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Abstract

Applications of Dempster-Shafer (D-S) belief functions to practical problems involve difficulties arising from their
high computational complexity. One can use space-saving factored approximations such as graphical belief function
models to solve them. Using an analogy with probability distributions, we represent these approximations in the form
of compositional models. Since no theoretical apparatus similar to probabilistic information theory exists for D-S
belief functions (e. g., dissimilarity measure analogous to the Kullback-Liebler divergence measure), the problems
arise not only in connection with the design of algorithms seeking optimal approximations but also in connection with
a criterion comparing two different approximations. In this respect, the application of the analogy with probability
theory fails. Therefore, in this paper, we conduct some synthetic experiments and describe the results designed to
reveal whether some belief function entropy definitions described in the literature can detect optimal approximations,
i.e., that achieve their minimum for an optimal approximation.

1. Introduction

Applications of Dempster-Shafer (D-S) belief functions to practical problems involve difficulties arising from their
high computational complexity. One can use space-saving factored approximations such as graphical belief function
models to solve them. Using an analogy with probability distributions, we represent these approximations in the form
of compositional models. However, no theoretical apparatus similar to probabilistic information theory exists for
D-S belief functions. There is no dissimilarity measure possessing the properties of the Kullback-Liebler divergence
measure. Thus, the problems arise in connection with the design of algorithms seeking optimal approximations
because we do not have a criterion comparing two different approximations. In this respect, the application of the
analogy with probability theory fails. Therefore, in this paper, we conduct some synthetic experiments and describe
the results designed to reveal whether some belief function entropy definitions described in the literature can detect
optimal approximations.

Like in probability theory, several entropy measures have been defined in the framework of belief functions. This
paper aims to test to what extent these measures serve our needs. The tests are organized as follows. We randomly
generate a set of belief functions, ensuring that one (say the first one) is superior to all others. It happens when this
first belief function contains all the information from all the remaining belief functions in the set. Thus, we expect
that a measure of uncertainty/conflict suitable to rate the optimality of the model should be lower for the first model
compared to the remaining ones from the set. In the study, we consider their theoretical properties and computational
complexity to address their applicability to real-life problems.

A theoretical foundation for the task is offered by compositional models. As superior belief functions, one can
consider the models called perfect decomposable models [18]. For such models, the data-based machine learning pro-
cess consists of two steps. The first problem is estimating a system of low-dimensional basic probability assignments
(BPAs). Since we consider only low-dimensional BPAs, one can use one of the “statistical approaches” designed in
the literature, e.g.,[7, 9]. In the second step, one must order the low-dimensional BPAs to get a joint model describing
the reality. And this is the problem for which we need a suitable entropy. This step is solved using information-
theoretic characteristics based on Shannon entropy when working with probabilistic compositional models. In the
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case of Dempster-Shafer belief functions, we have numerous definitions of entropy similar to Shannon entropy for
probability distributions [19]. In Section 8, we present results of computational experiments that should answer the
question of whether one can find a belief function entropy (described in the literature) that could be used to detect an
optimal solution or the extent to which a definition meets this goal. To help the reader understand what compositional
models are and how they are used to construct real-life joint models, Section 2 describes the original ideas suggested
in the framework of probability theory.

The remaining parts of the paper are organized as follows. Section 3 introduces the basics of D-S belief function
theory. Next, Sections 4 and 5 introduce the main definitions of compositional models and their properties, respec-
tively. A survey of entropies for belief functions is briefly presented in Section 6. In Section 7, we explain by an
example how the computational experiments were conducted. Finally, Section 8 describes the experimental results.

2. Motivation

Space-complexity problems analogous to those discussed in Section 1 had to be solved in the 1970s by applying
probabilistic models to support a decision. Perez suggested using a class of space-saving approximations of joint
probability distributions that he called approximations simplifying the dependence structure [39].

Consider a large set of discrete random variables W with a joint probability distribution π. For an arbitrary
partition tU1,U2, . . . ,Uku ofW, one can decompose the joint distribution π using the chain rule as follow:

πpWq “ πpU1qπpU2|U1q . . . πpUk|pU1 Y ...YUk´1qq “

k
ź

i“1

πpUi|pU1 Y . . .YUi´1qq. (1)

In Eq. (1), for i “ 1, πpUi|pU1 Y . . . YUi´1qq is just the marginal πpU1q. For i “ 2, πpU2|U1q is the conditional
probability table forU2 givenU1, etc. In large models (|W| is large), it is rarely the case that the conditional marginal
of Ui depends on all variables in U1 Y . . . YUi´1. This fact was exploited by Perez [39], who suggested using an
ε-admissible approximation by simplification of the dependence structure1 to overcome the computational complexity
problem. His basic idea is as follows. Substitute each set pU1Y. . .YUi´1q in Eq. (1) by its smaller subset Ti such that
the conditional probability distribution πpUi|Tiq is almost the same as πpUi|pU1 Y . . .YUi´1qq. The non-similarity
of probability distributions π and κ defined on Ω can be measured using the Kullback-Leibler (KL) divergence [33]
defined as follows2

KLpπ}κq “
ÿ

xPΩ:κpxqą0

πpxq log
ˆ

πpxq
κpxq

˙

. (2)

Thus, consider a joint distribution as follows:

κpWq “

k
ź

i“1

πpUi|Tiq “ p. . . ppπpU1q Ź πpU2 YT2qq Ź πpU3 YT3qq Ź . . .Ź πpUk´1 YTk´1qq Ź πpUk YTkq, (3)

where the binary operator, called a composition operator, is as follows:

ν1pV1q Ź ν2pV2q “ ν1pV1q ¨ ν2pV2zV1|V1 XV2q.

A probability distribution that can be expressed in the form of a multiple application of the composition operator (as
that in Eq. (3)) is called a compositional model. If KLpπ}κq ď ε, then κ is an ε-admissible approximation of π.

Now, consider a different problem. Let tV1,V2, . . . ,Vku be a set of subsets ofW (generally not disjoint) such
that

Ťk
i“1Vi “W. Given a set of low-dimensional distributions tκipViqui“1,...,k, a question is whether there exists a

joint distribution forW such that all κi’s are its marginals. If such a distribution π exists, then a natural question is how

1The notion reflects the fact that the considered approximation extends the set of conditional independence relations holding for the probability
distribution in question [49].

2Eq. (2) defines the KL divergence if κ dominates π, i.e., if for all x P Ω, for which κpxq “ 0, πpxq is also 0. Otherwise, the KL divergence is
defined to be `8.
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to find it, or, if its computation is intractable3, how to approximate it. Perez [39] looked for an approximation within
the class of approximations simplifying the dependence structure that could be assembled from the given system of
marginals tκipViqui“1,...,k. Thus, he considered all the permutation of indices (i.e., bijections) j : t1, 2, . . . , ku Ñ
t1, 2, . . . , ku, each defining a probability distribution

κr js “
k
ź

i“1

κ jpiqppV jpiqzT jpiqq|T jpiqq,

where T jpiq “ V jpiq X pV jp1q Y . . . YV jpi´1qq. He was looking for the approximation (permutation j) minimizing
KL pπ}κr jsq. For this, he showed [39] that4

KL pπ}κr jsq “ ´Hpπq `
k
ÿ

i“1

´

Hpκ jpiqpV jpiqqq ´ Hpκ jpiqpT jpiqqq

¯

; (4)

recall that Eq. (4) holds under the assumption that all κi’s are marginals of π. If for some permutation j, all κi’s are also
marginals of κr js, then Eq. (4) can be further simplified getting KL pπ}κr jsq “ Hpκr jsq ´ Hpπq. Thus, regardless of
whether distribution π is known or not, he proved that its best approximation (that simplifies the dependence structure),
which can be set up from tκipViqui“1,...,k, is that which minimizes

řk
i“1

´

Hpκ jpiqpV jpiqqq ´ Hpκ jpiqpT jpiqqq

¯

. Suppose
one considers only so-called perfect approximations, i.e., the approximations κr js having all κi’s for its marginals (and
still assuming that all κi are marginals of π). In that case, the best approximation minimizes its Shannon entropy
Hpκr jsq. As showed in [14], such an approximation is unique in the sense that for two different permutations j and
j1, such that all κi’s are marginals of both κr js and κr j1s, κr js “ κr j1s. The minimization of the Shannon entropy also
corresponds with the intuition that the best approximation maximizes an information content, which can be expressed
for the considered compositional model κr js

ICpκr jsq “
ÿ

XPW

HpπÓXq ´ Hpκr jsq. (5)

Example. Consider four binary variablesW “ tU, X,Y,Zu, their subsets V1 “ tU, Xu, V2 “ tX,Yu, V3 “ tY,Zu,
and the corresponding two-dimensional probability distributions κipViq, which are pairwise consistent, i.e., κÓtXu

1 “

κ
ÓtXu
2 , κÓtYu2 “ κ

ÓtYu
3 . In this simple example, all possible permutations j : t1, 2, 3u Ñ t1, 2, 3u (we will depict them

in a form of a vector p jp1q, jp2q, jp3qq in this example) define only two different approximations. If jp3q ‰ 2, then
κr js “ κrp1, 2, 3qs is a perfect approximation. For the remaining two permutations κrp1, 3, 2qs “ κrp3, 1, 2qs “ κ1κ3.
For this distribution, variables X and Y are independent, which means that κ2 (see Table 1) cannot be a marginal of
κrp1, 3, 2qs.

Table 1: Two-dimensional probability distributions.

κ1pU, Xq κ2pX,Yq κ3pY,Zq
pu, xq 0.2 px, yq 0.4 py, zq 0.25
pu, x̄q 0.3 px, ȳq 0.1 py, z̄q 0.25
pū, xq 0.3 px̄, yq 0.1 pȳ, zq 0.25
pū, x̄q 0.2 px̄, ȳq 0.4 pȳ, z̄q 0.25

We have not defined the joint distribution π in this example, so we cannot compute the Kullback-Leibler divergence

of the approximations from π. However, computing the value Γr js “
k
ř

i“1

´

Hpκ jpiqpV jpiqqq ´ Hpκ jpiqpT jpiqqq

¯

for the

3As proved by Csiszár [3], the iterative procedure described in [5] converges to the required probability distribution. Nevertheless, the com-
putational complexity of this procedure is exponential with the number of variables, and therefore its practical application to multidimensional
probability distributions may easily become intractable.

4In the whole paper, H without any index denotes Shannon entropy [41] of a probability distribution. Entropies and entropy-like functions for
belief functions will be denoted by H with different indices.
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two permutations j “ p1, 2, 3q and j “ p1, 3, 2q, we get Γrp1, 2, 3qs “ 3.69 and Γrp1, 3, 2qs “ 3.97, which shows that
κrp1, 2, 3qs is a better approximation of any distribution π having κ1, κ2, κ3 for its marginals than the approximation
κrp1, 3, 2qs.

3. Belief Functions

There are several theories that use belief functions (and their equivalent representations such as basic probability
assignments, plausibility functions, commonality functions, credal sets, etc.) to represent evidence. The theories
differ mainly in the combination rules used to aggregate evidence. In this paper, we are interested in the Dempster-
Shafer (D-S) theory of belief functions, which uses Dempster’s combination rule [6].

As in Section 2, letW denote a set of variables with finite number of states. For X PW, Let ΩX denote the set of
states of variable X. Let ΩW denote ˆXPWΩX , the set of states forW.

A basic probability assignment (BPA) for variables U Ď W is a mapping mU : 2ΩU Ñ r0, 1s, such that
ř

aĎΩU
mUpaq “ 1 and mUpHq “ 0.

Consider a BPA mU forU. If the set of the corresponding variables is clear from the context, we omit the subscript
U. Thus, we say that a is a focal element of m if mpaq ą 0. A BPA with only one focal element is called deterministic;
ιU denote the deterministic BPA, for which ιUpΩUq “ 1. Since ιU represents a total ignorance, it is called vacuous.

A BPA m for ΩU can also be defined by the corresponding belief function (BEL), or by plausibility function (PL),
or by commonality function (CF) [40] as follows:

Belmpaq “
ÿ

bĎΩU : bĎa
mpbq,

Plmpaq “
ÿ

bĎΩU : bXa‰H

mpbq,

Qmpaq “
ÿ

bĎΩU : bĚa
mpbq.

These representations are equivalent; when one of these functions is given, we can compute the others uniquely. For
example:

Plmpaq “ 1´ BelmpΩUzaq,

mpaq “
ÿ

bĎa
p´1q|azb|Belmpbq,

mpaq “
ÿ

bĎΩU : bĚa
p´1q|bza|Qmpbq. (6)

A BPA m on ΩU (or, equivalently, BEL Belm forU) defines a set Pm of probability mass functions on ΩU

Pm “

#

π defined on ΩU | @a Ď ΩU :
ÿ

cPa
πpcq ě Belmpaq

+

that is called a credal set of m. The credal set of m uniquely defines m, and vice versa.

Marginalization. For BPA mV, we often consider its marginal BPA mÓU
V

forU Ď V. A similar notation is used also
for projections: for a P ΩV, aÓU denotes the element of ΩU that is obtained from a by omitting the values of variables
inVzU. Formally, if a Ď ΩV, then

aÓU “ taÓU : a P au.

The marginal mÓU
V

of BPA mV forU is defined as follows:

mÓU
V
pbq “

ÿ

aĎΩV: aÓU“b

mVpaq.
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for all b Ď ΩU .
The projection of sets enables us to define a join of two sets. Consider two arbitrary sets U and V of variables

(they may be disjoint or overlapping, or one may be a subset of the other). Consider two sets a Ď ΩU and b Ď ΩV.
Their join is defined as:

a ’ b “ tc P ΩUYV : cÓU P a & cÓV P bu.

Notice that if U and V are disjoint, then a ’ b “ a ˆ b, if U “ V, then a ’ b “ a X b, and, in general, for
c Ď ΩUYV, c is a subset of cÓU ’ cÓV, which may be a proper subset.

Dempster’s Combination Rule. In the D-S theory, Dempster’s combination rule is used to combine distinct belief
functions. Consider two distinct BPAs mU and mV forU andV, respectively. Dempster’s combination rule is defined
for each c Ď ΩUYV as follows:

pmU ‘ mVqpcq “
1
K

ÿ

aĎΩU ,bĎΩV:a’b“c
mUpaq ¨ mVpbq, (7)

where the normalization constant
K “

ÿ

aĎΩU ,bĎΩV:a’b‰H

mUpaq ¨ mVpbq. (8)

p1´ Kq can be interpreted as the amount of conflict between mU and mV. If p1´ Kq “ 1, then we say that BPAs mU
and mV are in total conflict and their Dempster’s combination is undefined.

For this combination rule, the assumption of distinct belief functions is essential. In general m‘m ‰ m. Double-
counting of evidence by combining non-distinct basic assignments leads to erroneous results. In directed graphical
belief function models consisting of priors and conditionals, all BPAs are distinct and we combine these using Demp-
ster’s rule. If we get some evidence represented as a BPA, and such a BPA is distinct from the BPAs in a graphical
model, then we can get a posterior joint BPA by combining all BPAs using Dempster’s rule.

Dempster’s combination rule may also be described using the corresponding commonality functions. Consider
two distinct BPAs mU , mV and the corresponding commonality functions QmU and QmV . Then, as shown in [40],

QmU‘mVpcq “
ˆ

1
K

˙

QmU pc
ÓUqQmVpc

ÓVq, (9)

where K is the same as that defined in Equation (8).
There is an important property of Dempster’s combination rule and marginalization called local computation [44].

If T Ď U and pUzT q XV “ H, then

pmU ‘ mVqÓT “ pmUqÓT ‘ mV

Thus, when we want to find the marginal of mU‘mV for T , by removing variables inUzT that does not include any
variables inV, then we can avoid combination on the state space ofU YV and do it instead on the smaller space of
T YU.

Suppose m is a BPA for X, and we observe X “ x, where x P ΩX . Let mX“x denote the deterministic BPA for
X such that mX“xptxuq “ 1. Then, in the D-S theory, our posterior BPA for X is m ‘ mX“x. An alternative way
of dealing with the observation X “ x is to condition each π P Pm using the observation X “ x. This results in a
new credal set that corresponds to m combined with mX“x using the so-called Fagin-Halpern combination rule [11],
m‘FH mX“x, which, in general, is different from m‘mX“x. In this sense, the credal set semantics of m is incompatible
with Dempster’s rule.

Removal. The inverse of Dempster’s combination rule is called removal. Since Dempster’s combination is defined as
pointwise combination of CFs followed by normalization, removal is defined as pointwise division of CFs followed
by normalization. SupposeU Ĺ V and QU is a marginal CF of QV, i.e., QÓU

V
“ QU . Then, QV a QU , is defined as

follows:
pQV a QUqpaq “ K´1 QVpaq{QUpaÓUq, (10)
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for all a P 2ΩV , where K is a normalization constant given by

K “
ÿ

H‰aĎΩV

p´1q|a|`1QVpaq{QUpaÓUq. (11)

We have defined the removal only for the case where we are removing the marginal QU from QV. Thus, if QUpaÓUq “
0, then QVpaq “ 0. In this case, we define 0{0 “ 1. For more details of the properties of the removal operator a, see
[42]. In [47], the removal operator is referred to as the decombination operator.

The CF QV a QU defined in Eq. (10) and (11) may fail to be a CF because the corresponding BPA m may have
negative probabilities that sum to 1. Such BPAs are called pseudo-BPAs. So, an important question is: Under what
conditions will removal result in a CF whose corresponding BPA is not a pseudo-BPA? The following proposition
answers this question.

Proposition 1. Suppose mX,Y is a BPA for tX,Yu with corresponding CF QmX,Y . Let mX denote the marginal of mX,Y

for X, i.e., mX “ pmX,Yq
ÓX . Then, QmX,Y a QmX is a CF if and only if there exists a BPA m for tX,Yu such that

mX,Y “ mX ‘ m, and mÓX is the vacuous BPA for X.

Proof. Let ιX denote the vacuous BPA for X. If mX,Y “ mX ‘m, QmX,Y “ QmX ‘Qm, i.e., for each a P 2ΩtX,Yu , we have

QmX,Y paq “ K´1 QmX pa
ÓXqQmpaq (12)

If we marginalize both sides of Eq. (12) using the above-mentioned local computation property, we get QmX pa
ÓXq “

K´1 QmX pa
ÓXqQιX pa

ÓX). As QιX pa
ÓXq “ 1, K´1 “ 1.

pQmX,Y a QmX qpaq “ K´1
1 QmX,Y paq{QmX pa

ÓXq

“ K´1
1 QmX pa

ÓXqQmpaq{QmX pa
ÓXq

“ K´1
1 Qmpaq. (13)

On the right side of Eq. (13), we have CF values for pX,Yq. So, the left side of Eq. (13) must also be CF values and
K´1

1 “ 1.

The intuition behind Proposition 1 is as follows. Since pointwise multiplication of CFs represents a combination
of knowledge, pointwise division of CFs represents the removal of knowledge in the denominator from the knowledge
in the numerator. In the belief function literature, BPA m in Proposition 1 is called a conditional for Y given X [23].
Proposition 1 posits that if we remove knowledge mX that is included in mX,Y , and mX,Y is Dempster’s combination of
the marginal mX for X and a conditional m for Y given X, then such removal never results in a pseudo-BPA.

Plausibility and Pignistic Transforms. We discuss two probability transforms of a BPA m. After normalizing the
plausibility function for singleton subsets, one gets for each a Ď Ω

λmpaq “
ř

bPa Plmptbuq
ř

bPΩ Plmptbuq
(14)

a probability distribution on Ω. λm is called a plausibility transform of BPA m [2].
Several other probabilistic transforms of a BPA m are described in the literature (e.g., [4]). Here, we are only

concerned with the pignistic transform [46, 48] defined as follows:

πmpaq “
ÿ

aPa

ÿ

bĎΩ:aPb

mpbq
|b|

. (15)

The plausibility transform of m1‘m2 is the same as the probabilistic combination of the plausibility transforms of
m1 and m2. This is not true for any other probabilistic transforms. Thus, it has been argued that only the plausibility
transform makes sense for the D-S theory [2].
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4. Composition Operator

In Section 2, we recalled that probabilistic compositional models are joint probability distributions composed
from a system of low-dimensional marginal probability distributions using the probabilistic composition operator. In
contrast with Dempster’s rule, the low-dimensional marginal distributions are not assumed to be distinct, especially
if the domains of marginals are not disjoint. The composition operator aggregates low-dimensional marginals and
considers common information in two non-distinct marginals.

The following axiomatic definition introduces a composition operator for (non-distinct) marginal BPA functions.
We say that two BPAs mT and mU are consistent if mÓTXU

T
“ mÓTXU

U
.

Definition 1. By a composition operator Ź, we mean a binary operator satisfying the following four axioms:
Consider three (possibly non-distinct) marginal BPAs mT , mU , and mV for T ,U, andV, respectively.

A1 (Domain): mT Ź mU is a BPA for variables T YU.

A2 (Composition preserves first marginal): pmT Ź mUqÓT “ mT .

A3 (Commutativity under consistency): If mT and mU are consistent, then mT Ź mU “ mU Ź mT .

A4 (Associativity under special condition): If T Ą pU X Vq, or, U Ą pT X Vq, then pmT Ź mUq Ź mV “

mT Ź pmU Ź mVq.

Notice that axioms A1, A3, A4 guarantee that the composition operator uniquely reconstructs BPA mTYV from its
marginals, if there exists a lossless5 decomposition of mTYV into mT and mV. Axiom A3 refers to situations, when
mT and mU are consistent, which happens when there exists their joint extension. In such a case we can construct
their extension regardless we start with mT or mU . Surprisingly, it is axiom A4, which guarantees that no necessary
information from mV is lost. Axiom A2 solves the problem arising when inconsistent BPAs are composed. Generally,
there could be two ways of coping with this problem. Either find a compromise (a mixture of inconsistent pieces
of knowledge) or give preference to one of the sources. The solution expressed by axiom A2 decreases the space
complexity of computational algorithms necessary for handling joint models.

In the next section, we will study compositional models, i.e., a joint BPA composed from a set of low-dimensional
marginal BPAs. Storing a system of low-dimensional marginal BPAs requires much less space than storing the joint
BPA (assuming that the latter can be done). More importantly, one can design efficient computational procedures for
making inferences from such joint BPAs without explicitly computing the joint. The properties that are a consequence
of Axioms A1-A4 are summarized in the following assertion (for proofs, see [18]).

Proposition 2. For BPAs mT ,mU ,mV the following statements hold.

1. (Reduction:) IfU Ď T , then mT Ź mU “ mT .
2. (Stepwise composition): If pT XUq Ď V Ď U, then pmT Ź mÓV

U
q Ź mU “ mT Ź mU .

3. (Exchangeability): If T Ą pU XVq, then pmT Ź mUq Ź mV “ pmT Ź mVq Ź mU .
4. (Local computation): If pT XUq Ď V Ď pT YUq, then pmT Ź mUqÓV “ mÓTXV

T
Ź mÓUXV

U
.

Before we discuss the composition operator, notice that Dempster’s combination rule is not a composition operator.
Dempster’s rule should be applied only to distinct belief functions representing independent pieces of evidence. On
the other hand, the composition operator is typically used to combine two not distinct marginals with a non-empty
intersection. The composition operator is defined to avoid double counting of evidence from the two composed pieces
of evidence. Thus, the two operators have different properties. Whereas Dempster’s rule is always commutative and
associative, the composition operator has these properties only in particular situations. On the other hand, Dempster’s

5By this term we understand that, roughly speaking, there is a possibility to reconstruct mTYV from its marginals mT and mV without adding
an additional information about mTYV. It can be done if groups of variables T zV and VzT are conditionally independent given T XV. For a
more formal introduction of this concept, see [15].
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rule does not preserve the first marginal. Nevertheless, as shown below, Dempster’s rule may be used to define a
composition operator.

As we saw in Eq. (9), Dempster’s rule can be described as pointwise multiplication of CFs followed by normal-
ization. When composing uncertain knowledge, which may not be distinct, we must ensure that no information is
double-counted. One way to ensure that knowledge is not double-counted is to remove the common knowledge using
the removal operator described in Eq. (10). We have to ensure that the composition preserves the first BPA. This
means we must ignore the information in the second BPA, which repeats or conflicts with the information in the first
BPA. The following composition operator does this.

Definition 2. Consider two BPAs mU , mV, and their commonality functions QmU and QmV . Their d-composition is a
BPA mUŹd mV, the corresponding commonality function of which is given by the d-composition of their commonality
functions defined for each c Ď ΩUYV by the following expression:

pQmU Źd QmVqpcq “

$

’

&

’

%

1
L

QmU pcÓUq ¨ QmVpcÓVq
QmÓUXV

V

pcÓUXVq
i f QmÓUXV

V

pcÓUXVq ą 0,

0 otherwise,

(16)

where the normalization constant

L “
ÿ

cĎΩUYV:Q
mÓUXV
V

pcÓUXVqą0

p´1q|c|`1 QmU pcÓUq ¨ QmVpcÓVq
QmÓUXV

V

pcÓUXVq
.

If L “ 0 then mU and mV are in total conflict and the composition is undefined.

Remark Definition 2 is taken from [18], where the reader can find the proof thatŹd meets all the axioms required from
a composition operator, as well as the instructions on how to introduce analogous operators of composition in some
other theories of uncertainty meeting the axioms of Shenoy’s valuation-based systems. It can be easily shown that
the computation of mU Źd mV may be simplified by transforming the second argument mV into QmV , and computing
the corresponding conditional commonality function QmVzU|VXU “ QmV a QmÓUXV

V

. This may be done using Eq. (6),
transformed into the corresponding conditional BPA mVzU|VXU . Then, since

pQmU Źd QmVq “
1
L

QmU ‘ QmV a QmÓUXV
V

we know ([40]) that
mU Źd mV “ mU ‘ mVzU|VXU .

Thus, the computations of d-composition are limited by the dimensionality of the second BPA because we do not
know how to avoid transforming the second BPA into the corresponding commonality function. Notice that, as a rule,
the representation of the corresponding commonality function requires the space for close to 2|ΩV| ě 2p2

|V|q values
regardless of the number of focal elements of mV.

A disadvantage of the removal operator is that, as illustrated in the following example, the result of the d-
composition of two basic assignments may be a pseudo-BPA (some focal elements may be assigned negative values),
which may cause problems with the interpretation as well as when computing some entropies introduced in Section 6
[31, 35, 42].

Example of a pseudo-BPA Consider the case of composing two BPAs: m1 defined for variable X, and m2 defined for
two variables X,Y . Consider ΩX “ tx, x̄u,ΩY “ ty, ȳu, which means that |2ΩX | “ 4, and |2ΩX,Y | “ 16. Therefore,
m1 and m2 may be defined by up to 3 and 15 values assigned to focal elements, respectively. In this example, each
of the two considered basic assignments have only two focal elements – see Table 2. In tables, we depict only focal
elements, or more precisely, if a Ď Ω is not included in the table, then all its respective values equal 0.

The process of computing m1Źd m2 through Qm1 Źd Qm2 using Eq. (16) is shown in Table 3, and the idea described
in the Remark is shown in Table 4.

In the framework of belief functions, another binary operator meeting the definition of the composition operator
was defined in [21].
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Table 2: m1 and m2

a m1paq
tpxqu 0.2
tpxq, px̄qu 0.8

a m2paq
tpx, yqu 0.9
tpx, yq, px, ȳq, px̄, ȳqu 0.1

Table 3: Computation of pm1 Źd m2qpaq using Eq. (2)

a m1paÓXq Qm1paÓXq m2paq Qm2paq mÓX
2 pa

ÓXq QÓX
m2 pa

ÓXq
Qm1 pa

ÓXq¨Qm2 paq

QÓX
m2
paÓXq

pm1 Źd m2qpaq

tpx, yqu 0.2 1 0.9 1 0.9 1 1 0.9
tpx, ȳqu 0.2 1 0.1 0.9 1 0.1
tpx̄, ȳqu 0.8 0.1 0.1 0.8
tpx, yq, px, ȳqu 0.2 1 0.1 0.9 1 0.1 -0.7
tpx, yq, px̄, ȳqu 0.8 0.8 0.1 0.1 0.1 0.8
tpx, ȳq, px̄, ȳqu 0.8 0.8 0.1 0.1 0.1 0.8
ΩX,Yztpx̄, yqu 0.8 0.8 0.1 0.1 0.1 0.1 0.8 0.8

Definition 3. Consider two BPAs mU , mV. Their f-composition is a BPA mU Źf mV defined for each nonempty
c Ď ΩUYV by one of the following expressions:

(i) if mÓUXV
V

pcÓUXVq ą 0 and c “ cÓU ’ cÓV, then pmU Źf mVqpcq “
mUpcÓUq ¨ mVpcÓVq

mÓUXV
V

pcÓUXVq
;

(ii) if mÓUXV
V

pcÓUXVq “ 0 and c “ cÓU ˆΩVzU , then pmU Źf mVqpcq “ mUpcÓUq;

(iii) in all other cases, pmU Źf mVqpcq “ 0.

We have specified two composition operators. Which of these should be used to construct a joint? The two
composition operators differ in their theoretical properties and computational complexity. However, they yield the
same results for a class of belief function models.

Since mUŹf mV is always a BPA (i.e., all the focal elements of this composition are assigned positive masses), we
are interested only in situations when also mU Źd mV is a BPA. Formally, using the corresponding basic assignments,
Eq. (16) can be expressed as

mU Źd mV “ mU ‘ mV a mÓUXV
V

,

where a is an inverse operator to ‘. To be sure that this composition is a BPA, we deal only with situations when
pmV a mÓUXV

V
q is nonnegative. To characterize it, we prove the following simple assertion (a similar result is stated

in [42] in the context of valuation-based systems).

Proposition 3. Consider nonempty sets of variables U Ĺ V and BPA mV. If pmV a mÓUXV
V

q is a BPA, then the
following two properties hold:

• mV “ mÓU
V
‘ pmV a mÓUXV

V
q;

•
´

mV a mÓUXV
V

¯ÓU

is vacuous.

Proof. The first property is a direct implication of the associativity and commutativity of Dempster’s rule of
combination, and the latter follows immediately from the local computation property. l

To simplify the notation, and to make it a bit more lucid, let mV|U “ mVamÓUXV
V

. Moreover, in connection with
Definition 2, we will identify situations when BPA mV|UXV exists and is, in a way, “adapted” to mU . We will say that
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Table 4: An alternative way of the computation of pm1 Źd m2qpaq.

a m2paq Qm2paq mÓX
2 pa

ÓXq QÓX
m2 pa

ÓXq Qm2;pY|Xqpaq “
Qm2 paq

QÓX
m2
paÓXq

m2;pY|Xqpaq pm1 ‘ mpY|Xq2 qpaq

tpx, yqu 0.9 1 0.9 1 1 0.9 0.9
tpx, ȳqu 0.1 0.9 1 0.1
tpx̄, ȳqu 0.1 0.1 1
tpx, yq, px, ȳqu 0.1 0.9 1 0.1 -0.9 -0.7
tpx, yq, px̄, ȳqu 0.1 0.1 0.1 1
tpx, ȳq, px̄, ȳqu 0.1 0.1 0.1 1
ΩX,Yztpx̄, yqu 0.1 0.1 0.1 0.1 1 1 0.8

mV|UXV is tight with respect to mU if for all couples of focal elements a and b (a is a focal element of mU , and b is a
focal element of mV|UXV) the following condition holds:

for @ b P b, D a P a, such that tau ’ tbu ‰ H. (17)

Proposition 4. Let two basic assignments mU ,mV be such that mV|VXU is nonnegative BPA. mV|VXU is tight with
respect to mU if and only if

mU Źf mV “ mU Źd mV.

Proof. First, let us prove that both the operators coincide in situations when mV|VXU is tight with respect to mU .
For this, recall that for BPA mV|VXU , the existence of which is assumed,

mV “ mÓVXU
V

‘ mV|VXU , (18)

and that the d-composition is defined
mU Źd mV “ mU ‘ mV|VXU .

What are the focal elements of mU ‘ mV|VXU? Let a and b be arbitrary focal elements of mU and mV|VXU ,

respectively. Due to Proposition 3,
`

mV|VXU
˘ÓVXU is vacuous, bÓVXU “ ΩVXU , and c “ a ’ b ‰ H is a focal

element of mU ‘ mV|VXU . Therefore, when computing the Dempster’s rule of combination mU ‘ mV|VXU , the
corresponding coefficient of conflict (see Eq. (8))

p1´ Kq “
ÿ

aĎΩU ,bĎΩV:a’b“H

mUpaq ¨ mVzU|VXUpbq “ 0, (19)

which will also be used in the second part of the proof.
The question is whether for a focal element c of mU‘mV|VXU it may happen that c “ a ’ b, and either a ‰ cÓU ,

or b ‰ cÓV. Since bÓVXU “ ΩVXU , for @ a P a, D b P b, tau ’ tbu is a singleton from cÓU ’ cÓV and therefore
a Ď cÓU . Similarly, the assumption that mV|VXU is tight with respect to mU guarantees that b Ď cÓV. For all
c P a ’ b, cÓU P a from the definition of a join, and therefore a Ě cÓU . Analogously, cÓV P b yields b Ě cÓV. So,
we have proven that each focal element c of mU ‘ mV|VXU is created by a single pair of focal elements cÓU of mU
and cÓV of mV|VXU . Therefore (using definition from Eq. (7) and Eq. (19)),

pmU ‘ mV|VXUqpcq “
ÿ

aĎΩU ,bĎΩV:a’b“c
mUpaq ¨ mV|VXUpbq “ mUpcÓUq ¨ mV|VXUpcÓVq. (20)

In the same way, we get from Eq. (18) also

mVpcÓVq “ pmÓVXUV
‘ mV|VXUqpcÓVq “ mÓVXU

V
pcÓVXUq ¨ mV|VXUpcÓVq, (21)

which gives that, under the given assumptions,

mV|VXUpcÓVq “
mVpcÓVq

mÓVXU
V

pcÓVXUq
. (22)
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Substituting Eq. (22) into Eq. (20), we get exactly the formula from case (i) of Definition 3. The fact that case (ii) of
this definition never creates a focal element of mU‘mV|VXU follows from the fact that each couple of focal elements
a and b (a is a focal element of mU , and b is a focal element of mV|UXV) gives rise of a focal element a ’ b of
mU ‘ mV|VXU . Thus, whenever case (ii) of Definition 3 is used (under the assumptions of this assertion), then it
assigns zero.

Now, let us prove the other side of the equivalence by contradiction. Assume that mU Źf mV “ mU Źd mV, and
simultaneously mV|VXU is not tight with respect to mU . It means that for some focal elements a and b (such that a is
a focal element of mU , and b is a focal element of mV|UXV), and some b P b, tau ’ tbu “ H for all a P a. It means
that b R pa ’ bqÓV. Thus, we have showed that there is at least one c Ď ΩUYV (namely, c “ a ’ b), for which:

(i) c is a focal element of mU Źd mV,
(ii) c “ a ’ b for focal elements a and b such that b Ľ cÓV,

(iii) c “ a ’ cÓV.

Since we assume that mU Źf mV “ mU Źd mV, c is also a focal element of mU Źf mV, and pmU Źf mVqpcq “
pmU Źd mVqpcq. Recall, that in the first part of the proof we showed that the corresponding coefficient of conflict
(Eq. (19)) equals zero, and therefore pmU Źd mVqpcq ě mUpcÓUq ¨ mVpcÓVq ` mUpcÓUq ¨ mVpbq. Since mÓUXV

V
is

vacuous, mÓUXV
V

pcÓUXVq “ 1, and one can see from Definition 3 that pmU Źf mVqpcq ą mUpcÓUq ¨ mVpcÓVq only
when mÓUXV

V
pcÓUXVq “ 0, and cÓVzU “ ΩVzU , which contradicts Property (ii) showed above. l

Corollary Let two basic assignments mU ,mV are such that mV|VXU exists. If mÓVXU
V

is vacuous, or, ifV XU “ H,
then

mU Źf mV “ mU Źd mV.

5. Compositional Models

By a belief function compositional model we understand a BPA m1 Ź ¨ ¨ ¨ Źmn obtained by a multiple application
of the composition operator. Thus, we can speak about d-compositional or f-compositional models in correspondence,
which of the two introduced operators of compositions are used6. Let us emphasize that if not specified otherwise by
parentheses, the operators are always performed from left to right, i.e.,

m1 Ź m2 Ź m3 Ź . . .Ź mn “ p. . . ppm1 Ź m2q Ź m3q Ź . . .Ź mn´1q Ź mn.

Consider a (finite) system W of small subsets of the considered variablesW. The vague assumption thatU PW
is small is accepted to avoid the computational problems connected with computations with the corresponding basic
assignments. Thus, we assume that for eachU PW we have (or we can easily get) a BPA mU . Moreover, we assume
that these basic assignments, as well as the corresponding commonality functions QmU , can effectively be represented
in computer memory. Thus, in context with the operator of d-composition, the cardinality of U P W is always less
than 5.

Having a system of low-dimensional basic assignments tmUuUPW we follow the idea of Perez described in Sec-
tion 2. We assume that there exists a BPA m having all these mU for its marginals, and we want to find the best
approximation of m assembled from the given marginals. In other words, we are looking for a sequence of sets
pUiqi“1,...,n from W such that the compositional model mU1 Ź mU2 Ź ¨ ¨ ¨ Ź mUn approximates the unknown BPA m
best. To simplify notation, we denote mi “ mUi . Therefore we will speak about a model m1Źm2Ź . . .Źmn, in which
BPA mi is defined for variablesUi, and the corresponding commonality function is Qi.

The considered compositional model is a |U1 Y . . . YUn|-dimensional BPA. It is said to be perfect if all mi are
marginals of m1Źm2Ź . . .Źmn. Thus, perfect models reflect all the information represented by the low-dimensional
basic assignments from which they are composed. So, it is not surprising that the optimal approximation will be, as a
rule, a perfect model.

If a model is not perfect, it can always be perfectized using the following assertion (proved in [18]).

6We never consider a possibility that both operators are simultaneously used in one model.
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Proposition 5 (perfectization procedure). For any compositional model m1Źm2Ź. . .Źmn, the model m̄1Źm̄2Ź. . .Źm̄n

defined

m̄1 “ m1,

m̄2 “ m̄ÓU2XU1
1 Ź m2,

...

m̄n “ m̄ÓUnXpU1Y...YUn´1q
n Ź mn,

is perfect, and m1 Ź m2 Ź . . .Ź mn “ m̄1 Ź m̄2 Ź . . .Ź m̄n.

Let us highlight that the assertion holds for both the operators introduced in the previous section. The procedure ap-
plies to any compositional model; nevertheless, its computational efficiency depends not only on the considered com-
position operator but also on a structure of the model, which is determined by the sequence of setsU1,U2, . . . ,Un. In
this context, the most advantageous models are decomposable models, for which the sequenceU1,U2, . . . ,Un meets
the so-called running intersection property (RIP): @i “ 2, . . . , n D j p1 ď j ă iq :Ui X pU1 Y . . .YUi´1q Ď U j.

When computing with perfect models, we can take advantage that several permutations of low-dimensional basic
assignments can equivalently represent a perfect model. In [18], the following assertions are proved.

Proposition 6 (testing perfectness of models). Model m1Ź . . .Źmn is perfect if and only if for all i “ 2, 3, . . . , n, basic
assignments pm1 Ź . . .Ź mi´1q and mi are consistent, i.e., pm1 Ź . . .Ź mi´1q

ÓUiXpU1Y...YUi´1q “ mÓUiXpU1Y...YUi´1q

i .

Proposition 7 (on consistent decomposable models). Consider a decomposable model m1 Ź m2 Ź . . . Ź mn. The
model is perfect if and only if basic assignments m1,m2, . . . ,mn are pairwise consistent, i.e., @ti, ju Ă t1, 2, . . . , nu,
mÓUiXU j

i “ mÓUiXU j

j .

The verification of the perfectness of a compositional model using Proposition 6 may be computationally expen-
sive, and therefore Proposition 7 is often used. Checking the pairwise consistency of low-dimensional basic assign-
ments from a given sequence is computationally simple, and therefore we will rely on Proposition 7 in Section 8.

6. Entropy of Belief Functions

As explained in Section 2, to save the space necessary to represent multidimensional probability distributions,
one can approximate them by probabilistic compositional models. The same idea also holds for belief functions.
The economic representation of a joint BPA also often reduces the extremely high computational complexity of
the necessary procedures. However, the problem arises with determining the quality of such approximations. No
generally accepted similarity measure analogous to the probabilistic Kullback-Leibler divergence exists. We do not
know how to recognize which of the two approximations is better than the other. We do not know how to identify an
optimal approximation if the perfect one does not exist. Therefore, we set a goal to test whether some of the entropies
designed in the literature can be used to detect the optimal approximations. If such entropy is found, it will be subject
to a detailed future analysis.

Though we are aware of other recently introduced entropies, for the described pilot study, we considered the bat-
tery of entropy functions listed in Table 5 (primarily those described in [19]). Realize that not all of them were called
entropy by their authors. Some authors suggest their functions to measure other characteristics of belief functions,
such as a measure of conflict [28, 27]. Therefore, we should not be surprised that some entropy functions failed.
However, having developed a software system for this purpose, we were not limited by the number of the consid-
ered entropies. The only criterion for including an entropy-like function in the experiments was its computational
complexity.

In the experiments, we computed entropies for 20-dimensional models. For this, we had to keep the number of
focal elements of the considered models limited (see Figure 1). Nevertheless, theoretically, the maximum number of
focal elements is super-exponential with the number of variables. It is why we are not able to calculate entropies based
on the conversion of BPA to Belief function (Höhle), based on the conversion to Commonality function (Smets), or
the conversion to Plausibility function (Yager, Lamata & Moral). All these alternative representations are positive for
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Table 5: A list of entropies of belief functions

Höhle [13] HopmVq “
ř

aĎΩV

mVpaq logp 1
BelmV paq

q

Smets [45] HtpmVq “
ř

aĎΩV

logp 1
QmV paq

q

Yager [50] HypmVq “
ř

aĎΩV

mVpaq logp 1
PlmV paq

q

Nguyen [37] HnpmVq “
ř

aĎΩV

mVpaq logp 1
mVpaq

q

Dubois & Prade [10] HdpmVq “
ř

aĎΩV

mVpaq logp|aq|

Lamata & Moral [34] HlpmVq “ HypmVq ` HdpmVq

Klir & Ramer [30] HkpmVq “ HdpmVq ´
ř

aĎΩV

mVpaq log
´

1´
ř

bĎΩV

mVpbq
|bza|
|b|

¯

Klir & Parviz [29] HkpmVq “ HdpmVq ´
ř

aĎΩV

mVpaq log
´

1´
ř

bĎΩV

mVpbq
|azb|
|a|

¯

Pal et al. [38] HbpmVq “
ř

aĎΩV

mVpaq logp |a|
mVpaq

q

Harmanec & Klir [12] HhpmVq “ maxtHpπq | π P PpmVqu
Maeda & Ichihashi [36] HipmVq “ HhpmVq ` HdpmVq

Abellán & Moral [1] HapmVq “ HipmVq ` KLpπ}κq for specific π, κ P PpmVq
Jousselme et al. [26] H jpmVq “ HpπmVq

Deng [8] HgpmVq “ HnpmVq `
ř

aĎΩV

mVpaq logp2|a| ´ 1q

Jiroušek & Shenoy [19] HλpmVq “ HpλmVq ` HdpmVq
Jiroušek et al. [17] HπpmVq “ HpπmVq ` HdpmVq

Decomposable [20] HS pmVq “
ř

aĎΩV

p´1q|a|QmVpaq logpQmVpaqq

a substantial part of all possible states of variables, and their space complexity is, therefore, super-exponential to the
number of variables. Similarly, we had to exclude also entropies requiring maximization of Shannon entropy over the
credal set, i.e., Harmanec & Klir, Maeda & Ishibashi and Abellán & Moral definitions.

Except for special situations, the number of focal elements of compositional models exponentially increases with
the length of models. It holds even when the number of focal elements of BPAs, from which the models are com-
posed is limited. It is visible from Figure 1 depicting the situation of 10 representative compositional models (5
f-compositional, and 5 d-compositional). Each of these models is composed of 13 – 16 low-dimensional basic assign-
ments, and each graph describes how the number of the focal elements grows with the length i of the considered prefix
model m1 Ź m2 Ź . . . Ź mi (for the definition of various model types, see Section 8). Therefore, in the experiments
described in Section 8, we considered only the entropies, the computational complexity of which is a linear function
of the number of focal elements. This condition is also violated by Klir & Ramer, and Klir & Parviz’s definitions.
Therefore, we eventually computed only Hn,Hd,Hb,H j,Hg,Hλ,Hπ, and HS .

The last decomposable entropy HS is some kind of an exception. It is defined using the commonality function:

HS pmVq “
ÿ

aĎΩV

p´1q|a|QmVpaq logpQmVpaqq. (23)

Even though HS pmVq is not always nonnegative, its merit is that it is the only definition of belief function entropy
that satisfies an additivity property in the sense that HS pmX ‘ mY|Xq “ HS pmXq ` HS pmY|Xq (here, mX is a BPA
for X, and mY|X is a conditional BPA for Y given X such that its marginal for X is vacuous). This additivity, which
is one of the fundamental properties of probabilistic information theory, makes the computation of the entropy for
high-dimensional perfect d-compositional models possible. It is the only entropy that can be computed for general
d-compositional models for more than ten variables.

As mentioned above, we restricted the number of focal elements for our experiments so that the joint BPA has
a “reasonable” number of focal elements. It makes the computation of other entropies possible directly for the joint
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Figure 1: Number of focal elements for compositional models and their prefix sub-models

BPAs. To make the computation of the decomposable entropy possible, another restriction is given for the size of low-
dimensional BPAs from which the models are assembled. They should not be defined for more than four variables
because, when computing the entropy for the d-composition of two consistent BPAs mU and mV,

HS pmU Źd mVq “ HS pmUq ` HS pmVzU|VXUq, (24)

one has to compute the conditional entropy according to the following formula

HS pmVzU|VXUq “
ÿ

aĎΩV

p´1q|a|QmVpaq logpQmVzU|VXU paqq, (25)

which requires the transformation of mV into the commonality function. Having this commonality function, one can
compute QmVzU|VXU paq “ QmVpaq{QmÓVXU

V

paÓVXUq for all a Ď ΩV. Note that for V XU “ H, HS pmVzU|VXUq “
HS pmVq.

7. An Example

Consider 20 binary variables A, B,C, . . . ,T, and a (randomly generated) perfect decomposable model assembled
from 15 low-dimensional BPAs:

M1 : mtAGKu Ź mtAKS u Ź mtBDKu Ź mtAQTu Ź mtAPu Ź mtOPu Ź mtGHu Ź mtNTu Ź mtIS u

Ź mtALQu Ź mtIFRu Ź mtAGMu Ź mtAEMu Ź mtCQTu Ź mtBJu.

It is an easy task to verify that the model is decomposable. The random generator was set to generate pairwise
consistent BPAs. Therefore, due to Proposition 7, the perfectness ofM1 is guaranteed.

Using other permutations of the generated BPAs, we can set up a lot of other models, mostly non-decomposable.
Consider just (randomly selected) two of them:

M2 : mtCQTu Ź mtBJu Ź mtALQu Ź mtBDKu Ź mtAEMu Ź mtAQTu Ź mtIS u Ź mtAGKu Ź mtGHu

Ź mtIFRu Ź mtOPu Ź mtAKS u Ź mtAGMu Ź mtNTu Ź mtAPu,

M3 : mtAQTu Ź mtAGMu Ź mtGHu Ź mtBDKu Ź mtAKS u Ź mtAEMu Ź mtIFRu Ź mtNTu Ź mtAGKu

Ź mtBJu Ź mtALQu Ź mtOPu Ź mtAPu Ź mtCQTu Ź mtIS u.
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Though assembled from the same system of low-dimensional BPA, these three models differ from each other. For
example, due to Proposition 7, we know that all the considered low-dimensional basic assignments are marginals of
modelM1, which does not hold forM2 andM3.

Table 6: Entropies of modelsM1,M2, andM3.

f-compositional models d-compositional models

Entropy M1 M2 M3 M1 M2 M3

Hs - - - 3.442 3.835 3.642
Hn 12.351 12.405 11.771 - - -
Hd 15.297 16.105 15.792 15.612 15.954 14.894
Hb 27.648 28.511 27.563 - - -
H j 18.542 19.017 18.840 18.223 18.247 19.323
Hg 69475 101676 90577 - - -
Hλ 34.613 35.620 35.287 34.466 34.789 34.790
Hπ 33.840 35.123 34.633 33.835 34.201 34.217

Since the condition of Proposition 4 is rarely satisfied for randomly generated BPAs, these models also differ
depending on whether we consider f- or d-compositional models. Thus, we consider six compositional models. In
the left-hand side of Table 6, we see all the values of entropies that can be (using our software system) computed
for the considered three f-compositional models. As explained above, it is impossible to calculate the decomposable
entropy HS for f-compositional models; therefore, the left side of the respective row is empty. On the other hand, the
computation of Hn,Hb, and Hg for d-compositional models failed in this particular example. The reason is that there is
at least one focal element with negative mass in d-compositional modelsM1,M2, andM3 and the respective logarithm
is thus undefined. As illustrated by results in Section 8, similar failures may appear for H j, Hλ, and Hπ because even
the respective probabilistic transforms may have some negative masses. It does not happen for the three considered
models M1, M2, M3. Both the pignistic and plausibility transforms for these models are nonnegative BPAs, and we
could compute H j,Hλ,Hπ. Realize that the Dubois-Prade entropy is calculable regardless of whether the considered
BPA is nonnegative.

Let us illustrate how the results recorded in Table 6 are interpreted in the process of the entropies assessment
described in the next section. Consider, say, f-compositional models. Based on the values of entropies from the
left-hand side of Table 6, we see that the Nguyen’s entropy

HnpM3q ă HnpM1q ă HnpM2q,

which is not what we expect from the entropy used to detect the optimal approximations. On the other side, the values
of Dubois-Prade entropy minimizes the optimal compositional model

HdpM1q ă HdpM3q ă HdpM2q.

Thus, f-compositional model M1 is in the next section counted among those models that are successfully detected
by Hd (and also by H j,Hg,Hλ, Hπ and HS ) . Similarly, one can see from Table 6 that d-compositional model M1 is
counted among those models that are successfully detected by H j,Hλ, and Hπ.

Even though it does not happen for the models considered in this example, it is not rare that an entropy achieves
the same value for the optimal and some non-optimal models. Then, if no non-optimal model has lower entropy than
the optimal one, we count the model among those weakly detected by the considered entropy.

8. Experimental Results

Using software developed in R-studio, we randomly generated 357 perfect decomposable compositional models
for 20 variables. To generate a decomposable model, we generated a sequence of sets of variables satisfying the
running intersection property. Then, we generated random BPAs for these sets of variables and ran the perfectization
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procedure described in Proposition 5. Inspired by [32], we designed our random generator of BPAs to be able to
produce assignments with a specific structure and a predefined number of focal elements. Specifically, we generated
five types of models where all BPAs were as follows:

1. consonant (81 models) – all focal elements are nested;
2. consonant with Ω (68 models) – all focal elements are nested, and the whole space of discernment Ω is among

them;
3. quasi-Bayesian (90 models) – Ω is one focal element, all others are singletons;
4. random (68 models) – no restriction was imposed on the structure randomly generated focal elements;
5. random with Ω (50 models) – the only restriction of the structure is that Ω is among the focal elements.

Notice that the given type determines the low-dimensional basic assignments from which the joint is defined. It
does not mean that the joint is of the given type. After composition, the type is generally not preserved. It is easy
to see that the f-composition of two quasi-Bayesian BPAs is not quasi-Bayesian, whenever case (ii) of Definition 3
finds its use. On the other hand, it is not difficult to show that the d-composition of two quasi-Bayesian BPAs is
quasi-Bayesian.

In addition to the type of generated BPAs, the random generator was controlled by two parameters. The first is an
upper bound for the number of variables for which BPAs are defined (we used 3, 4, and 5), and the second parameter
is the maximum number of focal elements (we used 3,4,5 and 6).

These parameters were mainly used to control the computational complexity of d-compositional models. Note that
we are able to calculate pmU Źd mVq if |V| ď 4 (in case of |V| “ 5 the corresponding conditional CF is determined
by 232 parameters and its conversion to BPA requires 264 comparisons.)

For each perfect decomposable model, we created several non-decomposable models assembled from the same
system of low-dimensional BPAs. We destroyed the running intersection property by randomly permuting the se-
quence in which the generated BPAs were composed. In this way, similar to the example described in the previous
section, we obtained for each randomly generated decomposable model several non-decomposable models (on av-
erage, about six). Altogether, we had 2077 different models. Then each model was converted into a joint BPA by
applying the composition operator. Note that this was possible because we significantly limited the number of focal
elements of generated low- dimensional BPAs. As a result, the number of focal elements of the joint BPA remained
reasonable, and it was possible to calculate them. If the number of focal elements of the joint BPA began to grow
(which happened a few times), it was impossible to calculate the joint BPA within a reasonable time. Therefore we
did not include these models in the results.

To test the behavior of each entropy function, we first considered f-compositional models. For each model we
calculated 7 different entropies Hλ, Hd, Hπ, Hn, Hb, H j, and Hg of the joint. Then we calculated the relative difference
of the model entropy from the entropy of the corresponding decomposable model.

Recall that an ideal entropy function should always have a smaller value for a decomposable model than for
a non-decomposable one assembled from the same marginals. Therefore, the entropy of each non-decomposable
model, minus the entropy of the corresponding decomposable model, should be nonnegative, ideally positive. We
created histograms of these differences in Figure 2 for each entropy definition. In the case of an ideal entropy,
the region corresponding to the negative difference should be empty. Unfortunately, this does not happen for any
considered entropy. Nevertheless, if accepting a reasonable error, one can use entropies Hd, Hπ, and H j for detecting
the decomposable models as the best ones.

In another way, these results for f-compositional models are also presented in Table 7. The first row repeats the
numbers of decomposable models generated for the respective type of low-dimensional BPA. The remaining numbers
express the ability of the individual entropy to detect the optimal approximation. The first number (of each couple)
reads the percentage of decomposable models (strongly) detected by the respective entropy (entropy value for RIP
model is lower than values for all non-RIP models). The second number (in the parentheses) reads the percentage of
decomposable models weakly detected by the respective entropy (entropy value for the RIP model is lower or equal
than those for all non-RIP models).

From Table 7, one can identify some differences in the behavior of different entropies when applied to different
types of models (though, as mentioned above, it is not a type of a model but the type of low-dimensional BPAs
from which the model is composed). For example, while Hλ is not so bad in the case of consonant models, it fails
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Figure 2: Frequencies of differences of entropies of non-decomposable models and the corresponding decomposable models. F-compositional
models.
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for quasi-Bayesian models. Also, the significant differences between the numbers of strongly and weakly detected
decomposable models deserve further analysis – see, for example, Hd in the case of quasi-Bayesian models.

We do not have enough data to perform an earnest statistical analysis. Nevertheless, the best entropies may seem to
be for this purpose H j and Hπ. Notice that both are based on the Shannon entropy of the pignistic transform. Despite
its simplicity, Hd detects the best model relatively successfully in all cases except quasi-Bayesian models. Note that
Hλ, which is grounded in Shannon entropy of the plausibility transform, was not so bad generally; however, it fails
for quasi-Bayesian models. On the other hand, the Nguyen entropy, which is the Shannon entropy of the BPA values,
does not seem to be the proper tool for this purpose.

Table 7: Detection rate (%) for f-compositional models. (In parentheses, percentage of weakly detected decomposable models.)

consonant consonant
with Ω

quasi
Bayesian

random random
with Ω

all types

# of models 81 68 90 68 50 357
Hλ 68 (94) 49 (74) 17 (31) 54 (82) 50 (98) 46 (73)
Hd 69 (98) 50 (99) 24 (96) 60 (91) 50 (100) 50 (96)
Hπ 69 (95) 56 (99) 63 (99) 56 (84) 48 (96) 60 (95)
Hn 17 (49) 22 (59) 63 (100) 13 (32) 4 (16) 27 (56)
Hb 51 (72) 34 (72) 63 (99) 31 (51) 6 (18) 41 (67)
H j 68 (94) 54 (94) 63 (99) 49 (76) 44 (86) 57 (91)
Hg 65 (93) 40 (56) 0 ( 4) 57 (84) 50 (94) 40 (62)

The results achieved for d-compositional models are summarized in Table 8, which is organized similarly as
Table 7. Nevertheless, the issue is that the computations with d-compositional models are much more time- and
space-demanding than with f-compositional models. To get the selected entropies, one must find all focal elements and
compute assigned probability masses. Usually, there are too many of them (much more than those for f-compositional
models). Our software could do it only in (about) one-fifth of all generated decomposable models.

Moreover, since some focal elements of d-compositional models are assigned negative values, not all the entropies
could be computed. From the first row of the table, one can see the number of models for which we succeeded in
computing all three entropies Hλ,Hd,HS . These entropies could be computed even when some focal elements are
assigned negative values. Since the numbers of analyzed models are too low, we do not dare to make any conclusions
from the contents of Table 8. We take it mainly as a clue for future research.

Table 8: Detection rate (%) for d-compositional models. (In parentheses, percentage of weakly detected decomposable models.)

consonant consonant
with Ω

quasi
Bayesian

random random
with Ω

all types

# of models 20 12 16 12 9 69
Hλ 35 (75) 25 (42) 44 (44) 42 (50) 56 (100) 39 (61)
Hd 35 (75) 25 (75) 6 (56) 42 (58) 56 (100) 30 (71)
HS 5 (75) 8 (83) 19 (88) 8 (75) 11 (78) 10(80)

However, the high number of d-compositional models for which we could not compute their entropy deserves
our attention. It refutes our original conception that d-compositional models, based on the idea of Dempster’s rule of
combination, may be exploited regardless of the negative masses assigned to some focal elements. It convinced us that
d-compositional models should only be used when defining a regular (i.e., nonnegative) BPA. Due to Proposition 1,
it is guaranteed, for example, when the resulting models are equivalent to graphical belief function models. Then, as
shown in [24], it happens surprisingly often that the d- and f-compositional models coincide.

The experiments were designed to detect possible differences among the considered entropies. As the reader
can see from the respective tables and graphs, none of the tested entropy definitions appeared to be a universal tool
recommendable for model learning. On the contrary, the experiments suggest that a further study of narrower classes
of models (e.g., those where Proposition 4 applies) will be necessary. For them, finding a suitable definition of entropy
may still be possible (regardless of their computational complexity).
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9. Summary & Conclusions

The paper contributes to an effort to find a criterion to assess the quality of belief function models. It is based on
the following idea: If a criterion is sound for machine learning procedures, it should detect a model containing all
given information from models containing only a part of this information. This idea, translated into the terminology
of compositional models, means that a sound criterion should distinguish a perfect compositional model from non-
perfect models set up from the same system of building blocks, regardless of whether it is a measure of information
or inner conflict.

Shannon entropy, being the first entropy introduced in probability theory, has many properties that predetermine
its role in machine-learning procedures. In the theory of belief functions, the situation is much more complicated.
In this theoretical framework, most authors distinguish characteristics indistinguishable in probability theory. In this
paper, we consider mainly a measure of entropy and a measure of inner conflict. This fact manifests in connection
with the design of machine learning procedures.

To realize computational experiments verifying which of the entropies described in literature meets the paradigm
mentioned above best, one has to cope with the problem of which of two composition operators is to be used for the
purpose. The d-composition operator is designed for the Dempster-Shafer theory of belief functions, the semantics
of which are clearly understood. Although the f-composition operator has some nice mathematical properties, we do
not know which theory of belief function it corresponds to and the semantics of such a theory. The solution to this
problem is a topic for future work.

In this paper, oriented towards computational experiments, we had to consider the computational complexity of
the necessary procedures. It was the primary criterion for selecting different definitions of entropy of belief functions.
Thus, the results are partially devalued because we did not care that some of these definitions are designed specifically
for specific theories of belief functions. For example, the decomposable entropy [25, 20] is explicitly designed for
the Dempster-Shafer theory, where belief functions constitute a graphical model. Some definitions, such as Maeda
& Ichihashi, Jousselme et al., Jirousek et al, make sense for the Fagin-Halpern theory of belief functions and its
corresponding semantics of credal sets. The d-composition operator is not appropriate for these definitions of entropy.
A composition operator corresponding to the Fagin-Halpern combination rule is yet to be defined. It is a topic for
future work.

It is well known that the Dempster-Shafer theory can be used for large graphical models with many variables
[43, 44]. It is suggested in [20, 22] that the decomposable entropy can be tractably computed for large belief function
graphical models even though the decomposable entropy is defined in terms of the commonality functions. How to
use it to assess the models’ quality is also a topic for future work.
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[23] R. Jiroušek, V. Kratochvı́l, and P. P. Shenoy. On conditional belief functions in the Dempster-Shafer theory. In S. L. Hégarat-Mascle, I. Bloch,
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