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The prediction of post-traumatic stress disorder (PTSD) has gained a lot of interest in clinical studies.

Identifying patients with a high risk of PTSD can guide mental healthcare workers when making treatment

decisions. The main goal of this paper is to propose several Bayesian network (BN) models to assess the

probability that a veteran has PTSD when (s)he first visits a US Department of Veteran Affairs (VA) facility

seeking medical care. The current practice is to use a 5-question test called PC-PTSD-5. We aim to use

the PC-PTSD-5 test, which is currently administered to most incoming new patients, and demographic

information, military service history, and medical history. We construct a BIC score-based BN, a group

L2-regularized BN (GL2-regularized BN), and a näıve Bayes BN to assess the probability that a patient has

PTSD. The GL2-regularized BN is a new method for constructing a BN motivated by some of the challenges

of analyzing this data set. A secondary goal is to identify which features are important in predicting PTSD.

We discover that the following features: PC-PTSD-5, service-connected flag, combat flag, agent orange flag,

military sexual trauma flag, traumatic brain injury, and age help compute the probability of PTSD.

Key words : PTSD prediction; probabilistic classification; Bayesian network; regularization method;

healthcare analytics
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1. Introduction

Post-traumatic stress disorder (PTSD) is a prevalent and seriously impairing dis-

order, especially for veterans. Prediction of PTSD is a research domain that has

attracted significant attention in the last two decades. Many studies focus on seek-

ing the risk factors of PTSD (Brewin et al. 2000, Gaviria et al. 2016) that provides

critical guidance for making individual mental healthcare decisions and helps the

VA or other healthcare organizations to identify high-risk populations for PTSD.

In recent years, machine learning techniques have been applied to PTSD predic-

tion to fill in the gap between the scientific discovery of risk factors for PTSD

and practical application in making accurate predictions of PTSD in individuals.

Commonly used methods include support vector machine (SVM) (Galatzer-Levy

et al. 2014), random forest (Schalinski et al. 2016), logistic regression (Holeva and

Tarrier 2001), and näıve Bayes (Omurca and Ekinci 2015)1.

VA facilities can use a PTSD prediction model as a screening tool to detect

PTSD at an early stage. Given their experiences of combat and military sexual

trauma, military veterans are at a higher risk for suffering from PTSD compared

to their civilian counterparts (Norris and Slone 2013). Early detection of PTSD

reduces the possible risk of untreated PTSD and makes the treatment more efficient.

Traditional mental disorder screening relies mainly on psychological tests. The

most commonly adopted screening instrument in VA hospitals since 2015 is the

Primary Care PTSD Screen (PC-PTSD-5) from the 5th edition of the Diagnostic

and Statistical Manual of Mental Disorders. Motivated by the need to predict PTSD

for veterans more accurately at an early stage, we examine the construction of

several BN models that incorporate the PC-PTSD-5 score and some other readily

available information about a veteran, including demographic information, military

service information, and the veteran’s medical record.

1 A more thorough review of the literature about the latest research of PTSD using machine learning
techniques is provided in Appendix A of the online supplement.
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BNs have been widely used in the medical domain because of their remarkable

ability to handle uncertainty in the diagnostic process of diseases. Such models

provide a natural way to handle missing data, allow data integration with domain

knowledge, and facilitate learning about causal relationships between variables

(Koller and Friedman 2009). Sun et al. (2011) presents a diagnostic system that

assists doctors in diagnosing and tracking the development of mild cognitive impair-

ment (MCI). Specifically, they deal with the problem of learning BN from incom-

plete datasets by introducing the MNBN algorithm. To characterize the functional

relationships among symptoms of obsessive-compulsive disorder (OCD) and depres-

sion in patients with primary OCD, McNally et al. (2017a) estimate two networks

(a regularized partial correlation network and a Bayesian network) using archival

admission data from a hospital in Wisconsin. Using the same two approaches,

McNally et al. (2017b) analyzes the PTSD symptoms in adults reporting childhood

sexual abuse. Compared to the regularized partial correlation network, the Bayesian

network has the advantage of disclosing potentially causal influence among symp-

toms. However, in practice, such influence between two symptoms can happen

bi-directionally. One limitation of BN is that it disallows cycles whereby a symptom

activates other symptoms that then loop back to influence the initial symptom.

This paper proposes a screening tool to facilitate early detection and treatment

of PTSD, where we do not have access to that advanced symptoms-related infor-

mation. Instead, we consider using veterans’ demographic information, military

service, and medical records to see how this readily available information will affect

the model’s predictive power.

There are several methods for learning BN models from observational data. A BN

model encodes conditional independence relations among the variables. One class

of models, called constraint-based methods, learns BNs by identifying conditional

independence relations in a dataset (Spirtes and Glymour 1991, Cheng et al. 2002).
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A significant disadvantage of constraint-based methods is that they do not always

result in a directed acyclic graph. Another class of models, called score-based meth-

ods, learn BNs by optimizing scores such as Akaike information criterion (AIC),

Bayes information criterion (BIC), etc. (Tsamardinos et al. 2006, Glover 1989).

In this paper, first, we construct a BIC score-based BN. Next, we adopt a group

L2-regularized (GL2-regularized) method to learn a BN model. LASSO was first

proposed by Tibshirani (1996) as a method that simultaneously performs feature

selection and estimation of parameters. We adapt a group version of LASSO to

learn a BN model structure for predicting PTSD by using logistic regression to esti-

mate the conditional probability distribution of each node. When fitting the model,

we use known causal relationships to restrict directed arcs from causes to effects,

which helps to improve our structure learning efficiency. For instance, we can rule

out that PTSD causes a particular ethnicity. But, we do not interpret the relation-

ships identified using the resulting model as causal discoveries. Besides, the group

L2 penalty is applied to guarantee the consistency of edge selection across multiple

imputed datasets. Finally, we construct a näıve Bayes BN using only features iden-

tified as important from a feature importance study of the GL2-regularized and

the BIC score-based BNs.

We evaluate the prediction accuracies of all three BNs using a dataset obtained

from the Corporate Data Warehouse production domains of the VA Informatics

and Computing Infrastructure (VINCI), which is a VA Health Services Research &

Development (HSR&D) Resource Center that provides researchers with a nation-

wide view of detailed VA patient medical record data (US Department of Veterans

Affairs 2014). The dataset consisting of patient-visit records of veterans has many

missing values. A BN models the joint distribution for all variables in the data set.

Fitting a BN model with missing data is as challenging as fitting a discriminative

model, such as logistic regression, which directly models the conditional distribu-

tion of the response given the predictors. In our study, we deal with this issue by
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imputing missing values using Rubin’s multiple imputation method (Rubin 1987).

However, unlike discriminative models, a BN can easily make predictions even when

we have missing predictors in the test set. Thus, making predictions from a BN

will be more straightforward for the VA, where it is common for patients to have

incomplete information. Out-of-sample testing shows that all three BN models are

substantially better than using only the PC-PTSD-5 test.

Next, we explore the risk factors for PTSD among veterans. One advantage of

using a BN model is that we have a transparent model of the linkages between fea-

tures associated with PTSD. First, we identify the key features that directly influ-

ence the occurrence of PTSD in veterans using the Markov boundary of PTSD2.

Second, we conduct a feature importance analysis to quantify how informative each

feature is in predicting PTSD. The results from both studies suggest the same

seven features important in predicting PTSD for military veterans.

Contributions of our Study First, we propose three BN models for predicting PTSD

during the initial screening of veterans at a VA facility. One of these, the GL2-

regularized BN, is a new method for constructing BNs in the context of missing

data and highly skewed features. Second, our models can be used as a screen-

ing tool to detect PTSD at an early stage. Early detection of PTSD reduces its

impact/risk and makes the treatment more efficient and less expensive. Our model

substantially improves VA hospitals’ prediction accuracy of the currently adopted

PC-PTSD-5 test. Third, the BIC score-based and GL2-regularized BNs are used

to identify important features in PTSD screening for military veterans. Identifying

such important features of PTSD is helpful to the US military in finding ways to

avoid the problem and guide diagnosis, therapy, and disease control for VA hospi-

tals. This also contributes to the literature by providing the first set of analyses

2 The Markov boundary of a variable in a BN consists of its parents, its children, and other parents of its
children. Given values of all variables in the Markov boundary of a variable, all other variables are irrelevant
for the variable.
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on the modifying effect of patient demographic characteristics, military experience,

and other co-morbidities on the performance of screening tools in the primary

care setting. Fourth, our paper introduces a new feature importance assessment

method for BN models. We believe this method is cleaner than the commonly used

permutation-based method.

The remainder of the paper is organized as follows. Section 2 discusses the

primary motivation of this project—constructing a model to predict PTSD as a

screening tool for patients. Section 3 describes the dataset from VINCI and some

of the challenges faced in constructing a BN. Section 4 describes a BIC score-based

BN for PTSD screening. Section 5 describes the method we use to construct a

GL2-regularized BN. Section 6 presents the empirical evaluation of our proposed

BN models and the corresponding feature importance analysis results. Finally, in

Section 7, we summarize our findings and state some conclusions.

2. PTSD Screening Instrument
2.1. Background

PTSD occurs in people who have experienced or witnessed a traumatic event. It has

been recognized as one of the most disabling psychopathological conditions affecting

the U.S. veteran population. Veterans have a much higher prevalence of PTSD

than non-veterans because of their increased exposure to life-threatening events.

According to the National Center for PTSD, most PTSD in veterans varies by

service era: between 11–20% for Operation Iraqi Freedom and Enduring Freedom,

about 12% for the Gulf War, and about 15% for the Vietnam War. These numbers

are significantly higher than U.S. civilians (about 7–8%).

PTSD can disturb individual and family functioning, causing significant medical,

financial, and social problems. Veterans with PTSD are more susceptible to sleep

disorders, mood changes, reckless behavior, substance use disorder, and isolation.

Traditional detection of veterans with PTSD relies to a large extent on primary care
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doctors3. Specifically, primary care doctors will refer to a mental health provider

when they recognize symptoms of PTSD in a veteran. However, this procedure may

delay the diagnosis and treatment due to the wait to see a primary care provider,

followed by a wait to see a mental health provider. As per Penn et al. (2019), the

average 2017 VA primary care wait time was 20 days. Also, doctors in primary

care often prioritize physical health conditions and, thus, may overlook significant

mental disorders, including PTSD, in the veterans they treat.

Early detection of PTSD reduces its risk, alleviates the related symptoms, and

makes the treatment more efficient and less expensive. Numerous screening tests

have been developed and adopted to assist clinicians in identifying the high risk

for PTSD in VA hospitals. The screening was more commonly implemented first

in primary care clinics. However, the VA has increasingly allowed veterans to go

directly to mental health providers without being evaluated by a primary care

doctor in recent years. A good screening test consisting of reasonable questions is

easy for veterans to complete and has high sensitivity and specificity.

2.2. PC-PTSD-5

There are two steps in the PC-PTSD-5 screening test. First, subjects are asked if

they have been exposed to a traumatic event. If the answer is no, the screening

ends, and the subject receives a score of zero. If the answer is yes, they complete five

additional yes/no questions about the traumatic event’s impact on their life. The

final score is the number of times the veteran responded yes to these five questions.

The VA started using PC-PTSD-5 in 2015. To facilitate early detection and

treatment of PTSD veterans, the cutoff score in practice is determined as 3, which

optimizes the test’s sensitivity while maintaining the specificity at a minimum level

of 0.8 (Prins et al. 2016). PTSD screening is currently required for all veterans

3 A graphical description of conventional PTSD diagnostic and treatment referral process for a VA hospital
is provided in Appendix B of the online supplement
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receiving care in the VA. The PC-PTSD-5 is the most commonly used screening

tool because it is brief, can be administered by a primary care clinic staff, and

patients can easily understand and complete the questions. As a result, the PC-

PTSD-5 exhibits very little sample selection bias.

One limitation of PC-PTSD-5 as a screening tool for PTSD is that it only focuses

on the PTSD symptoms and disregards other factors, such as demographic char-

acteristics and military experience. In this paper, we improve the screening power

of PC-PTSD-5 by incorporating it with veterans’ demographic information, his-

torical military records, and traumatic brain injury (TBI) diagnosis, using several

BN models. To the best of our knowledge, little work has been done to investigate

the modifying effect of patient demographic characteristics, military experience,

and other co-morbidities on the performance of any screening tools in the primary

care setting. Our study provides the first set of analyses on how much these factors

contribute to improving the predictive power of PC-PTSD-5.

3. Data and Challenges

We use medical record data accessed through VINCI. We start by searching for

veterans who have ever taken the PC-PTSD-5 test at least once by the end of 2019.

Veterans’ individual-level information is obtained by aggregating their lifetime vis-

its to a VA facility. Our search identifies 1,113,676 distinct veterans.

3.1. Variable Definition and Miscellaneous Issues

Multiple descriptive epidemiological studies have been conducted to examine the

patterns of PTSD in association with a range of demographic factors (Adams and

Boscarino 2005, Gaviria et al. 2016). Following the literature, we start by collecting

the veterans’ Age, Gender, MaritalStatus, Ethnicity, Religion, and Race. The expe-

rience of combat is a significant risk factor for the development of PTSD, while

its impact varies depending on veterans’ service era and if they have ever expe-

rienced any traumas. We also include military service variables which can serve



9

as indicators of veterans’ combat status. Specifically, we include military expo-

sures reported to the VA (AgentOrangeFlag, IonizingRadiationFlag, SWAsiaCondi-

tionsFlag), whether the veteran was treated for military service-related conditions

including mental health disorders, musculoskeletal disorders, or other concerns

(ServiceConnectedFlag), and the trauma types that they have experienced (Mil-

itarySexualTraumaFlag, CombatFlag). These military experience-related variables

will take the value of “yes” if a VA healthcare provider has selected this option

to indicate that care was related to the relevant condition, exposure, or potential

trauma. “No” is represented in the dataset when a flag is relevant to the veteran

(i.e., the veteran does have a condition, exposure, or experience that activates the

flag in the medical record), but no visits have ever been associated with treat-

ment for that specified condition, exposure, or experience. Notice that there is a

large number of empty values for these variables. For example, the proportion of

empty values is 94.88% for SWAsiaConditionsFlag, and 94.88% for MilitarySexual-

TraumaFlag. This is because these variables are irrelevant to most veterans. Thus,

providers do not need to select either “Yes” or “No” associated with the veterans’

care during their visits. For example, the CombatFlag is irrelevant and will always

be empty for any veterans who have never served in a combat theater or did not do

so in the last several years. In this situation, the absence of a military service record

is informative: a veteran is less likely to suffer from PTSD if the military experience

information is missing than if the information has been collected. Accordingly, we

treat the empty values as a separate value, called “unknown”, for veterans’ military

service variables, instead of considering them as missing data.

Next, we collect the lifetime PC-PTSD-5 test results. We take the highest scores

for veterans who have taken the test multiple times. This is because PTSD is

commonly a chronic disorder, and our goal is to predict whether a veteran has

ever experienced PTSD in their lifetime. Finally, we investigate veterans’ historical
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diagnosis of PTSD, our primary variable of interest, and traumatic brain injury

(TBI), which has been widely recognized as a correlate of PTSD (Bryant 2011).

These two variables will take the value “yes” if the veteran has been diagnosed

with PTSD (or TBI respectively), and “no” otherwise.

Other data-collecting issues are discussed below.

◦ Inconsistent Records - For demographic information, we occasionally find

inconsistent responses across different visits to the VA. In such situations, we treat

the corresponding variables as missing.

◦ Numeric Variables - BN models work best with categorical variables. The

most common way of addressing numeric variables in a BN is to assume that the

conditional distribution of a numeric variable given its parents is normal (Lauritzen

and Jensen 2001). However, this introduces bias when the normality assumption is

violated. To handle numeric variables, such as Age and PC-PTSD-5, we discretize

the variables using supervised discretization with a decision tree model (Kohavi

and Sahami 1996). Specifically, we train a decision tree using Age (or PC-PTSD-5 )

to predict PTSD and use the splitting nodes in the fitted tree model as cutoff points

for discretization. As a result, Age is discretized into three states: young (<53),

middle (53–76), and old (>76), and PC-PTSD-5 is discretized into two states: Low

(<3) and High (≥3). This result for PC-PTSD-5 is consistent with the optimally

sensitive cutoff score identified in previous research and used by the VA.

3.2. Summary Statistics

Table 1 provides the summary statistics of our variables. Given the sample of

1,113,676 veterans, 23.09% have been diagnosed with PTSD, and only 2.73% have

been diagnosed with traumatic brain injury (TBI). Most of the veterans are male

(91.82%), white (71.38%), married (54.33%), not Hispanic or Latino (90.01%), and

middle-aged (61.27%). It is worth noting that 23.39% of the data for religion is

missing.
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Table 1 Summary statistics for key variables. We report the category values with corresponding

frequencies and proportions. The category ‘NA’ denotes missing data.

Features States Frequencies Proportions (in %)

Age

Young 227,641 20.44

Middle 682,393 61.27

Old 203,642 18.29

Gender
F 91,098 8.18

M 1,022,578 91.82

MaritalStatus

Divorced 350,143 31.44

Married 605,050 54.33

Single 152,772 13.72

NA 5,711 0.51

Ethnicity

Hispanic/Latino 72,362 6.50

Non-Hispanic/Latino 1,002,472 90.01

NA 38,842 3.49

Race

Black 209,196 18.78

Other 85,398 7.67

White 794,939 71.38

NA 24,143 2.17

Religion

Christian 801801 72.00

Other 51,382 4.61

NA 260,493 23.39

CombatFlag

No 15,582 1.40

Yes 126,059 11.32

Unknown 972,035 87.28

Features States Frequencies Proportions (in %)

AgentOrangeFlag

No 290,080 26.05

Yes 120,519 10.82

Unknown 703,077 63.13

IonizingRadiationFlag

No 308,323 27.69

Yes 2,229 0.20

Unknown 803,124 72.11

SWAsiaConditionsFlag

No 29,496 2.65

Yes 27,552 2.47

Unknown 1,056,628 94.88

MilitarySexualTraumaFlag

No 17,461 1.57

Yes 39517 3.55

Unknown 1,056,698 94.88

ServiceConnectedFlag

No 32,027 2.88

Yes 644,294 57.85

Unknown 437,355 39.27

PC-PTSD-5

Low 932,380 83.72

High 181,296 16.28

TBI
No 1,083,282 97.27

Yes 30,394 2.73

PTSD
No 856,552 76.91

Yes 257,124 23.09

We show the prevalence of PTSD for our sample for different categories of other

variables in Fig. 1. The bar plots show that young, female, and Black veterans

are more likely to suffer from PTSD. Also, being in combat, experiencing military

sexual trauma, and service-connected trauma are associated with an increased risk

of PTSD. Finally, a high score on the PC-PTSD-5 test is a strong indicator of

PTSD.

3.3. Some Challenges

We propose a supervised predictive model that represents an attempt to bridge the

gap between the existing academic/clinical knowledge about PTSD and veterans’

individual-level PTSD diagnosis. We identify four practical challenges and discuss

how we plan to address them.

Challenge 1: Probabilistic classification. The proposed model should be a prob-

abilistic classifier that can predict the posterior probability of PTSD given states

of some (or all) features. In this study, such probability represents a measure of a
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Figure 1 Prevalence of PTSD for different states of variables. The height of a (white) black bar

corresponds to the probability of (no) PTSD.

veteran’s risk of suffering from PTSD. By changing the cutoff probability, our pro-

posed method balances the tradeoff between sensitivity and specificity for different

purposes, populations, or settings in which a PTSD screening is conducted. For

example, controlling the false-negative rate in primary care screening may be more

important because it aims to facilitate early detection and treatment of PTSD cases

that would otherwise go unrecognized. Support vector machines (SVM) (Galatzer-

Levy et al. 2014) are one popular machine learning technique used to predict the

presence of PTSD. However, it is a deterministic approach that returns the class

(PTSD = Y es/No) for each patient characteristic. The resulting model will have

low adaptability to the varying PTSD screening purposes, populations, or settings.

Other commonly used techniques include random forest (Schalinski et al. 2016),

logistic regression (Holeva and Tarrier 2001), and näıve Bayes (Omurca and Ekinci

2015). In this paper, we explore BNs, which can predict the posterior probability

of PTSD given observed values of features.
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Challenge 2: Missing data. A distinct advantage of a BN is that it can predict

after only observing a subset of features. Specifically, some demographic informa-

tion about veterans may be missing either because the information is not collected

or not recorded in the medical record or the recorded data is inconsistent. For

example, the information on Religion is missing for 23.39% of the veterans. Many

other discriminative probabilistic classifiers, e.g., (regularized) logistic regression,

cannot predict from missing data without imputing them. However, imputing the

missing values biases the predicted probability, making it an unreliable measure-

ment of the risk of PTSD. On the other hand, missing values in the training data is

still an issue when learning a BN model, similar to learning discriminative models.

Challenge 3: Highly-skewed features. In addition to missing data, highly-skewed

features are another issue that may reduce the sample’s representativeness and bias

the effect of PTSD screening, especially for minority groups.

This study addresses Challenges 2 and 3 by adopting a GL2-regularized BN

learning algorithm to reduce the model complexity. The multiple imputation (MI)

method handles missing data in training set for model learning.

Challenge 4: Large search space of network structures. Learning a BN struc-

ture from data is NP-hard because the network structure has to be a directed

acyclic graph (DAG). As our task is to construct a BN with 15 nodes from more

than 1 million data instances, many commonly-used methods are computationally

intractable. In this study, we adopt an ordering-based search strategy and integrate

it with domain knowledge to improve our structure learning algorithm efficiency.

4. A BIC score-based BN

In this section, we investigate the construction of a BN model using the Bayes

information criterion (BIC) score-based technique (Schwarz 1978)4. The BIC score

consists of a log-likelihood term that depends on the observed data and a penalty

4 A primer on BNs and causal models is given in Appendix C of the online supplement
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term that depends on the complexity of a BN model. Since each edge added to

the BN increases the complexity of the model, this score-based term favors sparser

network structures (with fewer edges for each node). Specifically, we minimize the

BIC score using a hill-climbing greedy search, and we handle missing data with

the structural expectation-maximization (EM) algorithm (Friedman 1998). Also,

to prevent the strong influence of zero probabilities, parameters are estimated using

the Laplace correction (Niblett 1987). We construct a BIC score-based BN using

the bnlearn R package (Scutari 2010).

Fig. 2 displays the resulting BIC score-based BN structure. As shown, the struc-

ture is relatively sparse with eight variables, Age, AgentOrangeFlag, CombatFlag,

MilitarySexualTraumaFlag, Race, ServiceConnectedFlag, TBI, and PC-PTSD-5, in

the Markov boundary of PTSD, and thus these variables provide the most direct

predictive power.

Because our data set is quite large, typically, you would expect to be able to fit

BN models with even denser structures. However, in this study, because of missing

data and highly-skewed features, the observed training instances for estimating con-

ditional probability tables are sometimes limited, making the corresponding estima-

tion unreliable. For example, to estimate the conditional probability table of PTSD,

the number of veterans with CombatF lag = yes, MilitarySexualTrauma = yes,

TBI = yes, and Age= old is zero. Also, notice that the BIC score-based BN, by

itself, gives us no insight into the relative importance of features.

5. A New Method for Constructing a GL2-Regularized BN
Model

Our proposed model is a regularized BN, built to address Challenges 1-4 described

in Section 3. A BN is a directed acyclic graphical model with a set of m nodes

{X1, . . . ,Xm}. We define Pa(Xj) as the vector of dummy variables corresponding

to the variables that are the mj parents of a node Xj. Given categorical data,
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Figure 2 The structure of the BN model constructed using the BIC score-based technique

we use a symmetric parametrization of the multinomial logistic regression for the

conditional probability distribution of each node following Zhu and Hastie (2004)

P (Xj = xj,k | Pa(Xj), β̃j) =
exp(Pa(Xj)

′β̃j,k)∑K
l=1 exp(Pa(Xj)′β̃j,l)

,

where β̃j = (β̃
T

j,1, β̃
T

j,2, . . . , β̃
T

j,K)T is the vector of unknown parameters to be esti-

mated from data. Here K is the number categories for node Xj, and β̃j,k =

(β̃j,k,0, β̃
T

j,k,1, . . . , β̃
T

j,k,mj
)T corresponds to the kth category.

To tackle the challenge of structural learning of BN from high-dimensional data,

Huang et al. (2012) proposed a sparse BN (SBN) structure learning algorithm.

Given fully observed data X = [x1, . . . ,xm] where xj is a N × dfj matrix of N

observations and dfj degree of freedom for node Xj, we define X−j as the set of

all nodes excluding Xj. Assuming all these nodes are candidate parents of node

Xj, we have mj = m − 1. The model parameters can be reorganized as βj =

(βTj,0,β
T
j,1, . . . ,β

T
j,j−1,β

T
j,j+1, . . . ,β

T
j,m)T , where βj,0 ∈Rdfj0 is the vector of intercepts

and βj,i ∈Rdfji is the vector of regression coefficients of parent node Xi. Then the

problem is formulated as obtaining a sparse estimate of βj’s under the constraint

that the estimated BN structure G must be a directed acyclic graph (DAG). The

nonzero element of βj’s indicates the presence of edges in the structure G. Specif-

ically, the estimate of βj’s is obtained by minimizing the negative log-likelihood

(NLL) of each node, with the sparsity enforcing l1 penalty as:
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min
βj

1

N

m∑
j=1

NLL(xj,x−j,βj) +λ

m∑
j=1

∑
i 6=j

‖βj,i‖1 s.t. G∈DAG. (1)

Given the estimate of βj’s, the set of parents for node Xj can be found as Pa(Xj) =

{Xi | ‖βj,i‖1 6= 0}. Tuning parameter λ denotes the strength of regularization and

can be determined by out-of-sample prediction performance in a validation set.

5.1. Multiple Imputation

This subsection describes multiple imputations (MI) used to address the training

set’s missing data. MI was first proposed by Rubin (1987) and has been widely used

in large-scale healthcare/medical studies (Rubin and Schenker 1991, Van Buuren

2007). It has the practical advantages of preserving sample size and statistical

power and allowing standard complete-data methods of analysis to be used. Mul-

tiple imputations provide unbiased parameter estimates if the missing structure

is missing completely at random or missing at random; whether an observation is

missing or not does not depend on the value of the missing data. MI has three

basic steps: (1) create D different datasets by imputation; (2) analyze each of the

D completed data sets; (3) integrate the D analysis results into a final result.

We conduct D= 4 imputations in this study5. Specifically, we compute the pos-

terior probability for each node with missing values using BIC score-based BN as

shown in Fig. 2. Then the missing entries are imputed by randomly generating new

data from the corresponding posterior probability distribution.

When multi-level features and responses are present, the LASSO penalty may

not be satisfactory as it only selects individual variables instead of whole factors.

The LASSO solution also depends on how the dummies are encoded. Yuan and

Lin (2006) propose group LASSO to overcome these issues. Chen and Wang (2013)

extend this idea to multiple-imputed data to ensure consistency in variable selection

5 A traditional rule of thumb is that 3 to 10 imputations typically suffice (Rubin 1987).
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across different imputed datasets. In this paper, we denote β̂
1

j , . . . , β̂
D

j as the vectors

of estimated regression parameters for child node Xj on the D imputed datasets,

where β̂
d

j = (β̂
dT

j,0, β̂
dT

j,1, . . . , β̂
dT

j,j−1, β̂
dT

j,j+1, . . . , β̂
dT

j,m)T . Then, the model parameters are

extended as β(D)j,i = (β1T

j,i , . . . ,β
DT

j,i )T ∈ Rdfji·D. If Xi is important for predicting

Xj, β̂
d

j,i’s should be all nonzero, and if Xi is not important for predicting Xj, β̂
d

j,i’s

should be all zero for any given imputed dataset d. Thus, we estimate the model

by minimizing

min
βd

j,i

1

N ·D

m∑
j=1

D∑
d=1

NLL(xdj ,x
d
−j,β

d
j,i) +λ

m∑
j=1

∑
i 6=j

√
pj,i||β(D)j,i||2 s.t. G∈DAG.

(2)

The L2 norm ||β(D)j,i||2 is called the group LASSO penalty, and pj,i = dfji ·D is

the varying group size. The penalty function is adjusted by
√
pj,i to ensure that the

same penalization is applied to large and small groups. The group LASSO penalty

guarantees the consistency of edge selection concerning all different predictor levels,

response levels, and imputed datasets. The final estimation of β̂j,i is calculated

based on Rubin’s rule as β̂j,i = 1
D

∑D
d=1 β̂

d

j,i.

5.2. Ordering-Based Search

Solving the optimization in Eq. (2) is a challenge, given the constraint that the

estimated BN structure G must be a DAG because of the vast search space of

network structures. Much work has been done to address this problem, but only a

few outperform the baseline of greedy hill-climbing with tabu lists6. In this paper,

we adopt an ordering-based search strategy (Teyssier and Koller 2005) and use

the greedy hill-climbing search with a tabu list. Determining an appropriate order-

ing is a complex problem. However, our causality-based clinical knowledge helps

significantly reduce our search space.

6 Tabu list refers to the set of solutions that have been visited in the recent past
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Figure 3 Ordering-based search. Arrows represent constraints on directed edges. There can be no edges

from a variable in the next level to a variable in the preceding level. All variables preceding

PTSD can be potential parents of PTSD.

We conduct an ordering-based search by seeking for the best ordering ≺ over

X1, . . . ,Xm, such that if Xi is a potential candidate for Pa(Xj), then Xi ≺Xj. Once

the ordering ≺ is determined, finding the optimal BN consistent with ≺ is no longer

NP-hard because we can easily implement group LASSO on each node separately.

We use hill-climbing to find ≺, i.e., only consider swapping a pair of adjacent nodes

in the ordering for each move until the value of the objective function (2) does not

decrease:

(. . . ,Xi−1,Xi,Xi+1,Xi+2, . . .)→ (. . . ,Xi−1,Xi+1,Xi,Xi+2, . . .).

There are only two new neighborhoods generated, (Xi−1,Xi+1) and (Xi,Xi+2), for

each move. We use a tabu list to prevent the algorithm from reversing a swap

executed recently in the search.

We use domain knowledge to reduce the search space of possible ordering ≺.

Specifically, we divide the nodes into five layers, illustrated in Fig. (3), based on

causal domain knowledge. For example, individual characteristics at the first layer

are attributes that the other nodes cannot cause. As TBI is usually present before

PTSD, we constrain TBI to precede PTSD. If a node Xi is at the preceding layer

of node Xj, then Xi should always precede Xj in ≺. Given the ordering, define

xi≺j as the set of potential parents for node j. In this way, we restrict our ordering

search space only within the second layer.
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With a predetermined ordering ≺, Eq. (2) can be transformed as:

min
βd

j,i

m∑
j=1

[
1

N ·D

D∑
d=1

NLL(xdj ,x
d
i≺j,β

d
j,i) +λ

∑
i≺j

√
pj,i||β(D)j,i||2

]
. (3)

Then our task becomes solving m optimization problems independently. This allows

us to easily apply the sparse group LASSO algorithm proposed by Vincent and

Hansen (2014). A summary of our model training procedure with a given value of

regularization parameter λ is provided in Appendix D of the online supplement.

6. Empirical results of BN models

This section presents the proposed BN models’ prediction performance and feature

importance. The overall performance is evaluated in terms of mean squared error

(MSE), defined as follows:

MSE =
1

N

N∑
i=1

{P̂ (PTSDi = “Yes”)−1(PTSDi = “Yes”)}2.

Here N is the testing sample size, PTSDi is the observed PTSD status for the

ith testing observation, P̂ (PTSDi = “Yes”) is the predicted probability that the ith

testing observation is suffering from PTSD, and 1() is an indicator function for the

condition in the parenthesis.

In practice, the use of screening tools is dependent on their cutoff point. An

optimal cutoff point will provide a good balance of sensitivity–specificity tradeoffs

concerning different screening purposes, populations, or settings. Accordingly, we

also investigate false negative (FN) and false positive (FP ) rates as follows:

FN = 1−
∑N

i=1 1(PTSDi = “Yes”) ·1( ˆPTSDi = “Yes”)∑N
i=1 1(PTSDi = “Yes”)

,

and

FP = 1−
∑N

i=1 1(PTSDi = “No”) ·1( ˆPTSDi = “No”)∑N
i=1 1(PTSDi = “No”)

,
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where ˆPTSDi is the predicted PTSD status for testing observation i.

We start by randomly dividing our dataset into three parts, a training set with

913,676 instances, a validation set with 100,000 instances, and a test set with the

remaining 100,000 instances. In the training set, the method described in Section

5 (with a pre-specified sequence of tuning parameter values) is used to train the

model. For variables with missing values, we impute them four times using the

BIC score-based BN model. As our goal is to measure veterans’ risk of suffering

PTSD, we compare the MSE of models trained with different values of λ in the

validation set and determine the optimal value of λ based on it. Finally, we assess

the predictive accuracy of the resulting model using data in the test set.

Table 2 summarizes the variables in the Markov boundary of PTSD given models

generated with different λ values. As the value of λ increases, Ethnicity, Religion,

and Gender are the nodes that leave the Markov boundary of PTSD early and

tend to have the least significant predictive power. On the other hand, PC-PTSD-

5, ServiceConnectedFlag, and CombatFlag are still in the Markov boundary with

λ= 0.03 and, therefore, contribute the most in predicting PTSD.

To optimize the prediction accuracy, we pick λmin = 0.00005, which is associated

with the smallest MSE in the validation set7. The resulting BN structure is shown

in Fig. 4(a). This model exhibits a very dense structure, probably due to our large

training dataset. As shown in Table 2, all fourteen variables are in the Markov

boundary of PTSD, indicating that they are informative in predicting PTSD.

Comparing our proposed GL2-regularized BN with BIC score-based BN in terms

of MSE is reported in Table 3. The results show that the GL2-regularized BN with

λmin performs slightly better than the BIC score-based BN, although the difference

may not be significant.

7 A graphical display of MSE score for the proposed GL2-regularized BN model with pre-specified sequence
values of penalty parameter λ is provided in Appendix E of the online supplement.
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Table 2 Summary of the variables in the Markov boundary of PTSD given models with different

values of turning parameter.

λ 0.00001 0.00003 0.00005 0.0001 0.0003 0.0005 0.001 0.002 0.003 0.005 0.01 0.03

PC-PTSD-5 X X X X X X X X X X X X

ServiceConnectedFlag X X X X X X X X X X X X

CombatFlag X X X X X X X X X X X X

Age X X X X X X X X X X X

TBI X X X X X X X X X X X

AgentOrangeFlag X X X X X X X X X X X

MilitarySexualTraumaFlag X X X X X X X X X X X

SWAsiaConditionsFlag X X X X X X X X X X

Race X X X X X X X X X

MaritalStatus X X X X X X X X X

IonizingRadiationFlag X X X X X X X X X

Gender X X X X X X X

Religion X X X X X X X

Ethnicity X X X X X X

(a) (b)

Figure 4 The structure of the GL2-regularized BN model at (a) λmin = 0.00005, (b) λ1se = 0.002

Table 3 Summary of results. The corresponding FP for FNspec−0.8 and FNspec−pc5 are in parenthesis.

BNGL2−λmin
BNGL2−λ1se BNBIC NB

MSE 0.1263 0.1268 0.1265 0.1337

FNspec−0.8 0.2961 (0.2000) 0.2994 (0.1988) 0.3069 (0.1922) 0.3121 (0.1911)

FNspec−pc5 0.5029 (0.0753) 0.5041 (0.0757) 0.5042 (0.0756) 0.5381 (0.0664)
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6.1. Cutoff Value of Probability of PTSD

The practical use of a PTSD screening tool is highly dependent on its cutoff value.

Therefore, we next investigate the optimal cutoff value for PTSD prediction by

striking a proper balance between sensitivity and specificity. A commonly used

technique for deciding the cutoff point in primary care screening is to maximize the

sensitivity score while maintaining the specificity at a pre-specified level, ensuring

that the screening tool will not capture too many false positives. We first set the

minimum specificity in this study to be 0.80 (Prins et al. 2016). As a consequence,

the optimal cutoff for our proposed GL2-regularized BN with λmin is identified

to be 0.2616 with the corresponding sensitivity as 0.7039, specificity as 0.80008.

Compared with BIC score-based BN, the sensitivity of GL2-regularized BN with

λmin is 1.08% higher. We also investigate the sensitivity and specificity using only

PC-PTSD-5 with a cutoff of 3. PC-PTSD-5 test provides a sensitivity of 0.4599 and

a specificity of 0.9243. If VA wants to maintain the same level of specificity, then

the optimal cutoff for our proposed GL2-regularized BN is 0.4154, which results in

a sensitivity of 0.4971 and a specificity of 0.9247. This indicates a 3.72% increase

in screening sensitivity compared to the PC-PTSD-5 test. As the number of new

VA enrollees is at least around 160,000 each year (FY 2017), this translates to 1374

more successfully detected PTSD veterans per year9. Also, GL2-regularized BN’s

sensitivity is 0.13% higher than that for BIC score-based BN, which translates

to almost 50 more successfully detected PTSD veterans per year10. Accordingly,

our proposed GL2-regularized BN consistently performs better in these metrics. A

0.13% (almost 50 veterans per year) difference does not appear to be significant,

but it is a noticeable improvement over a long period.

8 Notice that, as our data is categorical, the change of sensitivity/specificity for the cutoff value of PTSD
probability is not continuous. As a result, the real specificity of our model can be higher than 0.8.

9 The increase of successfully detected PTSD veterans per year is calculated as 160,000×23.09%×3.72% =
1374. In our sample, the proportion of PTSD-diagnosed veterans is 23.09%.

10 The difference of successfully detected PTSD veterans per year between GL2-regularized BN and BIC
score-based BN is calculated as 160,000× 23.09%× 0.13% = 48.
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Figure 5 Feature importance box plots based on the GL2-regularized BN model with λ = λ1se. The

features are sorted by decreasing values of the median.

Figure 6 Feature importance box plots based on the BIC score-based BN model. The features are

sorted by decreasing values of the median.

6.2. Feature Importance

One disadvantage of the model with λmin is that it lacks interpretability given

such a complicated network structure. To provide a better interpretation of how

each of these variables affects the risk of PTSD, we also report the BN model with

λ1se = 0.002, which is the largest λ value with its MSE = 0.1271 within one stan-

dard error of λmin. The main idea of this “one-standard-error” rule is to choose the
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simplest model whose accuracy is comparable with the best one. The model struc-

ture for λ1se is shown in Fig. 4 (b), which is much sparser than that for λmin. Eleven

variables, Age, AgentOrange, Combat, IonizingRadiation, MaritalStatus, Military-

SexualTrauma, Race, ServiceConnected, SWAsiaConditions, TBI, and PC5 are still

in the Markov boundary of PTSD. Besides, as shown in Table 3, the prediction

performance of this model is comparable with GL2-regularized BN model with

λ= λmin, and BIC score-based BN.

To better understand the usefulness of features in PTSD screening, we check the

importance of each feature based on the GL2-regularized BN model with λ= λ1se.

Precisely, we measure the importance of a feature as the increase in MSE when the

feature values are removed from the test set. This provides a numerical measure of

how much each variable contributes to predicting PTSD.

Typically, given a model, the importance of a feature is assessed by a random

permutation of the feature values in the test set (Altmann et al. 2010). This is done

because most machine learning methods cannot be used with missing feature values.

Since BN models can, we propose a new approach to calculate the importance of a

feature by simply removing the feature column from the test set. We believe this is

cleaner than permuting the values of the feature, which may introduce noise in the

prediction process. Earlier in the paper, we used multiple imputations to train a BN

model with missing variables. In this section, we are considering a variable missing

for prediction purposes to test a feature’s importance. While BN models can make

predictions with missing values, prediction performance will suffer if missing an

important feature.

Making exact inferences with BN is computationally inefficient, especially given

such a large dataset. Instead of evaluating the increase of MSE using the entire

test set, we analyze it with random sampling. Specifically, we randomly sample 100

veterans from the test set with replacement, calculate the increase of MSE for each
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predictor assuming its value is missing, and repeat these two steps 500 times. The

feature importance for the proposed GL2-regularized BN model with λ1se is shown

in Fig. 5. Unsurprisingly, PC-PTSD-5 has the highest feature importance among

all fourteen features. Also, ServiceConnectedFlag, CombatFlag, AgentOrangeFlag,

MilitarySexualTraumaFlag, TBI, and Age are all important features that help to

predict PTSD. Following the same procedure, we evaluate the feature importance

based on the BIC score-based BN. The results are presented in Fig. 6. We get fairly

consistent results between the GL2-regularized BN and the BIC score-based BN,

especially providing the same seven important features. These results are consistent

with what we got based on the Markov boundary analysis in Table 2.

6.3. A Näıve Bayes Model

Finally, we construct a näıve Bayes (NB) model for predicting PTSD. NB is a

probabilistic model that is based on the Bayes rule. It assumes that the features are

mutually conditional independent given the class variable. In practice, because of

its simplicity (small number of parameters), NB models predict well even when the

assumption on which it is based is violated (Rish 2001). Additionally, NB exhibits

considerable tolerance to missing data (Juhola and Laurikkala 2013).

In this study, we construct the NB model using the e1071 R-package (Meyer

et al. 2019). According to the feature importance results for both GL2-regularized

BN and the BIC score-based BN, some features do not contribute much to pre-

dicting PTSD. Adding those features may bias the model estimation and make the

resulting model not predict well. Accordingly, we construct the NB model with

seven important features specified in our feature importance analysis11. Like the

BIC score-based method, the NB model parameters were estimated using Laplace

correction. We report the prediction performance of the resulting NB model in

11 In unreported results, we experiment by constructing the NB model with all fourteen predictors. The
prediction performance gets significantly worse concerning all three metrics.
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Table 3. The NB model performs the worst among the four BN models. However,

it still improves the screening sensitivity of the currently used PC-PTSD-5 test by

0.2% and the specificity by 0.9%.

7. Summary & Conclusion

In this paper, we propose a BIC score-based BN, a GL2-regularized BN using a

new method based on group LASSO, and a näıve Bayes BN. We build the GL2-

regularized BN to address four challenges: probabilistic classification, missing data,

highly-skewed features, and an extensive search space of network structure.

In our GL2-regularized BN model, the conditional probability distribution of

each node is defined using multinomial logistic regression. We use the group LASSO

penalty, which yields a sparse model, making the model estimation more stable

with missing data and highly-skewed features. An ordering-based search algorithm

with strong causality-based clinical knowledge is adopted to search for the network

structure. As a result, our proposed GL2-regularized BN-based model is highly

competitive with the BIC score-based BN in predicting veterans’ likelihood of suf-

fering from PTSD. The GL2-regularized BN and the BIC score-based BN predict

better than näıve Bayes BN. One advantage of the GL2-regularized BN over the

BIC score-based BN is that the construction process yields some information about

the relative importance of the features in predicting PTSD. We conjecture that our

new method can also be used in other domains, but this is not the focus of our

study. The task of exploring the strengths and weaknesses of the GL2-regularized

BN construction method in general domains remains to be done.

With the primary goal of predicting PTSD, the proposed BNs are generative

models which estimate the joint distribution of all the observed variables. This

joint distribution can then be used to estimate the probability of PTSD given the

values of other variables. The advantages of this approach are it can easily make

predictions if some variables are missing and provides a graph of the relationship
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between all variables. An alternative approach would be to directly model the con-

ditional distribution of PTSD given the variables using a parametric method, such

as (regularized) logistic regression or random forest. One challenge for these models

is how to predict with missing data. Deriving a discriminative model that correctly

addresses some of the difficulties in this data set, such as making predictions with

missing values, would be an exciting extension of this work.

Our study contributes to the Veterans Health Administration in two ways. First,

our proposed models could serve as a screening tool for identifying veterans with

probable PTSD. Specifically, they improve the screening efficiency of an exist-

ing PTSD screening test, PC-PTSD-5, by incorporating veterans’ demographic

information, military service records, and co-morbidity (TBI) diagnostic history.

Second, we investigate how much the proposed models rely on each feature by look-

ing at the estimated feature importance. Feature importance provides a numerical

measure of how informative each part is in diagnosing PTSD. The important fea-

tures for predicting PTSD are (in decreasing order of importance): PC-PTSD-5,

service-connected flag, combat flag, agent orange flag, military sexual trauma flag,

traumatic brain injury, and age.
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