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1. Introduction

The centerpiece of the Dempster-Shafer (DS) theory of belief functions is
Dempster’s combination rule [6, 22]. In practice, Dempster’s combination
rule should only be applied to combine two “distinct” belief functions. So,
the question arises: what constitutes distinct belief functions1? We have an
answer in Dempster [6]’s multi-valued functions semantics for belief func-
tions. The probability functions on the two spaces that are the domains
of the multi-valued functions (of the two belief functions) should be inde-
pendent. In practice, however, we don’t always associate a multi-valued
function with every belief function in a belief function model. In this article,
we discuss the notion of distinct belief functions in graphical models, both
directed and undirected. The idea of distinct belief functions corresponds
to no double-counting of non-idempotent knowledge semantics of conditional
independence [26]. Although we discuss the notion of distinct belief func-
tions in the context of the DS theory, the discussion is valid more broadly
to many uncertainty calculi, including probability theory, possibility theory,
and Spohn’s epistemic belief theory.

One of the earliest to discuss the notion of distinct belief functions is
Shafer [23]2. There is no formal definition of distinct belief functions, and the
discussion is about combining non-distinct belief functions. Shafer advocates
sorting out the common knowledge among two non-distinct pieces of evidence
by refining the state spaces of the pieces instead of seeking generalizations of
Dempster’s combination rule to combine non-distinct evidence.

Smets [30] discusses Dempster’s combination rule as a (matrix) multipli-
cation of two matrices called specializations. Given a specialization represen-
tation of a piece of evidence, say a basic probability assignment (BPA)mA for
X, he defines a canonical factorization of the matrix mA into Qm ·∆A ·Q−1

m ,
where Qm is a matrix consisting of 0’s and 1’s that converts a BPA into a
corresponding commonality function (CF) Qm, and ∆A is a diagonal matrix
whose values are the CF values of mA. If the matrix representations of two
pieces of evidence, say ∆A and ∆B, includes a common matrix m0 that is

1The concept of distinct belief functions is also referred to as independent belief func-
tions in the literature. The terminology of distinct belief functions is due to Smets [30].
As independence is usually associated with variables and not functions, we prefer the
terminology of distinct belief functions.

2[23] was published (almost verbatim) as [24]
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vacuous, then mA and mB are defined to be distinct. m0 is referred to as a
correlation matrix. If m0 is not vacuous, then mA and mB are non-distinct.
The idea of distinct evidence is the same as in [23]. He writes: “The problem
of recognizing distinctness become essentially a problem of acknowledging
that there is a vacuous correlation . . . It can not be achieved by only com-
paring mA and mB.”

Several studies propose to deal with combining non-distinct evidence by
modifying Dempster’s combination rule by making some assumptions about
the nature of the non-distinctness of the pieces of evidence being combined
[33, 8, 19, 7, 20, 9, 4]. Like Shafer, we agree that sorting the dependence
among pieces of evidence is a better strategy for combining non-distinct
evidence than modifying Dempster’s rule. Otherwise, we would need a meta-
rule to decide which variant of Dempster’s rule should be used to combine
non-distinct evidence.

The main goal of this article is to discuss the notion of distinct belief
functions, especially in belief-function graphical models, both directed and
undirected. We start with the definition stated by Dempster [6] in his multi-
valued semantics of a BPA. We provide heuristics suggested by Dempster’s
definition for determining whether the belief functions in a graphical model
are distinct. Two or more belief functions are distinct if there is no double-
counting of non-idempotent knowledge. In graphical models, this implies
that the set of belief functions in a graphical model are distinct only if the
conditional independence conditions implied by the factorization of the joint
belief function are valid.

An outline of the remainder of the paper is as follows. Section 2 re-
views the basics of D-S theory, including basic probability assignments and
commonality functions, marginalization and Dempster’s combination rule,
conditional belief functions, the removal operator, conditional independence
relations, and graphical models. Section 3 has Dempster [6]’s formal defini-
tion and a discussion of distinct belief functions in the context of directed
and undirected belief function models. Finally, Section 4 concludes with a
summary and comments on further work.

2. Basics of D-S theory of Belief Functions

This section sketches the basics of the D-S theory of belief functions [6, 22].

Representations. We represent knowledge using basic probability assignments,
belief functions, plausibility functions, and commonality functions. Here, we
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only define basic probability assignments and commonality functions.

Notation. Let V denote the set of all variables. Let X, Y , Z, etc., denote
elements of V . Let r, s, t, v, etc., denote subsets of V . Consider s ⊆ V .
For each X ∈ s, let ΩX denote its finite state space, and let Ωs = ×X∈sΩX

denote the state space of s. Let 2Ωs denote the set of all subsets of Ωs. ∅
denotes the empty set.

Basic Probability Assignment. A basic probability assignment (BPA) m for
s is a function m : 2Ωs → [0, 1] such that

m(∅) = 0, and (1)∑
∅̸=a⊆Ωs

m(a) = 1. (2)

m represents some knowledge about the variables in s, and we say the domain
of m is s. m(a) is the probability assigned to the proposition represented by
subset a of Ωs. Subsets a such that m(a) > 0 are called focal elements of
m. If all the focal elements of m are singleton subsets of Ωs, we say m is
Bayesian. There is a 1-1 correspondence between a Bayesian BPA m and a
corresponding probability mass function (PMF) P for a such that P (a) =
m({a}) for all a ∈ Ωs. If m has only one focal element (with probability 1),
we say m is deterministic3. If the focal element of a deterministic BPA is Ωs,
we say m is vacuous. Sometimes, we denote the vacuous BPA for s by ιs.

Commonality Function. The commonality function (CF) Qm corresponding
to BPA m for s is such that for all a ⊆ Ωs,

Qm(a) =
∑
b⊇a

m(b). (3)

Some comments about the definition of Qm in Eq. (3):

1. Qm(a) represents the probability mass that could move to every state
in a.

2. It follows from Eq. (3) that 0 ≤ Qm(a) ≤ 1.

3. It follows from Eqs. (1)–(2) that Qm(∅) = 1.

3Deterministic BPAs are also called categorical or logical in the D-S literature.
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4. CFs are non-increasing in the sense that if a ⊆ b, then Q(a) ≥ Q(b).

5. A CF has the same information as in a BPA. Given a CF Q for s,
let mQ denote the corresponding BPA. We can recover mQ from Q as
follows [22].

mQ(a) =
∑

b⊆Ωs: b⊇a

(−1)|b\a|Q(b). (4)

6. Thus, it follows that Q : 2Ωs → [0, 1] is a well-defined CF iff for all
∅ ̸= a ⊆ Ωs

Q(∅) = 1, (5)∑
b⊆Ωs: b⊇a

(−1)|b\a|Q(b) ≥ 0, and (6)∑
∅̸=a⊆Ωs

(−1)|a|+1Q(a) = 1. (7)

The left-hand side of Eq. (6) is mQ(a), and the left-hand side of Eq.
(7) can be shown to be

∑
∅̸=a∈2Ωs mQ(a). Eq. (7) can be regarded as a

normalization condition for a CF. If we have a function Q : 2Ωs → [0, 1]
that satisfies Eqs. (5) and (6), but not (7), then we can divide each
of the values of the function for non-empty subsets in 2Ωs by K =∑

∅̸=a⊆Ωs
(−1)|a|+1Qm(a), and the resulting function will then qualify as

a CF.

7. In some cases, we could have a CF that doesn’t satisfy Eq. (6) but
satisfies Eqs. (5) and (7). In such cases, we call such CFs pseudo-
CFs. If we convert a pseudo-CF to a BPA using Eq. (4), then such a
BPA will have negative masses that add to 1. We will call such BPAs
pseudo-BPAs. Pseudo-CFs have been studied in [16, 17].

8. For the vacuous BPA ιs for s, the CF Qιs corresponding to BPA ιs is
given by Qιs(a) = 1 for all a ⊆ Ωs.

9. If m is a Bayesian BPA for s, then Qm is such that Qm(a) = m(a) if
|a| = 1, and Qm(a) = 0 if |a| > 1.

Inference Operators. There are three basic inference operators in the D-S
theory—marginalization, combination, and removal. The marginalization
operator allows us to coarsen knowledge by removing variables. The com-
bination operator enables us to combine distinct knowledge. The removal
operator is an inverse of the combination operator and allows us to remove
a marginal from a BPA.
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Marginalization. Supposem is a BPA for s and suppose t ⊆ s. The marginal-
ization operator transforms a BPA m for s to a BPA m↓t for t by eliminating
variables in s \ t.

Projection of states means dropping some coordinates. If (x, y) ∈ ΩX,Y ,
then (x, y)↓X = x. The projection of a subset of states is achieved by pro-
jecting every state in the subset. Suppose a ⊆ ΩX,Y . Then,

a↓X = {x ∈ ΩX : (x, y) ∈ a}.

Definition 1 (Marginalization). Suppose m is a BPA for s, and t ⊆ s.
Then, the marginal for m for t, denoted by m↓t, is a BPA for t such that for
each a ⊆ Ωt,

m↓t(a) =
∑

b⊆Ωs:b
↓t=a

m(b). (8)

The marginalization operator satisfies the following property. Suppose m
is a BPA for s and suppose X1 and X2 are two distinct variables in s. Then

(m↓s\{X1})↓s\{X1,X2} = (m↓s\{X2})↓s\{X1,X2}. (9)

Thus, the order in which variables are eliminated does not matter.

Definition 2 (Dempster’s combination rule). Suppose m1 is a BPA for
s1, m2 is a BPA for s2, and m1 and m2 are distinct4. Then, m1⊕m2 is a BPA
for s1 ∪ s2 such that for all a ⊆ Ωs1∪s2 = (a1 × Ωs2\s1) ∩ (a2 × Ωs1\s2) : a ̸= ∅
where a1 ⊆ Ωs1 and a2 ⊆ Ωs2,

(m1 ⊕m2)(a) = K−1
∑

a1,a2:a̸=∅

m1(a1)m2(a2), (10)

where K is a normalization constant given by

K =
∑

a1,a2:a̸=∅

m1(a1)m2(a2). (11)

We assume K > 0. If K = 0, then m1 and m2 are said to be in total conflict
and cannot be combined. If K = 1, we say m1 and m2 are non-conflicting.

4The notion of distinct BPAs is discussed in Section 3. Intuitively, m1 and m2 are
distinct if combination of m1 and m2 doesn’t result in double-counting of non-idempotent
knowledge.
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Dempster’s combination rule can also be described using commonality
functions. Consider two distinct BPAs m1 for s1 and m2 for s2, and let Q1

and Q2 denote the corresponding commonality functions. Then, as showed
in [22], for all ∅ ̸= a ⊆ Ωs1∪s2 ,

(Q1 ⊕Q2)(a) = K−1Q1(a
↓s1)Q2(a

↓s2), (12)

where K is a normalization constant defined as follows:

K =
∑

∅̸=a∈Ωs1∪s2

(−1)|a|+1Q1(a
↓s1)Q2(a

↓s2). (13)

The normalization constant in Eq. (13) is precisely the same as in Eq. (11).
It is easy to show that Dempster’s combination is commutative and asso-

ciative: m1 ⊕m2 = m2 ⊕m1, and (m1 ⊕m2)⊕m3 = m1 ⊕ (m2 ⊕m3). Also,
marginalization and Dempster’s combination rule satisfy a vital property
called the local computation property [28].

Local Computation Property. Suppose m1 is a BPA for s1 and m2 is a BPA
for s2. Suppose X ∈ s1 and X /∈ s2. Then,

(m1 ⊕m2)
↓(s1∪s2)\{X} = (m1)

↓s1\{X} ⊕m2 (14)

This property is the basis of computing marginals of joint belief functions.
Giang and Shenoy [10] describes an implementation of a local computation
algorithm in Matlab called “Belief Function Machine” for calculating the
marginals of D-S belief function models.

The removal operator is discussed in Subsection 2.3.

2.1. Conditional Independence

Shenoy [25] describes conditional independence relation in the framework of
valuation-based systems using factorization semantics. Here, we describe it
for the D-S theory of belief functions.

Definition 3 (Conditional independence). Suppose V denotes the set of
all variables, and suppose r, s, and t are disjoint subsets of V. Suppose m is
a joint BPA for V. We say r and s are conditionally independent given t with
respect to BPA m, written as r⊥⊥m s | t, if and only if m↓r∪s∪t = mr∪t⊕ms∪t,
where mr∪t is a BPA for r ∪ t, ms∪t is a BPA for s ∪ t, and mr∪t and ms∪t
are distinct.
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This definition generalizes the CI relation in probability theory [5]. There
are other definitions of conditional independence in the D-S theory (e.g.,
[31, 2, 3]) using the semantics of non-interactivity. Still, these are not useful
in describing CI in belief-function graphical models.

The definition of CI in Def. 3 satisfies the graphoid properties of proba-
bilistic conditional independence [21]. Specifically, suppose m is a BPA for
V , and r, s, t, v are disjoint subsets of V .

1. r⊥⊥m s | t if and only if s⊥⊥m r | t (symmetry).

2. If r⊥⊥m (s ∪ v) | t, then r⊥⊥m s | t (decomposition).

3. If r⊥⊥m (s ∪ v) | t, then r⊥⊥m s | (t ∪ v) (weak union).

4. If r⊥⊥m s | t and r⊥⊥m v | (t ∪ s), then r⊥⊥m (s ∪ v) | t
(contraction).

5. If m is such that Qm(a) > 0 for all a ⊆ ΩV , then r⊥⊥m s | (t ∪ v) and
r⊥⊥m v | (t ∪ s), then r⊥⊥m (s ∪ v) | t
(intersection).

Proofs of these properties can be found in [25].

2.2. Conditional Belief Functions

This subsection defines a conditional belief function similar to a condi-
tional probability table in probability theory. The definition of a conditional
belief function in this subsection is taken from [14].

Definition 4 (Conditionals). Suppose r and s are disjoint subsets of vari-
ables and suppose r′ ⊆ r. Suppose ms|r′ is a BPA for r′ ∪ s. We say ms|r′ is
a conditional BPA for s given r′ if and only if

1. (ms|r′)
↓r′ is a vacuous BPA for r′, and

2. for any BPA mr for r, mr and ms|r′ are distinct5. Thus, mr ⊕ms|r′ is
a BPA for r ∪ s.

We call s the head of the conditional, and r the tail.

In a directed graphical belief function model, we have a conditional as-
sociated with each variable X. The head of the conditional is X, and the

5The notion of distinct BPAs is discussed in Section 3. As we will see, mr and ms|r′

are distinct if and only if s⊥⊥(mr⊕ms|r′ )
(r \ r′) | r′.
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tail consists of the parents of X. For variables with no parents, we have pri-
ors associated with such variables. For convenience, priors can be regarded
as conditionals with empty tails. For such BPAs, the first condition in the
definition is trivially true as the sum of the probability masses in a BPA is
1.

In graphical models, the joint is constructed from the conditionals. We
don’t start with a joint. The definition of a conditional belief function in
Def. 4 reflects this fact. Other definitions of conditional belief functions
start from a joint and then factor the joint into a marginal and a conditional
(see, e.g.,[1]). These other definitions do not help in constructing graphical
models. Our definition, however, is consistent with these other definitions
for the joint that a graphical belief function model implicitly defines [14].

Non-informative BPAs. The notion of non-informative BPAs is taken from
[13].

Definition 5 (Non-informative belief functions). Suppose m1 is a BPA
for r1 and m2 is a BPA for r2. We say m1 and m2 are mutually non-
informative if m

↓(r1∩r2)
1 = m

↓(r1∩r2)
2 = ιr1∩r2. Also, given a set of BPAs, the

set of BPA is non-informative if every pair of BPAs in the set are mutually
non-informative.

Some comments about non-informative belief functions:

• Suppose BPA m1 for r1 and m2 for r2 are mutually non-informative.
Then, m1 can be regarded as a conditional for r1\(r1∩r2) given r1∩r2,
and m2 can be regarded as a conditional for r2 \ (r1 ∩ r2) given r1 ∩ r2.

• Notice that if r1∩r2 = ∅, thenm1 andm2 are mutually non-informative.

We will encounter mutually non-informative BPAs in the Haenni and Lehmann
[11]’s Communication Network example discussed in Section 3.3.

Where do conditionals come from?. A conditional BPA mr|s describes the
relationship between the variables in r and s. One source of conditionals
is Smets’ conditional embedding [29]. To describe conditional embedding,
consider the case of two variables, X and Y . To describe the dependency
between X and Y , suppose that when X = x, our belief in Y is described by
a BPA mYx for Y . Thus, mYx : 2ΩY → [0, 1] such that

∑
∅̸=a⊆ΩY

mYx(a) = 1.
The BPA mYx for Y needs to be embedded into a BPA for mY |x for (X, Y )
such that
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1. mY |x is a conditional BPA for (X, Y ), i.e., (mY |x)
↓X is the vacuous BPA

for X, and
2. when we combine the belief that X = x and marginalize the result to

Y , we obtain mYx .

One way to do this is to take each focal element b ⊆ ΩY of mYx and
convert it to the corresponding focal element

({x} × b) ∪ ((ΩX \ {x})× ΩY ) ⊆ ΩX,Y (15)

of BPA mY |x for (X, Y ) with the same mass. It is easy to confirm that
this embedding method satisfies both conditions mentioned above. Suppose
we have several distinct conditionals, e.g., mY |x1 , mY |x2 , etc. obtained by
conditional embedding, where x1, and x2 are distinct values of X. In this
case, we combine the conditionals by Dempster’s combination rule to obtain
mY |X . An implicit assumption is that mY |x1 and mY |x2 are distinct BPAs for
{X, Y }.

Other sources of belief function conditionals are described in [12, 14].
Conditionals can also be constructed using the removal operator, discussed
in the following subsection.

2.3. Removal Operator

The removal operator (also called ‘decombination’ in [32]) allows us to
remove knowledge [25]. Suppose we construct a joint belief function for X
and Y using BPA mX for X and a conditional mY |X for Y given X. Thus,
the joint BPA for (X, Y ) is mX,Y = mX ⊕mY |X . Notice that the marginal
of mX,Y for X is mX , i.e., (mX,Y )

↓X = mX . If we are given the joint BPA
mX,Y for (X, Y ), can we recover the conditional mY |X? The answer is yes,
using the removal operator.

Definition 6 (Removal). Suppose mX,Y is a BPA for (X, Y ) such that
mX,Y = mX ⊕mY |X , where mX is a BPA for X, and mY |X is a conditional
for Y given X. Notice that (mX,Y )

↓X = mX . Let QX,Y and QX denote the
CFs corresponding to mX,Y and mX respectively. Then, the removal of QX

from QX,Y , written as QX,Y ⊖QX , is defined as follows:

(QX,Y ⊖QX)(a) = K−1QX,Y (a)/QX(a
↓X) (16)

for all a ⊆ ΩX,Y , where K is a normalization constant defined by

K =
∑

∅̸=a⊆ΩX,Y

(−1)|a|+1QX,Y (a)/QX(a
↓X) (17)
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In Eqs. (16) and (17), if QX,Y (a) = 0, then QX(a
↓X) = 0, and 0/0 is defined

to be 0.

Some comments on Def. 6:

1. The definition of the removal operator in Def. 6 is restricted to the
case where the CF QX being removed is explicitly included in QX,Y in
the sense that QX,Y = QX ⊕ QY |X . This guarantees that QX,Y ⊖ QX

is a well-defined CF [12, 14].

2. It follows from Eq. (16) that

(QX,Y ⊖QX)(a) = ((QX ⊕QY |X)⊖QX)(a)

= QX(a
↓X)QY |X(a)/QX(a

↓X)

= QY |X(a)

Thus, the removal operator can recover the conditional from the joint.

3. Removal can be defined more generally where the marginal CF QX =
(QX,Y )

↓X being removed from QX,Y is not explicitly included in QX,Y .
In this case, removal will result in a pseudo-CF as Eq. (6) will be
violated [12, 14]. Pseudo-CFs are useful in inference [17]. This is
because (QX,Y ⊖QX)⊕QX = QX,Y .

4. Some properties of the removal operator are as follows [25]:

• Suppose Q is a CF for r and s ⊆ r. Then Q⊖Q↓s is a CF for r,
assuming it is well-defined.

• Suppose Q is a CF for r. Then Q⊖Q = ιr, where ιr is the vacuous
CF for r.

• Suppose Q1, Q2 are CFs for r and s, respectively, and suppose
t ⊆ s. Then (Q1 ⊕Q2)⊖Q↓t

2 = Q1 ⊕ (Q2 ⊖Q↓t
2 )

3. Distinct Belief Functions

This section discusses the notion of distinct belief functions. We start with
Dempster [6]’s multi-valued mapping semantics associated with BPAs.

Definition 7 (Distinct belief functions). Consider two discrete finite vari-
ables X1 and S1 with state spaces ΩX1 and ΩS1. Assume that we have a prob-
ability mass function (PMF) P1 on X1. We have a multi-valued mapping
Γ1 : X1 → 2ΩS1 such that for each x ∈ ΩX1, we associate a non-empty subset
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Figure 1: Dempster’s multi-valued semantics for BPAs.

of S1, Γ1(x) ∈ 2ΩS1 \ ∅. The multi-valued mapping Γ1 defines the BPA m1

for S1 such that for all a ∈ 2ΩS1 \ ∅,

m1(a) =
∑

x∈ΩX1

{P1(x) : Γ1(x) = a}. (18)

Suppose we have another pair of discrete and finite variables X2 and S2 with
PMF P2 on X2, and another multi-valued mapping Γ2 : X2 → 2ΩS2 \ ∅.
The multi-valued mapping Γ2 defines the BPA m2 for S2 such that for all
a ∈ 2ΩS2 \ ∅,

m2(a) =
∑

x∈ΩX2

{P2(x) : Γ2(x) = a}. (19)

We say m1 and m2 are distinct if and only if the random variables X1 (with
PMF P1) and X2 (with PMF P2) are independent.

Some comments on Def. 7:

1. As P1, and P2 are PMFs, and the two multi-valued mappings Γ1 and
Γ2 map non-empty subsets of S1 and S2 respectively, it is clear that m1

and m2 are BPAs for S1 and S2, respectively.
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2. In practice, not every belief function in a belief function model is as-
sociated with a multi-valued mapping. Thus the definition of distinct
belief function in Def. 7 cannot be used directly in practice.

3. If we assume independence of variables X1 and X2 when they are not,
then we are double-counting non-idempotent knowledge6 [26]. Thus,
the spirit of Def. 7 is that two belief functions are distinct if, when
combining them using Dempster’s combination rule, we are not double-
counting non-idempotent knowledge. We will use this heuristic in dis-
cussing what constitutes distinct belief functions in practice.

3.1. Directed Graphical Models

In this subsection, we discuss the idea of distinct belief functions in a
belief-function directed graphical model by incorporating ideas from proba-
bility theory.

Before we define a belief-function directed graphical model, we start with
some notation. A directed graph Gd is a pair Gd = (V , E), where V =
{X1, . . . , Xn} denotes the set of nodes and E denotes the set of directed edges
(Xi, Xj) between two distinct variables in V . For any node X ∈ V , let
PaGd

(X) denote {Y ∈ V : (Y,X) ∈ E}. A directed graph is said to be
acyclic if and only if there exists a sequence of the nodes of the graph, say
(X1, . . . , Xn) such that if there is a directed edge (Xi, Xj) ∈ E then Xi must
precede Xj in the sequence. Such a sequence is called a topological sequence
(as it depends only on the structure of the directed graph).

Definition 8 (BF directed graphical model). Suppose we have a directed
acyclic graph Gd = (V , E) with n nodes in V. A belief-function directed
graphical model (BFDGM) is a pair (Gd, {m1, . . . ,mn}) such that BPA mi

associated with node Xi is a conditional BPA for Xi given PaGd
(Xi), for

i = 1, . . . , n. A fundamental assumption of a BFDGM is that m1, . . . ,mn

are all distinct, and the joint BPA m for V associated with the model is
given by

m =
n⊕

i=1

mi. (20)

6We say BPA m is idempotent if m ⊕ m = m. For example, if m is deterministic,
then m is idempotent. Idempotent knowledge is knowledge encoded in a BPA m that
is idempotent. Thus, double-counting idempotent knowledge is not a problem; double-
counting non-idempotent knowledge is.
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Some comments about Def. 8:

1. The assumption in Def. 8 that all conditionals are distinct allows the
combination in Eq. (20).

2. Given m, the joint BPA for V as defined in Eq. (20), it follows from
Def. 3 that the following CI relations hold. Suppose (X1, . . . , Xn) is
a topological sequence associated with BFDGM (Gd, {m1, . . . ,mn}).
Then for each Xi, i = 2, . . . , n, given PaGd

(Xi), Xi is conditionally
independent of {X1, . . . Xi−1} \ PaGd

(Xi).
3. An example of a BFDGM is given in Section 3.1.

Consider the probabilistic directed graphical model X → Y , with po-
tentials7 P (X) and P (Y |X). P (X) is a prior PMF for X, and P (Y |X) is
called a conditional probability table (CPT) for Y . The joint probability
function of (X, Y ) is the probabilistic combination of these two potentials,
i.e., P (X, Y ) = P (X) ⊗ P (Y |X). Here, ⊗ denotes the probabilistic combi-
nation operator, pointwise multiplication followed by normalization. Thus,
P (X, Y )(x, y) = P (X)(x) · P (Y |X)(x, y). The directed graphical model
X → Y makes no conditional independence assumptions. If we compute
the marginal for X from P (X, Y ), we obtain P (X), i.e.,

P (X) = (P (X)⊗ P (Y |X))↓X , (21)

= P (X)⊗ P (Y |X)↓X , (22)

= P (X). (23)

Eq. (22) follows from Eq. (21) using the local computation property of
probabilistic combination. Eq. (23) follows from Eq. (22) utilizing the
property of conditionals (P (Y |X)↓X is a vacuous potential for X). Also,
assuming the potential P (X) has no zeroes, if we compute the conditional
P (X, Y ) ÷ P (X, Y )↓X from the joint, we obtain P (Y |X) (here, ÷ denotes
a pointwise division of the second potential from the first, the inverse of
the ⊗ operator). Thus, we can conclude that the probabilistic combination
of potential P (X) and P (Y |X) does not involve double counting of non-
idempotent knowledge, i.e., the potentials P (X) and P (Y |X) are always
distinct (regardless of the numeric values of these potentials).

7Potentials are unnormalized probability functions. A conditional probability table is
not a probability distribution but can be considered a potential.
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Table 1: Comparing P (X,Y ) with P (X)⊗ P (Y ).

Ω(X,Y ) P (X) P (Y |X) P (X, Y ) P (Y ) P (X)⊗ P (Y )
{(0, 0)} 0.2 1 0.2 0.2 0.04
{(0, 1)} 0.2 0 0 0.8 0.16
{(1, 0)} 0.8 0 0 0.2 0.16
{(1, 1)} 0.8 1 0.8 0.8 0.64

Now, consider the probabilistic graphical model for X and Y without a
directed edge from X to Y (or vice versa) with potentials P (X) and P (Y ).
This graphical model assumes X and Y are independent, and the joint PMF
of (X, Y ) is P (X, Y ) = P (X) ⊗ P (Y ). With the independence assumption,
P (Y |X)(x, y) = P (Y )(y) for all (x, y) ∈ ΩX,Y . Thus,

P (X, Y ) = P (X)⊗ P (Y |X),

= P (X)⊗ P (Y )

and there is no double counting of non-idempotent knowledge.
Next, consider the case where we have a model consisting of two proba-

bility potentials, PMFs P (X) for X, and P (Y ) for Y , and suppose X and
Y are not independent. In this case, the potentials P (X) and P (Y ) are
not distinct. Since X and Y are not independent, let P (Y |X) denote the
dependency of Y on X. Thus, P (Y ) = (P (X)⊗ P (Y |X))↓Y . Thus,

P (X)⊗ P (Y ) = P (X)⊗ (P (X)⊗ P (Y |X))↓Y . (24)

Notice that in Eq. (24), P (X) is counted twice, and if it is not idempotent,
Eq. (24) will result in an incorrect joint distribution of (X, Y ). We will
illustrate this using an example.

Example 1 (Double-counting of knowledge). Suppose X and Y are ran-
dom variables with state spaces ΩX = ΩY = {0, 1}. Suppose P (X) and
P (Y |X) are as shown in Table 1. P (Y |X) represents the dependency Y = X.
Notice that P (X)⊗ P (Y ) is different from the actual joint P (X, Y ).

For yet another example, consider the directed graphical model X →
Y → Z with the potentials P (X) for X, conditionals P (Y |Z) for Y given
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X, and conditional P (Z|Y ) for Z given Y . This graphical model assumes
that X and Z are conditionally independent (CI) given Y . With this CI
assumption, the three potentials in the model are distinct. Without the CI
assumption, the potentials are not distinct (similar to the previous example
where X and Y are not independent).

In the case of D-S belief-function directed graphical models, we have a
situation similar to the probabilistic case. Each graphical model is associated
with a set of conditional independence assumptions for the variables in the
model. The definition of conditional independence in the D-S belief function
theory is similar to that of probability theory [5, 25]. Also, associated with
each variable X in the model, we have a conditional for X given its parents.
Unlike the probabilistic case, some conditionals may not be known, so we have
a vacuous BPA associated with such variables [27]. As in the probabilistic
case, assuming the CI relations are valid, the BPAs in the model are distinct.

3.2. An Example of a BFDGM

Example 2 (Almond [1]’s Captain’s Problem). A ship’s captain is con-
cerned about how many days his ship may be delayed before arrival at a des-
tination. The arrival delay is the sum of the departure delay and sailing
delay. Departure delay may be a result of maintenance (at most one day),
loading delay (at most one day), or a forecast of bad weather (at most one
day). Sailing delays may result from bad weather (at most one day) and
whether repairs are needed at sea (at most one day). If maintenance is done
before sailing, chances of repairs at sea are less likely. The weather forecast
says a slight chance of bad weather (0.2) and a good chance of good weather
(0.6). The forecast is 80% reliable. The captain knows the loading delay and
whether maintenance is done before departure. Figure 2 shows the directed
acyclic graph associated with this problem.

A topological ordering of the variables is as follows: (W,F,L,M,D,R, S,A).
Let m denote the joint BPA of this model. The CI assumptions of this graph-
ical model are as follows:

1. L⊥⊥m{W,F};
2. M⊥⊥m{W,F,L};
3. D⊥⊥mW | {F,L,M};
4. R⊥⊥m{W,F,L} | M ;

5. S⊥⊥m{F,L,M,D} | {W,R}; and
6. A⊥⊥m{W,F,L,M,R} | {D,S}.
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Assuming the CI relations are all valid, and the BPAs in the model are all
conditionals, the BPAs are distinct.

Figure 2: The directed acyclic graph for the Captain’s Problem. The Greek alphabets
adjacent to a variable denote the prior or conditional associated with the variable.

Table 2 shows the variables and their states. The conditional BPAs are
as follows.

1. Weather forecast is 80% accurate. ϕF |W is a conditional for F given
W .

ϕF |W ({(gw, gf ), (bw, bf )}) = 0.8,

ϕF |W (ΩW,F ) = 0.2.

2. Loading is delayed with a chance of 0.3 and on schedule with a chance
of 0.5. λ is a prior for L.

λ({tl)}) = 0.3,

λ({fl)}) = 0.5,

λ(ΩL) = 0.2.
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Table 2: The variables, their state spaces, and associated conditionals in the captain’s
problem.

Variable Name State Space Assoc. Conditional
W Actual weather {gw, bw} vacuous for W
F Forecasted weather {gf , bf} ϕW,F for F |W
L Loading delay? {tl, fl} λ for L
M Maint. done? {tm, fm} µ for M
R Repair at sea? {tr, fr} ρ1 and ρ2 for R
D Dep. delay {0, . . . , 3} δ for D|{F,L,M}
S Sailing delay {0, . . . , 3} σ for S|{W,R}
A Arrival delay {0, . . . , 6} α for A|{D,S}

3. Maintenance is not done. µ is a prior for M .

µ({fm}) = 1.

4. If maintenance is done before sailing, the chances of repair at sea are
between 10 and 30%. ρ1 is a BPA for R given M = tm.

ρ1({tr}) = 0.1,

ρ1({fr}) = 0.7,

ρ1(ΩR) = 0.2.

ρ1 needs to conditionally embedded into a BPA for {R,M} before it is
considered as a conditional.

5. If maintenance is not done before sailing, the chances of repair at sea
are between 20 and 80%. ρ2 is a BPA for R given M = fm.

ρ2({tr}) = 0.2,

ρ1({fr}) = 0.2,

ρ1(ΩR) = 0.6.

ρ2 needs to conditionally embedded into a BPA for {R,M} before it is
considered as a conditional.

6. Bad weather and repair at sea each add a day to sailing delay. This
proposition is true 90% of the time. σS|W,R is a conditional for S given
(W,R).
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σS|W,R({(gw, fr, 0), (bw, fr, 1),
(gw, tr, 1), (bw, tr, 2)}) = 0.9,

σS|W,R(ΩW,R,S) = 0.1.

7. Departure delay may be a result of maintenance (at most one day),
loading delay (at most one day), or a forecast of bad weather (at most
one day). δD|F,L,M is a deterministic conditional for D given {F,L,M}.

δD|F,L,M({(gf , fl, fm, 0), (bf , fl, fm, 1),
(gf , tl, fm, 1), (gf , fl, tm, 1), (bf , tl, fm, 2),

(bf , fl, tm, 2), (gf , tl, tm, 2), (bf , tl, tm, 3)}) = 1.

8. The arrival delay is the sum of departure and sailing delays. αA|D,S is
a deterministic conditional for A given {D,S}.

αA|D,S({(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3),
(1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 4),
(2, 0, 2), (2, 1, 3), (2, 2, 4), (2, 3, 5),
(3, 0, 3), (3, 1, 4), (3, 2, 5), (3, 3, 6)}) = 1.

Notice that all BPAs are conditionals.

3.3. Undirected Graphical Models

First, we start with some notation. Consider an undirected graph Gu =
(V , E), where V = {X1, . . . , Xn} denotes the set of nodes, and E denotes
the set of undirected edges {Xi, Xj} between two distinct variables in V . A
clique in Gu is a maximal completely connected subgraph of G. Given a
variable X ∈ V , the Markov blanket of X, denoted by MBGu(X), is {Y ∈ V :
{X, Y } ∈ E}. The definition of a belief-function undirected graphical model
below is taken from [13].

Definition 9 (BF undirected graphical model). A belief-function undi-
rected graphical model (BFUGM) is

(
Gu = (V , E), {m1, . . . ,mk}

)
, where Gu

is an undirected graph with cliques r1, . . . , rk, and for each i = 1, . . . , k, mi is
a BPA for ri. A fundamental assumption of a BFUGM is that the BPAs are
all distinct. Thus, a belief-function undirected graphical model corresponds
to the joint BPA m for V defined as follows:

m =
k⊕

i=1

mi, (25)
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Figure 3: Two BFUGMs

assuming that m as defined in Eq. (25) is a well-defined BPA, i.e., the
normalization constant K in Dempster’s combination (Eq. (11)) is non-zero.

Some comments about Def. 9.

1. The assumption in Def. 9 that the BPAs are all distinct allows the
combination in Eq. (25).

2. Given m, the joint BPA for V , it follows from Def. 9 that the following
CI relations hold. For each X ∈ V , X⊥⊥m(V \MBGu(X)) | MBGu(X).

3.4. Examples of BFUGMs

In this subsection, we describe several examples of BFUGMs.

Example 3 (Two BFUGMs). Consider the BFUGM on the left in Fig. 3.
This UG has four cliques {X1, X2}, {X2, X3}, {X3, X4}, {X1, X4}. Suppose
that the BPAs associated with the corresponding cliques are m12, m23, m34,
and m14. Then, the joint BPA m associated with this BFUGM is:

m = m12 ⊕m23 ⊕m34 ⊕m14. (26)

This BFUGM has two CI assumptions: X1⊥⊥m X3 | {X2, X4}, and X2⊥⊥m X4 |
{X1, X3}. The first one follows from m = (m12 ⊕ m14) ⊕ (m23 ⊕ m34) and
Def. 3. The second one follows from m = (m12 ⊕ m23) ⊕ (m34 ⊕ m14) and
Def. 3.
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Consider the BFUGM on the right in Fig. 3. This UG has two cliques:
{X1, X2, X3} and {X1, X3, X4}. Suppose the BPAs associated with the cor-
responding cliques are m123 and m134. Then the joint BPA m associated with
this BFUGM is:

m = m123 ⊕m134 (27)

This BFUGM has one CI assumption: X2⊥⊥m X4 | {X1, X3}. This follows
directly from Eq. (27) and Def. 3.

One source of undirected graphical models is the “moralization” of a di-
rected graphical model (where we marry parents and drop directions) [18].
The BPAs in the undirected model are the same as (or some combination
of) the BPAs in the corresponding directed model. Therefore, as the belief
functions in a directed graphical model are distinct, the belief functions in
the corresponding undirected graphical models are also distinct. For exam-
ple, consider the directed graphical model X → Y → Z with BPAs mX for
X, conditional BPA mY |X for Y given X, and conditional mZ|Y for Z given
Y . After moralization, we have an undirected graphical model X − Y − Z
with two BPAs mX,Y = mX ⊕mY |X for {X, Y } and conditional BPA mZ|Y
for {Y, Z}. The conditional independence assumption associated with this
model is: X is conditionally independent of Z given Y . Thus, we assume that
the BPAs mX,Y and mZ|Y are distinct. We cannot take arbitrary BPAs mX,Y

for (X, Y ) and mY,Z for (Y, Z) and claim that we have a model. We implicitly
assume that the belief functions are distinct when using Dempster’s combina-
tion rule. If the BPAs are not distinct, the result of Dempster’s combination
rule may lead to the double-counting of non-idempotent knowledge.

Fig. 4 shows the BFUGM obtained from the Captain’s Problem (Fig. 2)
by marrying parents and dropping directions. All the BPAs in this model
are distinct.

Another source of undirected graphical models is where the clique belief
functions all have the same structure for each clique. An example is Haenni
and Lehmann [11]’s Communication Network example, where each clique
consists of two linked variables, say X1 and X2, with state spaces ΩX1 =
{t1, f1} and ΩX2 = {t2, f2}, respectively. The BPA m12 for {X1, Y1} is as
follows:

m12({(t1, t2), (f1, f2)}) = 0.90, (28)

m12(Ω{X1,X2}) = 0.1.
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Figure 4: The BFUGM obtained from the BFDGM in Fig. 2 by marrying parents and
dropping directions.

In words, the reliability of the link {X1, X2} is 90%. Figure 5 shows the
undirected graph associated with this model. The reliabilities of the links
{A,X33} and {B,X113} are 80%, and the reliabilities of all other links are
90%. The structure (focal elements) of all BPAs in the model is similar to
the BPA m12 in Eq. (28).

Notice that any two adjacent cliques will intersect at a single variable.
Suppose m12 is a BPA for {X1, X2}, and m23 is a BPA for {X2, X3}. Notice
that (m12)

↓X2 is a vacuous BPA for X2. Similarly, (m23)
↓X2 is a vacuous BPA

for X2. Thus, (m12 ⊕ m23)
↓{X1,X2} = m12 and (m12 ⊕ m23)

↓{X2,X2} = m23.
Thus, m12 and m23 are mutually non-informative. Also, the set of all BPAs
in the communication network example is non-informative.

One consequence of this property is that m23 can be considered a condi-
tional BPA for X3 given X2 (or for X2 given X3), and m12 can be considered
a conditional BPA for X1 given X2 (or for X2 given X1). Thus, m12 and m23

are distinct BPAs using the logic of conditionals in Def. 4.
Each BPA in this model models the reliability of a link between two

linked nodes. Suppose that the reliabilities of all the communication links
are independent and the CI assumptions of the model are valid. In that case,

22



Figure 5: The Communication Network undirected graphical model. The variable Xij is
in the ith column (i = 1, . . . , 13), and jth row (j = 1, . . . , 5).

we can infer that the BPAs in the undirected model are distinct.
Another argument for distinct belief functions in this example is as fol-

lows. As the set of all BPAs is non-informative, it seems intuitive that there
is no double-counting of non-idempotent knowledge (assuming the CI as-
sumptions are valid).

4. Summary & Conclusions

The main goal of this article is to discuss the notion of distinct belief func-
tions in graphical models, both directed and undirected. We start with the
definition given by Dempster [6] in his multi-valued semantics of a BPA.
This cannot be used literally in practice as we don’t associate a multi-valued
function with each belief function in a model.

We provide heuristics for determining whether the belief functions in
graphical models are distinct. The heuristics are based on Dempster’s defi-
nition. For directed graphical models, we have conditionals associated with
each variable in the model given its parents. The conditionals are all dis-
tinct if and only if the conditional independence assumptions implied by the
graphical model are valid.

It is also straightforward for undirected graphical models derived from
directed models by moralizing and dropping directions [18]. For a class of
undirected graphical models, we have BPAs associated with each network
clique with the same structure. For example, in the communication network
example, all BPAs have the same structure, and each represents the reliability
of the corresponding link in the communication network. Assuming that the
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reliabilities are independent, we can conclude that the BPAs in this example
are distinct.

Unlike the case of directed graphical models, we do not have a general
criterion for when the BPAs in an undirected graphical model are distinct.
We have CI assumptions associated with an undirected graphical model that
must be valid. The concept of a set of non-informative belief functions may
be useful. This needs further investigation.

For learning belief-function graphical models from data, all existing struc-
ture learning algorithms in probability theory [15] should also apply to D-S
belief functions theory as the definition of CI relations in D-S theory is the
same as in probability theory. For parameter learning (BPAs), this remains
to be done.
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Bloch, I., Aldea, E. (Eds.), Belief Functions: Theory and Applications,
7th International Conference, BELIEF 2022, Springer Nature, Switzer-
land. pp. 207–218.
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Highlights

On Distinct Belief Functions in the Dempster-Shafer Theory

Prakash P. Shenoy

• Discuss the notion of distinct belief functions in the Dempster-Shafer
theory.

• Provide heuristics in terms of no double-counting of uncertain knowl-
edge for determining if a set of belief functions is distinct.

• Discuss when belief functions in directed graphical models are distinct.

• Discuss when belief functions in undirected graphical models are dis-
tinct.
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