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ON TRANSFORMING BELIEF FUNCTION MODELS TO PROBABILITY MODELS

Barry R. Cobb and Prakash P. Shenoy

University of Kansas School of Business, 1300 Sunnyside Ave, Summerfield Hall,
Lawrence, KS 66045-7585, USA.

Abstract

In this paper, we explore methods for transforming a belief function model to an

equivalent probability model. We propose and define the properties of a method

called the plausibility transformation method. We compare the plausibility

transformation method with the pignistic transformation method. These two

methods yield qualitatively different probability models. We argue that the

plausibility transformation method is the correct method that maintains belief

function semantics.

Key Words: Bayesian networks, Dempster-Shafer belief functions, valuation-based systems,

pignistic transformation, plausibility transformation

1. Introduction

Bayesian probability theory and the Dempster-Shafer (D-S) theory of belief functions are two

distinct calculi for modeling and reasoning with knowledge about propositions in uncertain

domains. Bayesian networks and Dempster-Shafer belief networks both provide graphical and

numerical representations of uncertainty. While these calculi have important differences, their

underlying structures have many significant similarities. In a recent paper [Cobb and Shenoy

2003], we have argued that these two calculi have roughly the same expressive power.
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In this paper, we examine techniques for transforming a belief function model to an

equivalent Bayesian probability model. By an equivalent model, we mean a model that results in

the same qualitative conclusions and is consistent with D-S belief function semantics. This is

useful for several reasons.

First, a large model of an uncertain domain may have some knowledge represented by

belief functions, and some represented by probability functions. To reason with the entire model,

one needs to either translate the belief functions to probability functions, or vice-versa.

Second, although there are several proposals for decision-making using belief functions

[Jaffray 1989, Strat 1990], the theory of belief functions lacks a coherent decision theory to

guide the choices of lotteries in which uncertainty is described by belief functions. One solution

to this situation is to translate a belief function model to an equivalent probability model, and

then use the Bayesian decision theory to make decisions. Smets [1990] has suggested this

strategy be used by applying the so-called “pignistic” transformation method. We will later argue

that the pignistic transformation method is not consistent with Dempster’s rule of combination.

Third, the marginal of a joint belief function for a variable with many states can have an

exponential number of focal elements and may be too complex to comprehend. One method to

summarize a complex belief function is to translate it to an equivalent probability function.

Fourth, given the computational complexity of Dempster’s rule, it is easy to build belief

function models where the marginals of the joint belief function for variables of interest are

computationally intractable to calculate. In such cases, one can translate the belief function

model to an equivalent probability model and use Bayes rule to compute the relevant marginals

of the joint probability distribution.

Fifth, a correct transformation method will lead to an increased understanding of the

theory of belief functions by providing probabilistic semantics for belief functions. The literature

on belief functions is replete with examples where it is suggested that belief function theory is

superior to probability theory since a “corresponding” probability model using the pignistic

transformation leads to non-intuitive results [Bogler 1987, Delmotte and Smets 2001]. In all of
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these examples, if we use the plausibility transformation method, the two models—belief

function model and the corresponding probability model using the plausibility

transformation—give the same qualitative results.

Sixth, a correct transformation method that is consistent with belief function semantics

will lead to a new method for building probabilistic models. One can use belief function

semantics of distinct evidence (or no double-counting of uncertain knowledge) to build belief

function models and then use the plausibility transformation method to convert it to an

equivalent probability model.

A popular method for transforming a belief function to a probability function is the so-

called “pignistic” transformation method [Smets 1990, Smets and Kennes 1994, Smets 2002].

Another method is the “plausibility” transformation method [Voorbraak 1989, Shenoy and

Shenoy 2002]. In this paper, we study the properties of these two methods and compare them. In

many cases, these two methods lead to radically different probability models starting from the

same belief function model. We argue that if one is interested in an equivalent model, the

plausibility transformation method is the correct method, and that it results in a probability

model that is consistent with Dempster’s rule of combination.

There are many different semantics of D-S belief functions, including multivalued

mapping [Dempster 1966], random codes [Shafer 1987], transferable beliefs [Smets and Kennes

1994], and hints [Kohlas and Monney 1995], which are compatible with Dempster's rule of

combination. However, the semantics of belief functions as upper and lower probability bounds

on some true but unknown probability function are incompatible with Dempster’s rule [Walley

1987]. Also, Smets [2002] gives betting rates semantics for belief functions assuming that the

pignistic transformation is the correct transformation. Since the pignistic transformation is

inconsistent with Dempster’s rule, these betting rates semantics are not valid for D-S belief

functions. In this paper, we are concerned with the D-S theory of belief functions with

Dempster’s rule of combination as the updating rule, and not with theories of upper and lower

probabilities or with Smets’ transferable belief model with the pignistic rule. One benefit of
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studying probability functions derived from D-S belief functions is a more clear understanding of

D-S belief function semantics.

The main contributions of this paper are five theorems and three corollaries that describe

some key properties of the plausibility transformation method (that are not satisfied by the

pignistic method). These properties allow an integration of Bayesian and D-S reasoning that

takes advantage of the flexibility in computation and decision-making provided by Bayesian

calculus while retaining the superiority in modeling evidence that underlies D-S reasoning.

These conclusions will lead to a greater understanding of the similarities between the two

methods and allow belief function techniques to be used in probabilistic reasoning, and vice

versa.

The remainder of this paper is organized as follows. Section 2 contains notation and

definitions. Section 3 describes the pignistic and plausibility methods of transforming belief

functions to probability functions. Section 4 studies four examples in detail to emphasize the

differences between the pignistic transformation and the plausibility transformation methods.

Section 5 contains the main results of the paper. In Section 6, we summarize and conclude.

Proofs of all theorems are found in the Appendix.

2. Notation and Definitions

Probability Theory. Bayesian networks model knowledge about propositions in uncertain

domains using graphical and numerical representations [Spiegelhalter et al. 1993]. At the

qualitative level, a Bayesian network is a directed acyclic graph where nodes represent variables

and the graph represents conditional independence relations among the variables. At the

numerical level, a Bayesian network consists of a factorization of a joint probability distribution

into a set of conditional distributions, one for each variable in the network. Additional

knowledge in the form of likelihood functions can be used to update the joint probability

distribution.
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 Figure 2.1 shows a Bayesian network for a hypothetical anti-air threat identification 

problem. 

Figure 2.1. A Bayesian Network for an Anti-Air Threat Identification Problem 

Radar Warning Receiver (RWR)

Visibility (V)

Threat Effective? (TE)ML_Indicator (ML) EO_Sensor (EO)

Emitter (E) Threat_Mode (TM)

Range (R)Threat_ID (T)

Guidance (G)

 

 A probability potential Ps for s is a function Ps: Ωs → [0, 1]. We express our knowledge 

by probability potentials, which are combined to form the joint probability distribution, which is 

then marginalized to the relevant variables. 

 In order to define combination of probability functions, we first need a notation for the 

projection of states of a set of variables to a smaller set of variables. Here projection simply 

means dropping extra coordinates; if (w, x, y, z) is a state of {W, X, Y, Z}, for example, then the 

projection of (w, x, y, z) to {W, X} is simply (w, x), which is a state of {W, X}. If s and t are sets 

of variables, s ⊆ t, and x is a state of t, then x↓s denotes the projection of x to s. 

 Combination. Combination in a Bayesian network involves “pointwise” multiplication 

of functions. Suppose Ps is a probability potential for s and Pt is a probability potential for t. 

Then Ps⊗Pt is a probability potential for s∪t defined as follows: 

 (Ps⊗Pt)(x) = K–1Ps(x
↓s) Pt(x

↓t) (2.1) 

for each x ∈ Ωs∪t, where K =∑{Ps(x
↓s)Pt(x

↓t)| x ∈ Ωs∪t} is the normalization constant. The un-

normalized combination will be denoted by ⊗´, i.e., 
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(Ps⊗´Pt) (x) = Ps(x
↓s)Pt(x

↓t) (2.2)

Marginalization. Let s\{X} denote the set-theoretic subtraction of the variable X from set

s. Marginalization in a Bayesian network involves addition over the state space of the variables

being eliminated. Suppose Ps is a probability potential for s, and suppose X ∈ s. The marginal of

Ps for s\{X}, denoted by Ps
↓(s\{X}), is the probability potential for s\{X} defined as follows:

Ps
↓(s\{X})(y) = Σ{Ps(y, x) | x ∈ ΩX} (2.3)

for all y ∈ Ωs\{X}.

Inference. The conditionals specified in the construction of a Bayesian network can be

used to calculate the prior joint distribution of the variables in the model. Inference in a Bayesian

network involves updating the prior joint distribution with observations of actual states of certain

variables or likelihoods of occurrence of variables based on new information. Once the

likelihoods or observations are included in the model, the combination of all potentials is called

the joint posterior distribution. Usually, one is interested in the marginals of the joint posterior

function for some variables of interest.

Dempster-Shafer Theory of Belief Functions. Dempster-Shafer (D-S) belief networks

are an alternative to Bayesian networks for modeling knowledge about propositions in uncertain

domains graphically and numerically. At the qualitative level, a D-S belief network provides a

graphical description of the knowledge base by modeling variables and their relations. At the

numerical level, a D-S belief network assigns a D-S belief function or basic probability

assignment (bpa) to subsets of the variables in the domain of each relation. Additional

knowledge entered as evidence is used to update the D-S belief network.

If Ωs is the state space of a set of variables s, a function m: 2Ωs → [0,1] is a bpa for s

whenever

m(∅) = 0, and Σ{m(a) | a ∈ 2Ωs} = 1. (2.4)

A bpa can also be stated in terms of a corresponding plausibility function or a belief function.

The plausibility function Pl corresponding to a bpa m for s is defined as Pl: 2Ωs → [0,1] such that

for all a ∈ 2Ωs,
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Pl(a) = Σ{m(b) | b ∩ a ≠ ∅}. (2.5)

The belief function Bel corresponding to a bpa m for s is defined as Bel: 2Ωs → [0,1] such that

for all a ∈ 2Ωs,

Bel(a) = Σ{m(b) | b ⊆ a} (2.6)

Figure 2.2. A Dempster-Shafer Belief Network for the Anti-Air Threat Identification Problem

Threat Mode (TM) Guidance (G)Emitter (E) Visibility (V)

Threat ID (T) Range (R)

ML EO RWR

T-E

T-TM-R

T-G

V-G

TM-ML TM-G-EO TM-G-RWR

Intel. Rpt.

Visib. Rpt.

The valuation network (VN) graph defined by Shenoy [1992] can be used to graphically

represent the qualitative features of a D-S belief network. This is done for the hypothetical anti-

air threat identification problem in Figure 2.2. The rounded rectangles represent variables and the

hexagons represent valuations, which are functions representing knowledge about relations

between the variables. Each valuation is connected by an edge to each variable in its domain to
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create a bipartite graph. Rectangles represent evidence. In Figure 2.2, evidence is available for

variables T and V. The arcs connecting valuations to variables are typically undirected; however

if a bpa m for a set of variables, say h∪t, is a “conditional” for some, say h, given the rest t, then

this is indicated by making the edges between m and the variables in h directed. Suppose m is a

bpa for h∪t. We say m is a conditional for h given t if m↓t is a vacuous bpa, i.e., m↓t(Ωt) = 1.

Since the D-S network of Figure 2.2 models the same knowledge as described in the Bayesian

network of Figure 2.1, most of the valuations representing the knowledge of the domain are

conditionals. An exception is the bpa for {V, G}, which is not a conditional.

Projection and Extension of Subsets. Before we can define combination and

marginalization for bpa’s, we need the concepts of projection and extension of subsets of a state

space.

If r and s are sets of variables, r ⊆ s, and a is a nonempty subset of Ωs, then the

projection of a to r, denoted by a↓r, is the subset of Ωr given by a↓r = {x↓r | x ∈ a}.

By extension of a subset of a state space to a subset of a larger state space, we mean a

cylinder set extension. If r and s are sets of variables, r ⊂ s, and a is a nonempty subset of Ωr,

then the extension of a to s is a×Ωs\r. Let a↑s denote the extension of a to s. For example, if a is a

nonempty subset of Ω{W, X}, then a↑{W, X, Y, Z} = a × Ω{Y, Z}.

Calculation of the joint bpa in a D-S belief network is accomplished by combination

using Dempster’s rule [Dempster 1966]. Consider two bpa’s mA and mB for a and b, respectively.

The combination of mA and mB, denoted by mA⊕mB, is a bpa for a∪b given by

€ 

(mA⊕ mB)(c) = K −1 {mA (x)mB∑ (y) | (x↑(a∪b) )∩ (y↑(a∪b) ) = c} (2.7)

for all non-empty c ⊆ Ωa∪b, where K is a normalization constant given by

€ 

K = {mA(x)mB∑ (y) | (x↑(a∪b) )∩ ( y↑(a∪b) ) ≠∅} .

The un-normalized Dempster’s rule of combination is denoted by ⊕', i.e.,

€ 

(mA⊕'mB )(c) = {mA (x)mB∑ (y) | (x↑(a∪b) )∩ (y↑(a∪b) ) = c}

for all non-empty c ⊆ Ωa∪b.
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Clearly, if the normalization constant is equal to zero, the combination is not defined, so

the two bpa’s are said to be not combinable. If the bpa’s mA and mB are based on independent

bodies of evidence, then mA⊕mB represents the result of pooling these bodies of evidence. Shafer

[1976] shows that Dempster’s rule is commutative and associative, so the bpa’s representing the

evidence in the network of Figure 2.2, for instance, could be combined in any order to yield the

joint bpa.

A useful way to summarize the information contained in the resulting bpa is to calculate

the corresponding plausibility function for singleton subsets. In the model of Figure 2.2, it may

be useful to focus on the singleton elements of Threat (T) to determine which are now considered

most likely. In the next section, we will suggest building a probability function based on the

plausibility function to summarize the information in a belief function.

3. Transformation of Belief Function Models to Probability Models

Our main goal in this section is to describe a method for translating a belief function to an

equivalent probability function. We believe that these two uncertain reasoning calculi are equally

expressive and therefore such a transformation should exist. The process of transforming a bpa to

an equivalent probability function is important for several reasons, as outlined in the Section 1.

We will examine two distinct methods for transforming a belief function to an equivalent

probability function. The first method is called a pignistic transformation and is due to Philippe

Smets [Smets 1990, Smets and Kennes 1994]. The second method is called the plausibility

transformation and has been suggested by Voorbraak [1989] and used by Shenoy and Shenoy

[2002].

Pignistic Transformation. Suppose m is a bpa for subset s. Let BetPm denote the

corresponding probability function obtained using the pignistic transformation [Smets 1990,

Smets and Kennes 1994, Smets 2002]. BetPm is defined as follows:

BetPm(x) = Σ{

€ 

m(a)
| a |  | a ∈ 2Ωs such that x ∈ a} (3.1)
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for each x ∈ Ωs. We will refer to BetPm as the pignistic probability function (corresponding to

bpa m).

Smets [1990, 2002] claims that beliefs are held at the credal level and are represented by

belief functions, whereas the pignistic probability transformation is used to produce a probability

function only to make decisions and not to represent beliefs. The pignistic transformation is

justified based on a so-called “rationality” requirement, which implies a mathematical

requirement of linearity. Baroni and Vicig [2003] shows that the pignistic transformation always

provides values that lie between the belief and plausibility values. More precisely, if m is a bpa

for s, and Plm and Belm are corresponding plausibility and belief functions, then

Belm({x}) ≤ BetPm(x) ≤ Plm({x}) for all x ∈ Ωs. (3.2)

Belief functions are often interpreted as upper and lower bounds on some true but unknown

probabilities. In this case, the inequality in (3.2) is compelling. But these semantics are

inconsistent with Dempster’s rule of combination, and since we are concerned with the D-S

theory of belief functions, an inequality of the type in (3.2) is not compelling.

Plausibility Transformation. Suppose m is a bpa for subset s. Let Plm denote the

plausibility function for s corresponding to bpa m. Let Pl_Pm denote the probability function that

is obtained from m using the plausibility transformation method. Pl_Pm is defined as follows:

Pl_Pm(x) = K–1 Plm({x}) (3.3)

for all x ∈ Ωs, where K = Σ{Plm({x}) | x ∈ Ωs} is a normalization constant. We will refer to

Pl_Pm as the plausibility probability function (corresponding to bpa m).

Belief Transformation. A belief transformation method, denoted by Bel_Pm, which

normalizes the belief function values of the singleton subsets of the state space, is another

potential transformation method. However, this method would disregard all information in the

non-singleton focal elements and would create an undefined probability function if no singleton

focal elements exist. Additionally, changes could be made to non-singleton focal elements that

would not be reflected in the transformed probability distribution. For these reasons, we will not

study the belief transformation method any further. Daniel [2003] has defined a host of other
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transformation methods, none of which are compelling for the case of D-S theory of belief

functions.

Is Any Useful Information Lost in the Transformation? Any method of transforming

belief functions to probability functions may involve a potential loss of information. Consider

three bpa’s for X with state space ΩX = {x1, x2, x3}:

m1(ΩX) = 1

m2(ΩX) = 1/2, m2({x1}) = 1/6, m2({x2}) = 1/6, m2({x3}) = 1/6

m3({x1}) = 1/3, m3({x2}) = 1/3, m3({x3}) = 1/3

The plausibility probability function and pignistic probability function for each of these bpa’s are

exactly the same, with probabilities 1/3 for each element in the state space. Although these bpa’s

produce identical probability functions, they represent varying degrees of knowledge about the

state space: m1 represents total ignorance about the true state, m3 represents knowledge that all

three states are equally likely, and m2 represents a mid-point on the continuum between total

ignorance and knowledge that the states are equally likely. The ability to model ignorance is

commonly cited as an advantage of belief functions. However, a decision theory that takes

advantage of this expressiveness of belief functions has yet to be formulated1.

4. Four Examples

The previous example illustrates three cases where the pignistic transformation and the

plausibility transformation will yield the same results. In general, the two transformations yield

different results. To highlight the differences, we will examine four examples in considerable

detail.

Example 1: Peter, Paul, and Mary [Smets and Kennes 1994]. A mafia don, the Godfather, has

three assassins, Peter, Paul, and Mary. Needing to assassinate an informant, Mr. Jones, the

                                                  
1 Giang and Shenoy [2003] have described a decision theory for the class of partially consonant belief functions
resulting from statistical evidence that is closed under Walley’s rule of combination [Walley 1987]. This decision
theory can explain ambiguity aversion as demonstrated by Ellsberg paradox [Ellsberg 1961].
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Godfather decides to first toss a fair coin to decide the sex of the assassin. If the toss results in

heads, he will pick Mary for the job. If the toss results in tails, he will ask either Peter or Paul to

do the job. In the case of tails, we have no knowledge of how the Godfather will select between

Peter and Paul. Now suppose we find Mr. Jones assassinated. An informant in the mafia

organization has informed the district attorney (DA) about the Godfather’s incomplete

mechanism for choosing among Peter, Paul, and Mary. The DA would like to indict Peter, Paul

or Mary (in addition to the Godfather). Who should the DA indict?

Let A denote the assassin variable. A has three states: Peter, Paul, and Mary. Given our

knowledge of the incomplete protocol of how the assassin was selected, we can represent it by

the bpa m1 for A as follows: m1({Mary}) = 0.5, m1({Peter, Paul}) = 0.5. The pignistic probability

function corresponding to m1 is as follows: BetPm1
(Mary) = 0.5, BetPm1

(Peter) = 0.25,

BetPm1
(Paul) = 0.25. The plausibility probability function corresponding to m1 is as follows:

Pl_Pm1
(Mary) = Pl_Pm1

(Peter) = Pl_Pm1
(Paul) = 1/3. The difference between the two probability

functions in this example can be understood as follows. The lack of knowledge of how the

Godfather will select between Peter and Paul in the case where the toss results in tails is one

reason why we represent our knowledge using bpa m1. If we knew the complete protocol, we

would have a Bayesian belief function for A. Given that we want to transform m1 to a probability

function, the pignistic transformation completes the protocol by dividing probabilities equally

between Peter and Paul. We refer to this assignment of equal probabilities as a random choice

protocol. The plausibility transformation on the other hand is more cautious. We have no reason

to believe a random mechanism will be used to decide between Peter and Paul. The mafia don

may always prefer Peter to Paul, or perhaps Paul to Peter. As we said before, we know nothing

about the mechanism. We don’t even know whether it is deterministic, random, or something

else. As per the plausibility function, there is a 0.5 chance that Mary is not the assassin, a 0.5

chance that Peter is not the assassin, and a 0.5 chance that Paul is not the assassin. This explains

the plausibility probability function Pl_Pm1
.
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Clearly, the two transformation methods yield qualitatively different results starting from

the same bpa m1. Which probability distribution can be considered as equivalent to m1? In the

following paragraphs, we describe two arguments (flawed, in our opinion) in favor of the

pignistic transformation method and two arguments (compelling, in our opinion) in favor of the

plausibility transformation method.

Consider the following argument in favor of the pignistic transformation method2. From

an argumentative point of view [Haenni and Lehmann 2002], there is exactly one “argument” for

Mary and one “counter-argument” each for Mary, Peter and Paul, respectively, as follows:

Arguments Counter-arguments Bel Pl
Mary Heads Tails ⇒ 0.5 0.5
Peter – Heads ⇒ 0 0.5
Paul – Heads ⇒ 0 0.5

From the argumentative point of view, a good transformation method should take both

arguments and counter-arguments into account. The pignistic transformation method considers

both in this example by averaging the weights of arguments and counter-arguments3. On the

other hand, the plausibility transformation method takes only counter-arguments into account

(ignoring arguments). What this argument fails to notice is that the counter-arguments for Peter

and Paul are exactly the same as the argument for Mary. A belief function has exactly the same

information as in a corresponding plausibility function, Pl(a) = 1 – Bel(ΩA \ a) for all a ⊆ ΩA.

Thus, in averaging the weights of arguments and counter-arguments, we are selectively double-

counting some information and violating a fundamental tenet of uncertain reasoning. The

plausibility transformation method is based only on the plausibility function with no risk of

double counting of uncertain information.

Another argument against the plausibility transformation is as follows. The plausibility

transformation assigns equal probabilities for Peter, Paul and Mary. If one were to use this

                                                  
2 This argument was provided by Rolf Haenni [private communication].
3 Although in this example, BetPm1

(x) = [Belm1
({x}) + Plm1

({x})]/2 for all x ∈ ΩA, this relation doesn’t hold true in

general.
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plausibility probability function for betting purposes repeatedly, e.g., for and against Mary with

odds 1:2, then one could set up a so-called Dutch book against such an user. However, such an

argument can be used against any transform including the pignistic transform. If one uses the

pignistic probability function to bet on Mary against Peter with odds 2:1, then one is susceptible

to a Dutch book with a godfather who may always prefer Peter over Paul.

One way to resolve the conflict between BetP and Pl_P in this example is to appeal to a

qualitative property of uncertain knowledge. Suppose we have two pieces of identical,

independent evidence about the assassin, both equal to the bpa m1. If we use Dempster’s rule to

combine these two independent pieces of evidence, we observe that m1⊕m1 = m1, i.e., m1 is

idempotent. Idempotency is an important qualitative property of uncertain knowledge since

double counting of idempotent knowledge is harmless. We notice that Pl_Pm1 
is idempotent, i.e.,

Pl_Pm1
⊗Pl_Pm1

 = Pl_Pm1
. Thus qualitatively, m1 and Pl_Pm1

 share the same property of

idempotency. However notice that BetPm1
 is not idempotent. Denoting BetPm1

⊗BetPm1
 by

BetPm, we have BetPm (Mary) = 2/3 and BetPm (Peter) = BetPm (Paul) = 1/6. In the next section,

we will show that the plausibility transformation method always satisfies this important property

of idempotency.

Continuing the Peter, Paul or Mary saga, suppose we subsequently learn that Peter has a

cast-iron alibi during the time Mr. Jones was assassinated. This piece of evidence can be

represented by the bpa m2 for A as follows: m2({Paul, Mary}) = 1. If we combine the two

independent bpa’s m1 and m2, we get (m1⊕m2)({Paul}) = (m1⊕m2)({Mary}) = 0.5. Since the

joint bpa has only singleton focal subsets, both the pignistic and plausibility probability functions

corresponding to m1⊕m2 agree: BetPm1⊕m2
(Paul) = Pl_Pm1⊕m2

(Paul) = BetPm1⊕m2
(Mary) =

Pl_Pm1⊕m2
(Mary) = 0.5. However, if we were using the pignistic probability distribution BetPm1

,

and we update this probability distribution (using Bayes rule) with the evidence of Peter’s alibi

(represented with a likelihood vector that has 0 for Peter and 1’s for Paul and Mary), we end with

a probability distribution for A that has probability 2/3 for Mary and 1/3 for Paul, a result that

does not coincide with BetPm1⊕m2
. On the other hand, if we were using the plausibility
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probability distribution Pl_Pm1
, and we update this distribution with the evidence of Peter’s alibi,

the result is a probability distribution for A that has probability 1/2 for Paul and 1/2 for Mary,

exactly the same probability distribution as Pl_Pm1⊕m2
. We will show in the next section that this

equivalence for the plausibility transformation method is no coincidence. This is yet another

argument for why the plausibility transformation method yields an equivalent probability model.

Next, we discuss an example from Smets [2002] that is alleged to be a “counter-example”

to using the plausibility transformation method. On closer scrutiny, we observe that this example

demonstrates that the pignistic transformation method is inconsistent with Dempster’s rule of

combination.

Example 2: Counter-Example [Smets 2002]. Consider a bpa m for a variable H with

state space ΩH = {h1, …, h70} as follows: m({h1}) = 0.30, m({h2}) = 0.01, m({h2, h3, …, h70}) =

0.69. For this bpa m, the pignistic probability function BetPm is as follows: BetPm(h1) = 0.30,

BetPm(h2) = 0.02, BetPm(h3) = … = BetPm(h70) = 0.01. The un-normalized plausibility

probability function Pl_P′m is as follows: Pl_P′m(h1) = 0.30, Pl_P′m(h2) = 0.70, Pl_P′m(h3) = …

= Pl_P′m(h70) = 0.69.

Clearly, the two probability functions are very different. The pignistic probability

function has h1 15 times more likely than h2 whereas the plausibility probability function has h2

2.33 times more likely than h1. Smets [2002] says that the pignistic probability function is more

appropriate than the plausibility probability function. We disagree. Our interpretation (supported

by many authors, e.g., Baroni and Vicig [2003]) is that the pignistic transformation uses a

random protocol where the probability of 0.69 is divided equally amongst the 69 states h2, …,

h70. But the random protocol is not part of the belief function semantics. If it were, there would

be no need for belief functions.

Shafer [1976] states that m(a) should be interpreted as the probability mass that is

“confined to a but can move freely to every point of a” (p. 40). Thus, we have belief of 0.70

against h1, a belief of 0.30 against h2, and a belief of 0.31 against h3, …, h70. Rather than use a

random choice protocol, the plausibility transformation assumes that all mass can move freely to
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any state in the focal element of the belief function. This is one argument for the plausibility

probability function.

A more compelling argument for the plausibility transformation method involving

Dempster’s rule of combination is as follows. Consider a hypothetical situation where we have n

independent pieces of evidence all of which are exactly equal to m. Combining these n pieces of

evidence by Dempster’s rule yields m⊕…⊕m (n times), which is denoted by mn. For large n, for

example, if n ≥ 500, we observe that mn({h2}) ≈ 1, so the result is more consistent with Pl_Pm

(that has h2 as the most probable state) than with BetPm (that has h1 as the most probable state).

Notice that if we combine Pl_Pm  n times using Bayes rule (or pointwise multiplication) and

denote the result by (Pl_Pm)n, for large n we get the result that (Pl_Pm)n(h2) ≈ 1. On the other

hand, we have (BetPm)n(h1) ≈ 1 for large n. Therefore, we conclude that Pl_Pm is equivalent to m

and that BetPm isn’t. This example demonstrates unequivocally that the pignistic transformation

is inconsistent with Dempster’s rule of combination. 

Example 3: Non-Unique Most Plausible States. In the previous example, we had a

unique most plausible state. Now consider a bpa m for a variable H with state space ΩH = {h1,

h2, h3, h4, h5, h6 } as follows: m({h1, h5}) = 0.10, m({h1, h6}) = 0.20, m({h2, h3, h4}) = 0.30,

m({h5, h6}) = 0.04, m(ΩH) = 0.36. The pignistic probability function BetPm is as follows:

BetPm(h1) = 0.21, BetPm(h2) = 0.16, BetPm(h3) = 0.16, BetPm(h4) = 0.16, BetPm(h5) = 0.13,

BetPm(h6) = 0.18. The un-normalized plausibility probability function Pl_P′m is as follows:

Pl_P′m(h1) = 0.66, Pl_P′m(h2) = 0.66, Pl_P′m(h3)  = 0.66, Pl_P′m(h4) = 0.66, Pl_P′m(h5) = 0.50,

Pl_P′m(h6) = 0.60. Notice that h1, h2, h3, and h4 are the most plausible elements of the state

space.

Let m∞ denote Limn→∞ mn, let (BetPm)∞ denote Limn→∞ (BetPm)n, and let (Pl_Pm)∞

denote Limn→∞ (Pl_Pm)n. m∞ is as follows: m∞({h1}) = m∞({h2, h3, h4}) = 0.5. (BetPm)∞ is as

follows: (BetPm)∞(h1) = 1, (BetPm)∞(h2) = (BetPm)∞(h3) = (BetPm)∞(h4) = (BetPm)∞(h5) =

(BetPm)∞(h6) = 0. (Pl_Pm)∞ is as follows: (Pl_Pm)∞(h1) = (Pl_Pm)∞(h2) = (Pl_Pm)∞(h3) =

(Pl_Pm)∞(h4) = 0.25, (Pl_Pm)∞(h5) = (Pl_Pm)∞(h6) = 0. Thus we conclude that Pl_Pm is
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equivalent to m and that BetPm isn’t. This example is another illustration of the inconsistency of

the pignistic transformation with Dempster’s rule of combination. 

Example 4: Target Identification Problem [Delmotte and Smets 2001]. A target

identification system is composed of 30 sensors, Si, i = 1, …, 30. Each sensor Si is in one of two

states xi or yi. The state of the sensors depends on an unknown target that is assumed to be in one

of two states: t1 denoting friend, or t2 denoting foe. The state of each sensor also depends on

whether it is working or not. When in working condition, a sensor reading of xi correctly

identifies a target of type t1 and a sensor reading of yi correctly identifies a target of type t2.

When a sensor is not in working condition, nothing is known about the relationship between the

sensor reading and the actual target type. The 30 sensors are of two types, high quality and low

quality. A high quality sensor has a 99% probability of being in working condition whereas a

low quality sensor has only a 90% probability of being in working condition. Also, the first 11

sensors S1, …, S11 are high quality sensors, and the remaining 19 sensors S12, …, S30 are low

quality sensors. Data in the form of sensor readings is collected as follows: x1, …, x10, y11, x12,

y13, …, y30. What conclusions can we draw about the actual target type?

Figure 4.1 depicts the problem as a valuation network consisting of one variable (Target)

and 30 independent pieces of evidence (the 30 sensors). First, we will represent the evidence

from the 30 sensors by bpa’s and compute the joint belief function for T. Next, we will represent

the evidence by probability functions using the pignistic transformation and compute the joint

probability function for T. Finally, we will represent the evidence by probability functions

obtained using the plausibility transformation and compute the joint probability function for T.

Figure 4.1: A Valuation Network Model for the Target Identification Problem

                 

 high quality sensors

Target (T)

S1 = x1 S10  = x10 S11  = y11 S12  = x12 S13  = y13 S30  = y30... ...
 low quality sensors
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Table 4.1 shows the data collected from the sensors represented as evidence in bpa’s. We

can reach a conclusion about the target identity by calculating the joint bpa for the 30 sensors,
which in this case amounts to a marginal bpa for the variable T. Using Dempster’s rule, the joint
bpa m is given by m = m1⊕…⊕m30.

Table 4.1: Bpa Encoding of Sensor Readings

Sensor Si = xi, i = 1, …, 10
a ⊆ ΩT mi(a)

{t1} 0.99
{t1, t2} 0.01

Sensor S11 = y11

a ⊆ ΩT m11(a)

{t2} 0.99
{t1, t2} 0.01

Sensor S12 = x12

a ⊆ ΩT m12(a)

{t1} 0.90
{t1, t2} 0.10

Sensor Si = yi, i = 13, …, 30
a ⊆ ΩT mi(a)

{t2} 0.90
{t1, t2} 0.10

This series of combinations leads to the joint bpa’s (un-normalized and normalized) listed

in Table 4.2 along with the corresponding plausibility function. Much of the evidence from the

sensors conflicts, so the un-normalized bpa places very little mass on each non-empty subset.

Table 4.2: The Joint Bpa’s and Plausibility Functions for 30 Sensors
a ∈ 2ΩT Un-normalized bpa Normalized bpa (m) Plausibility (Plm)

Ø ≈1 0 0
{t1} ≈1.00 x 10–20 ≈ 0.9090 ≈ 0.9091
{t2} ≈1.00 x 10–21 ≈ 0.0909 ≈ 0.0909

{t1, t2} ≈1.00 x 10–41 ≈ 0.0000 1

Thus as per the belief function model, the target is approximately 10 times more likely to be a

friend than a foe. Next, we will model this problem with probabilities using the pignistic

transformations of the 30 belief functions. The probability functions are shown in Table 4.3.
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If we combine the 30 probability functions using pointwise multiplication and normalize

the resulting probability function, we obtain the result shown in Table 4.4.

Table 4.3: Pignistic Probability Function Encoding of Sensor Readings

Sensor Si = xi, i = 1, …, 10

x ∈ ΩT BetPmi
(x)

t1 0.995
t2 0.005

Sensor S11 = y11

x ∈ ΩT BetPm11
(x)

t1 0.005
t2 0.995

Sensor S12 = x12

x ∈ ΩT BetPm12
(x)

t1 0.95
t2 0.05

Sensor Si = yi, i = 13, …, 30

x ∈ ΩT BetPmi
(x)

t1 0.05
t2 0.95

Table 4.4. The Joint Pignistic Probability Model for the Target Identification Problem
x ∈ ΩT Un-normalized Probability Normalized Probability

t1 ≈ 1.723E–26 ≈ 0.0820
t2 ≈ 1.930E–25 ≈ 0.9180

Sum ≈ 2.102E–25 1

Notice that the pignistic probability model of the target identification problem is

qualitatively different from the belief function model. As per the pignistic probability model, the

probability that the target is a foe is approximately 11 times more likely than the probability that

the target is a friend. In general, if m1 and m2 are two bpa’s, then BetPm1
⊗BetPm2

 ≠ BetPm1⊕m2
.

Next, consider the probability model for the target identification problem obtained from

the belief function model using the plausibility transformation. This model is shown in Table 4.5.

If we combine the 30 plausibility probability functions using pointwise multiplication and

normalize the resulting probability function, we obtain the result shown in Table 4.6 below.
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Notice that the result is similar to the belief function model obtained in Table 4.2. In the

next section, we will prove that this equivalence between the belief function model conclusion

and plausibility probability function is always true. 

Table 4.5: Plausibility Probability Function Encoding of Sensor Readings

Sensor Si = xi, i = 1, …, 10

x ∈ ΩT Pl_Pmi
(x)

t1 0.9901
t2 0.0099

Sensor S11 = y11

x ∈ ΩT Pl_Pm11
(x)

t1 0.0099
t2 0.9901

Sensor S12 = x12

x ∈ ΩT Pl_Pm12
(x)

t1 0.9091
t2 0.0909

Sensor Si = yi, i = 13, …, 30

x ∈ ΩT Pl_Pmi
(x)

t1 0.0909
t2 0.9091

Table 4.6. The Joint Plausibility Probability Model
x ∈ ΩT Un-normalized Probability Normalized Probability

t1 ≈ 1.4656E–21 ≈ 0.9091
t2 ≈ 1.4656E–22 ≈ 0.0909

Sum ≈ 1.6121E–21 1

5. Justification and Properties of the Plausibility Transformation

In all four examples described in the previous section, there is a discrepancy between the

pignistic probability function obtained after combining all evidence with Dempster’s rule and the

pignistic probabilities obtained by using Bayes rule to combine the pignistic probability derived

from each individual piece of evidence. Smets [2002] resolves this apparent discrepancy of the

pignistic transformation by stating that beliefs are held at the credal level and one only descends

to the probability space for decision making at the time a decision has to be made. This is not
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satisfactory to us. Decision-making is a not a static activity performed at fixed points in time.

The decisions we make create new chance variables or influence the distribution of existing

chance variables and the distribution of chance variables influences the decisions we make. The

process of decision-making is interleaved with the process of uncertain inference—one cannot

separate the two activities.

As we stated before, the pignistic transformation satisfies condition (3.2) that is

motivated by the upper and lower probability semantics of belief functions. Our position is that

the pignistic transformation is the proper transformation method for belief functions interpreted

as upper and lower probabilities. In this case, one should not use Dempster’s rule of

combination, as this rule is incompatible with upper and lower probability semantics of belief

functions.

We view probability and belief functions as two uncertainty calculi with the roughly the

same expressive power. It shouldn’t make a difference which calculus one is using to represent

knowledge. One should get roughly the same results regardless of the calculi one is using if the

models built using the calculi are equivalent. With this criterion, the plausibility transformation

passes the test while the pignistic transformation fails.

Some justifications for the pignistic transformation are given in [Smets and Kennes 1994,

Smets 2002]. Here we will give some intuitive justifications for the plausibility transformation.

Haspert [2001] identifies the significance of the relationship between the D-S plausibility

function and probability functions, noting that when multiple belief functions on the same

domain are combined using Dempster’s rule, the masses in the resulting bpa migrate to the

outcome for which the product of the plausibility terms is the greatest. He presents heuristic

arguments that indicate that the plausibility function can be used to link Bayesian and D-S

reasoning. Giles [1982] was among the earliest to discuss decision making with plausibility

functions. Appriou [1991] suggests selecting the hypothesis with the maximum plausibility in a

decision-making context.



Cobb and Shenoy 22

Dempster [1968] states that the upper probability bound (or plausibility) associated with a

belief function is the appropriate likelihood function which contains all sample information.

Similarly, Halpern and Fagin [1992] observe that the plausibility function calculated from a

given belief function behaves similarly to a likelihood function and can be used to update beliefs.

Given a set H consisting of basic hypotheses—one of which is true—and another set Ob

consisting of basic observations, PlOb(Hi) = 1 – BelOb(Hi
c) = Pri(Ob)/c, where c =

maxj = 1, …, mPrj(Ob), the plausibility function representing the observations appropriately

captures the evidence of the observations.

Additionally, one form of Bayes rule has an analogous rule in terms of plausibility

functions. Suppose PA, B is a prior joint probability distribution function for two variables A and

B. The marginal distribution for B, denoted by PB, can be computed from PA, B as follows: PB(b)

= Σ{PA, B(a, b) | a ∈ ΩA} for all a ∈ ΩA. Now suppose we observe B = b where PB(b) > 0. Then,

the posterior marginal probability function for A, denoted by PA | b is given by:

PA | b (a) = PA, B(a, b) / PB(b) (5.1)

for all a ∈ ΩA. Now consider the same situation in belief function calculus. Suppose mA, B and

PlA, B represent a prior bpa and the corresponding plausibility function for {A, B}. Let PlB denote

the marginal plausibility function for B. Now suppose we observe B = b such that PlB({b}) > 0.

This can be represented by the bpa mb for B where mb({b}) = 1. The posterior marginal bpa for

A, denoted by mA | b, is given by (mA, B⊕mb)↓A. Let PlA | b denote the corresponding plausibility

function for A. It can be shown [Shafer 1976] that PlA | b is given by:

PlA | b({a}) = PlA, B({(a, b)})/PlB({b}) (5.2)

for all a ∈ ΩB. Comparing (5.1) and (5.2) suggests that the correspondence between a belief

function and probability function is via the plausibility function. This correspondence alone does

not justify the plausibility transformation, because (5.2) could be restated in terms of the Bel

function. To provide further justification for the plausibility transformation, we will state the

following general theorem from Voorbraak [1989].
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Theorem 5.1. Suppose m1, …, mk are k bpa’s. Suppose Plm1
, …, Plmk

 are the

associated plausibility functions, and suppose Pl_Pm1
, …, Pl_Pmk

 are the

corresponding probability functions obtained using the plausibility

transformation. If m = m1⊕…⊕mk is the joint bpa, Plm is the associated

plausibility function and Pl_Pm is the corresponding plausibility probability

function, then Pl_Pm1
⊗…⊗Pl_Pmk

 = Pl_Pm.

The statement of the theorem is depicted pictorially in Figure 5.1. Voorbraak [1989], who

refers to the plausibility transformation as a Bayesian approximation of a belief function, states

that combining Bayesian approximations is computationally less involved than combining belief

functions.  Notice that from a computational perspective, it is much faster to compute

Pl_Pm1
⊗…⊗Pl_Pmk

 than it is to compute Pl_Pm (since the latter involves Dempster’s rule of

combination and the former involves Bayes rule).

Figure 5.1. A Pictorial Depiction of the Statement of Theorem 5.1.

Dempster’s rule
of combination

Plausibility
transformation

Bayes rule

Plausibility
transformation

belief
function

space

probability 
function

space

m1, ..., mk

€ 

m1 ⊕ ...⊕ mk

€ 

Pl_Pm1
, ...,Pl _Pmk

€ 

Pl_Pm1
⊗ ...⊗ Pl _Pmk

€ 

= Pl _Pm1⊕...⊕mk

Theorem 5.1 is significant for several reasons. First, we often create a belief function

model and eventually reduce the findings to an equivalent probability function. Assuming the

transformation used is the plausibility transformation, Theorem 5.1 tells us that we can escape

the computational complexity of Dempster’s rule and use Bayes rule instead to obtain the same

result. Second, it is often easy to construct belief function models where it is intractable to
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compute the joint belief function using Dempster’s rule. Theorem 5.1 tells us that we can create

an equivalent probability model and achieve a more tractable result by using Bayes rule. Third,

there are many ways to transform a belief function to an equivalent probability function. Given

bpa m, unlike Voorbraak [1989], we don’t view Pl_Pm as an approximation of m. Instead, we

view Pl_Pm as an equivalent probability encoding of the information in m. Thus if we have a

belief function model consisting of {m1, …, mk}, then we view {Pl_Pm1
, …, Pl_Pmk

} as an

equivalent probability model. Theorem 5.1 can be seen as a regularity condition for any

transformation method. Since this condition is not satisfied by the pignistic transformation, one

can question the appropriateness of the pignistic transformation as a candidate for finding an

equivalent probability model. A corollary of Theorem 5.1 is that Pl_Pm is idempotent if m is

idempotent.

Corollary 5.2. If m is idempotent with respect to Dempster’s rule, i.e., m⊕m = m,

then Pl_Pm is idempotent with respect to Bayes rule, i.e., Pl_Pm⊗Pl_Pm = Pl_Pm.

To demonstrate that the plausibility transformation is consistent with Dempster’s rule of

combination, we consider another property of belief functions. In probability theory, assuming

there is a unique state x that is most probable according to a probability function P, x has the

property that Limn→∞ P
n(x) = 1, and Limn→∞ P

n(y) = 0 for all y ∈ Ωs\{x}, where Pn denotes

P⊗…⊗P (n times). Belief functions have a similar property, as stated in the following theorem.

Theorem 5.3. Consider a bpa m for s (with corresponding plausibility function

Plm) such that x ∈ Ωs is the most plausible state, i.e., Plm({x}) > Plm({y}), for all y

∈ Ωs\{x}. Let mn denote m⊕…⊕m (n times), let m∞ denote Limn→∞ mn, and let

Plm∞ denote the plausibility function corresponding to m∞. Then Plm∞({x}) = 1,

and Plm∞({y}) = 0 for all y ∈ Ωs\{x}.

If a unique most plausible state x exists in a bpa m, an equivalent probability function

should have x as its most probable state. This property is of course satisfied for the plausibility

transformation, as stated in the following corollary.
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Corollary 5.4. Consider a bpa m for s (with corresponding plausibility function

Plm) such that x ∈ Ωs is the most plausible state, i.e., Plm({x}) > Plm({y}), for all y

∈ Ωs\{x}. Let Pl_Pm denote the plausibility probability function corresponding to

m, and let (Pl_Pm)∞ denote Limn→∞ (Pl_Pm)n. Then (Pl_Pm)∞(x) = 1, and

(Pl_Pm) ∞ (y) = 0 for all y ∈ Ωs\{x}.

In Example 2 presented in Section 4, m500({h2}) ≈ 1, so the most plausible hypothesis in

m is h2, consistent with Pl_Pm and not BetPm.

In Example 3 described earlier, the belief function m has no unique most plausible state x.

Instead, we have four most plausible states h1, h2, h3, and h4. In probability theory, if P is such

that t ⊆ Ωs is a subset of most probable states, and P∞ denotes Limn→∞ Pn, then P∞(x) = P∞(y) for

all x, y ∈ t, and P∞(z) = 0 for all z ∈ Ωs \ t. Belief functions have a similar property, as stated in

the following theorem.

Theorem 5.5. Consider a bpa m for s (with corresponding plausibility function

Plm) such that t ⊆ Ωs is a subset of most plausible states, i.e., Plm({x}) = Plm({y})

for all x, y ∈ t, and Plm({x}) > Plm({z}) for all x ∈ t, and z ∈ Ωs \ t. Let m∞ denote

Limn→∞ mn, and let Plm∞ be the corresponding plausibility function. Then there

exists a partition {a1, …, ak} of t such that m∞(ai) = 1/k for i = 1, …, k, i.e.,

Plm∞(x) = Plm∞(y) = 1/k for all x, y ∈ t, and Plm∞(z) = 0 for all z ∈ Ωs \ t.

Theorem 5.5 is a generalization of Theorem 5.3 in the sense that if | t | = 1, then Theorem 5.5

reduces to Theorem 5.3. The following corollary generalizes the result in Corollary 5.4 for the

case of non-unique most plausible states.

Corollary 5.6. Consider a bpa m for s (with corresponding plausibility function

Plm) such that t ⊆ Ωs is a subset of most plausible states, i.e., Plm({x}) = Plm({y})

for all x, y ∈ t, and Plm({x}) > Plm({z}) for all x ∈ t and z ∈ Ωs \ t. Let Pl_Pm

denote the plausibility probability function corresponding to m, and let (Pl_Pm)∞



Cobb and Shenoy 26

denote Limn→∞ (Pl_Pm)n. Then (Pl_Pm)∞(x) = (Pl_Pm)∞(y) = 1/| t | for all x, y ∈ t,

and (Pl_Pm)∞(z) = 0 for all z ∈ Ωs \ t.

A useful method of transforming a belief function to an equivalent probability function

should have properties that allow the transformed model to produce consistent and efficient

results when variables in a network are evaluated. In general, combination of marginals in a D-S

belief network is accomplished with local computation using two operations: combination and

marginalization [Shenoy and Shafer 1990, Shenoy 1997]. Combination corresponds to the

aggregation of knowledge, whereas marginalization corresponds to the focusing of knowledge.

Suppose m is a bpa for s, and suppose 

€ 

t ⊂ s . The marginal of m for t, denoted 

€ 

m↓t , is the bpa for

t defined as follows:

€ 

m↓t(a) = {m(b) |b↓t = a} ∑ (5.3)

for each a ∈ Ωt, where 

€ 

b↓t  denotes the subset of Ωt obtained by projecting each element of b to t.

Pointwise multiplication of probabilities (created using the plausibility transformation)

provides an alternative method of combination to Dempster’s rule. However, this operation

cannot be used, in general, when a solution algorithm involves marginalization (see Figure 5.2).

In some cases, the plausibility transformation must be applied after the local computation

solution algorithm to obtain an equivalent marginal probability function.
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Figure 5.2. Plausibility Probability Transformation is not Preserved under Marginalization

As an example of the inconsistency depicted in Figure 5.2, consider the following bpa on

the domain {V, G}:

mV-G({(v1, g1), (v1, g2)}) = 0.6
mV-G({(v1, g1), (v2, g1)}) = 0.3
mV-G({(v1, g1), (v1, g2), (v2, g1), (v2, g2), (v3, g1), (v3, g2)}) = 0.1

Computing the marginal of the bpa for G, then using the plausibility transformation to calculate

€ 

Pl_PmV −G↓G  gives:

€ 

mV −G↓{G}({g1}) = 0.3            Pl
mV −G↓G

({g1}) = 1.0         Pl _P
mV −G↓G

(g1) = 1.0 /1.7 = 0.588

mV −G↓{G}({g1,g2}) = 0.7      Pl
mV−G↓G

({g2}) = 0.7       Pl_P
mV −G↓G

(g2 ) = 0.7 /1.7 = 0.412

Alternatively, calculating plausibilities and probabilities for the configurations of {V, G} yields:

€ 

PlmV−G
({(v1, g1)}) =1.0        PlmV −G ({(v2 ,g1)}) = 0.4        PlmV−G ({(v3, g1 )}) = 0.1         

PlmV−G
({(v1, g2 )}) = 0.7       PlmV −G ({(v2, g2 )}) = 0.1       PlmV −G ({(v3, g2 )}) = 0.1       

€ 

Pl_PmV −G (v1, g1) = 0.417       Pl _PmV −G (v2, g1 ) = 0.167        Pl _PmV−G (v3, g1) = 0.042         
Pl_PmV −G (v1, g2 ) = 0.292       Pl _PmV −G (v2 ,g2 ) = 0.042        Pl_PmV −G (v3,g2 ) = 0.042    

Marginalizing this probability function to G gives:



Cobb and Shenoy 28

€ 

(Pl _PmV −G )
↓G(g1) = 0.625,(Pl _PmV −G )

↓G(g2) = 0.375     
■

Clearly, the probabilities using the plausibility transformation are not, in general, the

same before and after marginalization. However, there are special cases where the plausibility

transformation yields the same result before and after marginalization. One such special case is

stated in the following theorem.

Theorem 5.7. Suppose mi is bpa for si where si = t∪ri, for i = 1, …, k. Suppose r1,

…, rk are pairwise disjoint, i.e. ri∩rj = ∅ for all i ≠ j. Let m denote m1⊕…⊕mk.

Then, Pl_Pm↓t = Pl_Pm1
↓t⊗…⊗Pl_Pmk

↓t.

The following theorem allows us to find the plausibility function for a marginal bpa

without calculating the marginal bpa.

Theorem 5.8. Suppose m is a bpa for s and t ⊆ s. Then,

€ 

Plm↓ t (a) = m(c) 
a∩c↓ t≠∅
∑

for all a ⊆ Ωt.

Theorem 5.1 shows that combination of bpa’s can be accomplished using Bayes rule

when the bpa’s are transformed to equivalent probability functions. In a D-S belief network we

often perform marginalization after combination. When using the plausibility transformation,

some of the combinations can be made after conversion to probabilities and calculation of some

marginal bpa’s can be avoided because of Theorem 5.7 and 5.8. Next, we solve an example

problem using the results of Theorems 5.1, 5.7, and 5.8 to show the computational efficiency of

the plausibility probability function.

We will illustrate combination of plausibility probabilities and construction of a marginal

probability function from a D-S belief network by considering the example in Figure 5.3. This is

a combination of the D-S belief network in Figure 2.2 and the Valuation Network in Figure 4.1

(the 30 sensors problem). The network has 4 variables and 36 valuations. Each variable has two
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possible states, defined as follows: ΩE = {e1, e2}, ΩT = {t1, t2}, ΩR = {r1, r2}, ΩTM = {tm1, tm2}.

The goal of the example is to efficiently create a marginal probability mass function for T.

Figure 5.3. The D-S Belief Network for the Modified Anti-Air Threat Identification Problem

Rpt_R

Rm

... ...

Target (T)

S1 = x1 S10 = x10 S11 = y11 S12 = x12 S13 = y13 S30 = y30

Emitter (E) Mode (TM)
33mT-TM32mE-T

Rpt_E31m Rpt_TM35m

Range (R)
34mT-TM-R

36m

The set of valuations—{m1, …, m36}— in the network is defined in Table 5.1 (see Table

4.1 for the definitions corresponding to m1, …, m30).

A probability distribution for T can be found by computing the marginal of the joint for

T, i.e. (m1⊕…⊕m36)↓T using Dempster’s rule, then using the plausibility transformation to create

plausibility probabilities. The marginals of this joint bpa can be found using local computation

axioms [Shenoy and Shafer 1990, Shenoy 1997] and selecting an appropriate deletion sequence

using one of several available heuristics [Kong 1986]. One appropriate deletion sequence is R, E,

TM. As a result of Theorem 5.7, however, these same axioms can be used to simplify the

computation, given that the desired outcome is a probability mass function for T.
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Table 5.1. Definition of Bpa’s in the D-S Belief Network of Figure 5.3

a ∈ 2ΩE m31(a)
{e1} 0.2
{e2} 0.7
ΩE 0.1

a ∈ 2Ω{E, T} m32(a)
{(e1, t1)} 0.05

{(e1, t2), (e2, t1)} 0.05
{(e1, t1), (e1, t2),

(e2, t1)}
0.80

Ω{E, T} 0.10

a ∈ 2Ω{T, TM} m33(a)
{(t1, tm1)} 0.2
{(t1, tm1),
(t2, tm2)}

0.2

{(t1, tm1),
(t2, tm1), (t2, tm2)}

0.2

Ω{T, TM} 0.4

a ∈ 2Ω{T, TM, R} m34(a)
{(t1, tm1, r1)} 0.4
{(t2, tm2, r2)} 0.1
Ω{T, TM, R} 0.5

a ∈ 2ΩTM m35(a)
{tm1} 0.01
{tm2} 0.70
ΩTM 0.29

a ∈ 2ΩR m36(a)
{r1} 0.1
{r2} 0.6
ΩR 0.3

The solution proceeds by first calculating mA = (m34⊕m36)↓{T, TM}. Next, we calculate mB

= mA⊕m33⊕m35. Subsequently, we calculate mC = m31⊕m32. The results of these calculations are

shown in Table 5.2 (ignoring normalization). The D-S belief network appears as in Figure 5.4

after these operations.

Table 5.2. Result of First Two Calculations in the Plausibility Probability Solution

a ∈ 

€ 

2Ω{E ,T} mC(a)
{(e1, t1)} 0.015
{(e1, t2)} 0.010
{(e2, t1)} 0.595

{(e1, t1), (e1, t2)} 0.180
{(e1, t2), (e2, t1)} 0.005
{(e2, t1), (e2, t2)} 0.070

{(e1, t1), (e1, t2), (e2, t1)} 0.080
Ω{E, T} 0.010

a ∈ 

€ 

2Ω{T ,TM } mB(a)
{(t1, tm1)} 0.0790
{(t2, tm2)} 0.2113

{(t1, tm1), (t2, tm1)} 0.0030
{(t1, tm1), (t2, tm2)} 0.0290
{(t1, tm2), (t2, tm2)} 0.1400

{(t1, tm1), (t2, tm1), (t2, tm2)} 0.0290
Ω{T, TM} 0.0580
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Figure 5.4. D-S Belief Network after Deletion of Variables E and R

The set of bpa’s—all of which are defined on T—remaining after previous combinations

is σ = {mB, mC, m1, …, m30}. Define si as the domain of bpa mi. In this instance, sB = {T, TM},

sC = {E, T}, s1…s30 = {T}; thus, ti = (si – {T}) is pairwise disjoint for all i = B, C, 1,…, 30 so

Theorem 5.7 can be used to calculate the marginal probability function for T. To compute the

marginal for T, we calculate the following plausibility values: 

€ 

Pl
mB
↓{T } ,PlmC

↓{T } ,Plm1 , ...,Plm30 .

Theorem 5.8 can be used to calculate the plausibilities of mB
↓T and mC

↓T. The plausibility values

are combined using pointwise multiplication, then normalized to create the plausibility

probability function. Results are shown in Table 5.3. The plausibility probabilities developed

using combinations made possible by Theorems 5.1 and 5.7 are the same as those determined by

calculating the marginal belief function for T with Dempster’s rule. The probability of the target

being type t1 is 0.951, whereas the probability of the target being type t2 is 0.049.

Table 5.3. Final Calculation of the Plausibility Probability Function
x ∈ ΩT

€ 

Pl
m B

↓T
({x})

€ 

Pl
mC

↓T
({x}) Plm1

⊗…⊗Plm30
Un-normalized

Product
Pl_Pm(x)

t1 0.955 0.33800 ≈ 1.00 x 10-20 ≈ 3.228E-21 0.951
t2 0.355 0.47028 ≈ 1.00 x 10-21 ≈ 1.669E-22 0.049

Sum ≈ 3.395E-21 1.000

These results demonstrate the computational efficiency that characterizes the plausibility

transformation. The answers presented are the same as those found by calculating the joint bpa

for all variables in the network, marginalizing the joint bpa, then using the plausibility

transformation. In this sense, the answers to these examples are exact.
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6. Conclusions and Summary

In summary, if T transforms a bpa m in a belief function model to an equivalent probability

function T(m), T should satisfy four basic properties:

1) Invariance with respect to combination: T(m1⊕…⊕mn) = T(m1)⊗…⊗T(mn), which is

satisfied for the plausibility transformation, according to Theorem 5.1;

2) Idempotency: If m is idempotent, then T(m) is idempotent; which is satisfied by the

plausibility probability transformation according to Corollary 5.2;

3) Unique most plausible state: If Limn→∞ mn(hi) = 1, then Limn→∞ Tn(m)(hi) = 1; which is

satisfied for the plausibility transformation according to Corollary 5.4; and

4) Non-unique most plausible states: If Limn→∞ Plmn (x) = Limn→∞ Plmn (y) for all x, y ∈ t ⊆

Ωs, and Limn→∞ Plm
n(z) = 0,for all z ∈ Ωs \ t, then Limn→∞ Tn(m)(x) = Limn→∞ T

n(m)(y)

for all x, y ∈ t, and Limn→∞ Tn(m)(z) = 0 for all z ∈ Ωs \ t; this property is satisfied for the

plausibility transformation according to Corollary 5.6.

We notice that the pignistic transformation does not satisfy any of these properties. By

satisfying these four properties, the plausibility transformation method results in an equivalent

probability function that is consistent with Dempster-Shafer belief function theory that has

Dempster’s rule of combination as a central concept.

Until now, most of the literature on belief functions have used the so-called pignistic

method for transforming belief function models to equivalent probability models. We believe

this method is inappropriate, as it is inconsistent with Dempster’s rule of combination. We

conjecture that the plausibility transformation method is the only method that satisfies these

axioms, but we don’t have a proof of this claim.
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Appendix: Proofs 

Proof of Theorem 5.1. The proof of Theorem 5.1 follows directly from the proof of 

Proposition 2 in [Voorbraak 1989].  The proof also follows from the fact that Dempster’s rule 

can be stated as the product of commonality functions and the plausibility and commonality 

functions are equivalent for singleton subsets.  

 Proof of Corollary 5.2: Follows immediately from the statement of Theorem 5.1.  

Proof of Theorem 5.3. If Plm({x}) > Plm({y}), for all y ∈ Ωs\{x}, then Plm({x}) · 

Plm({x}) > Plm({y})· Plm({y}), for all y ∈ Ωs\{x}. 

Using the definition of plausibility: 

{ } { } { } { }

( ) ( ) ( ) ( )

q r q r

q r q r
q r q r

y x z x y y z y

m y m z m y m z

∩ ≠∅ ∩ ≠∅ ∩ ≠∅ ∩ ≠∅

   
   

⋅ > ⋅   
   
   

∑ ∑ ∑ ∑ which can be re-written as: 

, ,
{ } { }
{ } { }

( ) ( ) ( ) ( )

q q
r r

q r q r
q r q r

y x y y
z x z y

m y m z m y m z

∩ ≠∅ ∩ ≠∅
∩ ≠∅ ∩ ≠∅

   
   
   ⋅ > ⋅
   
   
      

∑ ∑ . Some of the intersections in these terms are 

singletons while some may contain subsets with more than one state. Thus, the above statement 

can be re-written as: 

, , , ,
{ } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

q q q q
r r r r

q r q r q r q r
q r q r q r q r

y x x x y x y y y y y y
z x x x z x z y y y z y

m y m z m y m z m y m z m y m z

∩ = ⊂ ∩ ∩ = ⊂ ∩
∩ = ⊂ ∩ ∩ = ⊂ ∩

       
       
       ⋅ + ⋅ > ⋅ + ⋅
       
       
              

∑ ∑ ∑ ∑

 This statement can now be re-written with a normalization constant as: 
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1 1

, , , ,
{ } { } { } { }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

q r q r q r q r

q r q r q r q r
q r q r q r q r

y z x x y z y z y y y z

K m y m z m y m z K m y m z m y m z− −

∩ = ⊂ ∩ ∩ = ⊂ ∩

          
          

⋅ + ⋅ > ⋅ + ⋅          
                       

∑ ∑ ∑ ∑

 

Using Dempster’s rule to simplify the left-hand term inside the outer parentheses yields: 

, ,
{ } { }

( )( ) ( ) ( ) ( )( ) ( ) ( )

q r q r

q r q r
q r q r

x y z y y z

m m x m y m z m m y m y m z

⊂ ∩ ⊂ ∩

   
   

⊕ + ⋅ > ⊕ + ⋅   
   
   

∑ ∑  

which can be re-written as: 

{ } { }
( )( ) ( )( ) ( )( ) ( )( )

x a y a
m m x m m a m m y m m a

⊂ ⊂

   
⊕ + ⊕ > ⊕ + ⊕   

   
∑ ∑ , 

or 2 2 2 2

{ } { }

({ }) ( ) ({ }) ( )
x a y a

m x m a m y m a
⊂ ⊂

   
+ > +   

   
∑ ∑ , for all y ∈ Ωs\{x}. 

Using the same process, it can be shown that if Plm({x}) > Plm({y}), 

then
{ } { }

({ }) ( ) ({ }) ( )k k k k

x a y a

m x m a m y m a
⊂ ⊂

   
+ > +   

   
∑ ∑ , 

for all y ∈ Ωs\{x}, and for any finite k. Each time Dempster’s rule is performed and singleton 

subsets are included, the normalized mass moves from non-singleton subsets to singleton 
subsets; thus, as k becomes larger and larger,

{ }

( )k

x a

m a
⊂

∑   and 
{ }

( )k

y a

m a
⊂

∑  become smaller and 

smaller. 

Suppose mk = m⊕…⊕m (k times). For some finite number k, if Plm({x}) > Plm({y}), then mk({x}) 
> mk({y}), 

{ }

( ) 0k

x a

m a
⊂

≈∑ , and
{ }

( ) 0k

y a

m a
⊂

≈∑ , for all y ∈ Ωs\{x}, thus mk({x1}) + mk({x2})+…+ 

mk({xt}) ≈ 1, i.e. all mass in mk moves to the singleton focal elements. 

Thus, by continuing to use Dempster’s rule with normalization to calculate 

mn = mk⊕mn–k , if Plm({x}) > Plm({y}), for all y ∈ Ωs\{x}, then  
m∞ ({x}) = 1.  If m∞ ({x}) = 1, it follows that Pl

m∞({x}) = 1, which proves the theorem.  

 Proof of Corollary 5.4: Follows immediately from Theorem 5.3 and the definition of 

Pl_Pm in (3.2).  
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Proof of Theorem 5.5: If Plm({x}) = Plm({y}), for all x, y ∈ t, and Plm({x}) > Plm({z}), 

for all x ∈ t and z ∈ Ωs\ t, then recall from the proof of Theorem 5.3 that for some finite number 

k, if Plm({x}) > Plm({z}), then mk({x}) > mk({z}) and Plm({x}) · Plm({x}) = Plm({y})· Plm({y}), 

for all y ∈ Ωs\{x}.   

Note that by replacing inequality with equaility in the proof of Theorem 5.3, it follows 

that if Plm({x}) · Plm({x}) = Plm({y})· Plm({y}), then 

{ } { }
({ }) ( ) ({ }) ( )k k k k

x a y a
m x m a m y m a

⊂ ⊂

   
+ = +   

   
∑ ∑ , 

for all for all x, y ∈ t and for any finite k.  Define bi ⊆ Ωs and ci ⊆ Ωs  as subsets of the state 

space of s containing i states where x ⊆ bi  and y ⊆ ci. The previous statement can now be re-

written as  

1 2 1 2( ) ( ) ... ( ) ( ) ( ) ... ( )k k k k k k
n nm b m b m b m c m c m c+ + + = + + + .  Each time Dempster’s rule is 

performed the normalized mass moves to smaller and smaller subsets of the state space. 

Thus, by continuing to use Dempster’s rule with normalization to calculate 

mn = mk⊕mn–k , if Plm({x}) = Plm({y}), for all x, y ∈ t, then  

mn(bj) = mn(ck), where bj and ck are the subsets with the minimal number of states that contain x 

and y, respectively.  It follows from the proof of Theorem 5.3 that for all z ∈ Ωs\ t, mn(d) = 0 for 

all subsets such that z ⊆ d. Thus, bj  is one of k members of a partition {a1, …, ak} of t such that 

m∞(ai) = 1/k, which proves the theorem.  

 Proof of Corollary 5.6: Follows immediately from Theorem 5.5 and the definition of 

Pl_Pm in (3.2).  

 The following proposition is a simpler version of Theorem 5.7. We will use it to prove 

Theorem 5.7. 

Proposition 5.7. Suppose m1 and m2 are bpa’s for s1 and s2 where s1= t∪r1 and 

s2= t∪r2. Suppose r1 and r2 are disjoint, i.e. r1∩r2 = ∅. Then, Pl_P(m1⊕m2)↓t = 

Pl_Pm1
↓t⊗Pl_Pm2

↓t. 
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Proof of Proposition 5.7: It follows from the axioms proposed by Shenoy and Shafer 

[1986, 1990] that (m1⊕m2)↓t = m1
↓t⊕m2

↓t. The proof of this proposition now follows directly 

from Proposition 5.1 by substituting m1
↓t for m1 and m2

↓t for m2.   

Proof of Theorem 5.7. The proof of Theorem 5.7 follows directly from the proof of 

Proposition 5.7.  

 Proof of Theorem 5.8: The marginal bpa of m for t is defined as 

m↓t (a) = {m(b) | b↓t = a}∑  for all a ⊆ Ωt. The plausibility function values of the marginal bpa of 

m for t are defined as Pl
m↓ t (a) = m↓t (d )

a∩d ≠∅
∑  for each a ⊆ Ωt. This formula can be rewritten as 

Pl
m↓ t (a) = m(c) 

a∩c↓ t ≠∅
∑  for each a ⊆ Ωt, which proves the theorem.  
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