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A Framework for Solving Hybrid Influence Diagrams
containing Deterministic Conditional Distributions

Yijing Li and Prakash P. Shenoy

Abstract

We describe a framework and an algorithm for approximately solving a class of hy-
brid influence diagrams (IDs) containing discrete and continuous chance variables, dis-
crete and continuous decision variables, and deterministic conditional distributions for
chance variables. A conditional distribution for a chance variable is said to be de-
terministic if its variances, for each state of its parents, are all zeroes. The solution
algorithm is an extension of Shenoy’s fusion algorithm for discrete influence diagrams.
To mitigate the integration and optimization problems associated with solving hybrid
IDs, we propose using mixture of polynomials approximations of conditional proba-
bility density and utility functions, and piecewise linear approximations of nonlinear
deterministic conditional distributions for continuous chance variables. The class of
hybrid IDs that can be solved by our framework are those that do not involve divi-
sions. The framework and algorithm are illustrated by solving two small examples of
hybrid IDs.

Key Words: solving hybrid influence diagrams, deterministic conditional distribu-
tions, mixture of polynomials

1 Introduction

An influence diagram (ID) is a formal compact representation of a Bayesian decision making
under uncertainty problem. It consists of four parts: a sequence of decisions, a set of chance
variables with a joint distribution represented by a Bayesian network (BN), the decision
maker’s preferences for the uncertain outcomes represented by a joint utility function, and
information constraints that indicate what uncertainties are known and unknown when a
decision has to be made. IDs were initially defined by Howard and Matheson [18, 19]. Howard
and Matheson’s definition of an ID allowed a single (unfactored) utility node. Tatman and
Shachter [42] subsequently generalized IDs to include multiple utility nodes that combine
additively or multiplicatively or some combination of the two. In this paper, we assume that
the utility factors combine additively.

Hybrid IDs are IDs containing a mix of discrete and continuous chance variables, and
discrete and continuous decision variables. A conditional distribution (or conditional, in
short) for a chance variable in an ID is said to be deterministic if the variances, for each
state of the variable’s parents, are all zeroes. Deterministic conditionals for discrete chance
variables pose no computational problems. Deterministic conditionals for continuous chance
variables pose a computational challenge as the joint density function for all continuous
variables does not exist, and this non-existence can pose problems when solving such IDs.
Therefore, here onwards, when we speak of variables with deterministic conditionals we are
referring to continuous variables.
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In practice, one encounters decision problems in which some chance and decision variables
(such as demand, cost, stock price, profit, etc.) are continuous in nature. If we maintain the
continuous nature of these variables (i.e., we do not discretize such variables), the result is a
hybrid ID. However, solving a hybrid ID involves two main computational challenges. First,
marginalizing a continuous chance variable involves integration of a product of density and
utility functions. In some cases, such as the Gaussian density function, there may not exist
a closed-form representation of the integral. We will refer to this problem as the integration
problem.

Second, marginalizing a decision variable involves maximizing a utility function. If a
decision variable is continuous and has relevant continuous information predecessors, then
we may be faced with the problem of finding a closed-form solution to the maximization
problem. Not only do we have to find an optimal value of the decision variable as a function
of the states of its relevant information predecessors, we also have to find a closed-form
expression of the maximum utility as a function of the states of its relevant information
predecessors. We will refer to this problem as the optimization problem.

In this paper, we describe a framework and an algorithm for solving a class of hybrid
IDs approximately. The framework is an extension of the Shenoy-Shafer [38] architecture for
making inferences in hybrid BNs described in Shenoy and West [39], and includes decision
variables and utility functions. The algorithm consists of using mixtures of polynomials
(MOPs) for approximating PDFs of continuous variables, approximating nonlinear deter-
ministic conditionals by piecewise linear ones, using Dirac delta functions to represent deter-
ministic conditionals for continuous chance variables, and approximating utility functions by
MOPs. The class of hybrid IDs that can be solved by our framework are those IDs that can
be solved using local computation without the use of the division operation. We illustrate
our method by solving two small examples.

An outline of the remainder of this paper is as follows. In section 2, we review the
literature on solving hybrid IDs, we list the contributions of our paper, and sketch the
limitations of our method. In section 3, we describe a framework and an algorithm to solve
hybrid IDs with deterministic variables. In section 4, we define MOP functions, and a
process for approximating conditional PDFs and utility functions by MOP functions, and a
process for finding piecewise linear approximations of nonlinear deterministic conditionals.
In section 5, we solve two decision problems to illustrate our framework and algorithm.
Finally, in section 6, we conclude with a summary and a discussion on the limitations of
using MOP functions for solving hybrid IDs and some related topics for future work.

2 Previous Work on Solving Hybrid IDs

In this section, we review previous work on solving hybrid IDs, and discuss the main contri-
butions and limitations of our method.

2.1 Discretization

A traditional method for solving a hybrid ID is to approximate the hybrid ID with a discrete
ID by discretizing the continuous chance and decision variables (see, e.g., Miller and Rice

5



[28], Keefer and Bodily [21], and Smith [41]). If we discretize a continuous variable using too
few bins, we may have an unacceptable approximation of the problem. On the other hand, if
we use many bins, we increase the computational effort of solving the resulting discrete ID.
In the BN literature, Kozlov and Koller [23] described a dynamic non-uniform discretization
technique for chance variables depending on the region where the posterior density lies. This
technique needs to be adapted for solving hybrid IDs.

2.2 Monte Carlo Methods

Another method for solving hybrid IDs is to use Monte Carlo (MC) methods. One of the
earliest to suggest MC methods for solving decision trees was Hertz [15], where the entire
joint distribution of all chance variables is sampled. Charnes and Shenoy [5] proposes a
MC method that samples from a small set of chance variables at a time for each decision
variable. Ortiz and Kaelbling [31] proposes several MC methods and provides bounds on
the number of samples required given some error bounds. Bielza et al. [1] explores the
use of Markov chain MC methods to solve a single-stage decision problem with continuous
decision and chance nodes to solve the maximization problem. Cano et al. [4] describes
a forward-backward Monte Carlo method for approximate solutions of IDs. While Monte
Carlo methods can handle continuous chance variables, there is one limitation. If we have a
decision variable with continuous chance variables as relevant predecessors, then finding an
optimal decision function for the decision variable requires discretization of the continuous
chance variables that are in the relevant domain.

2.3 Gaussian IDs

Among exact methods, Shachter and Kenley[34] provides a theory to solve IDs where all
chance and decision variables are continuous. The continuous chance variables are required
to have the conditional linear Gaussian (CLG) distributions, and the utility function is
required to be quadratic. Such IDs are called Gaussian IDs. These requirements ensure
that the joint distribution of all chance variables is multivariate Gaussian, whose marginals
can be easily found without the need for integration. Also, the quadratic nature of the
utility function ensures that there is a unique maximum that can be computed in closed
form without the need for searching for an optimal solution.

2.4 Mixture of Gaussian IDs

Poland [32] and Poland and Shachter [33] extend Gaussian IDs to include discrete chance
variables that do not have continuous parents. If a continuous chance variable does not have
a CLG distribution, then it can be approximated by a mixture of Gaussians represented by
a discrete variable with mixture weights and a continuous variable with the discrete variable
as its parent and with CLG distributions. Like Gaussian IDs, mixture of Gaussian IDs are
required to have quadratic utility functions.
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2.5 Mixture of Truncated Exponentials

To find posterior marginals in hybrid BNs, Moral et al. [29] proposes approximating PDFs
by mixtures of truncated exponentials (MTEs) as a solution for the integration problem.
The family of MTE functions is easy to integrate, and is closed under combination and
marginalization, and can be propagated using the Shenoy-Shafer architecture ([38]). Cobb
et al. [11] describes MTE approximations for several commonly-used uni-variate PDFs such
as normal, log-normal, Gamma, etc. Cobb and Shenoy [8] extends the MTE BN framework
to include one-dimensional deterministic conditionals described by linear functions. For
one-dimensional nonlinear functions, Cobb and Shenoy[9] proposes approximating them by
piecewise linear functions.

For solving IDs, Cobb and Shenoy [10] describes MTE IDs, where the PDFs of continuous
chance variables and the utility functions are described using MTE functions, and decision
nodes are all discrete. Thus any PDF can be used as long as they can be approximated by
MTEs, and discrete variables can have continuous parents. Cobb [7] describes continuous
decision MTE IDs, where in addition to using MTE potentials to represent PDFs and utility
functions, continuous decisions are allowed.

The MTE methods surveyed here for BNs and IDs cannot cope with multi-dimensional
linear deterministic conditionals. For example, if X and Y are independent exponential
random variables with Poisson rate parameter λ = 1 (whose PDFs are MTE functions),
then Z = X+Y has a Gamma distribution (with parameters r = 2, and λ = 1), whose PDF
(fZ(z) = z e−z if z > 0) is not an MTE function (because of the presence of the z e−z term
in the PDF).

2.6 Mixture of Polynomials

Similar to MTEs, Shenoy and West[40], and Shenoy [37] propose approximating PDFs by
piecewise polynomial functions called mixtures of polynomials (MOPs). Like MTEs, MOPs
are closed under multiplication, addition, and integration. Thus, they can be used to find
marginals in hybrid BNs using the Shenoy-Shafer [38] architecture. MOP functions have
some advantages over MTE functions. MOP approximations can be found (more easily
than MTE) using Lagrange interpolating polynomials with Chebyshev points ([37]), even for
multidimensional ones. Also, they are closed for a larger class of deterministic functions than
MTE functions, which are closed only for one-dimensional linear functions (e.g., W = aX+b).
MOP functions are closed under transformations required for multi-dimensional linear (e.g.
W = X + Y ), and for multi-dimensional quotient (e.g., W = X/Y , W = (X/Y )/Z), etc.)
deterministic functions.

2.7 Contributions

The major contributions of this paper are as follows. First, we further extend the extended
Shenoy-Shafer architecture, described in [39] for inference in hybrid BNs, to enable the
solution of hybrid IDs with deterministic conditionals. We extend the architecture to include
discrete and continuous decision variables, and utility functions. The algorithm for solving
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hybrid IDs is essentially the same as the fusion algorithm proposed in Shenoy [36] for discrete
IDs.

Second, to address the integration and optimization problems, we propose using MOP
approximations of PDFs and utility functions. The family of MOP functions is closed under
multiplication, addition, integration, and transformations needed for multi-dimensional lin-
ear deterministic functions. It is not closed under divisions, or transformations needed for
nonlinear deterministic functions (such as Z = X · Y , Y = X2, etc.) For hybrid IDs that
contain nonlinear deterministic conditionals, we propose approximating these by piecewise
linear functions as suggested in Cobb and Shenoy [9].

Regarding the optimization problem, because MOP functions are easily differentiable,
finding the maximum of a utility function that is in MOP form is also easier than for non-
MOP utility functions.

Previous methods for solving IDs containing continuous chance variables assume either
CLG conditionals, in which case one can allow deterministic conditionals described by linear
functions ([34, 33]), or non-CLG conditionals that are approximated by MTEs ([10]), which
are closed only for one-dimensional linear deterministic conditionals ([35]). The framework
described here extends the class of IDs which can be solved—the chance variables can have
any distributions as long as they can be approximated by MOPs, the utility functions can
be of any form as long as they can be approximated by MOPs, there are no topological
restrictions such as discrete variables with no continuous parents, and we can have any
deterministic conditionals as long as they can be approximated by piecewise linear functions.

2.8 Limitations

Some limitations of our method are as follows. First, the family of MOP functions is not
closed under the division operation. Solving an ID with an additive factorization of the
utility function using local computation may require divisions. Such problems will not be
amenable to our method. The Pigs problem, discussed in Lauritzen and Nilsson [26], is an
example of a problem of this type (requires divisions for solution using local computation).

Second, for IDs containing deterministic conditionals, MOPs are closed only for multi-
dimensional linear and quotient functions. For multi-dimensional deterministic conditionals
that are described by functions that are neither linear nor quotient, the family of MOPs is
not closed under transformations required for such functions. However, if such deterministic
functions can be approximated by piecewise linear ones, then one can still solve such problems
using our method.

Third, since our method uses MOPs to approximate PDFs and utility functions, it inherits
all the limitations of MOP-based methods. For example, finding a MOP approximation of
a high-dimensional conditional PDF can be difficult. Thus, if we have a continuous chance
variable with many continuous chance parents, this will pose a problem for finding a MOP
approximation. Shenoy [37] describes a MOP approximation of a three-dimensional CLG
PDF. In this paper, we describe a procedure for finding a MOP approximation of a PDF
using Lagrange interpolating polynomials with Chebyshev points. Using this procedure, we
can find MOP approximations of the two-dimensional conditional log-normal PDFs needed
to solve the American Put Option problem described in Section 5.2. In any case, we are not
at a stage where one can fully automate the procedure of finding MOP approximations of
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conditional PDFs and utility functions.

3 A Framework for Solving Hybrid IDs

In this section, we describe a framework and an algorithm for solving hybrid IDs with deter-
ministic conditionals. The framework described here is a further extension of the extended
Shenoy-Shafer architecture described in Shenoy and West [39] for inference in hybrid BNs
with deterministic conditionals. Here, we include decision variables, and utility potentials,
and we keep track of the nature of potentials (discrete, continuous, or utility) by keeping
track of their units during the combination and the marginalization operations. The algo-
rithm described is adapted from Shenoy [36] for the case of discrete IDs.

3.1 Variables and States

We are concerned with a finite set V = D∪C of variables. Variables in D are called decision
variables, and variables in C are called chance variables. Each variable X ∈ V is associated
with a set ΩX of possible states. If ΩX is finite or countable, we say X is discrete, otherwise
X is continuous. We will assume that the state space of continuous variables is the set of
real numbers (or some measurable subset of it), and that the state space of discrete variables
is a set of symbols (not necessarily real numbers). If r ⊆ V , r 6= ∅, then Ωr = ×{ΩX |X ∈ r}.
If r = ∅, we will adopt the convention that Ω∅ = {�}.

We will distinguish between discrete and continuous chance variables. Let Cd and Cc
denote the set of all discrete and continuous chance variables, respectively. Then, C = Cd∪Cc.
We do not distinguish between discrete and continuous decision variables.

In an ID, each chance variable has a conditional distribution function for each state of
its parents. A conditional distribution function associated with a chance variable is said to
be deterministic if its variances (for each state of its parents) are all zeros. For example,
suppose P (profit), R (revenue), and C (cost) are three continuous chance variables, and
suppose R and C are parents of P . Furthermore, suppose the conditional of P is as follows:
P | (r, c) = r − c with probability 1. In this example, the conditional for P is deterministic,
and we will denote it by the equation: P = R− C.

In an ID, we will depict decision variables by rectangular nodes, discrete chance variables
by single-bordered elliptical nodes, continuous chance variables with non-deterministic con-
ditionals by double-bordered elliptical nodes, continuous chance variables with deterministic
conditionals by triple-bordered elliptical chance nodes, and additive factors of the joint utility
function by diamond-shaped nodes. We do not distinguish between discrete and continuous
decision variables.

An example of a hybrid ID is shown in Figure 1. This ID is a representation of the
entrepreneur’s problem, which will be described later in this section. In this ID, Z1 and Z2

are continuous chance nodes with non-deterministic conditionals, Qn, Qa, Cn, and Ca are
continuous chance nodes with deterministic conditionals, P is a continuous decision node,
and π is a utility node.
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Figure 1: An Influence Diagram Representation of the Entrepreneur’s Problem

3.2 Projection of States

If x ∈ Ωr, y ∈ Ωs, and r ∩ s = ∅, then (x,y) ∈ Ωr∪s. Thus, (x, �) = x. Suppose x ∈ Ωr, and
s ⊆ r. Then, the projection of x to s, denoted by x↓s, is the state of s obtained from x by
dropping states of r \ s. Thus, e.g., (w, x, y, z)↓{W,X} = (w, x), where w ∈ ΩW , and x ∈ ΩX .
If s = r, then x↓s = x. If s = ∅, then x↓s = �.

3.3 Discrete Potentials

In an ID, the conditional probability functions associated with chance variables are repre-
sented by functions called potentials. If A is discrete, it is associated with a conditional
probability mass function. The conditional probability mass functions are represented by
functions called discrete potentials. Formally, suppose r ⊆ V . A discrete potential for r is a
function α : Ωr → [0, 1] such that the values (in the interval [0, 1]) are in units of probability,
which are dimensionless numbers without any physical units (such as feet, pounds, seconds,
etc.).

Although the domain of the potential α is Ωr, we will refer to r as the domain of α.
Thus, the domain of a potential representing the conditional probability function associated
with some chance variable X in an ID is always the set {X} ∪ pa(X), where pa(X) denotes
the set of parents of X in the ID graph.

The values of discrete potentials are always in units of probability. For example, suppose
B is a discrete chance variable with states b (buyer) and nb (no buyer), suppose P (price
in $/bushel) is a continuous variable, and suppose β is a discrete potential for {B,P},
representing the conditional for B given P , such that β(b, p) = 1/(1+e−6.5+p), and β(nb, p) =
e−6.5+p/(1 + e−6.5+p). The values of β are in units of probability.

3.4 Continuous Potentials

Continuous chance variables with non-deterministic conditionals are associated with condi-
tional probability density functions (PDFs). Conditional PDFs are represented by functions
called continuous potentials. Formally, suppose r ⊆ V . A continuous potential ζ for r is
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a function ζ : Ωr → R+, where R+ is the set of non-negative real numbers with units of
(probability) density.

The values of continuous potentials are always in units of density. For example, suppose
Y is a continuous variable whose states are in units of, say, unitY , with continuous chance
variable X as a parent. Suppose that the conditional associated with Y |x is N(x, 1). Then,
the values of the continuous potential ψ for {X, Y } such that ψ(x, y) = (1/

√
2π)e−(y−x)2/2

are in units of probability per unit of Y , which is denoted simply by (unitY )−1.
Continuous variables with deterministic conditionals have conditionals described by equa-

tions. We will represent such conditionals by continuous potentials that use Dirac delta
functions δ defined in Dirac [12].

3.5 Dirac Delta Functions

A function δ : R→ R+ is called a Dirac delta function if δ(x) = 0 if x 6= 0, and
∫∞
−∞ δ(x) dx =

1. The values of δ are in units of density.
The Dirac delta function δ is not a proper function since the value of the function at

0 doesn’t exist (i.e., is not finite). It can be regarded as a limit of a certain sequence of
functions (such as, e.g., the Gaussian density function with mean 0 and variance σ2 in the
limit as σ → 0). However, it can be used as if it were a proper function for practically all
our purposes without getting incorrect results.

Although the value δ(0) (in units of density) is undefined, i.e., ∞, we argue that we can
interpret the value δ(0) as probability 1 at the location x = 0. Consider the Gaussian PDF
with mean 0 and variance σ2. Its moment generating function (MGF) is M(t) = eσ

2t2/2. In
the limit as σ → 0, M(t) = 1. Now, M(t) = 1 is the MGF of the degenerate probability
distribution X = 0 with probability 1. Thus, we can interpret the value δ(0) as probability
1 at the location x = 0.

Some basic properties of the Dirac delta function are given in the Appendix. An example
of a deterministic conditional is as follows. Suppose R (revenue in m$) is a continuous
chance variable with continuous chance parents P (price in $/bushel), and C (crop size in
mbushels), and discrete chance parent B with states b (buyer) and nb (no buyer). Suppose
R is associated with a deterministic conditional as follows: R = P · C if B = b, and R = 0
if B = nb. Then this conditional is represented by a continuous potential ρ for {P,C,B,R}
such that ρ(p, c, b, r) = δ(r − p · c), and ρ(p, c, nb, r) = δ(r). The values of ρ are in units of
(m$)−1.

In general, if Y is a continuous variable with continuous parents {X1, . . . , Xn}, and
discrete parents {A1, . . . , Am}, and has a deterministic conditional Y = gi(X1, . . . , Xn) if
(A1, . . . , Am) = ai, for i = 1, . . . , |Ω{A1,...,Am}|, then such a deterministic conditional is
represented by the continuous potential ψ(x, ai, y) = δ(y − gi(x)) for all x ∈ Ω{X1,...,Xn},
ai ∈ Ω{A1,...,Am}, i = 1, . . . , |Ω{A1,...,Am}|, and y ∈ ΩY . The units of values of ψ are (unitY )−1.

3.6 Constraint Potentials

In some problems, there may be constraints on the possible states of decision variables based
on states of other preceding variables. Such constraints are represented by potentials called
constraint potentials. Suppose s is a set of variables such that it includes a decision variable,
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say X. A constraint potential χ for s associated with X ∈ s is a function χ : Ωs → {0, 1}
such that χ(x,y) = 1 if x ∈ ΩX is a possible alternative given y ∈ Ωs\{X}, and χ(x,y) = 0
if not. We assume that the constraint potential is formally specified for all states of s. In
practice, it is sufficient to just specify the states of s that are possible (with the rest assumed
to be not possible). The values (0 or 1) of constraint potentials are in dimensionless units.
Constraint potentials are used during the process of marginalizing a decision variable.

The entrepreneur’s problem discussed in Section 5 has a constraint on the price variable
1 ≤ p ≤ 47. This constraint is handled implicitly since we expect from the nature of
the problem to find an optimal price that lies in this interval (at the two extreme prices,
we expect the profits to be small or negative). In the American put option problem (also
discussed in Section 5), we have constraints that are handled explicitly. These are described
in Section 5.

Constraint potentials share the same units as discrete potentials, and so it is important to
not confuse the two. In an ID representation, discrete potentials are associated with discrete
chance variables, and constraint potentials are associated with decision variables. We will
sometimes refer to the set of discrete and continuous potentials as probability potentials,
which does not include constraint potentials.

3.7 Utility Potentials

An ID representation includes utility functions, that represent the preferences of the decision
maker for the various outcomes. If an ID has more than one utility node, we assume an
additive factorization of the joint utility function. Each additive factor of the utility function
is represented by a utility potential. Formally, a utility potential υ for t ⊆ V is a function
υ : Ωt → R such that the values (in R) are in units of utiles. An example of an utility
potential is found in an example described below.

3.8 Summary

In summary, we can have four different kinds of potentials in IDs. The values of discrete
potentials are in units of probabilities, which are dimensionless numbers (in the interval
[0, 1]) with no physical units. The values of continuous potentials are in units of density,
such as (unitX)−1, (unitX)−1 · (unitY )−1, etc. The values of utility potentials are in units
of utiles. The values of constraint potentials are either 0 or 1 in dimensionless units. In
the process of solving an ID, we may create potentials that have hybrid units such as utiles
· (unitX)−1, etc. However, after we marginalize all chance and decision variables, we will
ultimately end with a utility potential for the empty set. Details are provided in the section
on solving hybrid IDs.

3.9 An Example

We will illustrate the concepts described so far using the entrepreneur’s problem adapted
from Howard [17]. An entrepreneur has to decide on a price for her new product. When the
entrepreneur selects a price P (in $/widget), the quantity Qn (in mwidgets) that she will
sell is determined from the demand curve Qn(P ). This quantity Qn will have a total cost
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of manufacturing Cn(Qn) (in m$) given by the total cost curve. The entrepreneur’s profit
πn (in m$) will then be the difference between her revenue P · Qn and her cost Cn, i.e.,
πn = P ·Qn − Cn. We assume that the entrepreneur is risk neutral, i.e., her utility is linear
in million dollars, u(xm$) = x utiles. The entrepreneur needs to decide on a price p that
will maximize her utility.

This problem would be simple if the demand curve and total cost curve were known with
certainty, but this is seldom the case. We shall assume that the quantity Qn determined from
the demand curve is only a nominal value and that the actual quantity sold will be Qa = Qn+
Z1, where Z1 (in mwidgets) is a standard normal random variable. Furthermore, producing
this quantity Qa will cost Ca = Cn(Qa) + Z2, where Z2 (in m$) is another independent
standard normal random variable. Note that the profit π (in m$) is now π = P ·Qa − Ca.

For the demand curve, the functional form is Qn(p) = (lnα− ln p)/β, where p ≤ α, and
the constants are given by α = 50, β = 1/80. This is a decreasing function–at a price of
$1/widget, she would sell 80 · ln50 ≈ 313 mwidgets, and at a price of $50/widget, she would
sell none. For the total cost function we assume the form Cn(qa) = k0 + k1qa + k2(1− e−k3qa)
with constants k0 = 700, k1 = 4, k2 = 400, k3 = 1/50. The total cost function is an
increasing function, but at a decreasing rate. We restrict the range of P to make sure that
Qa is nonnegative. An ID representation of the problem is depicted in Figure 1.

The potentials in this example are as follows. We start with the name of the potential,
its domain, details of the potential, and its units.

1. χa for {Cn, Z2, Ca} such that χa(cn, z2, ca) = δ(ca − (cn + z2)), (m$)−1.

2. ϕ2 for Z2 such that ϕ2(z2) = (1/
√

2π)e−z
2
2/2, (m$)−1.

3. χn for {Qa, Cn} such that χn(qa, cn) = δ(cn − (700 + 4qa + 400(1− e−qa/50))), (m$)−1.

4. θa for {Qn, Z1, Qa} such that θa(qn, z1, qa) = δ(qa − (qn + z1)), (mwidgets)−1.

5. ϕ1 for Z1 such that ϕ1(z1) = (1/
√

2π)e−z
2
1/2, (mwidgets)−1.

6. θn for {P,Qn} such that θn(p, qn) = δ(qn − 80(ln 50− ln p)), (mwidgets)−1.

7. π for {P,Qa, Ca} such that π(p, qa, ca) = p · qa − ca, utiles

It is evident from the units that the first six potentials are continuous potentials and the
seventh is a utility potential. There is no potential associated with decision variable P . A
valuation network (VN) representation ([36]) (also called a factor graph in Kschischang et
al. [24]) of the entrepreneur’s problem in shown in Figure 2. A VN is a bi-partite graph
with variables and potentials as nodes. Variable nodes are depicted just as in IDs. Potential
nodes are depicted by diamond-shaped nodes. Probability and utility potentials are depicted
by single-bordered diamond-shaped nodes. Constraint potentials are depicted by double-
bordered diamond-shaped nodes. Each potential has an edge between it and the variables
in its domain. During the solution phase, we switch from the ID to the VN representation
as there are no guarantees that the ID representation will be maintained at each step of the
solution algorithm ([36]). In Section 5, we describe a solution to this problem.
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Figure 2: A VN Representation of the Entrepreneur’s Problem

3.10 Combination of Potentials

The definition of combination of potentials depends on the units of the potentials being com-
bined. Although there are many possible combinations of units, we have only two distinct
definitions. Utility functions are additive factors of the joint utility function. Thus, combi-
nation of two utility potentials (both in units of utiles) involves pointwise addition. In all
other cases, combination of potentials involves pointwise multiplication. Thus, in problems
where we have a single utility node, combination is always pointwise multiplication.

Suppose υ1 and υ2 are utility potentials for t1 and t2, respectively. Then, the combination
of υ1 and υ2, denoted by υ1 ⊗ υ2, is a utility potential for t1 ∪ t2 defined as follows:

(υ1 ⊗ υ2)(x) = υ1(x↓t1) + υ2(x↓t2) for all x ∈ Ωt1∪t2 . (3.1)

The units of (υ1 ⊗ υ2) are utiles.
Suppose α1 and α2 are potentials for t1 and t2, respectively, such that α1 and α2 are not

both utility. Then, the combination of α1 and α2, denoted by α1 ⊗ α2, is a potential for
t1 ∪ t2 defined as follows:

(α1 ⊗ α2)(x) = α1(x↓t1) · α2(x↓t2) for all x ∈ Ωt1∪t2 . (3.2)

The units of (α1⊗α2) are the product of the units of α1 and α2. Thus, e.g., if α1 is discrete
and α2 is utility (or vice versa), then α1 ⊗ α2 is utility; and if α1 is continuous and α2 is
utility (or vice versa), then α1 ⊗ α2 will have hybrid units such as utiles · (unitX)−1, etc.

Observe that combination of potentials is non-associative. Thus, if σ is a discrete or
continuous potential, and υ1 and υ2 are utility potentials, then σ ⊗ (υ1 ⊗ υ2) 6= (σ ⊗ υ1) ⊗
υ2. This non-associativity of combination will necessitate divisions if we wish to use local
computation ([36]). This will be discussed further in the section on solving hybrid IDs.

3.11 Marginalization of Potentials

In the process of solving an ID, we marginalize chance and decision variables in some sequence
that is dictated by the information constraints. Before we marginalize a variable, we may
have to do some combination and division operations prior to marginalization. In this
subsection, we define just the marginalization operation without describing the details of
how the potential being marginalized is obtained. The details of the solution algorithm are
described after we have completed all requisite definitions.
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The definition of marginalization of potentials depends on the nature of the variable be-
ing marginalized. We marginalize discrete chance variables by addition over its state space,
continuous chance variables by integration over its state space, and decision variables (dis-
crete or continuous) by maximization over its state space, which may be further constrained
by constraint potentials.

Suppose α is a potential for a, and suppose X ∈ a is a discrete variable. Then, the
marginal of α by deleting X, denoted by α−X , is a potential for a \ {X} given as follows:

α−X(y) =
∑
x∈ΩX

α(x,y) for all y ∈ Ωa\{X}. (3.3)

In this case, the units of α−X are exactly the same as the units of α.
If X ∈ a is a continuous variable, then α−X is defined as follows:

α−X(y) =

∫ ∞
−∞

α(x,y) dx for all y ∈ Ωa\{X}. (3.4)

In this case, the units of α−X are the units of α multiplied by the units of X.
And if X ∈ a is a decision variable, then α−X is defined as follows:

α−X(y) = max
x∈ΩX

α(x,y) for all y ∈ Ωa\{X}. (3.5)

In this case, the units of α−X are exactly the same as the units of α. If we have a constraint
potential χ for s associated with X ∈ s, then we assume that χ is already included in
α (so that s ⊆ a), and the maximization in Equation (3.5) is over x ∈ ΩX such that
χ(x,y↓s\{X}) = 1.

3.12 Division of Potentials.

The process of solving an ID may involve division of discrete or continuous potentials by
discrete or continuous potentials. Also, the potential in the divisor is always a marginal of
the potential being divided.

Suppose α is a discrete or continuous potential for a, and suppose X ∈ a is a discrete
or continuous chance variable. Then the division of α by α−X , denoted by α � α−X , is a
potential for a defined as follows:

(α� α−X)(x,y) = α(x,y)/α−X(y) for all x ∈ ΩX , and y ∈ Ωa\{X} (3.6)

In Equation (3.6), if the denominator is zero, then the numerator is also 0, and in this
case we define 0/0 as 0. The units of the potential α � α−X are the units of α divided by
the units of α−X . For the division operations that are done in the process of solving an ID
(described in the next subsection) it can be shown that α� α−X represents the conditional
for X given variables in a \ {X}. Thus, if X is discrete, then α� α−X is discrete, and if X
is continuous, α� α−X is continuous in units of (unitX)−1 ([6]).
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3.13 An Algorithm for Solving Hybrid Influence Diagrams.

We have all the definitions needed to solve hybrid IDs with deterministic conditionals. The
solution algorithm is basically the same as described in Shenoy [36] and Lauritzen and Nilsson
[26] for discrete IDs. The details of the solution algorithm are as follows.

First, all variables need to be marginalized in a sequence that respects the information
constraints in the sense that if X precedes Y in the information sequence, then Y must be
marginalized before X. In a well-defined ID, the information constraints form a partial order
such that if C is a chance variable, and D is a decision variable, exactly one of the following
information constraints must hold: either C precedes D, or D precedes C. In the former
case, the true value of C is known by the decision-maker prior to choosing a state of D, and
in the latter case, the true value of C is not known at the time the decision-maker has to
choose a state of D.

First, we describe the general case where we have an additive factorization of the joint
utility function. In this case, divisions may be required. Next, we describe some special
cases where divisions can be avoided.

We start with a set of potentials included in an ID representation. These potentials get
modified in the process of marginalization.

3.14 Marginalizing a Chance Variable-Case 1

Suppose we have to marginalize a chance variable C. First, we combine all probability
potentials whose domains include C, resulting in the potential, say χ. Next, we compute
the marginal χ−C . Then, we compute the quotient (χ � χ−C). The set of all probability
potentials whose domains include C are replaced by the potentials χ−C and (χ � χ−C).
The units of (χ � χ−C) are units of probability if C is discrete, and (unitC)−1 if C is
continuous. The operations described so far is equivalent to the operations involved in arc-
reversal ([30]). Next, we combine all utility potentials that include C in their domains,
resulting in utility potential, say υ. The set of all utility potentials that include C in their
domains is now replaced by the potential υ. Next, we replace υ and (χ � χ−C) by the
potential (υ ⊗ (χ � χ−C))−C , which must be a utility potential. This concludes the end of
the process of marginalizing C. After marginalizing chance variable C, there will not be any
potentials that include C in their domains.

3.15 Marginalizing a Decision Variable-Case 1

Suppose we have to marginalize decision variable D. First we combine all utility potentials
that include D in their domains, and then we combine the resulting utility potential with
constraint potentials for D if any, resulting in utility potential, say υ. Next, we marginalize
D from υ. All utility and constraint potentials that include D in their domains are now
replaced by υ−D. In the process of marginalizing D from υ, we keep track of where the
maximum is attained (as a function of the remaining variables in the domain of υ). This
yields a decision function for the decision variable. The collection of all decision functions
constitutes an optimal strategy for the ID.
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After all variables have been marginalized, we end up with a single utility potential for
the empty set, whose value represents the optimal utility associated with an optimal strategy.

This general algorithm described above involves divisions in the process of marginalizing
a chance variable. This step may be simplified in the case where we have a single utility
potential as follows.

3.16 Marginalizing a Chance/Decision Variable-Case 2

Suppose we have to marginalize a (chance or decision) variable X. First, we combine all
potentials that includeX in their domains, resulting in potential, say, υ, and then marginalize
X from υ. The set of all potentials that include X in their domains is replaced by υ−X . In
this case, we cannot predict the nature of υ−X , i.e., it may have hybrid units.

Notice that there are no divisions involved in this process. When we have a single utility
factor, combination always involves multiplication, which is associative, and it follows from
the axiomatic approach of Shenoy and Shafer [38] that we can find marginals without doing
any divisions. The process of solving an ID can be described as finding the marginal for
the empty set by sequentially marginalizing all variables in a sequence that respects the
information constraints. The first example (entrepreneur’s problem) solved in Section 5 has
a single utility factor, and thus, no divisions are required.

Another special case where no divisions are necessary is as follows. In the process of
marginalizing a chance variable C, suppose that there is only one probability (discrete or
continuous) potential, say χ that includes C in its domain. In this case χ must be the
conditional for C given its parents, pa(C). Thus, χ−C is an identity potential for pa(C)
(whose values are all 1’s). In this case also, we can skip the divisions. If this is true for all
chance variables C (this will happen if the arcs into each chance variable are consistent with
the partial order representing the information constraints, and we pick a deletion sequence
consistent with all arcs in the ID), then we can use the rules described in Case 2 above. The
second example (American put option problem) solved in Section 5 is an example of this
type and no divisions are required.

Finally, we remark that one can always avoid divisions by combining all utility potentials
and replacing the set of all utility potentials by the combination. This may, however, increase
the computational effort of solving an ID as the domain of the single joint utility potential
will have all decision variables in its domain and potentially could be large. Shenoy [36]
has described a small example where divisions are inescapable assuming that we wish to use
local computation and avoid computing on the domain of all variables.

The algorithm described in this subsection is illustrated in Section 5 by solving two small
hybrid IDs in complete detail.

4 Mixture of Polynomials Functions

In this section, we define MOP functions, describe some methods for finding MOP approx-
imations of univariate and two-dimensional conditional PDFs, and piecewise-linear approx-
imations of nonlinear deterministic functions. We illustrate our method for the log-normal
distribution. Shenoy and West [40] describes MOP approximations of the PDFs of the normal
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and chi-square univariate distributions, and CLG distributions in two dimensions. Shenoy
[37] describes MOP approximations of the CLG PDFs in one, two and three dimensions.

4.1 MOP Functions

The definitions of one-dimensional, and multi-dimensional MOP functions is taken from
Shenoy [37].

A one-dimensional function f : R → R is said to be a mixture of polynomials (MOP)
function if it is a piecewise function of the form:

f(x) =

{
a0i + a1ix+ · · ·+ anix

n for x ∈ Ai, i = 1, . . . , k,

0 otherwise.
(4.1)

where A1, . . . , Ak are disjoint intervals in R that do not depend on x, and a0i, . . . , ani are
constants for all i. We will say that f is a k-piece (ignoring the 0 piece), and n-degree
(assuming ani 6= 0 for some i) MOP function.

An example of a 2-piece, 3-degree MOP function g1(·) in one-dimension is as follows:

g1(x) =


0.41035 + 0.09499x− 0.09786x2 − 0.02850x3 if −3 < x < 0,

0.41035− 0.09499x− 0.09786x2 + 0.02850x3 if 0 ≤ x < 3

0 otherwise

(4.2)

g1(·) is a MOP approximation of the PDF of the standard normal distribution on the domain
(−3, 3), and was found using Lagrange interpolating polynomials with Chebyshev points,
which will be discussed in the next subsection.

The main motivation for defining MOP functions is that such functions are easy to
integrate in closed form, and the family of MOP functions is closed under multiplication,
addition, integration, the main operations in solving hybrid IDs. Also, since MOP functions
are easily differentiable, it is easy to maximize MOP functions in closed form.

A multivariate polynomial is a polynomial in several variables. For example, a polynomial
in two variables is as follows:

P (x1, x2) = a00 + a10x1 + a01x2 + a11x1x2 + a20x
2
1 + a02x

2
2 + a21x

2
1x2 + a12x1x

2
2 + a22x

2
1x

2
2(4.3)

The degree of the polynomial in Equation (4.3) is 4 assuming a22 is a non-zero constant. In
general, the degree of a multivariate polynomial is the largest sum of the exponents of the
variables in the terms of the polynomial.

An m-dimensional function f : Rm → R is said to be a MOP function if

f(x1, x2, . . . , xm) =

{
Pi(x1, x2, . . . , xm) for (x1, x2, . . . , xm) ∈ Ai, i = 1, . . . , k,

0 otherwise
(4.4)

where Pi(x1, x2, . . . , xm) are multivariate polynomials in m variables for all i, and the disjoint
regions Ai are as follows. Suppose π is a permutation of {1, ...,m}. Then each Ai is of the
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form:

l1i ≤ xπ(1) ≤ u1i, (4.5)

l2i(xπ(1)) ≤ xπ(2) ≤ u2i(xπ(1)),

...

lmi(xπ(1), . . . , xπ(m−1)) ≤ xπ(m) ≤ umi(xπ(1), . . . , xπ(m−1))

where l1i and u1i are constants, and lji(xπ(1), . . . , xπ(j−1)) and uji(xπ(1), . . . , xπ(j−1)) are linear
functions of xπ(1), xπ(2), . . . , xπ(j−1) for j = 2, . . . ,m, and i = 1, . . . , k. We will refer to the na-
ture of the region described in Equation (4.5) as a hyper-rhombus. Although we have defined
the hyper-rhombus as a closed region in Equation (4.5), each of the 2m inequalities can be
either strictly < or ≤. Notice that the definition of the region Ai in the m-dimensional case
(in Equation 4.5) is a generalization of the requirement in the 1-dimensional case (Equation
4.1) that the regions Ai are intervals.

A special case of the hyper-rhombus region Ai is a region of the form:

l1i ≤ x1 ≤ u1i, l2i ≤ x2 ≤ u2i, . . . , lmi ≤ xm ≤ umi (4.6)

where l1i, . . . , lmi, u1i, . . . , umi are all constants. We refer to the region defined in Equation
4.6 as a hypercube (in m-dimensions).

An example of a 2-piece, 3-degree MOP g2(·, ·) defined on a two-dimensional hyper-
rhombus is as follows:

g2(x, y) =


0.41035 + 0.09499(y − x)− 0.09786(y − x)2 − 0.02850(y − x)3 if x− 3 < y < x,

0.41035− 0.09499(y − x)− 0.09786(y − x)2 + 0.02850(y − x)3 if x ≤ y < x+ 3

0 otherwise

(4.7)
g2(x, y) is a two-dimensional MOP approximation of the PDF of the CLG distribution of
Y |x ∼ N(x, 12) on the domain −∞ < x < ∞, x − 3 < y < x + 3. Notice that g2(x, y) =
g1(y − x), where g1(·) is as defined in Equation 4.2.

4.1.1 Advantages of Hyper-rhombus Regions

One advantage of defining multi-dimensional MOP functions on hyper-rhombuses is that
MOP functions are closed under transformations needed for multi-dimensional linear deter-
ministic conditionals. For example consider the case where X, Y , and Z are continuous
variables, where X has PDF fX(x), Y |x has conditional PDF fY |x(y), and Z has a de-
terministic conditional Z = X + Y , which is represented by the function δ(z − x − y),
where δ is the Dirac delta function. Suppose that fX(x) is a 1-dimensional MOP function,
and suppose that fY |x(y) is a 2-dimensional MOP function (in x and y) defined on hyper-
cubes. Suppose we wish to find the marginal of Z. After we marginalize Y (by computing∫∞
−∞ fY |x(y) δ(z − x − y) dy), we obtain the function fY |x(z − x). Notice that even though
fY |x(y) was defined on hypercubes, fY |x(z − x) is no longer defined on hypercubes since we
now have regions such as l1i ≤ z − x ≤ u1i, which is a hyper-rhombus.

Another advantage is that we can obtain MOP approximations of CLG PDFs from a
MOP approximation of the univariate standard normal PDF ([37]). For example, suppose
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g1(x) is a MOP approximation of the PDF of N(0, 12). Now suppose Y |x ∼ N(a x+ b, σ2),
where a, b, and σ are constants, and σ 6= 0. We can find a MOP approximation of the PDF
of Y |x as follows:

h(x, y) =
1

|σ|
g1

(
y − a x− b

σ

)
(4.8)

Notice that even though g1(x) is defined on hypercubes, h(x, y) is no longer defined on
hypercubes (since we now have regions such as l1i ≤ y−a x−b

σ
≤ u1i). However, h(x, y) is

defined on a hyper-rhombus region, and therefore is a MOP. The MOP function g2(x, y)
described in Equation 4.7 is an instance of h(x, y) when a = 1, b = 0, and σ = 1.

Finally, the hyper-rhombus region allows us to find MOP approximations of conditional
PDFs using fewer pieces and lower degrees. Using hypercubes, we were able to find a 16-piece,
18-degree MOP approximation of a conditional log-normal PDF. Using hyper-rhombuses, we
found an 8-piece, 5-degree MOP approximation for the same conditional log-normal PDF.
This is because in the hyper-rhombus case, we can truncate the region where the PDF
has very small values, and thus avoid the high degree necessitated by the non-negativity
condition of PDFs.

There are some disadvantages associated with hyper-rhombus regions compared to hy-
percubes. MOPs defined on hyper-rhombuses take longer to integrate. After integration,
MOPs defined on hyper-rhombuses may have higher degrees. Some comparisons of hyper-
rhombuses versus hypercubes appear in Shenoy [37], and Shenoy et al. [35].

4.2 Finding MOP Approximations of Univariate PDFs

In this subsection, we will describe a process for finding a MOP approximation of a univariate
PDF using Lagrange interpolating polynomials with Chebyshev points. In the next section,
we will work with log-normal PDFs. Therefore, we will use the log-normal distribution for
illustration purposes.

4.2.1 Lagrange Interpolating Polynomials

Suppose we need to fit a polynomial for a one-dimensional function f(x) in some interval
(a, b). Given a set of n points {(x1, f(x1)), . . . , (xn, f(xn))}, the Lagrange interpolating
polynomial (LIP) P (x) is given by:

P (x) =
n∑
j=1

[
f(xj)

n∏
k=1, k 6=j

x− xk
xj − xk

]
(4.9)

The polynomial P (x) has the following properties ([3]). It is a polynomial of degree ≤
(n− 1) that passes through the n points {(x1, f(x1)), ..., (xn, f(xn))}, i.e., P (xj) = f(xj) for
j = 1, ..., n. If f(x) is continuous and (n + 1)-times differentiable in an interval (a, b), and
x1, . . . , xn are distinct points in (a, b) such that x1 < . . . < xn, then for each x ∈ (a, b), there
exists a number ξ(x) (generally unknown) between x1 and xn such that

f(x) = P (x) +
f (n+1)(ξ(x))

n!
(x− x1)(x− x2) · · · (x− xn) (4.10)
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4.2.2 Chebyshev Points

One question in the use of LIP is the choice of the points x1, . . . , xn. For an interval (a, b)
where b > a, the n Chebyshev points are given by

xi =
1

2
(a+ b) +

1

2
(b− a) cos

(
2i− 1

2n
π

)
, for i = 1, . . . n (4.11)

The Chebyshev points are often used with LIP because the resulting polynomial approxima-
tion P (x) minimizes the quantity |(x−x1) · · · (x−xn)| for all x ∈ (a, b), which is proportional
to the absolute error between the function f(x) and the LIP P (x) (see Equation (4.10)). The
minimum value of |(x−x1) · · · (x−xn)| is 1

2n−1 . Thus, as n increases, the maximum absolute
deviation decreases.

4.2.3 Finding a MOP Approximation for a PDF

The construction of a k-piece, n-degree MOP g(x) that approximates a PDF f(x) on some
domain (l, u) proceeds as follows. First, we compute the LIP polynomial, say gu(x), for f(x)
using n = 3 Chebyshev points for the domain (l, u). Second, we check to see if gu(x), is
non-negative over the entire domain (by computing the minimum of gu(x) over the entire
domain and making sure it is positive). If not, we increase n until we obtain non-negativity.
Since we are using Chebyshev points, we are guaranteed to obtain non-negativity for some n
assuming f(x) > 0 for x ∈ (l, u). If the smallest degree n for which we obtain non-negativity
is too high (> 5, e.g. for a 1-dimensional MOP), then we partition the domain into more
pieces and restart. Third, we normalize the fitted polynomial gu(x) so that it integrates to
1.

The procedure described in the previous paragraph can be applied to any PDF, including,
e.g., the class of quantile-parameterized distributions described in Keelin and Powley [22].
We will apply the above procedure for a log-normal distribution. Suppose X ∼ N(µ, σ2) and
Y = eX . Then, we say Y has the log-normal distribution with parameters µ and σ2, written
as Y ∼ LN(µ, σ2). First, we need to decide on the precision of the MOP approximation.
The exact domain of the PDF of Y is (0,∞). For the standard normal distribution, the
domain (−3, 3) covers 99.7% of the total probability. Thus, we can approximate the PDF of
Y on the domain (eµ−3σ, eµ+3σ). If we need greater precision, we can approximate the PDF
of Y on a larger domain, e.g., on (eµ−4σ, eµ+4σ), which captures more than 99.99% of the
total probability.

Suppose S1 ∼ LN(µ, σ2) where µ = ln(40) + 0.00074 and σ2 = 0.132292 (these constants
are obtained from the American put option example described in Section 5.2). The 0.15
percentile of the PDF of S1 is 27.03, and the 99.85 percentile is 59.28. If we try to fit a
1-piece MOP approximation of the PDF of S1 using the above procedure, the result is a
8-degree MOP on the domain (27.03, 59.28). So we partition the domain into two pieces
(27.03, 39.34) and [39.34, 59.28), where 39.34 is the mode of S1 (= eµ−σ

2
). In this case, we

find a 2-piece, 5-degree MOP φp1(s1). A graph of the MOP approximation φp1(s1) overlaid
on the actual PDF φ1(s1) truncated to (27.03, 59.28) is shown in Figure 3 and it shows that
there are not much differences between the two functions. The mean of φp1(s1) is ≈ 40.370,
and the mean of φ1(s1) ≈ 40.371. The variance of φp1(s1) is ≈ 27.875 and the variance of
φ1(s1) ≈ 27.879.
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Figure 3: A Graph of φp1 (in red) Overlaid on φ1 (in blue); the Bottom Graph Shows the
Difference φ1 − φp1 in the Curves

The LIP method described for univariate PDFs can also be applied for 2-dimensional
conditional PDFs. A generalization of Lagrange interpolating polynomials exists for two
and higher dimensions and its implementations exists in commercial software such as Math-
ematica and Maple. Chebyshev points are also defined in closed form for two-dimensional
regions in Xu [43].

4.3 Finding Piecewise-Linear Approximations of Deterministic Con-
ditionals

In this subsection, we describe finding piecewise-linear approximations of deterministic con-
ditionals. MOP functions are closed under transformation required for multi-dimensional
linear and quotient functions. Thus, if we have a nonlinear deterministic conditional (as
we do in the entrepreneur’s problem), then we need to approximate such conditionals by
piecewise linear functions.

Consider the nominal demand function fQn as a function of price p in the range 1 ≤ p ≤ 47
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given as follows:
fQn(p) = 80(ln 50− ln p) if 1 ≤ p ≤ 47 (4.12)

Since fQn(p) is not a linear function, the deterministic conditional Qn = fQn(P ) (associated
with Qn) is not linear. Thus, we need to approximate fQn(p) by a piecewise linear function.
We select a set of intermediate points in the interval (1, 47) and find a piecewise linear
approximation fpQn(p) of this one-dimensional function as follows:

fpQn(p) =



225.073− 43.9445(p− 3) if 1 ≤ p < 3

157.289− 16.946(p− 7) if 3 ≤ p < 7

107.766− 8.25386(p− 13) if 7 ≤ p < 13

69.4− 4.79573(p− 21) if 13 ≤ p < 21

28.534− 2.919(p− 35) if 21 ≤ p < 35

4.95003− 1.96533(p− 47) if 35 ≤ p ≤ 47

0 otherwise

(4.13)

The number of intermediate points and the location of the points was selected by trial
and error. A graph of fpQn(p) vs. p overlaid on the graph of fQn(p) vs. p is shown in
Figure 4. The maximum absolute percentage deviation between fQn(p) and fpQn(p) is 5.3%
at p = 43.5.

5 Two Examples

In this section, we illustrate our framework and algorithm for solving hybrid IDs with deter-
ministic conditionals by solving two problems. The first one is the entrepreneur’s problem
described in section 3, and has continuous chance and deterministic conditionals, a con-
tinuous decision variable, and one (unfactored) utility function. The second problem is an
American put option described in Charnes and Shenoy [5]. This problem has continuous
chance variables, discrete decision variables with continuous chance predecessors, and an
additive factorization of the utility function. For some of the complicated marginalization
operations, we report the approximate time it takes Mathematica to do the operation (using
the Timing command in Mathematica). We used Mathematica version 7.0.1 on a MacBook
Pro laptop computer to do the computations.

5.1 Entrepreneur’s Problem

We will solve the entrepreneur’s problem by marginalizing variables in the following se-
quence: Ca, Z2, Cn, Qa, Z1, Qn, P . To avoid the integration and optimization problems, we
will approximate the continuous potentials associated with Z1 and Z2 by MOP potentials
ϕp1 and ϕp2, respectively, and the nonlinear deterministic functions associated with Qn and
Cn by piecewise-linear functions fpQn and fpCn , respectively. Since we have a single utility
potential, no divisions are necessary during the solution process.
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Figure 4: A Graph of fpQn(p) (in red) Overlaid on fQn(p) (in blue); the Bottom Graph Shows
the Difference fpQn(p)− fQn(p) in the Curves

5.1.1 Marginalizing Ca

First, we marginalize Ca. Ca is in the domain of potentials χa and π. Let potential π1 denote
(χa ⊗ π)−Ca . Then,

π1(p, qa, cn, z2) = (χa ⊗ π)−Ca(p, qa, cn, z2)

=

∫ ∞
−∞

δ(ca − (cn + z2)) · (p · qa − ca) dca

= p · qa − (cn + z2), (utiles) (5.1)

The result in Equation (5.1) follows from property 1 of Dirac delta functions.

5.1.2 Marginalizing Z2

Next, we marginalize Z2. Z2 is in the domain of potentials ϕp2 and π1. Let ϕp2(z) denote
the 2-piece, 3-degree MOP approximation of ϕ2(z), the PDF associated with the standard
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normal distribution, as described in Equation 4.2.
Let π2 denote (ϕp2 ⊗ π1)−Z2 . Details of π2 are as follows:

π2(p, qa, cn) = (ϕp2 ⊗ π1)−Z2(p, qa, cn)

=

∫ ∞
−∞

ϕp2(z2) · (p · qa − (cn + z2)) dz2

= p · qa − cn (utiles) (5.2)

5.1.3 Marginalizing Cn

Next we marginalize Cn. Cn is in the domain of potentials χn and π2. Let fpCn denote a
3-piece piecewise-linear approximation of the cost function fCn as follows:

fpCn(qa) =


705.1 + 9.29qa if 2 ≤ qa < 42

844.19 + 5.98qa if 42 ≤ qa < 104

1025.87 + 4.23qa if 104 ≤ qa ≤ 316

0 otherwise.

(5.3)

The maximum absolute percentage deviation between fpCn and fCn is 2.3% at qa = 18.64.
The Dirac potential associated with Cn is χn(cn, qa) = δ(cn − fpCn(qa)). Let π3 denote
(χn ⊗ π2)−Cn . Details of π3 are as follows.

π3(p, qa) = (χn ⊗ π2)−Cn(p, qa)

=

∫ ∞
−∞

(p qa − cn) · δ(cn − fpCn(qa)) dcn

= p qa − fpCn(qa) (utiles) (5.4)

5.1.4 Marginalizing Qa

Next, we marginalize Qa. Qa is in the domain of potentials θa and π3. Let π4 denote
(θa ⊗ π3)−Qa Details of π4 are as follows.

π4(p, qn, z1) = (θa ⊗ π3)−Qa(p, qn, z1)

=

∫ ∞
−∞

δ(qa − (qn + z1)) · (p · qa − fpCn(qa)) dqa

= p · (qn + z1)− fpCn(qn + z1) (utiles) (5.5)

Notice that π4 is a MOP function.
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5.1.5 Marginalizing Z1

Next, we marginalize Z1, which is in the domain of potentials ϕp1 and π4. Let π5 denote
(ϕp1 ⊗ π4)−Z1 . π5 is computed as follows:

π5(p, qn) = (ϕp1 ⊗ π4)−Z1(p, qn)

=

∫ ∞
−∞

ϕp1(z1) · (p(qn + z1)− fpCn(qn + z1)) dz1

= p · qn −
∫ ∞
−∞

fpCn(qn + z1) · ϕp1(z1) dz1 (5.6)

Notice that since ϕp1 and fpCn are MOP functions, π5 is also a MOP function (15 pieces, 5
degree). It takes Mathematica about 3.7 seconds to do the integration in Equation (5.6).

5.1.6 Marginalizing Qn

Next, we marginalize Qn. Qn is in the domain of potentials θn and π5. Let π6 denote
(θn ⊗ π5)−Qn . The details of π6 are as follows.

π6(p) = (θn ⊗ π5)−Qn(p)

=

∫ ∞
−∞

δ(qn − fpQn(p)) · π5(p, qn) dqn

= π5(p, fpQn(p)) (5.7)

Since fpQn(p) is a piecewise-linear function, and π5 is a MOP function, π6(p) is a MOP
function. π6 is computed as a 15-piece, 5-degree MOP function. It takes Mathematica about
14.8 seconds to do the integration in Equation (5.7).

5.1.7 Marginalizing P

Figure 5 shows a graph of π6(p) vs. p. Finally, we marginalize P . The maximum utility
is 234.12 utiles at p = $25.76/widget. It takes Mathematica 0.15 seconds to marginalize P
from π6. For comparison, when demand and supply are known with certainty, the problem
reduces to a nonlinear optimization problem and the maximum utility 198 utiles is obtained
when price is $24.10/widget.

5.2 An American Put Option Problem

This problem is adapted from Charnes and Shenoy [5]. An option trader has to decide
whether or not to exercise a 7-month put option with initial stock price S0 = $40 and
exercise price X = $35. A put option on a stock provides the owner of the option the right
to sell one share of the stock at the exercise price during the period of the option. For
example, if the price of the stock dips to, say $30, during the option period, then the owner
of the option described above can buy one share at $30, and sell it for $35, with a realized
profit of $5. In reality, the option can be exercised at any time before the expiration of the
option. For modeling purposes, we assume that the option is available for exercise at three
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Figure 5: A Graph of π6(p) vs. p

equally-spaced decision points over a 7-month period. Following standard practice in the
financial literature, the stock prices, S1, S2, . . . , Sk evolve according to the discrete stochastic
process: Sj = Sj−1 ·Y , where Y ∼ LN((r− σ2

2
)∆t, σ2∆t), for j = 1, 2, . . . , k , Sj is the stock

price (in $) at time j∆t, r is the risk-less interest rate (per year), σ is the stock’s volatility
(per year), T denotes the length of the option (in years), and ∆t = T

k
. We assume r = 0.0488

per year, T = 0.5833 years, ∆t = 0.1944 years, k = 3 stages and σ = 0.3 per year (these
constants are borrowed from Geske and Johnson [14], which provides an analytic value of
the option for comparison purposes). Thus, S1 ∼ LN(ln 40 + 0.00074, 0.132292), S2|s1 ∼
LN(ln s1 + 0.00074, 0.132292), S3|s2 ∼ LN(ln s2 + 0.00074, 0.132292). An ID representation
of the problem is shown in Figure 6.

Figure 6: An ID Representation of the American Put Option

The state space of D1 is {e1, h1}, i.e., exercise or hold. The constraints for the decision
nodes D2 and D3 in the problem are shown in Figure 7, where ei, hi, nci denote the alterna-
tives: exercise, hold, or no choice, respectively, for decision Di, i = 2, 3. The only possible
decision for stage i is no choice if the stock was exercised at a prior time. The additive factors
of the utility function are: πj(dj, sj) = e−rj∆t max {35− sj, 0}, if dj = ej; πj = 0, otherwise.
The e−rj∆t is a discount factor to translate future profits back to the present (j = 0). As
in the entrepreneur’s problem, we assume that the decision maker’s utilities for profits are
linear in $.
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Figure 7: Constraints on D2 and D3

We approximate the marginal PDF of S1 by a MOP function φp1(s1). Also the MOP
approximations of the conditional PDFs for S2|s1, and S3|s2 are denoted by ψp2(s1, s2), and
ψp3(s2, s3), respectively. Also, we model the constraints on the choices at D2 and D3 by
constraint potentials χ2 for D2 in {D1, D2} and χ3 for D3 in {D2, D3}. The values of χ2 and
χ3 are 1’s for the possible states (as shown in Figure 7), and 0’s for the rest.

The potentials in the problem are as follows (name, domain, and units):

π3, for {S3, D3}, utiles
χ3, for D3 ∈ {D2, D3}, no units
ψp3, for {S2, S3}, ($)−1

χ2, for D2 ∈ {D1, D2}, no units
π2, for {S2, D2}, utiles
ψp2, for {S1, S2}, ($)−1

π1, for {S1, D1}, utiles
φp1, for {S1}, ($)−1

The information constraints in the ID constrain us to marginalize the variables in the
following sequence: D3, S3, D2, S2, D1, S1. Since the conditional arcs for S1, S2 and S3 are
consistent with the partial order determined by the information constraints, no divisions are
required.

5.2.1 Marginalizing D3 and S3

First we marginalize D3. Since D3 is in the domains of potentials π3 and χ3, we first combine
these and then marginalize D3 from the combination. Let π′3 denote (χ3⊗π3)−D3 . The units
of values of π′3 are utiles. Because π3(e3, s3) ≥ π3(h3, s3) and π3(e3, s3) ≥ π3(nc3, s3) for all
values of s3 < 35, the details of π′3 are as follows:

π′3(d2, s3) =

{
0.97 max {35− s3, 0} if d2 = h2,

0 otherwise.
(5.8)

Thus, the optimal strategy of Stage 3 would be to exercise the option if the observed value
of S3 < 35, assuming this alternative is available (i.e., the option has not been exercised
earlier), and to abandon the option if the observed value of S3 ≥ 35.
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Next, we marginalize S3, which is in the domains of ψp3 and π′3. Let π′′3 denote (ψp3 ⊗
π′3)−S3 . The units of values of π′′3 are in utiles. Details of π′′3 are as follows.

π′′3(d2, s2) =

{∫ 35

0
π′3(d2, s3) · ψp3(s2, s3) ds3 if d2 = h2,

0 otherwise.
(5.9)

Since π′3 and ψp3 are MOP functions, π′′3 is a MOP function (4 piece, 9 degree).
Similarly, we marginalize the remaining variables. The optimal decision function at stage

2 is to exercise the option if the observed stock price is less than $24.75 (assuming this option
is available); otherwise hold it for the next stage. The optimal decision function in stage 1
is to exercise the option when the stock price is less than $28.15; otherwise hold it for the
next stage. The optimal value of the option is computed as $1.219.

Our result is comparable to the financial analytic result $1.219 (using Black and Scholes
[2] option pricing theory computed analytically in Geske and Johnson [14]), and the result
$1.224 computed by Monte Carlo method using 30 stages ([5]).

One practical benefit of solving this ID exactly is that not only do we get the value of the
option (which is the focus of option pricing theory), we also get a strategy for exercising the
option. The financial analytic result provides only the value of the option. The Monte Carlo
method proposed in Charnes and Shenoy [5] provides an approximate strategy by providing
bounds on when to exercise the option. Our technique provides an exact strategy for the ID
in which the conditional PDFs are approximated by MOP functions.

6 Summary and Conclusions

The main contribution of this paper is a framework and an algorithm for solving hybrid IDs
with discrete and continuous chance variables, discrete and continuous decision variables,
and deterministic conditionals for continuous chance variables.

First, the extended Shenoy-Shafer architecture for making inferences in hybrid BNs pro-
posed in Shenoy and West [39] has been further extended to include decision variables and
utility functions. Second, we propose approximating conditional PDFs and utility functions
by MOPs, and approximating nonlinear deterministic functions for continuous chance vari-
ables by piecewise linear functions. We have illustrated our framework and algorithm by
solving two small hybrid IDs.

Two main problems in solving hybrid IDs are marginalization of continuous chance vari-
ables and marginalization of continuous decision variables. For decision problems that can
be solved without divisions, one solution is to approximate conditional PDFs and utility
functions by MOP functions, and nonlinear deterministic conditionals by piecewise linear
functions. MOP functions are closed under multiplication, addition, integration, and under
transformations needed for linear deterministic conditionals. However, they are not closed
under divisions. Thus, MOP approximations could be used to mitigate the problems as-
sociated with marginalization of continuous chance and continuous decision variables when
no divisions are needed. Also, it is relatively easier to maximize a utility function that is
expressed in MOP form with a low degree. By solving for all real roots of a low-degree
polynomial in closed form, we can compute a global maximum of the utility function as a
function of other continuous variables in closed form.
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There are two classes of decision problems that can be solved using local computation
without doing any divisions. First, if we have a single utility function (with no additive
factors), then combination is always multiplication, which is associative, and the axioms for
local computations (see [38]) are satisfied by the combination and marginalization operations
without needing any divisions. The entrepreneur’s problem is an example of this genre. Sec-
ond, if we have a decision problem where the arcs pointing to chance variables are consistent
with the partial order determined by information constraints, then again no divisions are
necessary. The American put option is an example of this genre. Also, Markov reward
processes, where the arcs always point forward in time (from state S(t) to state S(t + 1)),
are a class of problems where divisions are not required.

6.1 Limitations

For more general decision problems where divisions are needed to solve a problem using
local computation, the method described in this paper will not work. The family of MOP
functions is not closed under the division operation. Thus, if we divide a MOP function by
another MOP function, the resulting function may not be a MOP, in which case there are no
guarantees that we can integrate such functions in closed form. The Pigs problem, discussed
in Lauritzen and Nilsson [26], is an example of a problem of this type (requiring divisions
for solution using local computation). In general, if we have an additive factorization of the
joint utility function, and arc reversals are necessary for solution, then such problems cannot
be solved using local computation by using MOPs.

Our method based on MOPs inherits all the problems and issues that are inherent with
the MOP method. First, we need to find MOP approximations of PDFs and utility functions.
We can find MOP approximations by using Lagrange interpolating polynomials (LIP) with
Chebyshev points, but it needs manual interventions regarding the location of knots that
make up the pieces. Currently, we have some heuristics (mode, inflection points, equal
width, etc.), but no theory for this decision. Except for this issue, we can automate the
process of finding MOP approximations of conditional PDFs, and the process of solving
hybrid IDs containing deterministic conditionals. Lagrange interpolating polynomials for
one and higher dimensional functions can be easily found using commercial software (such
as Mathematica, Maple, Matlab, etc.). The LIP method does not require that the function
being approximated be differentiable. The theory of Chebyshev points exists for one and
two-dimensional functions. Also, we can use a MOP approximation of the one-dimensional
standard normal PDF to construct MOP approximations of higher dimensional CLG PDFs.
However, constructing tractable MOP approximations of high dimensional non-CLG PDFs
(such as a three-dimensional log-normal PDF) can be a challenge.

6.2 Future Work

How does the MOP method compare with the discretization and Monte Carlo methods? This
is an important question that needs to be answered and for which we do not have answers.
At this stage, we note that discretization has only been studied for one-dimensional PDFs.
While this can be näıvely applied to multi-dimensional conditional PDFs, the quality of the
resulting approximation has not been studied. For the conditional PDFs in the American
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put option problem, one could, e.g., find a 3-point discrete approximation of the PDF of
S1, a 3-point discrete approximation of the conditional PDF of S2 | s1 for each of the three
values of S1, resulting in up to 32 = 9 distinct values of S2, a 3-point discrete approximation
of the PDF of S3|s2 for each of the 9 distinct values of S2 resulting in up to 33 = 27 distinct
values of S3, etc. Clearly, such a strategy is not tractable for many stages. Also, we cannot
imagine obtaining a strategy as detailed as the one we obtain in stage 1 (exercise the option
in stage 1 if the observed value of S1 is less than 29.16, and hold otherwise) from a discretized
model with only 3 possible values of S1. Finally, we note that Markov chain Monte Carlo
methods wouldn’t converge for a probability model that includes deterministic conditionals.

How close is the approximate solution found by using our method to the true answer?
This is another important question for which we do not have answers. We note that the errors
in the MOP approximation of conditional PDFs can be quantified using measures such as
Kullback-Liebler (KL) divergence ([25]) and maximum absolute deviation between the MOP
approximation and the target PDF ([37]). In terms of these measures, the approximations
have very small errors. For example, the KL divergence between the standard normal PDF
truncated to (−3, 3) and the 2-piece, 3-degree MOP approximation described in Equation 4.2
is 0.009, and the maximum absolute deviation between the two functions is 0.014. However,
we do not know how these errors influence the errors in the optimal strategy and the errors
in the maximum expected utility. This is a topic that needs further research.

What is the size of decision problems that can be solved by our method? This is yet
another important question for which we do not have answers. We plan to solve the American
Put Option problem by gradually increasing the number of stages and observe where the
method breaks down, if at all. The main problem here is computing a MOP approximation
of the conditional for Sj | sj−1. As we change the number of stages, we need to recompute all
the MOP approximations of the conditional PDFs. This is another topic for further research.
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APPENDIX: Properties of Dirac Delta Functions

Two basic properties of Dirac delta functions are as follows (see e.g., [12], [13], [16], [20]).

1. (Sampling) If f(x) is any function that is continuous in the neighborhood of a, then∫ ∞
−∞

f(x) δ(x− a) dx = f(a). (6.1)

2. (Rescaling) If g(x) has real (non-complex) zeros at a1, . . . , an, and is differentiable at
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these points, and g′(ai) 6= 0 for i = 1, . . . , n, then

δ(g(x)) =
n∑
i=1

δ(x− ai)
|g′(ai)|

.

A more extensive list of properties of the Dirac delta function that are relevant for
uncertain reasoning can be found in Cinicioglu and Shenoy [6].
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Appendix I: Details of the Solution of the Entrepreneur’s Problem Using Mathematica® 
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H* This notebook has a solution of the Entrepreneur's Problem *L
H* Computing limits of variables P, Qn, Qa, Cn, Ca *L
Clear@pmin, pmax, qnmin, qnmax, qamin, qamax, cnmin, cnmax, camin, camaxD;
pmin = 1;
pmax = 47;
Plot@80 HLog@50D - Log@pDL, 8p, pmin, pmax<D
qnmax = N@80 HLog@50D - Log@pminDLD
qnmin = N@ 80 HLog@50D - Log@pmaxDLD
qamin = N@qnmin - 3D
qamax = N@qnmax + 3D
Plot@700 + 4 qa + 400 H1 - Exp@-qa ê 50DL, 8qa, qamin, qamax<D
cnmax = N@700 + 4 qamax + 400 H1 - Exp@-qamax ê 50DLD
cnmin = N@700 + 4 qamin + 400 H1 - Exp@-qamin ê 50DLD
camin = N@cnmin - 3D
camax = N@cnmax + 3D

20 30 40

50

100

150

200

250

300

312.962

4.95003

1.95003

315.962

50 100 150 200 250 300

1500

2000

2363.13

723.1

720.1

2366.13
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H* 2p3d MOP approximation of NH0, 1L from Shenoy@2010D*L
Clear@fZu, kZ, fZD;
fZu@z_D = Piecewise@88PDF@NormalDistribution@0, 1.D, zD, -3 § z § 3<<D;

kZ = ‡
-¶

¶

fZu@zD „z;

fZ@z_D = Simplify@fZu@zD ê kZD;
Clear@a0, a1, a2, a3, fpZD
a0 = 0.4103496175477352`;
a1 = 0.09499365944761645`;
a2 = -0.0978625597129868`;
a3 = -0.028502995174713566`;
fpZ@z_D = PiecewiseA9

9a0 + a1 z + a2 z2 + a3 z3, -3 § z < 0=,

9a0 - a1 z + a2 z2 - a3 z3, 0 § z § 3=

=E

Plot@8fZ@zD, fpZ@zD<, 8z, -3, 3<D
Clear@a0, a1, a2, a3, fZu, kZ, fZD;

0.41035+ 0.0949937 z - 0.0978626 z2 - 0.028503 z3 -3 § z < 0
0.41035- 0.0949937 z - 0.0978626 z2 + 0.028503 z3 0 § z § 3
0 True

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4
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H* Define Potentials *L
Clear@p1, p2, gcn, gpcn, p3, p4, p5,

qn, ptsq1, ptsq2, ptsq3, ptsq4, ptsq5, ptsq6, fqn, p6D;
p1@cn_, z2_, ca_D = DiracDelta@ca - cn - z2D
p2@z2_D = fpZ@z2D
gcn@qa_D = PiecewiseA991100 + 4. qa - 400. ‰-qaê50, qamin § qa § qamax==E
Clear@a3, b3, x31, x32, x33, x34, ptsq1D;
a3 = qamin;
b3 = 42.;
ptsqa1 = 88a3, gcn@a3D<, 8b3, gcn@b3D<<;
a4 = 42.;
b4 = 104.;
ptsqa2 = 88a4, gcn@a4D<, 8b4, gcn@b4D<<;
a5 = 104.;
b5 = qamax;
ptsqa3 = 88a5, gcn@a5D<, 8b5, gcn@b5D<< ;
gpcn@qa_D = Simplify@Piecewise@8

8InterpolatingPolynomial@ptsqa1, qaD, qamin § qa < 42<,
8InterpolatingPolynomial@ptsqa2, qaD, 42 § qa < 104<,
8InterpolatingPolynomial@ptsqa3, qaD, 104 § qa § qamax<

<DD
Plot@8gcn@qaD, gpcn@qaD<, 8qa, qamin, qamax<D
Plot@Hgcn@qaD - gpcn@qaDL ê gcn@qaD, 8qa, qamin, qamax<D
FindMaximum@8Abs@Hgcn@qaD - gpcn@qaDL ê gcn@qaDD, qamin < qa < qamax<, 8qa, 25<D
p3@qa_, cn_D = DiracDelta@cn - gpcn@qaDD
p4@qn_, z1_, qa_D = DiracDelta@qa - qn - z1D
p5@z1_D = fpZ@z1D
qn@p_D = 80 HLog@50D - Log@pDL
c1 = 1.;
c2 = 3.;
c3 = 7.;
c4 = 13.;
c5 = 23.;
c6 = 36.;
c7 = 47.;
ptsq1 = 88c1, qn@c1D<, 8c2, qn@c2D<<;
ptsq2 = 88c2, qn@c2D<, 8c3, qn@c3D<<;
ptsq3 = 88c3, qn@c3D<, 8c4, qn@c4D<<;
ptsq4 = 88c4, qn@c4D<, 8c5, qn@c5D<<;
ptsq5 = 88c5, qn@c5D<, 8c6, qn@c6D<<;
ptsq6 = 88c6, qn@c6D<, 8c7, qn@c7D<<;
fqn1@p_D = InterpolatingPolynomial@ptsq1, pD;
fqn2@p_D = InterpolatingPolynomial@ptsq2, pD;
fqn3@p_D = InterpolatingPolynomial@ptsq3, pD;
fqn4@p_D = InterpolatingPolynomial@ptsq4, pD;
fqn5@p_D = InterpolatingPolynomial@ptsq5, pD;
fqn6@p_D = InterpolatingPolynomial@ptsq6, pD;
fqn@p_D = Piecewise@8

8fqn1@pD, c1 § p < c2<,
8fqn2@pD, c2 § p < c3<,
8fqn3@pD, c3 § p < c4<,
8fqn4@pD, c4 § p < c5<,
8fqn5@pD, c5 § p < c6<,
8fqn6@pD, c6 § p § c7<

<D
Plot@8qn@pD, fqn@pD<, 8p, 1, 47<D
Plot@Hfqn@pD - qn@pDL ê qn@pD , 8p, 1, 47<, PlotRange Ø AllD
FindMaximum@8Abs@Hfqn@pD - qn@pDL ê qn@pDD, 1 < p < 47<, 8p, 43<D
p6@p_, qn_D = DiracDelta@qn - fqn@pDD
11.5073 ê qn@2D

DiracDelta@ca - cn - z2D

EPMoPApproximate20111027v7.nb | 3
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0.41035+ 0.0949937 z2 - 0.0978626 z22 - 0.028503 z23 -3 § z2 < 0

0.41035- 0.0949937 z2 - 0.0978626 z22 + 0.028503 z23 0 § z2 § 3
0 True

1100 - 400. ‰-qaê50 + 4. qa 1.95003 § qa § 315.962
0 True

1025.86+ 4.23236 qa 104. § qa § 315.962
844.188+ 5.97923 qa 42 § qa < 104.
704.977+ 9.29378 qa 1.95003 § qa < 42
0 True

50 100 150 200 250 300

1500

2000

50 100 150 200 250 300

0.005

0.010

0.015

0.020

80.0231646, 8qa Ø 18.606<<

DiracDeltaBcn -

1025.86+ 4.23236 qa 104. § qa § 315.962
844.188+ 5.97923 qa 42 § qa < 104.
704.977+ 9.29378 qa 1.95003 § qa < 42
0 True

F

DiracDelta@qa - qn - z1D

0.41035+ 0.0949937 z1 - 0.0978626 z12 - 0.028503 z13 -3 § z1 < 0

0.41035- 0.0949937 z1 - 0.0978626 z12 + 0.028503 z13 0 § z1 § 3
0 True

80 HLog@50D - Log@pDL
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225.073- 43.9445 H-3. + pL 1. § p < 3.
157.289- 16.946 H-7. + pL 3. § p < 7.
107.766- 8.25386 H-13. + pL 7. § p < 13.
62.1223- 4.56436 H-23. + pL 13. § p < 23.
26.2803- 2.75708 H-36. + pL 23. § p < 36.
4.95003- 1.93912 H-47. + pL 36. § p § 47.
0 True

20 30 40

50

100

150

200

250

300

20 30 40

0.01

0.02

0.03

0.04

0.05

80.0534971, 8p Ø 43.4628<<

DiracDeltaBqn -

225.073- 43.9445 H-3. + pL 1. § p < 3.
157.289- 16.946 H-7. + pL 3. § p < 7.
107.766- 8.25386 H-13. + pL 7. § p < 13.
62.1223- 4.56436 H-23. + pL 13. § p < 23.
26.2803- 2.75708 H-36. + pL 23. § p < 36.
4.95003- 1.93912 H-47. + pL 36. § p § 47.
0 True

F

0.0446868

H* Step 1: Marginalize Ca *L
Clear@pi, pi1D;
pi@p_, qa_, ca_D = p qa - ca;

TimingBpi1@p_, qa_, cn_, z2_D =

AssumingBcn œ Reals && z2 œ Reals, ‡
-¶

¶

pi@p, qa, caD p1@cn, z2, caD „caFF

80.050161, -cn + p qa - z2<

EPMoPApproximate20111027v7.nb | 5
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H* Step 2: Marginalize Z2 *L
Clear@pi2D;

TimingBpi2@p_, qa_, cn_D = SimplifyB‡
-3

3
pi1@p, qa, cn, z2D p2@z2D „z2FF

80.402676, -1. cn + 1. p qa<

H* Step 3: Marginalize Cn *L

Clear@pi2a, pi3D;
pi2a@p_, qa_, cn_D = p qa - cn;

TimingBpi3@p_, qa_D = AssumingBp œ Reals && qa œ Reals, ‡
-¶

¶

pi2a@p, qa, cnD p3@qa, cnD „cnFF

:0.109065, p qa -

1025.86+ 4.23236 qa 104. § qa § 315.962
844.188+ 5.97923 qa 42 § qa < 104.
704.977+ 9.29378 qa 1.95003 § qa < 42
0 True

>

H* Step 4: Marginalize Qa *L

Clear@pi4D;

TimingBpi4@p_, qn_, z1_D =

AssumingBqn œ Reals && p œ Reals && z1 œ Reals , ‡
-¶

¶

pi3@p, qaD p4@qn, z1, qaD „qaFF

:0.178617, p Hqn + z1L -

1025.86+ 4.23236 Hqn + z1L 104. § qn + z1 § 315.962
844.188+ 5.97923 Hqn + z1L 42 § qn + z1 < 104.
704.977+ 9.29378 Hqn + z1L 1.95003 § qn + z1 < 42
0 True

>

H* Step 5: Marginalize Z1 *L
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Clear@pi5D

TimingBpi5@p_, qn_D = SimplifyBPiecewiseExpandBp qn - ‡
-3

3
fpZ@z1D gpcn@qn + z1D „z1FFF

:3.67883,

0.+ p qn qn ¥ 318.962 »» qn § -1.04997
-704.977 + H-9.29378 + pL qn 4.95003 § qn § 39.
-844.188 + H-5.97923 + pL qn 45. § qn § 101.
-1025.86 + H-4.23236 + pL qn 107. § qn § 312.962
-511.259 + H-2.11618 + pL qn qn ã 315.962
96.7698+ H-7.48594 + pL qn - 221.265 qn2 +
62.8316 qn3 - 4.9477 qn4 - 0.013245 qn5

1.95003 < qn < 4.95003

-1.46734 µ 1011 + I1.80526 µ 109 + pM qn -

8.1314 µ 106 qn2 + 15 227. qn3 - 7.34455 qn4 - 0.00603175 qn5
312.962 < qn < 315.962

529 778.+ H-65 270.6 + pL qn + 3207.7 qn2 -
78.7331 qn3 + 0.964954 qn4 - 0.00472374 qn5

39. < qn < 42.

2.85944 µ 107 + I-1.39129 µ 106 + pM qn +

27 071.2 qn2 - 263.315 qn3 + 1.28032 qn4 - 0.00248955 qn5
101. < qn < 104.

-3.19217 µ 107 + I1.51933 µ 106 + pM qn -

28 919.6 qn2 + 275.168 qn3 - 1.30881 qn4 + 0.00248955 qn5
104. < qn < 107.

-697 149. + H81 162.4+ pL qn - 3778.53 qn2 +
87.8154 qn3 - 1.01902 qn4 + 0.00472374 qn5

42. < qn < 45.

1.50909 µ 1011 + I-1.84273 µ 109 + pM qn +

8.23619 µ 106 qn2 - 15 293.9 qn3 + 7.27552 qn4 + 0.00603175 qn5
315.962 < qn < 318.962

1.09833 µ 109 + I-4.20673 µ 107 + pM qn +

597 360. qn2 - 3659.97 qn3 + 7.34455 qn4 + 0.00603175 qn5
qn ã 104.

2.06087 µ 107 + I-2.00228 µ 106 + pM qn +

72 267.1 qn2 - 1133.47 qn3 + 6.06424 qn4 + 0.0085213 qn5
qn ã 42.

-13.9834 + H-46.6967 + pL qn - 55.0757 qn2 -
16.8377 qn3 + 5.09928 qn4 + 0.013245 qn5

True

>

H* Step 6: Marginalize Qn *L

Clear@pi6D;

TimingBAssuming Bp œ Reals, pi6@p_D = ‡
-¶

¶

pi5@p, qnD p6@ p, qnD „qnF;F

814.7687, Null<
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H* Determining Ò pieces and degree of pi6 *L
pi6a@p_D = Simplify@PiecewiseExpand@pi6@pDDD

-13.9834 p < 1. »» p > 47.
-2536.42 + 542.895 p - 43.9445 p2 1. § p < 3.

-2193.62 + 347.632 p - 16.946 p2 3. § p < 7.

-1936.1 + 249.999 p - 8.25386 p2 7. § p < 13.
-4.56436 H-26.531 + pL H-14.3117 + pL 13. § p § 13.1678
-4.56436 H-28.3384 + pL H-14.2511 + pL 14.4823 § p < 23.
-2.75708 H-34.9705 + pL H-16.5407 + pL 23. § p § 29.2103
-2.75708 H-35.9337 + pL H-18.8921 + pL 31.3865 § p < 36.
-1.93912 H-35.8762 + pL H-22.9703 + pL 36. § p § 47.
-11.9493 H-393.523 + pL H-13.8349 + pL
H-13.1172 + pL I215.502- 29.3499 p + p2M

p ã 13.8251

-4.93196 H-15.4318 + pL H-14.2468 + pL
H-11.3905 + pL I182.796- 26.8024 p + p2M

13.1678 < p < 13.8251

-1.35753 H-362.93 + pL H-30.1568 + pL
H-29.2002 + pL I1008.29- 63.4933 p + p2M

p ã 30.2984

-0.752539 H-32.8989 + pL I970.482- 62.0948 p + p2M I743.778- 54.4229 p + p2M 29.2103 < p < 30.2984

0.752539 H-27.3438 + pL I1105.41- 66.4375 p + p2M I901.117- 59.7863 p + p2M 30.2984 < p < 31.3865

4.93196 H-14.2509 + pL I241.11- 30.9596 p + p2M I159.927- 25.1685 p + p2M True

Plot@pi6a@pD, 8p, pmin, pmax<D

20 30 40

-2000

-1500

-1000

-500

H* Step 7: Marginalize P *L

Timing@FindMaximum@pi6a@pD, 8p, 20<DD

80.148605, 8234.117, 8p Ø 25.7556<<<
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Appendix II: Details of the Solution of the American Put Option Problem Using 

Mathematica® 
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