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Abstract

To reduce the estimator’s variance and prevent overfitting, regularization techniques
have attracted great interest from the statistics and machine learning communities.
Most existing regularized methods rely on the sparsity assumption that a model with
fewer parameters predicts better than one with many parameters. This assumption
works particularly well in high-dimensional problems. However, the sparsity as-
sumption may not be necessary when the number of predictors is relatively small
compared to the number of training instances. This paper argues that shrinking
the coefficients towards a low-variance data-driven estimate could be a better reg-
ularization strategy for such situations. For classification problems, we propose a
näıve Bayes regularized logistic regression (NBRLR) that shrinks the logistic regres-
sion coefficients toward the näıve Bayes estimate to provide a reduction in variance.
Our approach is primarily motivated by the fact that näıve Bayes is functionally
equivalent to logistic regression if näıve Bayes’ conditional independence assumption
holds. Under standard conditions, we prove the consistency of the NBRLR estima-
tor. Extensive simulation and empirical experimental results show that NBRLR is a
competitive alternative to various state-of-the-art classifiers.

Keywords:
Classification, Regularization Method, Logistic Regression, Näıve Bayes,
Data-driven Shrinkage

1. Introduction

Logistic regression (LR) is widely used in machine learning for classification prob-
lems. It is a discriminative classifier that directly learns the class variable’s condi-
tional probability given the predictors without assuming anything about the distri-
bution of the predictors. As per Ng and Jordan (2002), LR converges to the best
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linear classifier when the training sample size, n, goes to infinity by producing the
smallest bias and therefore is highly preferred amongst linear classifiers when the
training sample size is large. However, when the training sample is limited, or there
is a large number of parameters, p, to be estimated, regularization is required to
avoid overfitting. Many regularized methods have been proposed to improve predic-
tion error in regression frameworks, including lasso (Tibshirani, 1996), SCAD (Fan
and Li, 2001), elastic net (Zou and Hastie, 2005), and LARS (Efron et al., 2004).
These estimators rely largely on the sparsity assumption, i.e., only a small propor-
tion of predictors are likely to be informative. Thus, they work particularly well in
high-dimensional problems, i.e., p is relatively large compared to n.

A good regularization strategy should be shrinking the regression coefficients
towards the values close to the truth. One limitation of these approaches is that, in
practice, the sparsity assumption is often violated. Especially when p is relatively
small compared to n, predictors are less likely to be irrelevant to the class variable
and thus tend to be influential. Shrinking the coefficients of influential predictors
towards zero introduces bias and causes the regression estimates to be suboptimal.
As a result, traditional sparsity-enforced approaches may not perform well. Also, in
this scenario, there tends to be less multicollinearity among predictors. This limits
the benefit of ridge regression (Hoerl and Kennard, 1970), which is motivated by
dealing with multicollinearity, not sparsity. We argue that when p is relatively small
compared to n, a better regularization strategy is to shrink the coefficients towards
a low-variance data-driven estimate.

It has been shown that näıve Bayes (NB), a probabilistic classifier with an equiv-
alent functional form compared to LR, tends to have a lower variance than LR (Zaidi
et al., 2013, 2014). NB is a generative classifier that learns the predictors’ and class
variables’ joint probability distribution. It infers the posterior probability of a class
label given data using Bayes rules, assuming that the predictors are mutually con-
ditionally independent of each other given the class variable. This assumption is
mostly motivated by the need to learn a smaller number of parameters from high-
dimensional data to overcome overfitting. Consequently, NB performs surprisingly
well, even against other more sophisticated classifiers, especially when the training
set size is small (Domingos and Pazzani, 1996; Hand and Yu, 2001).

In this paper, we propose a näıve Bayes regularized logistic regression model
(NBRLR) for classification problems, which uses regularization to shrink the esti-
mates of an LR model towards the NB estimate. As LR and NB form a well-known
discriminative-generative pair, our work adds to the literature exploring hybrid mod-
els that take advantage of both approaches. Such models can be placed into two cat-
egories. The first category comprises two-stage approaches, which train the model
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generatively with the NB model in one stage while training the model discriminatively
with the LR model in the other stage. Raina et al. (2003) and Fujino et al. (2007)
investigate a class of hybrid model for supervised learning in the context of text
classification problems that are partly generative and partly discriminative. Specifi-
cally, they allow different partitions of the predictors into subgroups, each modeled
under the NB assumption based on domain knowledge. Then these sub-generative
models are combined with weight parameters that are determined discriminatively.
Our study differs because we do not require prior domain knowledge to fit a model.

Kang and Tian (2006) introduce a restricted class of Bayesian network classifiers
using LR as the discriminative component and NB as the generative component.
Tan and Shenoy (2020) examine the construction of such hybrid models, i.e., to
decide whether a given predictor should be assigned to the LR part or the NB
part. Specifically, they develop a metric to compare models, which uses conditional
independence as a proxy for model bias and training sample size as a proxy for
variance. The weakness of this method is that it serves as a selection mechanism; a
predictor is classified as an NB or LR predictor with no middle ground. Our proposed
method is a shrinkage approach, which is more stable to small perturbations of data
changes, and may improve the prediction accuracy.

Our work belongs to the second category, which uses the maximum likelihood
parameterization of NB to pre-condition the discriminative search of LR. Zaidi et al.
(2013, 2014) discuss a weighted variant of NB with predictor weights selected by
minimizing either the negative conditional log-likelihood or the mean squared error
rather than based on measures of predictiveness. Their strategy can also be viewed
as using weights to alleviate the predictor independence assumption of NB. The
resulting weighted NB model is equivalent to LR but computationally much more
efficient. Zaidi et al. (2016) introduces accelerated logistic regression for training LR
with high-order predictors. The proposed method significantly improves efficiency
and reduces LR’s bias, making it particularly useful for large datasets. In these
papers, authors search for the optimal feature weights of the weighted NB by maxi-
mizing discriminative scores. Our work differs in that we estimate the LR coefficients
by a penalized likelihood, with coefficients being shrunk towards the NB estimates.

An outline of the remainder of the paper is as follows. Section 2 compares the LR
and the NB models and describes our method for cases where the predictors can be
either categorical or continuous. We also provide theoretical results, including the
consistency of our estimator. Section 3 presents the coordinate descent algorithm we
use. Section 4 includes simulation results to show how our estimator performance
is affected by the number of training instances, the number of predictors, and the
dependence among predictors, under four simulation settings. Section 5 provides em-
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pirical results from experiments using thirty datasets from the UCI Machine Learning
Repository or Kaggle. Finally, in Section 6, we summarize and conclude.

2. Näıve Bayes Penalized Logistic Regression

2.1. Logistic Regression

In this study, we consider the independent and identically distributed samples
{yi,xi}ni=1, with xi = (1, xi1, . . . , xip)

T and yi ∈ {0, 1}. We consider cases where the
predictors can be either categorical or continuous. We assume that the categorical
predictors are all binary for the simplicity of exposition. The proposed method can
be easily extended to non-binary cases by recoding the categorical predictors with
dummies.

LR is a discriminative classifier that directly learns the conditional probability
P (yi | xi) by assuming the form:

P (yi = 1|xi) =
exp(xTi β

∗)

1 + exp(xTi β
∗)
. (1)

where β∗ = (β∗0 , β
∗
1 , . . . , β

∗
p)
T ∈ Rp+1 with β∗0 being the intercept, and β∗j being the

coefficient corresponding the the jth predictor. In LR, β∗ is estimated by maximizing
the conditional likelihood as:

β̂LR = arg max
β∈Rp+1

n∏
i=1

P (yi | xi,β).

LR is a well-known low-bias, high-variance estimator. As shown by Ng and Jordan
(2002), LR is the best linear classifier asymptotically. However, LR estimates can
have very large variances when the sample size is relatively small compared to the
number of predictors. In the cases of perfect fits, they can be infinitely large. One
advantage of regularization techniques, for example lasso (Tibshirani, 1996), is they
increase the stability of the estimates.

The lasso estimator for logistic regression is defined as

β̂λ = arg min
β∈Rp+1

[
− 1

n
l (β) +

λ

n

p∑
j=1

|βj|

]
,

where l (β) =
∑n

i=1{yix′iβ− log [1 + exp(x′iβ)]} is the log-likelihood function. Lasso
is particularly useful in high-dimensional situations by assuming sparsity of the true
β∗. This assumption is primarily driven by the “bet on sparsity” principle (Hastie
et al., 2001):
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“Use a procedure that does well in sparse problems since no procedure does well
in dense problems.”

Our intuition is that a good regularization strategy is to shrink the regression
coefficient toward the values close to the truth. When p is relatively small compared
to n, the sparsity assumption may not be necessary. Specifically, the predictors are
less likely to be irrelevant to the class variable and tend to be influential. Shrinking
the coefficients of influential predictors towards zero introduces bias and makes the
regression estimates suboptimal. Unlike lasso, ridge regression is another common
regularization method that does not assume sparsity. Ridge estimators reduce the
variance caused by correlated predictors but at the cost of introducing bias to the
estimator. However, such sacrifice may not be worth it when p is relatively small
compared to n, as there tends to be less multicollinearity among predictors. This
paper proposes a model-based approach for balancing the bias-variance tradeoff by
shrinking β towards the NB estimate instead of zero. In some settings, NB can be
preferred to LR because of the low variance in NB estimates. In the following, we
present the equivalent functional forms of LR and NB, which, along with the small
variance in NB estimates, motivates our decision to shrink LR coefficients towards
the NB estimates.

2.2. Logistic Regression versus Näıve Bayes

Näıve Bayes (NB) is a simple and effective supervised classification model based
on applying Bayes’ rule with the strong assumption of conditional independence, i.e.,
predictors are conditionally independent of each other given the class variable. Using
Bayes rule, NB can be expressed as:

P (yi = 1|xi) =
P (yi = 1)

∏p
j=1 P (xij|yi = 1)∑1

ỹ=0 P (yi = ỹ)
∏p

j=1 P (xij|yi = ỹ)
. (2)

The conditional independence assumption reduces the complexity of an NB model.
Therefore NB exhibits low variance and performs surprisingly well when the training
set size is small (Domingos and Pazzani, 1996; Hand and Yu, 2001). However, the
conditional independence assumption rarely holds in practice. Any violation of the
assumption will result in a bias, making NB estimates suboptimal. Accordingly, NB
is a low-variance high-bias classifier compared to LR (Ng and Jordan, 2002).

Many papers have explored hybrid models that combine LR and NB into one
model to take advantage of both approaches. One category of methods is to fit
the model in two stages, a generative stage where we fit an NB model and a dis-
criminative stage where we fit an LR model. Methods in the second category use
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the maximum likelihood parameterization of NB to pre-condition the discriminative
search of LR (Zaidi et al., 2013, 2014, 2016). Our method belongs to the second
category. Instead of searching for the optimal feature weights of the weighted NB
by maximizing discriminative scores, we estimate the LR coefficients by a penalized
likelihood with coefficients being shrunk towards the NB estimates.

2.3. Näıve Bayes Regularized Logistic Regression

Our approach is primarily motivated by the fact that LR and NB converge to-
ward the identical classifier assuming that NB’s conditional independence assumption
holds. Specifically, we rewrite the parametric form of P (yi = 1|xi) of NB as

P (yi = 1|xi) =
P (yi = 1)

∏p
j=1 P (xij|yi = 1)∑1

y=0 P (yi = y)
∏p

j=1 P (xij|yi = y)

=
exp

[
log P (yi=1)

P (yi=0)
+
∑p

j=1 log
P (xij |yi=1)

P (xij |yi=0)

]
1 + exp

[
log P (yi=1)

P (yi=0)
+
∑p

j=1 log
P (xij |yi=1)

P (xij |yi=0)

] . (3)

When a predictor Xj is binary, we have P (xij|yi = ỹ) = P (xij = 1|yi = ỹ)xij ·P (xij =
0|yi = ỹ)1−xij . Define Gij(a) = P (xij = 0|yi = a), the summation term can be
expanded as

log
P (xij|yi = 1)

P (xij|yi = 0)
=

log
Gij(1)

Gij(0)
+ log

P (xij = 1|yi = 1)/Gij(1)

P (xij = 1|yi = 0)/Gij(0)
xij.

When a predictorXj is continuous, P (xij|yi) represents the corresponding conditional
density of Xj. One common assumption for each continuous predictor Xj of a NB
model is that, xij | yi = 1 ∼ N(uj1, σ

2
j ) and xij | yi = 0 ∼ N(uj0, σ

2
j ) (Mitchell,

1997). Note that the standard deviations σj varies from predictor to predictor but
does not depend on the value of yi. Then, the summation term can be expanded as

log
P (xij|yi = 1)

P (xij|yi = 0)
=
u2j0 − u2j1

2σ2
j

+
uj1 − uj0

σ2
j

xij.

Suppose the predictor xij is categorical for j ∈ {1, . . . , q}, and continuous for
j ∈ {q+1, . . . , p}. We get the direct equivalence between LR and NB by substituting
the two expressions above back into Eq. (3):

P (yi = 1|xi) =
exp(zi)

1 + exp(zi)
, (4)
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where zi = log P (yi=1)
P (yi=0)

+
∑q

j=1 log
Gij(1)

Gij(0)
+
∑p

j=q+1

u2j0−u2j1
2σ2

j
+
∑q

j=1 log
P (xij=1|yi=1)/Gij(1)

P (xij=1|yi=0)/Gij(0)
xij+∑p

j=q+1
uj1−uj0

σ2
j

xij.

Next, we define the NBRLR model for classification problems. Following the
conventional regularization methods set-up, we assume that {xij}ni=1 are standardized
so that 1

n

∑n
i=1 xij = 0 and 1

n

∑n
i=1 x

2
ij = 1 for all j. Let {η̂0, η̂j} denote the näıve

Bayes estimate of the model defined as

η̂0 = log P̂ (yi=1)

P̂ (yi=0)
+
∑q

j=1 log
Ĝij(1)

Ĝij(0)
+
∑p

j=q+1

û2j0−û2j1
2σ̂2

j
,

η̂j = log
P̂ (xij=1|yi=1)/Ĝij(1)

P̂ (xij=1|yi=0)/Ĝij(0)
xij for j ∈ {1, . . . , q},

η̂j =
ûj1−ûj0

σ̂2
j

for j ∈ {q + 1, . . . , p}.

where P̂ (), Ĝ(), ρ̂, ûj0, ûj1 and σ̂j are the corresponding fitted parameter values from
training data.

The NBRLR estimator β̂λ,η̂ is defined by

β̂λ,η̂ = arg min
β∈Rp+1

− 1

n
l(β) +

λ

n

p∑
j=0

|βj − η̂j|, (5)

where λ ≥ 0 is the tuning parameter that controls the amount of regularization. For
λ = 0, β̂λ,η̂ is equivalent to the LR estimate. On the contrary, for a sufficiently large

value of λ, β̂λ,η̂ will provide predicted probabilities that are the same as NB. Note
that the NB probabilities depend on the value of its intercept. To regularize the LR
model with an NB estimate, we penalize the intercept term, which is uncommon in
traditional regularization techniques, such as lasso and ridge regression.

In practice, when p is relatively small compared to n, the sparsity assumption is
more likely to be violated. However, NB’s assumption of conditional independence is
different. The smaller number of predictors raises the chance of satisfying the condi-
tional independence assumption among features, which makes the NB estimates more
reliable. In these settings, shrinking coefficients toward the NB estimates instead of
zero will produce less bias while reducing the variance compared to LR. Although,
the proposed NBRLR estimator will have a larger variance than lasso because no
coefficient will be set to zero, and η̂j is an estimate for all j ∈ {0, . . . , p}. This issue
will be more problematic for larger p’s. However, the proposed method can outper-
form lasso when the predictors are informative and the number of predictors is small
relative to the sample size.
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2.4. Asymptotic Results

This subsection will provide a consistent result for the NBRLR estimator. The
result is a general result that will apply to shrinking towards any values and does
depend on some conditions. We allow categorical and continuous predictors as in
Section 2.3. Let η̂j represent the, potentially estimated, value the jth coefficient is
being shrunk towards and η̂ = (η̂0, . . . , η̂p)

T ∈ Rp+1. Suppose,

Zn(β, η̂) = − 1

n

n∑
i=1

(yix
′
iβ − log [1 + exp(x′iβ)]) +

λ

n

p∑
j=0

|βj − η̂j| (6)

and
β̂λ,η̂ = arg min

β∈Rp+1

Zn(β, η̂). (7)

Define ψjkm(β) = ∂3

∂βj∂βk∂βm
l(β). To prove β̂λ,η̂ is a consistent estimator of β∗,

as defined in Eq. (1), we require the following conditions.

Condition 1. The number of predictors must satisfy p = o
(
n1/4

)
. There exist

positive constant b1,b2,b3 and b4 such that for any vector a ∈ Rp+1,

b1‖a‖22 ≤ aT
1

n

n∑
i=1

xix
T
i a ≤ b2‖a‖22

and

b3‖a‖22 ≤ aT
1

n

n∑
i=1

xix
T
i

exp(x′iβ
∗)

[1 + exp(x′iβ
∗)]2

a ≤ b4‖a‖22.

In addition max
1≤i≤n

1
n
||xi||22→ 0.

Condition 2. For some positive constant C1, suppose Bn = {β : ||β − β∗||2≤
C1

√
p/n}. There exist positive constants C2 and C3 such that for all β ∈ Bn,

j ∈ {0, . . . , p}, k ∈ {0, . . . , p} and m ∈ {0, . . . , p} that

C2 < |ψjkm(β)|< C3.

Condition 1 is a generalization of assumptions made in Knight and Fu (2000)
for fixed p least squares regression with lasso. Condition 2 ensures that when β
is close to β∗, l(β) can be well approximated by a second-order Taylor expansion.
Similar conditions have been made on the third partial derivative of a likelihood
when analyzing the asymptotic behavior of a penalized likelihood method (Fan and
Peng, 2004; Kwon and Kim, 2012).
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Theorem 1. Assume that Eq. (1) and Conditions 1 and 2 hold and that λ = O(
√
n)

then ||β̂λ,η̂ − β∗||= OP (
√
p/n).

Proof. By the properties of convex functions, for more details, see the proof of The-
orem 2.1 in He and Shi (1994) and Corollary 25, p.47, of Eggleston (1958), it is
sufficient to show that there exists L such that

P

[
inf

||β−β∗||2=L
√
p/n

Zn(β, η̂)− Zn(β∗, η̂) > 0

]
→ 1. (8)

By Taylor’s approximation, for any β there is β̃ between β and β∗ such that

l(β)− l(β∗) = (β − β∗)T
[
∂

∂β
l(β∗)

]
+

1

2
(β − β∗)T

[
∂2

∂β2 l(β
∗)

]
(β − β∗)

+

p∑
j=0

p∑
k=0

p∑
m=0

(βj − β∗j )(βk − β∗k)(βm − β∗m)ψjkm(β̃).

Notice,

∂

∂β
l(β) = − 1

n

n∑
i=1

xi

[
yi −

exp(x′iβ)

1 + exp(x′iβ)

]
,

∂2

∂β2 l(β) =
1

n

n∑
i=1

xix
T
i

exp(x′iβ)

[1 + exp(x′iβ)]2
.

For any j ∈ {0, . . . , p}, by Condition 1 and the Lindeberg-Feller CLT, (β −
β∗)> 1

n

∑n
i=1 xij

[
yi − exp(x′iβ)

1+exp(x′iβ)

]
= OP (||β−β∗||2n−1/2) and thus (β−β∗)> 1

n

∑n
i=1 xi[

yi − exp(x′iβ)

1+exp(x′iβ)

]
= OP (||β − β∗||2

√
p/n). Therefore

sup
||β−β∗||2=L

√
p/n

∣∣∣∣(β − β∗)T
[
∂

∂β
l(β∗)

]∣∣∣∣ = OP (pn−1L).

In addition by Condition 1

inf
||β−β∗||2=L

√
p/n

1

2
(β − β∗)T

[
∂2

∂β2 l(β
∗)

]
(β − β∗)

≥ b3||β − β∗||22= b3L
2pn−1.
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By Condition 2

p∑
j=0

p∑
k=0

p∑
m=0

(βj − β∗j )(βk − β∗k)(βm − β∗m)ψjkm(β̃)

≤ C3

p∑
j=0

|βj − β∗j |
p∑

k=0

|βk − β∗k|
p∑

m=0

|βm − β∗m|

≤ C3p
3/2||β − β∗||32,

and

p∑
j=0

p∑
k=0

p∑
m=0

(βj − β∗j )(βk − β∗k)(βm − β∗m)ψjkm(β̃)

≥ −C3

p∑
j=0

|βj − β∗j |
p∑

k=0

|βk − β∗k|
p∑

m=0

|βm − β∗m|

≥ −C3p
3/2||β − β∗||32.

Therefore,

sup
||β−β∗||2=L

√
p/n

∣∣∣∣∣
p∑
j=0

p∑
k=0

p∑
m=0

(βj − β∗j )(βk − β∗k)(βm − β∗m)ψjkm(β̃)

∣∣∣∣∣
= OP (L3p3n−3/2).

Note, under assumption that p = o
(
n1/4

)
, from Condition 1, that p3n−3/2 =

o(pn−1). Finally, under the assumption that λ = O(
√
n),

λ

n

p∑
j=0

|βj − η̂j|−|β∗j − η̂j|≤
λ

n

p∑
j=0

|βj − β∗j |

≤ λ

n

√
p||β − β∗||2= O(pLn−1),

and

λ

n

p∑
j=0

|βj − η̂j|−|β∗j − η̂j|≥ −
λ

n

p∑
j=0

|βj − β∗j |

≥ −λ
n

√
p||β − β∗||2= O(pLn−1).
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Therefore, for sufficiently large L, the lower bound of the quadratic term will
dominate the other terms, and (8) holds.

Theorem 1 proves that the convergence rate of the proposed estimator is asymp-
totically equivalent to logistic regression, assuming that λ gets smaller as n increases.
It allows p to increase with n, suggesting that the proposed method can work well
even with many predictors.

3. Algorithm

We consider a coordinate descent step for solving Eq. (7), following Friedman
et al. (2010). The unpenalized log-likelihood l(β) is maximized by implementing
Newton’s method with the iteratively reweighted least square algorithm. Specifi-

cally, given the current estimates of the parameters β̂
old

= (β̂old0 , β̂old1 , . . . , β̂oldp )T with

corresponding probability p̂old(xi) = P (yi = 1 | xi, β̂
old

) for observation i, we obtain
a quadratic approximation to the l(β) as:

lQ(β) = −1

2

n∑
i=1

wi
{
zi − xTi β

}2
+ C, (9)

where

zi = xTi β̂
old

+
yi − p̂old(xi)

p̂old(xi) [1− p̂old(xi)]
,

wi = p̂old(xi)
[
1− p̂old(xi)

]
,

and C is a constant term. Then, our task becomes minimizing the following penalized
weighted least-squares problem

− 1

n
lQ(β) +

λ

n

p∑
j=0

|βj − η̂j|. (10)

Define soft-thresholding operator S(a, b) = sign(a)(|a|−b)+, the update of coordinate
descent is performed by

βnewj ← η̂j +
S(A− η̂jB, λ)

B
, (11)

where
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A =
n∑
i=1

wixijzi,

B =
n∑
i=1

wix
2
ij.

Thus, Eq. (10) is minimized by iterating through j ∈ {0, 1, . . . , p} until its difference
between two iterations is less than 10−7.

We propose the following algorithm with a fixed value of λ.

1. Begin with initial estimates of β̂
0

= {β̂0
0 , β̂

0
1 , . . . , β̂

0
p}.

2. For the tth step, where t ≥ 1, repeat the steps below until the difference of the
penalized log-likelihood Eq. (5) between (t−1)th and tth step is less than 10−7.

(a) Update the quadratic approximation lQ with the current parameters β̂t−1.
(b) Given current lQ, the tth iterative estimate of β is:

β̂
t

= arg min
β

− 1

n
lQ(β) +

λ

n

p∑
j=0

|βj − η̂j|,

where it can be solved following the coordinate descent solution from Eq.
(11) using β̂t−1 as the current estimate β̂old.

An R package implementing the described algorithm will be made publicly available
upon acceptance of the publication of this work.

4. Simulations

This section compares the NBRLR with pure LR, pure NB, regularized LR (lasso,
ridge, and elastic net), and hybrid LR-NB (Tan and Shenoy, 2020). Lasso, ridge,
and elastic net are fit using the glmnet package (Friedman et al., 2010) in R. Tuning
parameters for NBRLR, lasso, ridge, elastic net, and hybrid LR-NB are determined
using 10-fold cross-validation to minimize the out-of-sample prediction error. When
the predictors are categorical, the parameters of the pure NB model are estimated
using the Laplace correction (Niblett, 1987) to prevent the high influence of zero
probabilities. Specifically, we add one of each class to the data. The Laplace corrected
values are used for the NBRLR estimator and the hybrid LR-NB model.

The prediction performance of the models is evaluated on 1000 testing instances
using the average prediction 0-1 loss (L0-1) and root squared prediction error (RSPE).
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Let Nte (= 1000) be the testing sample size, yi be the observed class for the ith test-
ing observation, P̂ (yi = 1) be the predicted probability that testing observation i
belongs to class 1, and ŷi be the predicted class of that observation. Specifically, if
the predicted probability of an observation is below .5, we predict that the sample
belongs to class 0. Otherwise, we predict it belongs to class 1. Let 1() be an indicator
function for the condition in the parenthesis. L0-1 and RSPE are defined as

L0-1 = 1− 1

Nte

Nte∑
i=1

1(yi = ŷi),

and

RSPE =

√√√√ 1

2 ·Nte

Nte∑
i=1

{
1∑
ỹ=0

(P̂ (yi = ỹ)− 1(yi = ỹ))2}.

For NBRLR, pure LR, pure NB, lasso, ridge, and elastic net, we also report the mean
squared error of the estimator β̂, MSE(β̂), which for the truth β∗ is defined as

MSE(β̂) =
1

p+ 1
||β̂ − β∗||22.

This metric is not applicable for hybrid LR-NB because it cannot be expressed in
the regression form as Eq. (1).

Four simulation settings are considered in this study. First, we consider gener-
ating data with categorical predictors from a discriminative LR model. Second, we
consider generating data with categorical predictors from a generative NB model.
Third, we generate data with continuous predictors from a discriminative LR model.
Fourth, we generate data using categorical and continuous predictors from a dis-
criminative LR model. We put the results of simulations 3 & 4 in the supplemental
material because they lead to similar conclusions compared to simulations 1 & 2. In
addition, we vary the number of training instances (in simulations 1 & 2), the number
of predictors, and the dependence among predictors (conditional dependence for the
second simulation setting) to see how these factors affect the models’ performance.
We repeat the entire procedure 100 times. Boxplots are presented to compare the
L0-1, RSPE and MSE(β̂) of the models. Further, we compare the results of NBRLR
to the other benchmark methods by reporting the averages of the three metrics, per-
forming two-tailed, paired t-tests, and reporting the corresponding p-values. Note
that the hybrid LR-NB model is only included in the comparison under the first two
simulation settings as it was proposed for categorical predictors.
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4.1. Simulation Setting 1: Discriminative LR

In the first simulation, p categorical variables xi = {xi1, . . . xip} are simulated by
first generating x̃i ∼ N(0p,Σp×p), where Σjj = 1 and Σjk = r for j 6= k and then xij
is dichotomized as 0 if x̃ij is smaller than 0, and 1 otherwise. The class variable yi is
then simulated from

P (yi = 1 | xi) =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)

where β = (0,−1Tp/2, 1
T
p/2)

T . We generate Ntr training samples to fit the models and
Nte = 1000 test samples to assess their prediction performance. Eight situations in
which Ntr ∈ {100, 2000}, p ∈ {10, 50} and r ∈ {0.1, 0.6} are considered.

Comparisons of the estimators in terms of MSE(β̂), L0-1 and RSPE across
all the combinations of Ntr, p and r for this setting are reported in Figures 1 - 3,
respectively. Table 1 provides the averages of the three metrics across the eight
different combinations of Ntr, p, and r, and includes the p-values from two-tailed,
paired t-tests comparing the performance of NBRLR to the other benchmark meth-
ods. Notice that when Ntr = 100 and p = 50, MSE(β̂) for LR is excessively large,
which may be due to the estimation convergence failures. As a result in this section,
all the boxplots of MSE use a log-10 scale for the Y axis. The results show that
our proposed NBRLR estimator always performs the best with respect to MSE.
However, the ridge regression is competitive with or outperforms NBRLR in both
L0-1 and RSPE, especially when Ntr = 100. This may be due to ridge regression’s
extraordinary ability to eliminate multicollinearity under the discriminative setting.
Besides, LR does better than or as well as NBRLR in L0-1 on the either large size
(Ntr = 2000) or low dimensional (p = 10) datasets. This is because LR is optimal
for large values of Ntr compared to p, as the MLE of it is asymptotically unbiased
and has the smallest variance. Also, notice that the difference in the prediction per-
formance for NBRLR compared to LR and regularized LR is very marginal when
the training set size is large (Ntr = 2000). This supports our theorem of convergence
that the proposed NBRLR and standard LR behave asymptotically equivalently.

4.2. Simulation Setting 2: Generative NB

In the second simulation, we start by generating the class variable yi from yi ∼
Bern(0.5). Then, p categorical variables xi = {xi1, . . . xip} are simulated in a two
step process. First, x̃i | yi = 1 ∼ N(u1,Σp×p) where u1 = {0.2p/2,−0.2p/2}, and
x̃i | yi = 0 ∼ N(u0,Σp×p) where u0 = {−0.2p/2, 0.2p/2}. For both distributions
Σjj = 1 and Σjk = r if j 6= k. Define xi = (xi1, . . . , xip)

T ∈ Rp as a vector of ones
and zeros, where xij is zero if x̃ij is smaller than 0 and xij is one otherwise. To get
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Figure 1: MSE results for simulation setting 1. The x-axis includes the four different combinations
of p and r. The plot does not include hybrid LR-NB because it cannot be expressed in the regression
form as Eq.(1).
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Figure 2: L0-1 results for simulation setting 1. The x-axis includes the four different combinations
of p and r.
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Figure 3: RSPE results for simulation setting 1. The x-axis includes the four different combinations
of p and r.

the value of β∗, we generate 500,000 training samples, fit an LR model and treat the
corresponding coefficients as β∗.

Comparisons of the estimators in terms of MSE(β̂), L0-1 and RSPE for different
values of Ntr, p and r are reported in Figures 4 - 6, respectively. Table 2 is the
equivalent of Table 1 but for simulation setting 2. It is worth noting that when r
= 0.1, NB is highly competitive with NBRLR, especially when Ntr = 100, because
the conditional independence assumption is only weakly violated. Besides, NBRLR
does worse than ridge in RSPE when Ntr = 100 and p = 10; however, NBRLR
performs the best or among the best in the rest of the settings. Similar to simulation
1, the difference between NBRLR versus (regularized) LR regarding the prediction
performance is less significant when Ntr = 2000.

4.3. Bias and Variance Analysis

Our proposed method follows the traditional bias-variance tradeoff strategy. To
provide valuable insight into the components of the error of the classifiers, we discuss
the squared bias and variance of LR, NB, lasso, ridge, elastic net, and NBRLR.
Similarly, as forMSE(β̂), the hybrid LR-NB is not included in the discussion because
it cannot be expressed in the regression form as Eq. (1). Let β̂n = (β̂0,n, . . . , β̂p,n)T ∈
Rp+1 represent an estimator from the nth simulation and B̂ = (β̂1, . . . , β̂100) ∈
R(p+1)×100 represent the 100 estimators for a given method. The squared bias and
variance of an estimator for a given simulation setting, with a true coefficient vector
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Figure 4: MSE results for simulation setting 2. The x-axis includes the four different combinations
of p and r. The plot does not include hybrid LR-NB because it cannot be expressed in the regression
form as Eq.(1).
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Figure 5: L0-1 results for simulation setting 2. The x-axis includes the four different combinations
of p and r.
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Figure 6: RSPE results for simulation setting 2. The x-axis includes the four different combinations
of p and r.

of β∗, is

Bias2(B̂) =
1

p+ 1

p∑
j=0

(
β∗j −

1

100

100∑
n=1

β̂j,n

)2

,

and

V ar(B̂) =
1

p+ 1
· 1

99

p∑
j=0

100∑
n=1

(
β̂j,n −

1

100

100∑
n=1

β̂j,n

)2

.

Tables 3 and 4 present the results Bias2(B̂) and the V ar(B̂), respectively, of
the six estimators given simulation 1 and 2. The results are mostly consistent with
our intuition. The proposed NBRLR estimator generally has higher variance but
lower bias than NB, lasso, and ridge. On the contrary, NBRLR is expected to have
a higher bias but lower variance than LR. This holds when Ntr = 2000. However,
when Ntr = 100, NBRLR does better than LR in bias and variance, which may be
due to the convergence failures in LR, especially when p is large. Regarding elastic
net, it achieves a lower bias but higher variance than lasso and ridge by applying
both L1 and L2 regularization. As a result, NBRLR generally outperforms elastic
net in bias and variance. Exceptions are that NBRLR has a higher bias in simulation
1 when Ntr = 100 and p = 50, and higher variance in simulation 2 when Ntr = 100
and p = 10. Similar conclusions can be derived from simulations 3 and 4 in the
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supplemental material.

5. Empirical Results

In this section, we evaluate the performance of our proposed NBRLR estimator
on 30 different machine-learning datasets from either the UCI Machine Learning
Repository or Kaggle. Table 5 summarizes these datasets, including the number of
predictors, instances, and the predictor type. The datasets are selected such that we
have ten datasets with categorical predictors, ten with continuous predictors, and
ten with a mix of categorical and continuous predictors. For datasets with missing
values, the missing values of categorical predictors are imputed with the conditional
probability given the response variable, i.e., P (xij | yi). For continuous predictors
with missing values, we assume they are conditionally normally distributed given
the response variable, xij | yi = a ∼ N(uja, σ

2
ja). The missing values of continuous

predictors are imputed with the corresponding conditional distribution given the
response variable, i.e., f(xij | yi). The imputation procedure is conducted before we
analyze the data.

The estimators used in Section 4 are tested on each dataset using 20 rounds of
5-fold cross-validation. We compare L0-1 and RSPE of NBRLR to the benchmark
methods by reporting Win/Draw/Loss (W/D/L) results as the counted number of
datasets for which NBRLR performs numerically better, equally well, or worse on
the given metrics. We also conduct two-tailed, paired samples Wilcoxon signed-
ranks test (Wilcoxon, 1992) for the comparison of classifiers over multiple datasets
and consider the results to be significant if the corresponding p-value is less than
0.05. The Wilcoxon test is a non-parametric test which ranks the differences in
performances of two classifiers for each dataset while ignoring the signs, and then
compares the ranks for the positive and the negative differences. The detailed results
in the averages of L0-1 and RSPE for each estimator on each dataset are presented in
the supplemental material. We do not compare the MSE for the empirical datasets
as we do not assume to know the true β∗ of the predictors. Also, notice that hybrid
LR-NB is only included in the comparison for categorical datasets.

5.1. NBRLR versus LR and NB

The Win/Draw/Loss (W/D/L) results of NBRLR against pure LR and pure NB
are in Table 6. It can be seen that NBRLR does only slightly better than pure LR
in both L0-1 and RSPE. However, the improvement of NBRLR over LR becomes
more notable on small datasets, especially for RSPE. Wilcoxon test suggests that
NBRLR significantly outperforms LR at 0.05 level in RSPE on datasets with less
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than 300 instances. On the other hand, NBRLR has significantly better L0-1 and
RSPE than pure NB over the entire 30 datasets. The corresponding p-value from
two-tailed, paired samples Wilcoxon test is smaller than 0.001 for both metrics.
Unlike the comparison against LR, the improvement of NBRLR against NB is more
significant on large datasets with at least 10,000 instances. LR is a low-bias high-
variance estimator, while NB is a low-variance high-bias estimator. These results are
consistent with what we expect: our proposed NBRLR estimator will be more like
LR, thus outperforming NB for large datasets, and more like NB, thus outperforming
LR for smaller datasets.

5.2. NBRLR versus hybrid LR-NB

Comparisons of NBRLR with hybrid LR-NB in terms of L0-1 and RSPE for
categorical datasets are reported in Table 7. NBRLR does slightly worse than hybrid
LR-NB in L0-1 and RSPE. Two-tailed, paired samples Wilcoxon test suggests that
the difference is insignificant for either of the two metrics. Notice these results are
only based on ten categorical datasets.

5.3. NBRLR versus regularized LR

The Win/Draw/Loss (W/D/L) results of NBRLR against lasso, ridge, and elastic
net are in Table 8. It can be seen that NBRLR does better than all three regularized
LR methods in both L0-1 and RSPE over the entire 30 datasets, although the im-
provement over lasso is not significant for both L0-1 and RSPE, and the improvement
over elastic net is not significant for L0-1. However, when the number of predictors
is small, as we have discussed, the sparsity assumption of lasso is more likely to be
violated, making the regression estimates suboptimal. Also, predictors tend to have
less multicollinearity, limiting ridge regression’s benefits. As a result, the improve-
ment of NBRLR is more pronounced on low-dimensional datasets with less than 10
predictors.

6. Conclusion

This paper presents a näıve Bayes regularized logistic regression model for clas-
sification problems. As LR is a low–bias, high–variance classifier, many regularized
methods have been proposed to overcome LR’s overfitting issue, which may lead to
poor prediction performance when the training sample is limited, or there is a large
number of parameters to be estimated. Most of these methods assume that the true
coefficients of LR are sparse. However, this sparsity assumption is often violated
when p is relatively small compared to n, which makes the regression estimates sub-
optimal. Meanwhile, there also tends to be less multicollinearity among predictors.
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This limits the benefits of ridge regression, which is not motivated by sparsity. We ar-
gue that when p is relatively small compared to n, shrinking the coefficients towards
a low–variance data-driven estimate could be a better regularization strategy.

Our approach is primarily motivated by the fact that NB has an equivalent func-
tional form compared to LR, given NB’s conditional independence assumption holds.
The resulting classifier tends to have higher variance but lower bias than lasso when
p is relatively small compared to n. Simulation and empirical, experimental results
suggest that NBRLR can generally outperform pure LR and pure NB. Also, it is
highly competitive with regularized LR, especially on low and moderate-dimension
datasets.
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Table 1: Summary of results from simulation setting 1 comparing NBRLR with pure LR, pure NB,
hybrid LR-NB, lasso, ridge, and elastic net at different values of Ntr, p, and r. The p-values (in
parenthesis) are from two-tailed, paired t-tests comparing the performance of NBRLR with the
corresponding estimator. Best performances are in boldface.

Simu. 1 Ntr p r NBRLR LR NB Hybrid LR-NB Lasso Ridge Elastic Net

MSE

100

10
0.1 0.332

0.429 0.335
NA

0.574 0.541 0.403
(<0.001) (0.906) (<0.001) (<0.001) (0.001)

0.6 0.402
0.626 0.607

NA
0.726 0.643 0.473

(<0.001) (<0.001) (<0.001) (<0.001) (0.017)

50
0.1 0.643

1072.686 0.734
NA

0.872 0.725 1.616
(<0.001) (0.051) (<0.001) (0.068) (0.002)

0.6 0.777
36180.090 1.795

NA
0.909 0.812 4.721

(0.003) (<0.001) (0.043) (0.595) (<0.001)

2000

10
0.1 0.013

0.013 0.113
NA

0.101 0.088 0.153
(0.665) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.017
0.017 0.303

NA
0.116 0.107 0.166

(0.404) (<0.001) (<0.001) (<0.001) (<0.001)

50
0.1 0.024

0.030 0.381
NA

0.129 0.113 0.098
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.034
0.040 0.566

NA
0.133 0.129 0.098

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

L0-1

100

10
0.1 0.300

0.296 0.311 0.301 0.306 0.299 0.316
(<0.001) (<0.001) (0.388) (<0.001) (0.699) (<0.001)

0.6 0.360
0.355 0.401 0.357 0.381 0.362 0.381

(<0.001) (<0.001) (0.003) (<0.001) (0.331) (<0.001)

50
0.1 0.290

0.300 0.310 0.320 0.334 0.269 0.296
(0.007) (<0.001) (<0.001) (<0.001) (<0.001) (0.068)

0.6 0.335
0.350 0.434 0.365 0.401 0.328 0.345

(<0.001) (<0.001) (<0.001) (<0.001) (0.006) (0.004)

2000

10
0.1 0.274

0.274 0.274 0.274 0.274 0.274 0.275
(0.211) (0.640) (0.211) (0.207) (0.419) (0.122)

0.6 0.331
0.331 0.334 0.331 0.331 0.331 0.331

(0.741) (0.125) (0.741) (0.623) (0.807) (0.710)

50
0.1 0.156

0.156 0.168 0.156 0.156 0.156 0.157
(0.915) (<0.001) (0.915) (0.473) (0.315) (<0.001)

0.6 0.218
0.218 0.310 0.218 0.218 0.218 0.219
(0.283) (<0.001) (0.283) (0.893) (0.871) (0.004)

RSPE

100

10
0.1 0.445

0.447 0.448 0.448 0.448 0.443 0.452
(0.017) (0.001) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.470
0.471 0.501 0.473 0.475 0.467 0.475

(0.099) (<0.001) (0.003) (<0.001) (<0.001) (<0.001)

50
0.1 0.448

0.542 0.459 0.522 0.468 0.424 0.460
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (0.001)

0.6 0.475
0.577 0.592 0.577 0.492 0.455 0.498

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

2000

10
0.1 0.419

0.419 0.425 0.419 0.419 0.420 0.428
(0.320) (<0.001) (0.320) (0.068) (<0.001) (<0.001)

0.6 0.446
0.446 0.460 0.446 0.446 0.446 0.453

(0.592) (<0.001) (0.592) (0.910) (0.006) (<0.001)

50
0.1 0.330

0.330 0.362 0.330 0.330 0.330 0.335
(<0.001) (<0.001) (<0.001) (0.172) (<0.001) (<0.001)

0.6 0.377
0.377 0.456 0.377 0.377 0.377 0.381

(0.081) (<0.001) (0.081) (0.263) (0.081) (<0.001)
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Table 2: Summary of results from simulation setting 2 comparing NBRLR with pure LR, pure NB,
hybrid LR-NB, lasso, ridge, and elastic net at different values of Ntr, p, and r. The p-values (in
parenthesis) are from two-tailed, paired t-tests comparing the performance of NBRLR with the
corresponding estimator. Best performances are in boldface.

Simu. 2 Ntr p r NBRLR LR NB Hybrid LR-NB Lasso Ridge Elastic Net

MSE

100

10
0.1 0.261

0.385 0.241
NA

0.341 0.286 0.239
(<0.001) (0.009) (<0.001) (0.162) (0.066)

0.6 0.458
1.213 0.524

NA
0.734 0.617 0.495

(0.023) (0.166) (<0.001) (0.002) (0.335)

50
0.1 0.405

1351.846 0.375
NA

0.358 0.254 0.788
(0.013) (0.358) (0.183) (<0.001) (0.002)

0.6 0.581
27558.56 1.337

NA
1.002 0.753 1.530

(0.048) (<0.001) (<0.001) (<0.001) (<0.001)

2000

10
0.1 0.011

0.012 0.013
NA

0.055 0.050 0.060
(0.275) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.020
0.021 0.216

NA
0.135 0.116 0.234

(0.554) (<0.001) (<0.001) (<0.001) (<0.001)

50
0.1 0.014

0.031 0.017
NA

0.070 0.053 0.081
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.099
0.162 0.343

NA
0.258 0.272 0.477

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

L0-1

100

10
0.1 0.338

0.339 0.339 0.339 0.352 0.342 0.350
(0.593) (0.172) (0.420) (<0.001) (0.029) (<0.001)

0.6 0.312
0.315 0.343 0.317 0.325 0.314 0.323

(0.023) (<0.001) (0.002) (<0.001) (0.229) (<0.001)

50
0.1 0.178

0.276 0.176 0.242 0.242 0.184 0.215
(<0.001) (0.197) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.147
0.250 0.256 0.243 0.207 0.149 0.170

(<0.001) (<0.001) (<0.001) (<0.001) (0.171) (<0.001)

2000

10
0.1 0.307

0.307 0.307 0.307 0.307 0.307 0.308
(0.687) (0.363) (0.781) (0.724) (0.489) (0.443)

0.6 0.288
0.289 0.290 0.289 0.288 0.289 0.289

(0.589) (0.069) (0.589) (0.610) (0.091) (0.259)

50
0.1 0.125

0.129 0.125 0.128 0.129 0.128 0.128
(<0.001) (0.212) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.105
0.106 0.142 0.106 0.106 0.104 0.104

(0.015) (<0.001) (0.015) (0.013) (<0.001) (0.015)

RSPE

100

10
0.1 0.467

0.472 0.466 0.469 0.471 0.464 0.469
(<0.001) (0.008) (<0.001) (<0.001) (0.008) (0.037)

0.6 0.445
0.450 0.472 0.451 0.449 0.443 0.449

(<0.001) (<0.001) (<0.001) (<0.001) (0.001) (<0.001)

50
0.1 0.360

0.519 0.356 0.461 0.413 0.362 0.397
(<0.001) (0.014) (<0.001) (<0.001) (0.265) (<0.001)

0.6 0.317
0.486 0.450 0.467 0.376 0.318 0.351

(<0.001) (<0.001) (<0.001) (<0.001) (0.540) (<0.001)

2000

10
0.1 0.443

0.443 0.443 0.443 0.443 0.443 0.448
(0.066) (0.310) (0.005) (0.028) (0.348) (<0.001)

0.6 0.419
0.419 0.430 0.419 0.419 0.419 0.430
(0.096) (<0.001) (0.096) (0.401) (<0.001) (<0.001)

50
0.1 0.299

0.303 0.300 0.303 0.303 0.302 0.313
(<0.001) (0.009) (<0.001) (<0.001) (<0.001) (<0.001)

0.6 0.266
0.267 0.311 0.267 0.266 0.268 0.290

(<0.001) (<0.001) (<0.001) (0.036) (<0.001) (<0.001)
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Table 3: Squared bias of the six compared estimators at different values of Ntr, p, and r for the
first two simulation settings.

Simu. Setting Ntr p r NBRLR LR NB Lasso Ridge Elastic Net

1

100
10

0.1 0.009 0.022 0.103 0.453 0.498 0.070
0.6 0.025 0.038 0.291 0.638 0.598 0.139

50
0.1 0.219 268.963 0.364 0.828 0.692 0.096
0.6 0.175 5569.745 0.536 0.824 0.780 0.066

2000
10

0.1 0.0005 0.0002 0.101 0.090 0.080 0.102
0.6 0.0006 0.0002 0.289 0.102 0.097 0.106

50
0.1 0.0029 0.0027 0.365 0.114 0.102 0.043
0.6 0.0036 0.0030 0.518 0.112 0.114 0.043

2

100
10

0.1 0.0019 0.016 0.0021 0.259 0.249 0.037
0.6 0.025 0.059 0.208 0.580 0.564 0.156

50
0.1 0.003 173.347 0.006 0.280 0.223 0.032
0.6 0.122 1682.375 0.293 0.809 0.700 0.241

2000
10

0.1 0.001 0.000 0.002 0.045 0.044 0.038
0.6 0.0010 0.0003 0.1989 0.1192 0.1063 0.1543

50
0.1 0.0016 0.0019 0.0021 0.057 0.044 0.050
0.6 0.030 0.021 0.305 0.233 0.268 0.395

Table 4: Variance of the six compared estimators at different values of Ntr, p, and r for the first
two simulation settings.

Simu. Setting Ntr p r NBRLR LR NB Lasso Ridge Elastic Net

1

100
10

0.1 0.326 0.412 0.234 0.122 0.044 0.337
0.6 0.382 0.594 0.319 0.088 0.046 0.337

50
0.1 0.428 811.841 0.374 0.045 0.033 1.535
0.6 0.608 30919.540 1.272 0.086 0.032 4.702

2000
10

0.1 0.0124 0.0128 0.0118 0.0111 0.0081 0.0514
0.6 0.0168 0.0175 0.0142 0.0137 0.0099 0.0606

50
0.1 0.022 0.026 0.016 0.015 0.011 0.056
0.6 0.031 0.037 0.048 0.021 0.015 0.055

2

100
10

0.1 0.262 0.374 0.240 0.075 0.029 0.201
0.6 0.438 1.164 0.322 0.160 0.059 0.345

50
0.1 0.405 1190.320 0.373 0.083 0.035 0.765
0.6 0.463 26137.610 1.053 0.194 0.053 1.301

2000
10

0.1 0.0111 0.0118 0.0110 0.0098 0.0063 0.0216
0.6 0.020 0.021 0.018 0.016 0.010 0.080

50
0.1 0.012 0.029 0.015 0.011 0.009 0.031
0.6 0.073 0.139 0.050 0.036 0.016 0.096
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Table 5: A Summary of the 30 datasets used in the empirical results. The Type column indicates if
the predictors are categorical or continuous. Instances are the number of observations in the data
set.

Dataset # Predictors # Instances # Type
Balloons 4 20 Categorical
Qualitative Bankruptcy 6 250 Categorical
Blogger 5 100 Categorical
SPECT Heart 22 267 Categorical
Tic-Tac-Toe Endgame 9 958 Categorical
Congressional Voting Records 16 435 Categorical
Chess1 36 3196 Categorical
Chess2 6 28056 Categorical
Phishing Website Detector 30 11054 Categorical
Monkey-Pox 9 25000 Categorical
Blood Transfusion Service Center 4 748 Continuous
Connectionist Bench 60 208 Continuous
Haberman’s Survival 3 306 Continuous
Liver Disorders 6 345 Continuous
Pima Indians Diabetes 8 768 Continuous
Vertebral Column 6 310 Continuous
Occupancy Detection 5 8143 Continuous
HTRU2 8 17898 Continuous
Pulsar Classication 8 17898 Continuous
Microcalcication Classication 6 11183 Continuous
ILPD (Indian Liver Patient Dataset) 10 583 Mixed
Cryotherapy 6 90 Mixed
Heart Failure Clinical Records 12 299 Mixed
Statlog (Heart) 13 270 Mixed
Australian Credit Approval 14 690 Mixed
Hepatitis 19 155 Mixed
Hypothyroid 17 3163 Mixed
Bank Customer Churn Prediction 10 10000 Mixed
Gender Classication 7 5001 Mixed
Default of Credit Card Clients 23 30000 Mixed
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Table 6: Win/Draw/Loss: NBRLR versus LR and NB

NBRLR vs. LR NBRLR vs. NB
W/D/L p-value W/D/L p-value

L0-1 15/2/13 0.715 21/2/7 <0.001
RSPE 17/0/13 0.472 26/0/4 <0.001

Small Size Dataset (9) Large Size Dataset (8)
L0-1 5/1/3 0.294 6/1/1 <0.001
RSPE 7/0/2 0.019 8/0/0 <0.001

Table 7: Win/Draw/Loss: NBRLR versus hybrid LR-NB

NBRLR vs. hybrid LR-NB
W/D/L p-value

L0-1 3/2/5 0.363
RSPE 4/0/6 0.813

Table 8: Win/Draw/Loss: NBRLR versus regularized LR

NBRLR vs. Lasso NBRLR vs. Ridge NBRLR vs. Elastic Net
W/D/L p-value W/D/L p-value W/D/L p-value

L0-1 15/3/12 0.532 18/3/9 0.041 15/2/13 0.855
RSPE 16/0/14 0.943 26/0/4 <0.001 23/0/7 0.003

Low-Dim Dataset (17) Low-Dim Dataset (17) Low-Dim Dataset (17)
L0-1 13/3/1 0.008 12/3/2 0.008 12/2/3 0.012
RSPE 12/0/5 0.041 17/0/0 <0.001 17/0/0 <0.001
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