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Abstract

In probability theory, the mutual information between two discrete random variables X and
Y is a measure of average reduction in uncertainty about X when we learn the value of Y .
It is defined using the Shannon entropy of probability distributions. Mutual information
between X and Y can be considered a measure of dependence between the two variables.
This paper defines a corresponding concept of mutual information between two random
variables in a Dempster-Shafer belief function graphical model. We use the definition of
decomposable entropy defined by Jiroušek and Shenoy to define mutual information. We
show that our definition of mutual information in the D-S theory satisfies some of the same
properties of mutual information in probability theory. We also define the Kullback-Liebler
divergence for the D-S theory that generalizes the KL-divergence for probability theory.

Keywords: Shannon’s entropy, mutual information, Kullback-Leibler divergence,
Dempster-Shafer theory of belief functions, decomposable entropy of belief functions, belief
function graphical models

1. Introduction

The main goal of this paper is to define mutual information between two variables in a
Dempster-Shafer (D-S) belief function graphical model [2, 10]. Our definition is based on
decomposable entropy for belief functions defined by Jiroušek and Shenoy [5], which satisfies
the compound distributions property analogous to the one that characterizes Shannon’s defi-
nitions of entropy and conditional entropy for probability mass functions [12]. We also define
a generalization of the Kullback-Leibler (KL) divergence between two belief functions de-
fined for the same set of variables and express mutual information in terms of KL-divergence,
similar to probability.

An outline of the remainder of the paper is as follows. In Sec. 2, we briefly review
the definition of Shannon’s entropy of a probability mass function, Shannon’s definition of
conditional entropy, and their properties. We also review the definition and properties of
mutual information and KL-divergence in probability theory. Most of this material is taken
from [12, 3, 9]. In Sec. 3, we review the representations, operators, and conditional belief
functions in the D-S theory of belief functions. In Sec. 4, we review the definitions of
decomposable entropy and conditional decomposable entropy for the D-S theory and state
some of their properties [5, 6]. In Section 5, we define mutual information of a variable given
another with respect to a joint belief function for the two variables. In Section 6, we define
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the KL-divergence between two belief functions for the same set of variables. As in the
probabilistic case, we express mutual information in terms of the KL-divergence of two joint
belief functions. Finally, in Section 7, we summarize, discuss future research, and conclude.

2. Shannon’s Entropy, Mutual Information, and Kullback-Liebler Divergence for
Probability Theory

This section briefly reviews Shannon’s definitions of entropy of probability mass functions
(PMFs) and conditional entropy of conditional probability tables, and their properties. We
also review the definitions of mutual information between two variables and the Kullback-
Liebler divergence between two probability mass functions defined for the same set of vari-
ables. Most of the material in this section is taken from [12, 3, 9]. We use some notation
(such as probabilistic combination, ⊗) from [13].

Definition 1 (Shannon’s entropy of a PMF). Suppose PX is a PMF of a discrete random
variable X with state space ΩX . Shannon’s entropy of PX , denoted by Hs(PX), is defined as

Hs(PX) = −
∑
x∈ΩX

PX(x) log2(PX(x)). (1)

The traditional terminology is Shanon’s entropy of variable X, characterized by PMF
PX . Instead, we change the terminology to Shannon’s entropy of PMF PX . If PX(x) = 0, we
follow the convention that PX(x) log(PX(x)) = 0 as limθ→0+ θ log(θ) = 0. Although we use
a logarithm with base 2, we can use any base, and only units will be changed. With base 2,
entropy is measured in units of bits. Henceforth, we will write log for log2.

Suppose PX,Y is a joint PMF of (X, Y ) defined on the joint state space ΩX,Y = ΩX ×ΩY .
Then, the joint Shannon’s entropy of PX,Y , denoted by Hs(PX,Y ), is as in Eq. (1), i.e.,

Hs(PX,Y ) = −
∑

(x,y)∈ΩX,Y

PX,Y (x, y) log (PX,Y (x, y)) . (2)

Suppose PX,Y is a joint PMF of (X, Y ) with PX as its marginal PMF for X. Suppose
we observe X = a for some a ∈ ΩX such that PX(a) > 0. This observation is represented
by the PMF PX=a for X such that PX=a(a) = 1. Let PY |a = (PX,Y ⊗ PX=a)

↓Y denote the
posterior (or conditional) PMF of Y (recall that ⊗ denotes pointwise multiplication followed
by normalization, the combination rule in probability theory). The posterior Shannnon
entropy of PY |a, denoted by Hs(PY |a), is as in Eq. (1), i.e.,

Hs(PY |a) = −
∑
y∈ΩY

PY |a(y) log(PY |a(y)). (3)

Shannon [12] derives the expression for entropy of PX axiomatically using three axioms
as follows:

1. Axiom 1 (Continuity): H(PX) should be a continuous function of PX(x) for x ∈ ΩX .

2



2. Axiom 2 (Monotonicity): If we have an equally-likely PMF, then H(PX) should be a
monotonically increasing function of |ΩX |.

3. Axiom 3 (Compound distributions): If a PMF is factored into two PMFs, then its Shan-
non entropy should be the sum of Shannon entropies of its factors, e.g., PX,Y (x, y) =
PX(x)PY |x(y), then H(PX,Y ) = H(PX) +

∑
x∈ΩX

PX(x)H(PY |x).

Shannon [12] proves that the only function Hs that satisfies Axioms 1–3 is of the form

Hs(PX) = −K
∑
x∈ΩX

PX(x) log (PX(x)) ,

where K is a positive constant that depends on the choice of units of measurement.
Let PY |X : ΩX,Y → [0, 1] be a function such that PY |X(x, y) = PY |x(y) for all (x, y) ∈ ΩX,Y .

PY |x(y) is only defined for x ∈ ΩX such that PX(x) > 0. PY |X is a conditional probability
table (CPT) in the Bayesian network literature. It is not a PMF but can be considered a
collection of PMFs. If we combine PX and PY |X using the probabilistic combination rule ⊗,
then we obtain PX,Y , the joint PMF of X and Y :

PX,Y = PX ⊗ PY |X . (4)

The normalization constant in Eq. (4) is 1.
If we start from a joint PMF PX,Y for {X, Y }, we can always find the conditional distri-

bution PY |X as follows:
PY |X(x, y) = PX,Y (x, y)/PX(x), (5)

for all x ∈ ΩX such that PX(x) > 0, and for all y ∈ ΩY .

Definition 2 (Conditional entropy [12]). Suppose PY |X is a CPT for Y given X for all
x ∈ ΩX such that PX(x) > 0. Shannon’s conditional entropy of PY |X , denoted by Hs(PY |X),
is defined as

Hs(PY |X) =
∑

x∈ΩX :PX(x)>0

PX(x)Hs(PY |x). (6)

Thus, Shannon’s conditional entropy of PY |X is the average of Shannon’s entropyHs(PY |x)
for each value x ∈ ΩX weighted by PX(x), the probability of getting x. Since Hs(PY |x) ≥ 0
for all x, it follows that Hs(PY |X) ≥ 0.

From Definition 2, it follows that

Hs(PY |X) =
∑

x∈ΩX :PX(x)>0

PX(x)Hs(PY |x)

= −
∑

x∈ΩX :PX(x)>0

PX(x)
∑
y∈ΩY

PY |x(y) log(PY |x(y))

= −
∑

(x,y)∈ΩX,Y :PX(x)>0

PX(x)PY |x(y) log(PY |x(y))

= −
∑

(x,y)∈ΩX,Y :PX(x)>0

PX,Y (x, y) log(PY |X(x, y)). (7)
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Substituting the definition of PY |X(x, y) from Eq. 5 in Eq. 7, we obtain

Hs(PY |X) = −
∑

(x,y)∈ΩX,Y :PX(x)>0

PX,Y (x, y) log

(
PX,Y (x, y)

PX(x)

)
= Hs(PX,Y )−Hs(PX)

i.e.,
Hs(PX,Y ) = Hs(PX) +Hs(PY |X) (8)

If we refer to Hs(PX) as the marginal Shannon entropy (of X), then Eq. (8) is the
compound distributions axiom underlying Shannon’s entropy expressed in terms of marginal
and conditional entropies. Eq. (8) is also called the chain rule of entropy [9].

2.1. Properties of Shannon Entropy [12]

1. Hs(PX) ≥ 0. Hs(PX) = 0 if and only if there is an x ∈ ΩX such that PX(x) = 1.
Otherwise Hs(PX) > 0.

2. For a given n = |ΩX |, Hs(PX) is a maximum and equal to log(n) when PX is the
equiprobable PMF of X.

3. It is shown in [12] that Hs(PX,Y ) ≤ Hs(PX) +Hs(PY ), where PX and PY are marginal
PMFs of X and Y computed from joint PMF PX,Y , with equality only if X and Y are
independent with respect to PX,Y .

4. It follows from the chain rule of entropy and property 3 that Hs(PX) + Hs(PY |X) =
Hs(PX,Y ) ≤ Hs(PX) + Hs(PY ). Thus, Hs(PY |X) ≤ Hs(PY ). Thus, the entropy of
PY is never increased by knowledge of X. It will be decreased unless X and Y are
independent, in which case it stays the same.

2.2. Mutual Information

The concept of mutual information between two random variables is introduced in [12].
The terminology is due to Fano [3], who called it ‘average mutual information.’ Here, we
call it mutual information.

Definition 3 (Mutual information). Consider a joint PMF P (X, Y )(x, y) = PX(x)PY |X(x, y)
defined in terms of marginal PMF PX and CPT PY |X . Let PY = (PX,Y )

↓Y denote the
marginal of P (X, Y ) for Y . The mutual information of Y with respect to X, denoted by
I(Y ;X), is defined by

I(Y ;X) = Hs(PY )−Hs(PY |X) (9)

Mutual information I(Y ;X) can be interpreted as a measure of Y ’s dependence on X,
where the measure is the reduction of Shannon’s entropy of Y after observation of X. Notice
that the definition of I(Y ;X) is with respect to the joint distribution P (X, Y ) that describes
the dependence of Y on X.

Some properties of I(Y ;X) are as follows [3, 9].

1. I(Y ;X) ≥ 0. This follows from Property 4 of Shannon’s entropy. I(Y ;X) = 0 if and
only if Y is independent of X with respect to the joint PMF PX,Y , i.e., PX,Y = PX⊗PY ,
where PX and PY are marginals of PX,Y for X and Y , respectively.
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2. I(X;Y ) = I(Y ;X). The joint PX,Y can also be factored as follows: PX,Y (x, y) =
PY (y)PX|Y (x, y), where PY is the marginal of PX,Y for Y , and the conditional prob-
ability table PX|Y (x, y) = PX,Y (x, y)/PY (y) for all y such that PY (y) > 0. It follows
from Def. 3 that I(X;Y ) = Hs(PX) − Hs(PX|Y ). It follows from the chain rule of
entropy that Hs(PX,Y ) = Hs(PY ) +Hs(PX|Y ). Thus,

I(X;Y ) = Hs(PX)−Hs(PX|Y )

= Hs(PX) +Hs(PY |X)−Hs(PY |X)−Hs(PX|Y )

= Hs(PX,Y )−Hs(PY |X)−Hs(PX|Y )

= Hs(PY ) +Hs(PX|Y )−Hs(PY |X)−Hs(PX|Y )

= Hs(PY )−Hs(PY |X) = I(Y ;X)

3. I(Y ;X) ≤ Hs(PY ) and I(X;Y ) ≤ Hs(PX). These inequalities follow from Def. 3 and
the non-negativity of conditional entropies.

4. Hs(PX,Y ) = Hs(PX) +Hs(PY )− I(X;Y ). Notice that

Hs(PX,Y ) = Hs(PX) +Hs(PY |X)

= Hs(PX) +Hs(PY )− (Hs(PY )−Hs(PY |X))

= Hs(PX) +Hs(PY )− I(Y ;X)

Figure 1: Relationships between Shannon’s joint entropy, marginal entropy, conditional entropy, and mutual
information. This figure is taken from [9]

Figure 1, taken from [9], summarizes the relationships between joint entropy, marginal
entropy, conditional entropy, and mutual information.

2.3. Mutual Information and Kullback-Leibler Divergence

Definition 4 (Kullback-Leibler (KL) Divergence [8]). Suppose P and Q are two PMFs for
X defined on the state space ΩX such that if P (x) = 0 for some x ∈ Ω, then Q(x) = 0. The
Kullback-Leibler divergence between P and Q, denoted by DKL(P ||Q), is as follows:

DKL(P ||Q) =
∑
x∈ΩX

P (x) log

(
P (x)

Q(x)

)
(10)
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If the condition that P (x) = 0 implies Q(x) = 0 is not satisfied, then DKL(P ||Q) is
considered as +∞.

If P represents an empirical PMF and Q represents a theoretical PMF, the KL-divergence
DKL(P ||Q) can be interpreted as the average difference of the number of bits required for
encoding P using a code optimized for Q. Although we have defined KL-divergence between
PMFs P and Q for a single variable X, the definition remains unchanged if P and Q are
PMFs for some set s of variables. In this case, we have to sum over all states a ∈ Ωs.

KL-divergence satisfies Gibb’s inequality, i..e., DKL(P ||Q) ≥ 0, with equality if and only
if P = Q [9].

Mutual information I(Y ;X) with respect to joint PMF PX,Y can be expressed in terms
of KL-divergence as follows. Suppose PX,Y is a joint PMF for {X, Y } with marginals PX

and PY for X and Y , respectively. Then,

I(Y ;X) = DKL(PX,Y ||PX ⊗ PY ) (11)

Proof is taken from [9]:

I(Y ;X) = Hs(PY )−Hs(PY |X)

= −
∑
y∈ΩY

PY (y) log(PY (y))−

−
∑

(x,y)∈ΩX,Y

PX,Y (x, y) log(PY |X(x, y))


=

∑
(x,y)∈ΩX,Y

PX,Y (x, y) log(PY |X(x, y))−
∑
y∈ΩY

(∑
x∈ΩX

PX,Y (x, y)

)
log(PY (y))

=
∑

(x,y)∈ΩX,Y

PX,Y (x, y) log

(
PY |X(x, y)

PY (y)

)

=
∑

(x,y)∈ΩX,Y

PX,Y (x, y) log

(
PX,Y (x, y)

PX(x)PY (y)

)
= DKL(PX,Y ||PX ⊗ PY ).

Thus, it follows from the properties of KL-divergence that I(Y ;X) ≥ 0, and I(Y ;X) = 0
if and only if PX,Y = PX ⊗PY , i.e., X and Y are independent with respect to PX,Y . Also, as
DKL(PX,Y ||PX ⊗ PY ) is symmetric in X and Y , i.e., PX,Y = PY,X and PX ⊗ PY = PY ⊗ PX ,
it follows that I(X;Y ) = I(Y ;X).

3. Basic Definitions in the D-S Belief Functions Theory

This section reviews the basic definitions in the D-S belief functions theory. Like several other
uncertainty theories, the D-S belief functions theory includes functional representations of
uncertain knowledge and operations for making inferences from such knowledge. Most of
the material in Sections 3.1 and 3.2 are taken from [10].
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3.1. Representations of belief functions
Belief functions can be represented in many different ways. Here, we focus on basic proba-
bility assignments and commonality functions.

Notation. Let V denote a finite set of variables. Elements of V are denoted by upper-case
Roman letters, X, Y , Z, etc. Subsets of V are denoted by lower-case Roman alphabets r, s,
t, etc. Each variable X is associated with a finite state space ΩX that contains all possible
values of X. For subset r ⊆ V , let Ωr = ×X∈rΩX denote the state space of r. Let 2Ωr denote
the set of all subsets of Ωr.

Basic Probability Assignment. A basic probability assignment (BPA) m for r is a function
m : 2Ωr → [0, 1] such that

m(∅) = 0, and (12)∑
a⊆Ωr

m(a) = 1. (13)

m represents some knowledge about variables in r, and we say the domain of m is r. m(a)
is the probability assigned exactly to the subset a of Ωr. Subsets a such that m(a) > 0 are
called focal elements of m. If m has only one focal element (with probability 1), we say m
is deterministic. If the focal element of a deterministic BPA is Ωr, we say m is vacuous. A
vacuous BPA for r is denoted by ιr. If all the focal elements of m are singleton subsets of Ωr,
we say m is Bayesian. A Bayesian BPA is, in essence, a probability mass function (PMF) of
r. We say m is consonant if the focal elements of m are nested, i.e., if they can be ordered
such that a1 ⊂ a2 ⊂ ... ⊂ am, where {a1, ..., am} denotes the set of all focal elements of m.
We say m is quasi-consonant if the intersection of all focal elements of m is non-empty. A
BPA that is consonant is also quasi-consonant, but not vice-versa. Thus, a BPA with focal
elements {x1, x2} and {x1, x3} is quasi-consonant, but not consonant.

Commonality Function. The information in a BPA m for r can also be represented by a
corresponding commonality function (CF) Qm that is defined as follows:

Qm(a) =
∑

b∈2Ωr : b⊇a

m(b), for all a ∈ 2Ωr . (14)

First, it follows from Eq. (14) that 0 ≤ Qm(a) ≤ 1. Second, it follows from Eqs. (12)-(13)
that Qm(∅) = 1. Third, CFs are non-increasing in the sense that if a ⊆ b, then Q(a) ≥ Q(b).
Fourth, a CF Qm has the same information as the corresponding BPA m. Given a CF Q,
let mQ denote the corresponding BPA. We can recover mQ from Q as follows [10]:

mQ(a) =
∑

b∈2ΩX : b⊇a

(−1)|b\a|Q(b). (15)

Thus, it follows that Q : 2Ωr → [0, 1] is a well-defined CF iff

Q(∅) = 1, (16)∑
b∈2Ωr : b⊇a

(−1)|b\a|Q(b) ≥ 0, for all ∅ ≠ a ∈ 2Ωr , and (17)

∑
∅≠a∈2Ωr

(−1)|a|+1Q(a) = 1. (18)
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The left-hand side of Eq. (17) is mQ(a), and the left-hand side of Eq. (18) can be shown
to be

∑
∅≠a∈2ΩX mQ(a). Eq. (18) can be regarded as a normalization condition for a CF.

If we have a function Q : 2ΩX → [0, 1] that satisfies Eqs. (16) and (17), but not (18),
then we can divide each of the values of the function for non-empty subsets in 2Ωr by
K =

∑
∅̸=a∈2Ωr (−1)|a|+1Qm(a), and the resulting function will then qualify as a CF.

For the vacuous BPA ιr for r, the CF Qιr corresponding to BPA ιr is given by Qιr(a) = 1
for all a ∈ 2Ωr . If m is a Bayesian BPA for r, then Qm is such that Qm(a) = m(a) if |a| = 1,
and Qm(a) = 0 if |a| > 1.

3.2. Operations in the D-S theory

The D-S theory has two main operations: Dempster’s combination rule and marginaliza-
tion.

Notation. Projection of states simply means dropping extra coordinates; for example, if
(x, y) is a state of (X, Y ), then the projection of (x, y) to X, denoted by (x, y)↓X , is simply
x, which is a state of X.

The projection of subsets of states is achieved by projecting every state in the subset.
Suppose b ∈ 2ΩX,Y . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that b↓X ∈ 2ΩX .

Vacuous extension of a subset of states of X to a subset of states of (X, Y ) is a cylinder
set extension, i.e., if a ∈ 2ΩX , then a↑(X,Y ) = {a} × ΩY .

Dempster’s Combination Rule. In the D-S theory, we can combine two BPAs m1 and m2

representing distinct pieces of evidence by Dempster’s rule [2] and obtain the BPA m1⊕m2,
which represents the combined evidence. Dempster referred to this rule as the product-
intersection rule, as the product of the BPA values is assigned to the intersection of the focal
elements, followed by normalization. Normalization consists of discarding the value assigned
to ∅ and normalizing the remaining values so that they add to 1. In general, Dempster’s rule
of combination can be used to combine two distinct BPAs for arbitrary sets of variables.

Suppose m1 and m2 are distinct BPAs for r1 and r2, respectively. Then m1 ⊕ m2 is a
BPA for r1 ∪ r2 = r given by:

(m1 ⊕m2)(a) =


0 if a = ∅,

K−1
∑

b1⊆2r1 , b2⊆2r2 : b↑r
1 ∩b↑r

2 = a

m1(b1)m2(b2) otherwise,
(19)

for all a ∈ 2Ωr , where K is a normalization constant given by:

K = 1−
∑

b1⊆2r1 , b2⊆2r2 : b↑r
1 ∩b↑r

2 = ∅

m1(b1)m2(b2). (20)

The definition of Dempster’s rule assumes that the normalization constant K is non-zero.
If K = 0, then the two BPAs m1 and m2 are said to be in total conflict and cannot be
combined. If K = 1, we say m1 and m2 are non-conflicting. The concept of distinct belief
functions is discussed in [15].
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Dempster’s rule can also be described using CFs [10]. Suppose Q1 and Q2 are CFs
corresponding to BPAs m1 and m2, respectively. The CF Q1 ⊕ Q2 corresponding to BPA
m1 ⊕m2 is defined as follows:

(Q1 ⊕Q2)(a) =

1 if a = ∅,

K−1Q1(a↓r1)Q2(a↓r2) otherwise,
(21)

for all a ∈ 2Ωr , where K is a normalization constant given by:

K =
∑

∅≠a∈2Ωr

(−1)|a|+1Q1(a↓r1)Q2(a↓r2). (22)

It is shown in [10] that the normalization constant K in Eq. (22) is the same as in Eq. (20).
In terms of CFs, Dempster’s rule is pointwise multiplication of CFs followed by normal-

ization, which is similar to the probabilistic combination rule of pointwise multiplication of
probability potentials followed by normalization. Whereas probability potentials for r are
functions from Ωr → [0, 1], CFs are functions from 2Ωr → [0, 1]. Also, while normalization of
probability potentials is achieved by dividing by the sum, normalization of CFs is achieved
by dividing by the Möbius sum (with alternating signs). This similarity with probability
theory is one of the motivations behind our definitions of entropy and conditional entropy
in Section 4.

Next, we define the vacuous extension of BPAs and CFs.

Vacuous Extension of a BPA. Suppose m is a BPA for r and s ⊇ r. The vacuous extension
of m to s, denoted by m↑s, is the BPA for s such that

m↑s(a↑s) = m(a), (23)

for all a ∈ 2Ωr , i.e., all focal elements of m↑s are vacuous extensions of focal elements of m to
s, and the corresponding focal elements have the same values. Notice that vacuous extension
can also be described in terms of Dempster’s rule as follows:

m↑s = m⊕ ιs\r. (24)

Vacuous Extension of a CF. Suppose Q is a CF for r and s ⊇ r. The vacuous extension of
Q to s, denoted by Q↑s, is the CF for s such that

Q↑s = Q⊕Qιs\r . (25)

Eq. (25) implies that if Q is parametrized by k parameters, and s ⊇ r, then Q↑s is also
parametrized by the same k parameters, i.e., the vacuous extension does not create new
parameters (or distinct values).

Marginalization. Marginalization in D-S theory is the summation of values of BPAs. Suppose
m is a BPA for (X, Y ). Then, the marginal of m for X, denoted by m↓X , is a BPA for X
such that for each a ∈ 2ΩX ,

m↓X(a) =
∑

b∈2ΩX,Y : b↓X= a

m(b). (26)
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It follows from Eq. (26), that if m(b) > 0, then m↓X1(b↓X1) > 0, for all b ∈ 2ΩX .
The marginalization can also be defined in terms of CFs. Suppose Q is a CF for (X, Y ).

Then, for all a ∈ 2ΩX ,

Q↓X(a) =
∑

b∈2ΩX,Y :b↓X=a

(−1)(|b|−|a|) Q(b). (27)

As in the case of a BPA, it can be shown that if Q(b) > 0, then Q↓X(b↓X) > 0.

3.3. Conditional belief functions

In probability theory, it is common to construct joint probability mass functions for a set
of variables by using conditional probability distributions. For example, we can construct
joint PMF for (X, Y ) by first assessing PMF PX of X, and conditional PMFs PY |x for Y ,
one for each x ∈ ΩX such that PX(x) > 0. Let PY |X denote a CPT for (X, Y ) such that
PY |X(x, y) = PY |x(y) for all (x, y) ∈ ΩX,Y such that PX(x) > 0. Then, PX,Y = PX ⊗ PY |X .
We can construct a joint BPA for (X, Y ) similarly.

Consider a BPA mX for X and x ∈ ΩX such that mX({x}) > 0. Suppose that there is
a BPA for Y expressing our belief about Y if we know that X = x, and denote it by mYx .
Notice that mYx is a BPA for Y , i.e., mYx : 2ΩY → [0, 1] such that

∑
b∈2ΩY mYx(b) = 1. We

can embed this BPA for Y into a conditional BPA for Y given X, which is denoted by mY |x,
such that the following two conditions hold:

1. mY |x tells us nothing about X, i.e., m↓X
Y |x(ΩX) = 1.

2. If we combine mY |x with the deterministic BPA mX=x for X such that mX=x({x}) = 1
using Dempster’s rule, and marginalize the result to Y we obtain mYx , i.e., (mY |x ⊕
mX=x)

↓Y = mYx .

Smets suggest one way to obtain such an embedding [16] (see also, Shafer [11], Xu and
Smets [19], and Almond [1]), called conditional embedding1. It consists of taking each focal
element b ∈ 2ΩY of mYx , and converting it to the corresponding focal element

({x} × b) ∪ ((ΩX \ {x})× ΩY ) ∈ 2ΩX,Y (28)

of mY |x with the same mass. It is easy to confirm that this embedding method satisfies the
two conditions described in the previous paragraph.

Conditional embedding can also be described using CFs. Suppose we start with a CF
QX for X (with corresponding BPA mX for X) and want a conditional CF QY |X for Y given
X. The conditional CF QY |X may include only those non-vacuous conditional CF QY |x for
(X, Y ) such that mX({x}) > 0. If only one such conditional exists, then QY |X = QY |x.
If we have more than one, then QY |X is obtained by Dempster’s combination of all such
conditionals:

QY |X =
⊕

x∈ΩX :mX({x})>0

QY |x. (29)

1The terminology of conditional embedding is due to [11].

10



Next, we combine CFs QX for X and coditional QY |X for Y given X to obtain the joint
CF QX,Y for {X, Y }, i.e., QX,Y = QX ⊕QY |X . First, from our construction method of QX,Y ,
the normalization constant K in the Dempster combination of QX and QY |X equals one. It
follows from the definition of Dempster’s rule in Eq. (21) that

QX,Y (a) = QX(a↓X) ·QY |X(a), (30)

for all a ∈ 2ΩX . If a ∈ 2ΩX is such that QX(a↓X) > 0, then it follows from Eq. (30) that
QY |X(a) = QX,Y (a)/QX(a↓X). If a ∈ 2ΩX is such that QX(a↓X) = 0, then it follows from Eq.
(30) that QX,Y (a) = 0. If we restrict our attention to subsets in {b ∈ 2ΩX : QX,Y (b) > 0},
then

QY |X(a) = QX,Y (a)/QX(a↓X), (31)

for all a ∈ {b ∈ 2ΩX : QX,Y (b) > 0}.
We caution the reader that Eq. (31) is only valid for those joint CFs QX,Y for {X, Y }

that are constructed using Eq. (30). If we start with an arbitrary CF Q for {X, Y } such
that Q(a) > 0 for all a ∈ 2ΩX,Y , compute the marginal CF Q↓X for X (using Eq. (27)), and
then construct a function QY |X using Eq. (31), then QY |X may fail to be a CF because the
condition in Eq. (17) is violated. However, if we start from a joint CF QX,Y for {X, Y }
such that QX,Y = Q↓X

X,Y ⊕ Q, where Q is a CF for {X, Y }, then it can be shown that

Q(a) = QX,Y (a)/Q
↓X
X,Y (a

↓X) is a conditional CF for Y given X [4].
In summary, given any joint PMF PX,Y for {X, Y }, we can always factor this into PX

for X, and PY |X for {X, Y }, such that PX,Y = PX ⊗PY |X . This is not true in the D-S belief
function theory. Given a joint BPA mX,Y for {X, Y }, we cannot always find a belief function

mY |X for {X, Y } such that mX,Y = m↓X
X,Y ⊕mY |X . However, we can always construct joint

BPA mX,Y for {X, Y } by first assessing mX for X and assessing conditionals mY |xi
for Y for

those xi that we know and such that mX(xi) > 0, embed these conditionals into conditional
BPAs for {X, Y }, and combine all such BPAs to obtain the conditional BPA mY |X for Y
given X. We can then construct mX,Y = mX ⊕ mY |X . Conditional belief functions are
studied further in [7].

This completes our brief review of the D-S belief function theory. For further details, the
reader is referred to [10].

4. The Decomposable Entropy for the D-S Theory

In this section, we describe decomposable entropy (d-entropy) of belief functions in the D-S
theory [5] and describe its properties [6]. The definition of d-entropy is designed to satisfy
a compound distribution property analogous to the compound distribution property that
characterizes Shannon’s entropy of PMFs.

4.1. Definition of d-entropy for D-S belief functions

Definition 5 (d-entropy of a CF). Suppose QX is a CF for X with state space ΩX . Then,
the d-entropy of QX , denoted by Hd(QX), is defined as

Hd(QX) =
∑

a∈2ΩX

(−1)|a|QX(a) log(QX(a)). (32)
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The definition of d-entropy of QX in Eq. (32) is well-defined as it follows from the
definition of a CF in Eq. (14) that for all a ∈ 2ΩX that QX(a) ≥ 0. If QX(a) = 0, we
will follow the convention that QX(a) log(QX(a)) = 0 as limθ→0+ θ log(θ) = 0. Thus, in
computing the d-entropy Hd(QX) as defined in Def. 5, it is sufficient that the summation in
the right-hand side of Eq. (32) is restricted to a ∈ 2ΩX such that QX(a) > 0.

If QX,Y is a joint CF for (X, Y ), then its d-entropy is defined as in Eq. (32), i.e.,

Hd(QX,Y ) =
∑

a∈2ΩX,Y

(−1)|a|QX,Y (a) log(QX,Y (a)). (33)

We refer to Hd(QX,Y ) as the joint d-entropy of QX,Y .
Suppose QX,Y is a CF for {X, Y } with state space ΩX ×ΩY . Suppose we observe X = a.

Let QX=a denote the CF for X corresponding to BPA mX=a for X such that mX=a({a}) = 1.
Let QY |a = (QX,Y ⊕QX=a)

↓Y denote the posterior CF for Y . Then, the posterior entropy of
QY |a is as in Eq. (32), i.e.,

Hd(QY |a) =
∑

a∈2ΩY

(−1)|a|QY |a(a) log(QY |a(a)). (34)

4.2. Conditional d-entropy

In Subsection 3.3, we showed that the conditional commonality function, if it exists, can
be expressed as QY |X(a) = QX,Y (a)/QX(a↓X) (see Eq. (31)). In this subsection, we will
define the conditional entropy of a conditional CF. It would be incorrect to use Eq. (32) to
compute the entropy of QY |X as our belief of X is not included in conditional CF QY |X .
We define the conditional entropy of QY |X similar to the definition of conditional entropy of
PY |X in the probabilistic case (see Eq. (6)).

Definition 6 (Conditional d-entropy). Suppose QX is a CF for X, and suppose QY |X is
a conditional CF for Y given X. Then, the conditional d-entropy of QY |X , denoted by
Hd(QY |X), is defined as follows:

Hd(QY |X) =
∑

a∈2ΩX,Y :QX(a↓X)>0

(−1)|a| QX(a↓X)QY |X(a) log(QY |X(a)). (35)

Using the definition of expectation for belief functions in [14], the conditional d-entropy
in Eq. (35) can be considered as an expectation of Hd(QY |x) as in the probabilistic case.

Notice that as QX(a↓X)QY |X(a) = QX,Y (a) for all a ∈ 2ΩX,Y , we can rewrite Eq. (35) as
follows:

Hd(QY |X) =
∑

a∈2ΩX,Y :QX(a↓X)>0

(−1)|a| QX,Y (a) log(QY |X(a)) (36)

In the next subsection, we discuss some properties of our definitions of d-entropy and
conditional d-entropy of CFs.
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4.3. Properties of d-entropy for D-S Belief Functions

Some properties of our definition in Eq. (32) are as follows (proofs of all properties can
be found in [6]).

1. (Compound distributions) SupposeQX is a CF forX, and supposeQY |X is a conditional
CF for (X, Y ). Let QX,Y = QX ⊕QY |X . Then,

Hd(QX,Y ) = Hd(QX) +Hd(QY |X). (37)

This is the most important property of d-entropy and conditional d-entropy. None of
the other definitions of entropy of D-S belief functions satisfy this property.

2. (Non-negativity) Suppose m is a BPA for X and suppose |ΩX | = 2. Then, Hd(m) ≥ 0.
For |ΩX | > 2, Hd(m) does not satisfy the non-negativity property as shown in Example
1.

Example 1 (Negative entropy). Consider a BPA m for X with ΩX = {a, b, c} such
that

m({a, b}) = m({a, c}) = m({b, c}) = 1

3
.

Then Qm is as follows:

Qm({a}) = Qm({b}) = Qm({c}) =
2

3
,

Qm({a, b}) = Qm({a, c}) = Qm({b, c}) =
1

3
, and

Qm({a, b, c}) = 0.

Then it follows that Hd(m) = −3 · 2
3
log(2

3
) + 3 · 1

3
log(1

3
) = log(3

4
) ≈ −0.415.

Suppose m is a BPA for X with n = |ΩX |. We conjecture that

Hd(m) ≥ log

(
n

2(n− 1)

)
.

This conjecture is based on a BPA m whose focal elements are only doubleton subsets
with equal probabilities. If the conjecture is true, Hd(m) would be on the scale from
[log( n

2(n−1)
), log(n)], where n = |ΩX |, n ≥ 3. Also, as

lim
n→∞

log

(
n

2(n− 1)

)
= −1,

Hd(m) would be on the scale (−1,∞)). Lack of non-negativity is not a serious draw-
back. Shannon’s definition of entropy for continuous random variables characterized
by probability density functions can be negative [12]. Yet, the definition of mutual
information in probability theory also applies to continuous random variables with
summation replaced by integration.
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3. (Quasi-consonant/consonant) Supposem is a BPA forX. Ifm is quasi-consonant, then
Hd(m) = 0. As consonant BPAs are also quasi-consonant, Hd(m) = 0 for consonant
BPAs.

4. (Vacuous extension) Vacuous extension of a CF does not change its entropy. If QX is

a CF for X, and Q
↑(X,Y )
X is the vacuous extension of QX to (X, Y ), then Hd(Q

↑(X,Y )
X ) =

Hd(QX).
Vacuous extension is a mathematical operation that does not affect the knowledge
encoded in QX . The knowledge that is encoded in QX is the same as the knowledge
that is encoded in Q

↑(X,Y )
X . Thus, it is reassuring that the definition of d-entropy assigns

the same value to both.

5. (Maximum entropy) Suppose m is a BPA for X with state space |ΩX |. Then, Hd(m) ≤
log(|ΩX |), with equality if and only if m = mu, where mu is the Bayesian equiprobable
BPA for X. This is similar to the corresponding property of Shannon’s definition for
PMFs.

5. Mutual Information for Belief Functions

We will define mutual information for two variables whose behavior is defined by a joint
BPA mX,Y for {X, Y }. The exposition will mirror the definition of mutual information in
probability theory in Section 2.2.

Definition 7 (Mutual information in the DS theory). Consider a joint BPA mX,Y = mX ⊕
mY |X for {X, Y } defined in terms of a marginal BPA mX for X and a conditional BPA mY |X

for Y given X. Let mY denote the marginal BPA m↓Y
X,Y for Y . The mutual information of

Y with respect to X, denoted by Id(Y ;X), is defined as follows:

Id(Y ;X) = Hd(mY )−Hd(mY |X) (38)

Some comments/properties of Definition 7:

1. As in the probabilistic case, MI Id(Y ;X) is defined as the difference between marginal
and conditional d-entropies of Y . The subscript d in Id(X;Y ) is to differentiate MI for
the DS theory from the corresponding probabilistic definition.

2. Unlike Shannon’s entropy, d-entropy is not non-negative. But, MI Id(Y ;X) is the
difference of two d-entropies of Y . The conditional d-entropyHd(mY |X) can be regarded
as an expectation of Hd(mY |x) [14]. Thus, like in the probabilistic case, we will show
in Section 6 that Id(Y ;X) ≥ 0, with equality if and only if X and Y are independent
with respect to mX,Y .

3. For probabilistic mutual information I(X;Y ) = I(Y ;X). For the D-S case, if we have
mX,Y = mX ⊕mY |X , it is not always the case that there exists a conditional mX|Y for
X given Y such that mX,Y = (mX,Y )

↓Y ⊕mX|Y . If there does exist a conditional mX|Y
for X given Y , then Id(X;Y ) = Id(Y ;X). This will be shown in Section 6.
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4. In the probabilistic case, Hs(PX,Y ) ≤ Hs(PX)+Hs(PY ), where PX and PY are marginal
PMFs of X and Y computed from joint PMF PX,Y , with equality only if X and Y
are independent with respect to PX,Y . In the D-S case, a similar property holds:
Hd(mX,Y ) ≤ Hd(mX) +Hd(mY ) with equality if and only if X and Y are independent
with respect to mX,Y . The concept of independence in the D-S theory is similar to
the probabilistic case. X and Y are independent with respect to mX,Y if and only if
mX,Y = mX ⊕ mY , where mX and mY are marginals of mX,Y for the corresponding
variables [13].

5. It follows from the chain rule of entropy and property 4 that Hd(mX) +Hd(mY |X) =
Hd(mX,Y ) ≤ Hd(mX) +Hd(mY ). Thus, Hd(mY |X) ≤ Hd(mY ). Thus, the d-entropy of
mY is never increased by knowledge of X. It will be decreased unless X and Y are
independent, in which case it stays the same.

Example 2 illustrates the definition of mutual information and its properties.

Example 2. Consider two binary variables X and Y with states ΩX = {x, x̄} and ΩY =
{y, ȳ}. Suppose BPA mX for X is as follows:

mX({x}) = 0.3,mX({x̄}) = 0.3,mX({x, x̄}) = 0.4. (39)

Suppose Y is a deterministic function of X: mYx({y}) = 1, and mYx̄({ȳ}) = 1, i.e., If
X = x, then Y = y, and if X = x̄, then Y = ȳ. After conditional embedding, conditional
mY |x for Y given X = x is as follows:

mY |x({(x, y), (x̄, y), (x̄, ȳ)}) = 1. (40)

Similarly, conditional mY |x̄ for Y given X = x̄ is as follows:

mY |x̄({(x, y), (x, ȳ), (x̄, ȳ)}) = 1. (41)

It follows from Dempster’s combination rule that conditional mY |X = mY |x ⊕ mY |x̄ for Y
given X is as follows:

mY |X({(x, y), (x̄, ȳ)}) = 1. (42)

Finally, the joint BPA mX,Y = mX ⊕mY |X is as follows:

mX,Y ({(x, y)}) = 0.3,mX,Y ({(x̄, ȳ)}) = 0.3,mX,Y ({(x, y), (x̄, ȳ)}) = 0.4. (43)

It follows from the definitions of d-entropy and conditional d-entropy that Hd(mX) ≈ 0.19
(see Table 5 for the details of the computation), Hd(mY |X) = 0 (as it is deterministic),
Hd(mX,Y ) ≈ 0.19. Notice that the marginal of the joint for Y , mY = (mX,Y )

↓Y is as follows:

mY ({y}) = 0.3,mY ({ȳ}) = 0.3,mY ({y, ȳ}) = 0.4. (44)

Thus, Hd(mY ) ≈ 0.19. This example illustrates the following results:

1. Hd(mX) +Hd(mY |X) ≈ 0.19 + 0 = 0.19 = Hd(mX,Y ) (chain rule of entropy).

2. I(Y ;X) = Hd(mY )−Hd(mY |X) ≈ 0.19− 0 = 0.19 ≥ 0 (Property 2 of Definition 7).
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Table 1: BPAs, commonality functions, and d-entropies in Example 2

a ∈ 2ΩX,Y \ ∅ m
↑{X,Y }
X mY |x mY |x̄ Q

m
↑{X,Y }
X

QmY |x QmY |x̄ QmY |X QmX,Y

{(x, y)} 0.7 1 1 1 0.7
{(x, ȳ)} 0.7
{(x, y), (x, ȳ)} 0.3 0.7 1
{(x̄, y)} 0.7 1
{(x̄, ȳ)} 0.7 1 1 1 0.7
{(x̄, y), (x̄, ȳ)} 0.3 0.7 1
{(x, y), (x̄, y)} 0.4 1
{(x, y), (x̄, ȳ)} 0.4 1 1 1 0.4
{(x, ȳ), (x̄, y)} 0.4 1
{(x, ȳ), (x̄, ȳ)} 0.4 1
{(x, y), (x, ȳ), (x̄, y)} 0.4
{(x, y), (x, ȳ), (x̄, ȳ)} 1 0.4 1
{(x, y), (x̄, y), (x̄, ȳ)} 1 0.4 1
{(x, ȳ), (x̄, y), (x̄, ȳ)} 0.4
ΩX,Y 0.4 0.4
Hd 0.19 0 0 0 0.19

3. For this example, the joint mX,Y can also be factored into mY ⊕mX|Y , where mX|Y =
mY |X . Thus, I(X;Y ) = Hd(mX)−Hd(mX|Y ) ≈ 0.19− 0 = 0.19 = I(X;Y ) (Property
3 of Definition 7).

4. Hd(mX,Y ) ≈ 0.19 ≤ Hd(mX) +Hd(mY ) ≈ 0.19 + 0.19 = 0.38 (Property 4 of Definition
7).

6. KL-divergence for Belief Functions

In this section, we will define KL-divergence for the D-S theory and express mutual infor-
mation in terms of KL-divergence similar to probability theory.

Definition 8. Suppose Q1 and Q2 are CFs for X with state space ΩX such that if Q1(a) = 0,
then Q2(a) = 0. The KL-divergence between Q1 and Q2, denoted by DKL(Q1||Q2), is defined
as follows:

DKL(Q1||Q2) =
∑

a∈2ΩX

(−1)|a|+1Q1(a) log
(
Q1(a)
Q2(a)

)
(45)

If the condition Q1(a) = 0 implies Q2(a) = 0 is not satisfied, then DKL(Q1||Q2) is considered
to be +∞.

Some comments.
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1. Using the definition of expectation for belief functions in [14], Definition 8 can be
interpreted as an expectation of log(Q1/Q2) with respect to CF Q1, which is analogous
to the definition of KL-divergence for probability theory (Definition 4).

2. If Q1 and Q2 are both Bayesian CFs, i.e., Qi(a) = 0 if |a| > 1, then DKL(Q1||Q2)
reduces to the probabilistic KL definition.

3. The KL-divergence DKL(Q1||Q2) has the same properties as in the probabilistic case,
i.e., DKL(Q1||Q2) ≥ 0, and DKL(Q1||Q2) = 0 if and only if Q1 = Q2.

Proof. Letmi denote the BPA that corresponds to Qi for 1 = 1, 2. Ifm1(a) = 0 implies
m2(ai) = 0, then Q1(ai) = 0 implies Q2(ai) = 0. If m1(ai) = 0 doesn’t imply that
m2(ai) = 0, then we modify m2 to m′

2 so that the corresponding value of m′
2(ai) = 0.

m′
2 is an unnormalized BPA function. Let Q′

2 denote the corresponding unnormalized
CF (using Eq. 14). In the latter case,

∑
ai∈2ΩX (−1)|a|+1Q′

2(ai) =
∑

ai∈2ΩX m′
2(ai) < 1.

Let I denote the set of ai for which Q1(ai) > 0. Then since − log(x) ≥ −(x − 1) for
all x > 0, with equality if and only if x = 1, we have:

−
∑
ai∈I

(−1)|ai|+1Q1(ai) log

(
Q′

2(ai)

Q1(ai)

)
≥ −

∑
ai∈I

(−1)|ai|+1Q1(ai)

(
Q′

2(ai)

Q1(ai)
− 1

)
= −

∑
ai∈I

(−1)|ai|+1Q′
2(ai) + 1

≥ 0.

The last inequality is a consequence of some values of m2(ai) may have been excluded
as the choice of indices is conditioned on Q1(ai) > 0. So,

−
∑
ai∈I

(−1)|ai|+1Q1(ai) log

(
Q′

2(ai)

Q1(ai)

)
≥ 0,

which can be rewritten as:

−
∑
ai∈I

(−1)|ai|+1Q1(ai) log(Q
′
2(ai)) ≥ −

∑
ai∈I

(−1)|ai|+1Q1(ai) log(Q1(ai)) (46)

Both sums in Eq. 46 can be extended to all i = 1, . . . , 2|ΩX |−1, i.e., includingQ1(ai) = 0
as Q1(ai) log(Q1(ai)) tends to 0 as Q1(ai) tends to 0, and − log(Q2(ai)) tends to ∞ as
Q2(ai) tends to 0. We arrive at:

−
2|ΩX |−1∑

i=1

(−1)|ai|+1Q1(ai) log(Q2(ai)) ≥ −
2|ΩX |−1∑

i=1

(−1)|ai|+1Q1(ai) log(Q1(ai)) (47)

For equality to hold, we require:

(a) Q2(ai)
Q1(ai)

= 1 for all i ∈ I so that the equality log(Q2(ai)
Q1(ai)

) = Q2(ai)
Q1(ai)

− 1 holds,

(b) and
∑

i∈I(−1)|ai|+1Q2(ai) = 1, which means Q2(ai) = 0 if i /∈ I, i.e., Q2(ai) =
Q1(ai) for all i.
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4. If mX,Y = mX ⊕mY |X is a joint BPA for {X, Y }, then I(Y ;X) can be expressed as in
the probabilistic case, i.e.,

Id(Y ;X) = Hd(QY )−Hd(QY |X) = DKL(QX,Y ||QX ⊕QY ), (48)

where QX,Y is the CF for {X, Y } corresponding to mX,Y , and QX and QY are marginal
CFs of QX,Y for X and Y , respectively.

Proof. Hd(QY )−Hd(QY |X) =

= −
∑

b∈2ΩY

(−1)|b|QY (b) log(QY (b))−

−
∑

a∈2ΩX,Y

(−1)|a|QX,Y (a) log(QY |X(a))


=

∑
a∈2ΩX,Y

(−1)|a|QX,Y (a) log(QY |X(a))

−
∑

b∈2ΩY

(−1)|b|

 ∑
a∈2ΩX,Y :a↓Y =b

(−1)|a|−|b|QX,Y (a)

 log(QY (a
↓Y ))

=
∑

a∈2ΩX,Y

(−1)|a| QX,Y (a) log
(
QY |X(a)
QY (a↓Y )

)

=
∑

a∈2ΩX,Y

(−1)|a| QX,Y (a) log
(
QX(a↓X)QY |X(a)
QX(a↓X)QY (a↓Y )

)
= DKL(QX,Y ||QX ⊕QY )

5. It follows from Properties 3 and 4 that Id(Y ;X) ≥ 0, with equality if and only if X
and Y are independent with respect to QX,Y .

7. Summary & Conclusion

We have generalized the concepts of mutual information [12] and Kullback-Liebler divergence
between two PMFs [8] to the D-S theory of belief functions using d-entropy defined in [5] for
the D-S theory of belief functions. What makes this possible is the decomposability property
of d-entropy.

There are several definitions of KL-divergence for the D-S theory, e.g., [17, 18]. A com-
parison of these definitions with the definition in this paper is yet to be done.
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