restrictive assump-
tions of the conditional linear Gaussian (CLG) model, such as networks
containing discrete nodes with continuous parents.

1 Introduction

Hybrid Bayesian networks contain both discrete and continuous conditional
probability distributions as numerical inputs. A commonly used type of hybrid
Bayesian network is the conditional linear Gaussian (CLG) model [Lauritzen
1992, Cowell et al. 1999]. In CLG models, the distribution of a continuous
variable is a linear Gaussian function of its continuous parents. One limitation
of CLG models is that discrete nodes cannot have continuous parents.

Discretization of continuous distributions can allow approximate inference
in a hybrid Bayesian network without limitations on relationships among con-
tinuous and discrete variables. An alternative to discretization is suggested

In J. Vejnarova (ed.), Proceedings of 6th Workshop on Uncertainty Processing (WUPES-2003), 47--63, VSE-Oeconomica Publishers.



48 B.R. COBB, P.P. SHENOY

by Moral et al. [2001], which proposes using mixtures of truncated exponen-
tials (MTE) potentials to approximate probability density functions in hybrid
Bayesian networks. The main goal of this paper is to describe an implementation
of MTE potentials in hybrid Bayesian networks where continuous distributions
are conditional linear Gaussian distributions. We demonstrate propagation in
such networks using an example. Also, an MTE solution of an augmented CLG
network containing a discrete variable with a continuous parent is presented.

The remainder of this paper is organized as follows. Section 2 introduces
notation and definitions used throughout the paper, including a description of
the CLG model. Section 3 introduces MTE potentials and defines the properties
of an MTE approximation for an arbitrary normal probability density function.
Section 4 reviews the operations required for propagation in hybrid Bayesian
networks with MTE potentials using the Shenoy-Shafer architecture. Section 5
contains two examples that demonstrate propagation of MTE potentials. Fi-
nally, section 6 summarizes and states some directions for future research. This
paper is derived from a larger unpublished working paper [Cobb and Shenoy
2003].

2 Notation and Definitions

2.1 Notation

Random variables in a Bayesian network will be denoted by capital letters, e.g.
A,B,C. Sets of variables will be denoted by boldface capital letters, Y if all
variables are discrete, Z if all variables are continuous, or X if some of the
components are discrete and some are continuous. If X is a set of variables, x
is a configuration of specific values for those variables. The state space of X is
denoted by ΩX.

MTE probability distributions or discrete probability distributions are de-
noted by lower-case greek letters, e.g. α, β, γ. Subscripts are used for MTE
potentials when different parameters are required for each configuration of a
variable’s discrete parents, e.g. α1, β2, γ3. Subscripts are used for discrete
probability potentials as an index on the probabilities of elements in the state
space, e.g. δ0 = P (D = 0).

2.2 Conditional Linear Gaussian (CLG) Models

Let X be a continuous node in a hybrid Bayesian network, Y = (Y1, . . . , Yd) be
its discrete parents, and Z = (Z1, . . . , Zc) be its continuous parents. Conditional
linear Gaussian (CLG) potentials [Lauritzen 1992, Cowell et al. 1999] in hybrid
Bayesian networks have the form
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£(X | y, z) ∼ N (wy,0 +
c∑

i=1

wy,izi , σ2
y), (1)

where y and z are a combination of discrete and continuous states of the parents
ofX. In this formula, σ2

y > 0, wy,0 and wy,i are real numbers, and wy,i is defined
as the i-th component of a vector of the same dimension as the continuous
part Z of the parent variables. This assumes that the mean of a potential
depends linearly on the continuous parent variables and that the variance does
not depend on the continuous parent variables. For each configuration of the
discrete parents of a variable X, a linear function of the continuous parents
is specified as the mean of the conditional distribution of X given its parents,
and a positive real number is specified for the variance of the distribution of X
given its parents. The distribution of all variables in the network is a mixture
of Gaussians.

2.3 Logistic function

CLG models cannot accomodate discrete nodes with continuous parents because
of the assumption that the joint distribution is a mixture of Gaussians. One
model for representing the conditional distribution of a discrete variable given
continuous parents is the logistic or softmax distribution.

LetA be a discrete variable with ΩA = {a1, . . . , am} and let Z = {Z1, . . . , Zk}
be its continuous parents. The logistic function is defined as

P (A = ai | z) =
exp(gi +

∑k
n=1 wi,nzn)∑m

j=1 exp(gj +
∑k

n=1 wj,nzn)
, (2)

where the magnitude of wi,n determines the steepness of the threshold and g is
the offset from 0. A large magnitude of wi,n corresponds to a hard threshold
and a small magnitude of wi,n corresponds to a soft threshold. If a discrete
variable has discrete and continuous parents, a different logistic function can be
defined for each combination of its discrete parents.

IfA is binary with ΩA = {a1, a2} and has continuous parents Z = {Z1, . . . , Zk},
the logistic function can be simplified to a sigmoid function as follows

P (A = a1 | z) =
1

1 + exp(g +
∑k

n=1 wnzn)
. (3)

Thus, in the binary case, P (A = a2 | z) = 1 − P (A = a1 | z).



50 B.R. COBB, P.P. SHENOY

3 Mixtures of Truncated Exponentials

3.1 Definitions

A mixture of truncated exponentials (MTE) [Moral et al. 2001] potential has
the following definition.

MTE potential. Let X be a mixed n-dimensional random variable. Let
Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous parts of
X, respectively, with c+ d = n. A function φ : ΩX �→ R+ is an MTE potential
if one of the next two conditions holds:

1. The potential φ can be written as

φ(x) = φ(y, z) = a0 +
m∑

i=1

ai exp{ d∑
j=1

b
(j)
i yj +

c∑
k=1

b
(d+k)
i zk} (4)

for all X ∈ Ωx, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , n

are real numbers.

2. There is a partition Ω1, . . . ,Ωk of ΩX verifying that the domain of contin-
uous variables, ΩZ, is divided into hypercubes, the domain of the discrete
variables, ΩY, is divided into arbitrary sets, and such that φ is defined as

φ(x) = φi(x) if x ∈ Ωi, (5)

where each φi, i = 1, ..., k can be written in the form of equation (4) (i.e.
each φi is an MTE potential on Ωi).

3.2 MTE Approximation to the Normal PDF

Any continuous probability density function can be approximated by an MTE
potential. For instance, consider a variable X with the normal distribution with
mean µ and variance σ2 > 0. The probability density function for the normal
distribution is

fX(x) =
1√
2πσ

e−
1
2 ( x−µ

σ )2 . (6)

The general formulation for a 4-piece MTE potential which approximates a
normal distribution is

φ(x) =




−0.017203
σ + 0.930964

σ e1.27( x−µ
σ ) if µ− 3σ ≤ x < µ− σ

0.442208
σ − 0.038452

σ e−1.64( x−µ
σ ) if µ− σ ≤ x < µ

0.442208
σ − 0.038452

σ e1.64( x−µ
σ ) if µ ≤ x < µ+ σ

−0.017203
σ + 0.930964

σ e−1.27( x−µ
σ ) if µ+ σ ≤ x < µ+ 3σ

0 elsewhere.

(7)
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Figure 1: 4-piece MTE approximation overlayed on the standard normal distri-
bution.

In this formulation, the mean, µ, of X may be represented by a linear function
of its continuous parents, as in (1).

The MTE potential constructed from the formulation in (7) has the following
properties:

1.
∫ µ+3σ

µ−3σ
φ(x)dx = 1

2. φ(x) ≥ 0

3. φ(x) is symmetric around µ

4.
∫ µ+3σ

µ−3σ
xφ(x)dx = µ

5.
∫ µ+3σ

µ−3σ
(x− µ)2φ(x)dx = 0.989532σ2.

Areas in the extreme tails of the normal distribution are re-assigned to the
four regions of the MTE in proportion to the areas in the related regions of
the normal distribution. The general MTE distribution is shown in Figure 1,
overlayed on a graph of the standard normal distribution over the same region.

4 Propagation in MTE Networks

This section will describe the operations required to carry out propagation of
MTE potentials in a hybrid Bayesian network. Most of this material is described
in Moral et al. [2001].
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4.1 Restriction

Restriction—or entering evidence—involves dropping coordinates to define a
potential on a smaller set of variables. During propagation, restriction is per-
formed by substituting values for known variables into the appropriate MTE
potentials and simplifying the potentials accordingly.

Let φ be an MTE potential for X = (Y,Z). Assume a set of variables X′ =
(Y′,Z′) ⊆ X, whose values x↓Ωx′ are fixed to values x′ = (y′, z′). The restriction
of φ to the values (y′, z′) is a new potential defined on ΩX\X′ according to the
following expression:

φR(X′=x′)(w) = φR(Y′=y′,Z′=z′)(w) = φ(x) (8)

for all w ∈ ΩX\X′ such that x ∈ ΩX, x↓Ωx\x′ = w and x↓Ωx′ = x′. In this
definition, each occurrence of X′ in φ is replaced with x′.

4.2 Marginalization

Marginalization in a network with MTE potentials corresponds to summing
over discrete variables and integrating over continuous variables. Let φ be
an MTE potential for X = (Y,Z). The marginal of φ for a set of variables
X′ = (Y′,Z′) ⊆ X is an MTE potential computed as

φ↓X
′
(y′, z′) =

∑
y∈ΩY\Y′

(
∫

ΩZ\Z′
φ(y, z) dz′′) (9)

where z′′ = z \ z′.

4.3 Combination

Combination of MTE potentials is pointwise multiplication. Let φ1 and φ2 be
MTE potentials for X1 = (Y1,Z1) and X2 = (Y2,Z2). The combination of φ1

and φ2 is a new MTE potential for X = X1 ∪ X2 defined as follows

φ(x) = φ(x↓Ωx1 ) · φ(x↓Ωx2 ) for all x ∈ ΩX. (10)

4.4 Normalization

Let X = (Y,Z) be a set of variables with discrete and continuous elements, and
let φ′ be an un-normalized MTE potential for X. A normalization constant, K,
for φ′ is calculated as

K =
∑

y∈ΩY

(
∫

ΩZ

φ′(y, z) dz). (11)
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Figure 2: The hybrid Bayesian network for the simple Waste example.

4.5 Shenoy-Shafer Architecture

Moral et al. [2001] shows that the class of MTE potentials is closed under
restriction, marginalization, and combination. Thus, MTE potentials can be
propagated using the Shenoy-Shafer architecture [Shenoy and Shafer 1990], since
only combinations and marginalizations are perfomed. Normalization involves
multiplication of an MTE potential by a real number (the reciprocal of the
normalization constant), so this operation is also closed under the class of MTE
potentials. In all examples that follow, the Shenoy-Shafer architecture is used
for propagation.

5 Examples

5.1 Simple Waste Example

This example is derived from Cowell et al. [1999] and will provide an example
of using MTE potentials for inference in a hybrid Bayesian network. Some
parameters have been changed from the original example to make the domains
of the MTE potentials easier to interpret, but all relationships between variables
are unchanged. The hybrid Bayesian network and binary join tree [Shenoy 1997]
for the problem are shown in Figures 2 and 3, respectively. Expected value and
variance calculations in this example were verified with Hugin software.

5.1.1 Definition of Potentials

The potentials for the five nodes are the probability tables and distributions
shown below

α0 = P (F = 0) = 0.90, α1 = P (F = 1) = 0.10,
β0 = P (B = 0) = 0.80, β1 = P (B = 1) = 0.20,
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Figure 3: The binary join tree for the simple Waste example.

γ0 = P (W = 0) = 0.20, γ1 = P (W = 1) = 0.80,

£(E | F = 0 ,W = 0 ) ∼ N (µε1 , σ
2
ε1

) ⇒ ε1 (e) ∼ N (5 , 1 )
£(E | F = 0 ,W = 1 ) ∼ N (µε2

, σ2
ε2

) ⇒ ε2 (e) ∼ N (8 , 1 )
£(E | F = 1 ,W = 0 ) ∼ N (µε3 , σ

2
ε3

) ⇒ ε3 (e) ∼ N (0 , 1 )
£(E | F = 1 ,W = 1 ) ∼ N (µε4 , σ

2
ε4

) ⇒ ε4 (e) ∼ N (1 , 1 ),

£(D | B = 0 ,W = 0 ,E ) ∼ N (µδ1 (e), σ2
δ1

) ⇒ δ1 (d , e) ∼ N (5+e, 4 )
£(D | B = 0 ,W = 1 ,E ) ∼ N (µδ2

(e), σ2
δ2

) ⇒ δ2 (d , e) ∼ N (6+e, 4 )
£(D | B = 1 ,W = 0 ,E ) ∼ N (µδ3

(e), σ2
δ3

) ⇒ δ3 (d , e) ∼ N (7+e, 4 )
£(D | B = 1 ,W = 1 ,E )∼N (µδ4 (e), σ2

δ4
) ⇒ δ4 (d , e) ∼ N (8 +e, 4 ).

Each of the potentials are translated to MTE distributions, the potentials.
For instance, ε1 and δ1 are defined as follows

ε1(e) =




−0.017203 + 0.930964e1.27(e−5) if 2 ≤ e < 4
0.442208 − 0.038452e−1.64(e−5) if 4 ≤ e < 5
0.442208 − 0.038452e1.64(e−5) if 5 ≤ e < 6
−0.017203 + 0.930964e−1.27(e−5) if 6 ≤ e < 7,

δ1(d, e) =




−0.0086015 + 0.465482e0.635(d−e−5) if e− 1 ≤ d < e+ 3
0.221104 − 0.019226e−0.82(d−e−5) if e+ 3 ≤ d < e+ 5
0.221104 − 0.019226e0.82(d−e−5) if e+ 5 ≤ d < e+ 7
−0.0086015 + 0.465482e−0.635(d−e−5) if e+ 7 ≤ d < e+ 11.
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Figure 4: The potentials formed by deleting F from (ε⊗ γ ⊗ α).

5.1.2 Computing Messages

The relevant messages in the binary join tree are described below.

1. Deleting F from (ε⊗ γ ⊗ α)
This message is sent from {E,F,W} to {D,W,E} in the binary join tree
and is denoted by (3) in Figure 3. Discrete variable F is deleted by summa-
tion from the combination of α and ε and new potentials are determined
as follows

ξ0(e) = α0ε1(e) + α1ε3(e)

ξ1(e) = α0ε2(e) + α1ε4(e).

These potentials are shown graphically in Figure 4.

2. Deleting B from (δ ⊗ β)
This message is sent from {D,B,W,E} to {D,W,E} in the binary join
tree and is denoted by (5) in Figure 3. Discrete variable B is deleted
by summation from the combination of β and δ and new potentials are
determined as follows

η0(d, e) = β0δ1(d) + β1δ3(d)

η1(d, e) = β0δ2(d) + β1δ4(d).

3. Deleting W from (ξ ⊗ η)
This message is sent from {D,W,E} to {D,E} in the binary join tree
and is denoted by (6) in Figure 3. The potentials ξ and η calculated
previously are combined, then the variable W is removed by summation
from the resulting potential. This operation is performed as follows

θ(d, e)) = γ0 ξ1(e) η0(d, e) + γ1 ξ2(e) η1(d, e).
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Figure 5: The marginal potentials for D (left) and E (right) in the simple Waste
example.

5.1.3 Posterior Marginals

Prior to calculating the marginal distributions for D and E, integration limits
are defined using the parameters from the original potentials in the problem.
Although the integration limits can always be set to −∞ and ∞, defining the
limits as real numbers facilitates easier calculations.

The lower and upper limits of integration for E are denoted by λE and κE ,
respectively, and are calculated as follows

λE = Min(µε1 − 3σ2
ε1
, µε2 − 3σ2

ε2
, µε3 − 3σ2

ε3
, µε4 − 3σ2

ε4
) = −3

κE = Max(µε1 + 3σ2
ε1
, µε2 + 3σ2

ε2
, µε3 + 3σ2

ε3
, µε4 + 3σ2

ε4
) = 11.

The lower and upper limits of integration for D are a function of the lower
and upper limits of integration for E, since the mean of each potential for D
is a linear function of E. The upper and lower limits of integration for D are
denoted by λD and κD, respectively, and are calculated as follows

λD = Min
(
µδ1(λE) − 3σ2

δ1
, µδ2(λE) − 3σ2

δ2
, µδ3(λE) − 3σ2

δ3
, µδ4(λE) − 4σ2

δ4

)
= −3

κD = Max
(
µδ1(κE) + 3σ2

δ1
, µδ2(κE) + 3σ2

δ2
, µδ3(κE) + 3σ2

δ3
, µδ4(κE) + 3σ2

δ4

)
= 25.

The marginal potential for D (shown graphically in Figure 5) is calculated
from θ as follows

ϕ(d) =
∫ κE

λE

θ(d, e) de.

The expected value and variance of D are calculated as

E(D) =
∫ κD

λD

d ϕ(d) dd = 12.9401,
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V ar(D) =
∫ κD

λD

(d− E(D))2 ϕ(d) dd = 11.876.

The marginal potential for E (shown graphically in Figure 5) is calculated
from θ as follows

ψ(e) =
∫ κD

λD

θ(d, e) dd.

The expected value and variance of E are calculated as

E(E) =
∫ κE

λE

e ψ(e) de = 6.74014,

V ar(E) =
∫ κE

λE

(e− E(E))2 ψ(e) de = 6.22196.

5.1.4 Entering Evidence

Suppose evidence is obtained that D = 10. This evidence is sent from node D
to node {D,E} in the binary join tree, then the existing potential for {D,E} is
restricted to θ(10, e). This potential is then integrated over the domain of E to
obtain a normalization constant,

K =
∫ κE

λE

θ(10, e) de = 0.0592091,

which represents the probability of the observed evidence. The normalized
marginal distribution for E is ϑ(e) = K−1 θ(10, e).

The following integrals are calculated to determine the expected value and
variance of ϑ(e)

E(E) =
∫ κE

λE

e ϑ(e) de = 5.30754,

V ar(E) =
∫ κE

λE

(e− E(E))2 ϑ(e) de = 4.19925.
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To calculate revised marginal probabilities for discrete nodes F and W ,
the evidence that D = 10 is sent to node {D,E,W} in the join tree, where
the existing potentials are restricted, becoming η0(10, e) and η1(10, e). These
restricted potentials are sent to node {E,F,W} in the join tree and combined
with the existing potentials ε1(e), . . . , ε4(e).

To calculate revised probabilities for discrete node F , E must be removed
by integration and W must be removed by summation. Normalization constant
K is still valid at node F , since it represents the probability of the observed
evidence. The revised probabilities P (F = 0) and P (F = 1) are calculated as
follows

�0 =P (F =0) =K−1α0

(∫ κE

λE

(γ0 ε1(e) η0(10, e) + γ1 ε2(e) η1(10, e)) de
)

=0.870007,

�1 =P (F =1) =K−1α1

(∫ κE

λE

(γ0 ε3(e) η0(10, e) + γ1 ε4(e) η1(10, e)) de
)

=0.129973.

To calculate revised probabilities for discrete node W , E must be removed
by integration and F must be removed by summation. Normalization constant
K is still valid at node W , since it represents the probability of the observed
evidence. The revised probabilities P (W = 0) and P (W = 1) are calculated as
follows

ν0 =P (W =0)=K−1γ0

(∫ κE

λE

(α0 ε1(e) η0(10, e) + α1 ε3(e) η1(10, e)) de
)

=0.517355,

ν1 =P (W =1)=K−1γ1

(∫ κE

λE

(α0 ε2(e) η0(10, e) + α1 ε4(e) η1(10, e)) de
)

=0.482585.

5.2 Crop Network Example

This example is from Murphy [1999] and Binder et al. [1997] and will provide a
simple example of inference using MTE potentials in a hybrid Bayesian network
with a discrete child of a continuous parent. A diagram of the Bayesian network
appears in Figure 6. In this model, the price (P ) of a crop is assumed to decrease
linearly with the amount of crop (C) produced. If the government subsidizes
prices (S = 1), the price will be raised by a fixed amount. The consumer is
likely to buy (B = 1) if the price drops below a certain amount.

The discrete variable (B) is modeled by a softmax or logistic distribution,
which in the case of a binary discrete variable, reduces to a sigmoid function.
The probability that B = 0 given price (P ) equals

β0(p) = P (B = 0|P = p) =
1

1 + ewp+g
. (12)
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Figure 6: The hybrid Bayesian network for the Crop example.

Figure 7: The logistic function representing P (B = 0|P = p) in the Crop
network.

For the Crop example, P (B = 0|P = p) is given by parameters w = −1 and
g = 5. Since B is binary, β1(p) = P (B = 1|P = p) = 1 − P (B = 0|P = p). The
logistic function for P (B = 0|P = p) is shown graphically in Figure 7.

5.2.1 Binary Join Tree Initialization

When all continuous distributions are approximated with MTE potentials, no
restrictions are placed on join tree initialization. The join tree is initialized as
usual and propagation takes place according to the Shenoy-Shafer architecture.

A join tree for the Crop example is shown in Figure 8. The potential for
(B | p) was stated previously. The potentials for the Subsidy variable (S) is the
following binary discrete distribution:

δ0 = P (S = 0) = 0.30, δ1 = P (S = 1) = 0.70.

The crop variable (C) has a normal distribution, £(C ) ∼ N (5 , 1 ), which is
described by the following MTE potential:



60 B.R. COBB, P.P. SHENOY

Figure 8: The join tree for the Crop example.

α(c) =




−0.017203 + 0.930964e1.27(c−5) if 2 ≤ c < 4
0.442208 − 0.038452e−1.64(c−5) if 4 ≤ c < 5
0.442208 − 0.038452e1.64(c−5) if 5 ≤ c < 6
−0.017203 + 0.930964e−1.27(c−5) if 6 ≤ c < 8.

The price variable (P ) decreases linearly with the amount of crop (C) pro-
duced and is increased by a fixed amount if the government subsidizes prices
(S = 1). Thus, £(P |S = 0 ,C ) ∼ N (10 − c, 1 ) and £(P |S = 1 ,C ) ∼
N (20 − c, 1 ), which are represented by the following MTE potentials:

ϕ0(p, c) =




−0.017203 + 0.930964e1.27(p+c−10) if 7 − c ≤ p < 9 − c
0.442208 − 0.038452e−1.64(p+c−10) if 9 − c ≤ p < 10 − c
0.442208 − 0.038452e1.64(p+c−10) if 10 − c ≤ p < 11 − c
−0.017203 + 0.930964e−1.27(p+c−10) if 11 − c ≤ p < 13 − c,

ϕ1(p, c) =




−0.017203 + 0.930964e1.27(p+c−20) if 17 − c ≤ p < 19 − c
0.442208 − 0.038452e−1.64(p+c−20) if 19 − c ≤ p < 20 − c
0.442208 − 0.038452e1.64(p+c−20) if 20 − c ≤ p < 21 − c
−0.017203 + 0.930964e−1.27(p+c−20) if 21 − c ≤ p < 23 − c.

5.2.2 Computing Messages

The following messages are required to compute the marginal distributions for
P and B in the crop example

1) α(c) from {C} to {C,P, S}
2) δ from {S} to {C,P, S}
3) (α(c) ⊗ δ ⊗ ϕ(p, c))↓P from {C,P, S} to {P}
4) ((α(c) ⊗ δ ⊗ ϕ(p, c))↓P ⊗ β)↓B from {B,P} to {B}.
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Figure 9: The posterior marginal distribution for P in the Crop example.

5.2.3 Posterior Marginals

1. Posterior Marginal for P

The message sent from {C,P, S} to {P} is the marginal distribution for
P and is calculated as follows

ψ(p) =
∫

c

(α(c)(δ0ϕ0(p, c) + δ1ϕ1(p, c))) dc.

The expected value and variance of the marginal distribution for P are
calculated as follows

E(P ) =
∫

p

p ψ(p) dp = 11.9902,

V ar(P ) =
∫

p

(p− E(P ))2 ψ(p) dp = 22.9373.

These calculations can be verified by using Hugin software to construct a
network with variables S, C, and P only. Hugin gives an expected value
and variance for P of 12 and 23, respectively.

The posterior marginal distribution for P is shown graphically in Figure 9.

2. Posterior Marginal for B
To calculate the posterior marginal probabilities for B, the marginal dis-
tribution for P is combined with the conditional probabilities β0(p) and
β1(p). First, the joint distribution of {B = 0, P} is calculated as follows

Ψ0(p) = β0 ψ(p) = (1 + e5−p)−1 ψ(p).

Next, the joint distribution of {B = 1, P} is calculated as
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Ψ1(p) = β1 ψ(p) = (1 − (1 + e5−p)−1) ψ(p).

The posterior probabilities for B are found by removing P as

P (B = 0) =
∫

p

Ψ0(p) dp = 0.849586,

P (B = 1) =
∫

p

Ψ1(p) dp = 0.150414.

6 Summary and Conclusions

We have described the details of a 4-piece MTE potential approximation to a
normal probability and defined its properties. Inference in two hybrid Bayesian
networks using MTE potentials was demonstrated using the Shenoy-Shafer ar-
chitecture for calculating marginals.

Extensive future research on MTE potentials and their applications is needed.
General formulations for other continuous probability density functions can al-
low implementation to a broader range of problems. These particularly include
distributions that are formed when discrete variables have continuous parents.
An adaption of the EM algorithm for approximating continuous distributions
with mixtures of Gaussian distributions may be useful in allowing mixtures of
exponentials to be used for approximating probability distributions from data.
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