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Modeling and Valuing Real Options Using Influence Diagrams

ABSTRACT

We propose the use of influence diagrams for modeling and valuing real options. Real
options are a type of option where the underlying asset is real (as opposed to financial),
and they exist when managers have the opportunity, but not the requirement, to alter the
firm’s operating and/or investment strategy. We use an example from the real options
literature to compare and contrast decision trees, binomial trees, and influence diagrams.
Specifically, we argue that influence diagrams represent decision problems in a more
descriptive, intuitive, and compact manner than decision tree or option-based models.
Also, under certain conditions, influence diagram models and option-based models give
the same valuations and optimal strategies. Finally, given that the influence diagram
decision-making framework can readily be used by corporate managers to model and
value real options investment opportunities, this research may provide a means for
effectively bringing real options analyses into the applied arena.

Key Words: Capital budgeting, decision analysis, real options, decision trees, binomial trees,
influence diagrams

1 INTRODUCTION

Today, most academic researchers, financial practitioners, corporate managers, and strategists

realize that when market conditions are highly uncertain, when expenditures are at least partially
“irreversible,” and when managerial decision flexibility is present, a traditional discounted cash

flow (DCF) analysis alone fails to provide an adequate decision-making framework for capital
budgeting decisions. This is because a traditional DCF analysis cannot fully account for active

project management. It does not properly value management’s ability to wait or to revise the

initial strategy when future events turn out to be different than expected. Also, management is
not obligated to revising the firm’s strategy or to undertaking any future discretionary

opportunities. Thus the right to do so is an option – a real option. In practice, managers decide

on capital investments by evaluating, on an on-going basis, their available options to invest in
real assets and either exercising them, deferring them, or allowing them to expire.

A great deal of theoretical work has been done on how to model and value managerial
flexibility, or real options, and derive optimal investment strategies. To date, the primary

approach proposed is to use option-pricing techniques, which were originally developed for use
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with financial assets. Unfortunately, however, these real options models are not widely used by

corporate managers and practitioners when making capital budgeting decisions. Lander and
Pinches [1998] suggest three reasons why these models are not being used in practice. The first

reason is that most corporate managers and practitioners are not familiar with or have a good
understanding of the types of models currently proposed. Using continuous-time option pricing

techniques to model and value real options requires a relatively sophisticated knowledge of a

variety of advanced mathematical techniques, which most corporate managers and practitioners,
and even many academics, do not have. Also, although a simple model like a standard Black-

Scholes model may not be difficult to actually use, the person doing the analysis still needs to
fully understand the assumptions behind the model. There are few easy and direct practical

applications of continuous-time option pricing techniques. Binomial models and other discrete-

time numerical approximation models are more intuitive and easier to use, but most corporate
managers and practitioners have had little experience with these models or how to apply them.

Also, many practitioners do not intuitively understand valuing as if investors are risk-neutral.

The second reason Lander and Pinches [1998] suggest for why the option-based models are not
currently being used is that many of the required modeling assumptions are often and

consistently violated in real world applications. The third reason is that the necessary additional
assumptions required for mathematical tractability limit the usefulness of the models. Many of

the real options analyses presented to date, therefore, are relatively straightforward and have

been simplified for mathematical tractability. Yet, from a practical standpoint, modeling and
valuing real options is not always so easy to do. Real world investment opportunities are often

rather complex.
Lander and Pinches [1998] argue that it is not sufficient to show corporate managers and

practitioners how to use the currently proposed real options models. They suggest there is a need

for more practically oriented modeling frameworks that (1) are easier to understand and use, (2)
are not constrained by having to make as many modeling assumptions, and yet (3) can model and

value somewhat sophisticated real world investment opportunities. Such models might be more
likely to be used. Also, from the applied perspective, the focus of any analysis should be on the

decision(s) to be made (i.e., the optimal strategy to follow) and not necessarily on the resulting

valuations. In addition, it is important to remember that, in practical real options analyses,
option-based models themselves are not completely precise in their valuations because most real
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assets are not traded assets. Thus, alternative modeling and valuing approaches can be viewed as

being consistent with one another as long as the results obtained are similar in terms of the
optimal strategy to follow and the general magnitude of value.

This paper introduces influence diagrams as an alternative capital budgeting decision-making
framework and compares and contrasts decision tree models, binomial models, and influence

diagram models. We argue that influence diagram models are superior to decision tree models,

are a relevant and computationally simple approach, and may provide the most practical means
for the implementation of modeling and valuing investment opportunities when real options are

present. In particular, we argue that (1) influence diagram models represent decision problems in
a more descriptive, intuitive, and compact manner than do either decision tree or binomial

models, (2) influence diagram models and decision tree models are mathematically equivalent,

and (3) for modeling and valuing investment opportunities having real options and under certain
conditions, influence diagram models and binomial models give the same valuations and optimal

strategies. Corporate managers can easily and readily use the influence diagram decision-making

framework to model and value real options investment opportunities. They can also include both
the modeling of the estimation process and the modeling of the valuation process. Future

research may show influence diagrams can provide a more efficient and tractable method for
bringing real options analyses into the applied arena.

The remainder of this paper is organized as follows. In Section 2, we describe a real options

decision problem. In Section 3, we describe a decision tree, a binomial tree, and an influence
diagram representation and valuation of the decision problem. We also discuss some strengths

and weaknesses of each technique. In Section 4, we conclude with a summary of our findings.

2 A REAL OPTIONS DECISION PROBLEM

In order to compare decision tree, binomial option-based, and influence diagram models, a real

options decision problem is presented. This decision problem is adapted from an example in
Sercu and Uppal’s [1995] international textbook International Financial Markets and the Firm.

Their example is a two-period binomial problem where only one additional unit of a good may
be produced, the uncertainty is the future exchange rate, and the firm can initially decide to

produce the last additional unit of output, liquidate the manufacturing plant, or defer the
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production decision until time t = 1. If the firm initially decides to wait, it may at time t = 1, go

ahead and produce the one last unit of output or liquidate the manufacturing plant.
In our adaptation, the time frame is three years and one unit of the good may be produced in

each period. Although this decision problem is simple, it is sufficient for comparing the basic
features of the various decision-making frameworks. And, since there are many downstream

decision alternatives at time t = 0, this investment opportunity cannot be adequately modeled

using a traditional DCF methods.

2.1 An Investment Problem
An U.S. firm has a three-year investment opportunity where the firm may produce, liquidate, or
postpone at both time t = 0 and time t = 1 and produce or liquidate at time t = 2. Postponing the

decision at time t = 2 does not make sense as there are no more periods available for production.

If the firm wanted to postpone at time t = 2, the preferred decision would be to liquidate for a net
positive salvage value, versus postponing for exit costs or not producing for no value. This three-

year investment opportunity has the following features:

1. the firm’s manufacturing plant is already operating and can produce one unit of output for
each of the next three years;

2. at any time, production takes one period and costs $1.80 (USD);
3. at any time, revenue is £1.00 (GBP);

4. it is possible to temporarily exit the market at a cost of $0.10 (USD). Re-entry also costs

$0.10 (USD);
5. the net liquidation value of the manufacturing plant at time t = 0, t = 1, or t = 2 is $0.20

($0.30 salvage value less $0.10 exit costs) (USD) and the salvage value of the plant goes to

zero at t = 3;
6. the spot exchange rate is 2 $/£ (USD/GBP) and follows a multiplicative binomial where u =

1.2 and d = 0.8;
7. both the U.S. risk-free rate (rf(US)) and the U.K. risk-free rate (rf(UK)) are 5%; and

8. the risky probability of an “up” move in the exchange rate is 0.631 for each period and the
risky discount rate for the investment opportunity is 10.5%.

This investment opportunity has multiple real options, besides producing each period.
Initially, the firm can decide to produce, liquidate, or postpone the decision until time t = 1. If the
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firm chooses to liquidate, there is a net positive liquidation value. If the firm chooses to postpone

the production decision, it must pay the exit costs. The next year, the firm will then have the
right to produce if the exchange rate moves in its favor (i.e., the firm can take advantage of

upside potential) but liquidate for a positive salvage value if the exchange rate moves
unfavorably (i.e., the firm can alleviate downside loss).

The firm must also pay the exit costs if it initially decides to produce but then subsequently

decides to wait at time t = 1. If the firm initially decides to postpone and subsequently decides to
wait again at t = 1, it will not owe any additional exit costs. Also, if the firm initially postpones

and then produces at t = 1 or if the firm postpones at t = 1 and then produces at t = 2, it must pay
re-entry costs along with the period’s production cost.

3 DECISION TREES, BINOMIAL TREES, AND INFLUENCE DIAGRAMS

Since influence diagrams can be regarded as compact representations of decision trees, we first
describe decision trees. Next we describe binomial trees, which are a variant of decision trees.

Finally we describe influence diagrams. We use the real options problem described in the

previous section to illustrate all concepts.

3.1 Decision Trees
In general, a decision tree representation of a decision problem has four elements:
1. the possible courses of action or sets of alternatives;

2. the uncertain events with a complete probability model;

3. the resulting outcomes and the net benefit (cost) or preferences of each possible outcome;
and

4. the information constraints specifying what uncertain events the decision-maker knows and
does not know at each point when a decision has to be made.

In a given decision tree, all possible scenarios must be included. The decision-maker can

choose only one alternative (branch) at a decision node. Branches from a chance node must be
mutually exclusive and collectively exhaustive. The sequence of decisions in the tree flows from

the root to the leaves [Raiffa 1968, Clemen 1991].
The decision tree structure for our example is shown in two parts since it is too extensive to

fit on one page. Figure 1a shows the top-half of the decision tree structure. This sub-tree includes

the “produce” leg and the “liquidate” leg, but the “postpone” leg has been collapsed. Figure 1b
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shows the bottom-half. This second sub-tree includes the “liquidate” leg and the “postpone” leg,

but the “produce” leg has been collapsed.
Notice that the decision tree representation (Figures 1a and 1b) has 100 nodes, and 53 of

them are terminal nodes. Yet, the decision problem has only one source of uncertainty—the
exchange rate. This example shows that decision trees can grow exponentially (in the number of

decision and chance variables) and may be difficult to present and not easily understood

representations of the decision problem.
In this decision tree, “p” is the risky or subjective probability of an “up” move in the

exchange rate for each period (home currency depreciating) and is equal to 0.631. “1-p” is the
risky or subjective probability of a “down” move in the exchange rate for each period (home

currency appreciating) and is equal to 0.369. Both of these values are given in the problem

description. The spot exchange rate is 2 $/£. In one year, according to the problem description,
the exchange rate will be 2.4 (i.e., 2 x 1.2) or 1.6 (i.e., 2 x 0.8). Similarly, in two years, the

exchange rate will be 2.88, 1.92, or 1.28. Finally, in year three, the exchange rate will be 3.456,

2.304, 1.536, or 1.024. The risky discount rate used for valuation is 10.5%. As an aside, the
implied volatility of this investment opportunity is relatively low (18.23%), so a 10.5% risky

discount rate for the investment opportunity does not seem unreasonable.
Figures 2a and 2b show the solved decision tree model. The expected value of the produce

alternative is $0.795, the liquidate alternative is $0.20, and the postpone alternative is $0.533.

Since the maximum NPV is $0.795, the initial optimal action is to produce. The optimal follow-
on strategy is to produce as long as the exchange rate depreciates but to liquidate the

manufacturing plant the first time the exchange rate appreciates.

3.1.1 Strengths and Weaknesses of Decision Trees
To account for managerial flexibility and future discretionary opportunities, decision trees have

been used to “enhance” the traditional DCF analysis [Magee 1964, McCabe and Sanderson
1984]. “Explicit use of the decision-tree concept will help force a consideration of alternatives,

define problems for investigation, and clarify for the executive the nature of the risks he faces
and the estimates he must make” [Magee 1964, p. 96]. Decision trees can be used to model and

value many types of investment projects and are especially useful when uncertainty is resolved at

discrete points in time. Decision trees take into account the hierarchical and the sequential nature
of investment decisions and force “… management to bring to the surface its implied operating
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strategy and to recognize explicitly the interdependencies between the initial decision and

subsequent decisions” [Trigeorgis 1996, p. 57]. In addition, most corporate managers and
practitioners are familiar with decision trees and decision trees are reasonably easy to understand

and use. Decision trees have many other strengths as well. They are expressive and flexible.
Since they are not constrained by distribution assumptions, they can be used to model any given

value or cash flow pattern. A decision tree also maps out all possible alternatives and gives the

decision-maker both a project value and an optimal strategy to follow. In addition, a decision tree
model can account for variable interdependencies, state and/or time dependent parameters, and

path-dependent conditional cash flows such as asymmetric switching costs.
Decision trees are especially useful when modeling foregone earnings and intermediate cash

flows is difficult to do in option-based models. Also, a decision tree model may be useful for

identifying project specific characteristics and any real options present in an investment
opportunity [Kemna 1993], even when an option-based model is used for valuing the investment

opportunity. Finally, when an analysis is based on cash flow estimates, a decision tree model and

an option-based model have the same data demands. As we will demonstrate shortly, all of the
above mentioned strengths are inherited by influence diagrams.

Decision trees, however, have two major weaknesses. First, traditional decision trees use
subjective probabilities and a risky discount rate, which captures both time and risk preferences.

However, this discount rate may not be appropriate when an option is present. Asymmetric

claims on an asset do not necessarily have the same expected rate of return as the asset itself and
the appropriate discount rate for the option changes with each change in price of the asset. Thus,

when an option is present, the appropriate discount rate for a tree usually is not the same as the
discount rate for the underlying asset. As we will see, influence diagrams inherit this weakness.

Yet, decision tree models and binomial option-based models can graphically represent the

decision problem the same and decision trees are actually operationally identical to discrete-time
option-based models. With option-based models, however, the probabilities have been

transformed to allow the risk-free rate to be used as the discount rate. Thus, in theory, decision
tree models and binomial option-based models are comparable decision-making frameworks and

will give the same set of results “if completely equivalent assumptions are used in each type of

analysis” [Teisberg 1995, p. 32]. Unfortunately, however, in order to determine the appropriate
or “corresponding” risky discount rate that would make a decision tree analysis equivalent to that
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of an option-based analysis, it is necessary to already know the true value of the investment

opportunity, including the real option(s).
Sensitivity analysis on the discount rate may be a practical way to determine if a given

decision tree model is useful or not. If the capital budgeting analysis is not sensitive to the
discount rate in the respect that the optimal strategy, or at least the initial decision, would not

change for a moderately wide range of discount rates, then the tree may be useful for valuing the

investment opportunity. Also, McDonald [1999] concludes “when the timing option is most
valuable, it is also least sensitive to deviations from the optimal investment rule. Thus, managers

may use approximately correct investment timing rules without losing much value.”
In addition, if market prices are not available, which is common with real assets, option-

based models require knowing the appropriate risky discount rate for the underlying asset. If the

discount rate is not known, an equilibrium asset pricing model must be used to determine the
expected rate of return for the underlying asset. Yet, the appropriate discount rate for the

underlying asset, or which asset pricing model to use for determining the rate, is often not

obvious [Fama and French 1997, McDonald 1999]. Decision trees, therefore, are not the only
real options models subject to valuation error due to the discount rate. Option-based models also

require some way of determining any below equilibrium rate of return shortfall (i.e., convenience
yield) for the underlying asset.

When dealing with practical real options analyses, it is important to not lose sight of the fact

that none of the capital budgeting decision-making frameworks give absolutely precise
valuations. Because of this, the decision-maker primarily needs to determine the optimal strategy

to follow, or at least the initial decision to be made. Now, it is not surprising when a traditional
DCF analysis and a real options analysis gives different optimal strategies. But when do two

different real options analyses (e.g., a decision tree model and a binomial model) lead to different

optimal strategies? In our experience, the optimal strategy is the same the vast majority of the
time if a decision tree approach is employed instead of an option-based approach, even though

the specific resulting valuations nearly always are not. This also holds true for the example
presented in this paper.

The second major weakness of decision trees is their exponential growth. Decision trees can

become burdensome to use as they are inherently combinatorially explosive and can become
intractably large and complex. Also, if the joint probability distribution is not described exactly
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as shown in the tree, we may have to “pre-process” the probabilities before completing the

decision tree representation. The preprocessing of probabilities in a multifaceted problem may
become intractable when there are many chance variables. Influence diagrams do not suffer from

these weaknesses. They are compact and typically do not require pre-processing.
A third weakness of decision trees is the difficulty in determining the subjective probabilities

to use with the future uncertain cash flows in each time period. However, if market prices for the

underlying asset are not available, this weakness is shared by traditional DCF analyses and may
be shared by option-based models as well.

3.2 Binomial Trees
Options are contingent claims and are valued relative to the price of the underlying asset. The

option pricing techniques often employed for modeling and valuing investment opportunities

having real options are the discrete-time binomial or the continuous-time option pricing
techniques, or modifications of either [Black and Scholes 1973, Merton 1973, Margrabe 1978,

Cox, Ross and Rubinstein 1979, Brennan and Schwartz 1985, McDonald and Siegel 1986,

Pindyck 1991, Dixit and Pindyck 1994, Trigeorgis 1991, 1993, 1996].
Option pricing techniques do not predict future values of the underlying asset. Instead, the

future values are assumed to follow some well-defined process. For continuous-time option
pricing models, the value of the underlying asset is usually assumed to be lognormally

distributed, with normally distributed returns. A geometric Brownian motion is used to model

changes in the value of the underlying asset:
dS = m S dt + s S dz        (1)

where m is the known and constant expected rate of return, s is the known and constant

volatility, and a standard wiener process (dz) represents uncertainty.

The binomial option pricing model assumes that the value of the underlying asset follows a
multiplicative binomial and the up and down parameters (u and d respectively) and the volatility

of the underlying asset (s) are constant and known. It also uses risk-neutral (or pseudo)

probabilities, not subjective probabilities. In the limit, the binomial option pricing model

approaches the Black-Scholes model. Both the binomial and continuous-time option pricing
models use risk-free rates (not risky discount rates), and assume these rates are constant and

known.



Modeling and Valuing Real Options Using Influence Diagrams 10

Option-based models may be used to value investment opportunities when future market

conditions are uncertain but are taken into account in the analysis. That is, they may be used to
model and value investment opportunities having real options and to derive at least initial

optimal investment strategies. Since managers are not committed to undertaking these real
options, the option-based approach to modeling real options is conceptually apropos and a

reasonable representation of a managerial decision.

Figures 1a and 1b also show the binomial tree structure for this investment opportunity.
Since there is only one 2-state uncertainty in this decision problem and the decision alternatives

are explicitly modeled in the tree, there is no difference between the structure of the decision tree
and the binomial tree model. The difference between the two models is in the parameter values.

Here, “p” is the risk-neutral, not risky, probability of an “up” move in the exchange rate (home

currency depreciating) and “1-p” is the risk-neutral probability of a “down” move in the
exchange rate (home currency appreciating). In order to value this binomial model, we must

know the values of the u, d, and p parameters. u is given to be 1.2, but can be determined by

dividing the “up” exchange rate by the spot exchange rate (2.4/2). Although technically d is
defined as 1/u, in this case, d is given to be 0.8, and can be determined by dividing the “down”

exchange rate by the spot exchange rate (1.6/2). The only parameter we have to determine is p,
and it can be calculated as follows:

p  = ((1 + rf(US) – rf(UK)) – d)/(u – d) = (1 – 0.8)/(1.2 – 0.8) = 0.5.        (2)

The appropriate discount rate to now use in valuing the investment opportunity is the risk-free
rate (i.e., rf(US), which equals 5%).

Figures 3a and 3b show the solved binomial tree. The value of the produce alternative is now
$ 0.69, the liquidate alternative is still $ 0.20, and the postpone alternative is now $ 0.438. Since

the largest NPV is $ 0.69, the initial optimal strategy is to produce. The optimal follow-on
strategy, again, is to produce as long as the exchange rate depreciates but to liquidate the

manufacturing plant the first time the exchange rate appreciates.

The values obtained from a binomial model will usually be different from those obtained
from a decision tree model when real options are present. In this case, the resulting values are as

follows:



Modeling and Valuing Real Options Using Influence Diagrams 11

Initial Decision Decision Tree ($) Binomial Tree ($)
Produce 0.795 > 0.69

Liquidate 0.20 = 0.20
Postpone 0.533 > 0.438

The value of the liquidate option is the same for both models as no discounting is required

for valuing this portion of the tree. The resulting valuations obtained from the binomial model
for both the produce and postpone alternatives are less than the values obtained from the decision

tree model. This indicates 10.5% is not the true discount rate for this particular tree and, in fact,
is too low. Solving for the appropriate discount rates for the sub-trees shows the appropriate

discount rate for the “produce” leg is 12.8%, and the appropriate rate for the “postpone” leg is

14.0%. However, the initial and follow-on optimal strategies are the same for both models, and
that is what is critical to the decision-maker.

A sensitivity analysis using the discount rate shows postponing is never optimal, producing is
optimal as long as the discount rate is less than 26.4%, and liquidating is optimal if the discount

rate is greater than 26.4%. Thus the optimal strategy only changes when the discount rate used is

more than double either the true rate of 12.8% or the given rate of 10.5%. From a practical
standpoint, it does not make a difference whether a decision tree model or a binomial model is

used to model and value this decision problem.

3.2.1 Strengths and Weaknesses of Binomial Trees
An option-based approach is specifically designed to model flexibility and has multiple

strengths. In general, it can conceptually be used to model and value a variety of types of
business decisions, can often be reasonably modified for project specific characteristics, and

provides precise and valuable intuition into project valuation. Technically, it is based on theory,

introduces asymmetry into the valuation, and models risk directly. Also, under certain
conditions, it eliminates having to estimate the expected rate of change in the underlying asset.

An option-based model is appropriate when there are sequential projects or multiple phases to a
given project. Since volatility is a driver of option value, it is especially appropriate when the

volatility of the underlying asset is high. When market prices are available, an option-based

model is a robust decision-making framework as (1) traded securities can be used in parameter
estimation, (2) subjective probabilities are not needed, (3) future values are not based on
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projected cash flows, and (4) the appropriate risky discount rate for the underlying asset is most

likely not needed.
Yet option-based models have their weaknesses. In general, corporate managers and

practitioners are not familiar with these models and often do not have sufficient mathematical
training to properly use them. These models quickly become highly complex and

computationally demanding and generally cannot account for more than one or two fundamental

sources of uncertainty. Technically, option-based models may be sensitive to the process
assumed for the future values of the underlying asset. For example, do the future values really

follow a lognormal random walk? Even if so, is mean reversion present? Determining the true
functional forms of and obtaining realistic estimates for the required modeling parameters can be

difficult. This also assumes the pricing formulas can be reasonably modified to account for the

parameters. If market prices are not available, the appropriate risky discount rate for the
underlying asset or an equilibrium pricing model is required. Also, any shortfall in the required

rate of return must be determined. In addition, market prices are required for determining the

optimal exercise policy. Finally, option-based models may provide a valuation and an initial
optimal strategy but do not necessarily provide guidelines for managing the investment

opportunity
Since binomial models can be represented as trees, they are more intuitive and require less

mathematical knowledge to build and use. Unfortunately, however, many corporate managers

and practitioners have not had much experience using binomial models and struggle with using
the risk-free rate as the discount rate. Also, because binomial models are trees, they can quickly

grow large, especially if the trees do not recombine.

3.3 Influence Diagrams
Influence diagrams are a type of uncertain reasoning model, as are decision trees, and are a very

general modeling technique that can be used to structure, or model, and value investment
decision problems. They are a graphical modeling tool (directed acyclic graphs ) and provide a

framework for systematically analyzing problem situations in which uncertainty plays a major
role. Influence diagrams can help reveal important sources of uncertainty and interdependencies

that exist in the problem situation and model them in quantitative ways. A given influence

diagram represents the underlying structure of a specific decision problem and reflects the
decision-maker's knowledge at any given point in time. They are an appropriate decision-making
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framework when each uncertainty can be modeled by a set of conditional probability

distributions (i.e., when each probability model can be broken down into priors and conditionals)
[Shenoy 1994]. For complex decision problems, influence diagrams are one method for

decomposing the decision problem into smaller, and thus more manageable, components which
can be analyzed. They also provide a method for balancing cost-benefit trade-offs and resolving

strategy differences when different perspectives, or slight changes in inputs, result in different

optimal strategies. Finally, influence diagrams allow for, and may even require, subjective
judgments to be included in the analysis. As Howard [1990, p. 3] says, “the influence diagram

has proved to be a new ‘tool of thought’ that can facilitate the formulation, assessment, and
evaluation of decision problems.”

Influence diagrams were originally developed as “front-ends” for decision trees [Miller,

Merkhofer, Howard, Matheson, and Rice 1976, Howard and Matheson 1981]. Since a
symmetrical decision tree may be transformed into an influence diagram and an influence

diagram and may be transformed into a symmetrical decision tree, solving an influence diagram

at that time required that it first be transformed into a symmetrical decision tree, and then the
decision tree be solved. A direct method for solving influence diagrams was later developed by

Olmsted [1983] and Shachter [1986]. Influence diagrams have also now been adapted for
asymmetric decision problems [Smith, Holtzman, and Matheson 1993].

Technically, an influence diagram is a compact representation of a decision tree and consists

of two parts. First is the graphical part, or the “picture” (e.g., see Figure 4), and second is the
numerical part, or the “tables” (e.g., see Table 1). For an influence diagram to be completely

specified, both parts - graphical and numerical - are required.
Like decision trees, influence diagrams have four elements: the decision alternatives, the

uncertainties and their distributions, the consequences, and the information constraints. The

decisions available to the decision-maker are represented by decision nodes and these nodes are
shown as rectangles. In the influence diagram in Figure 4, there are three decision nodes,

Decision-year 0, Decision-year 1, and Decision-year 2. At the numerical level, we need to
specify the states or alternatives for each decision node.

The uncertainties are represented by chance nodes (ovals) and arcs that point into such nodes.

In the influence diagram in Figure 4, there are three chance nodes, Exchange Rate-year 1,
Exchange Rate-year 2, and Exchange Rate-year 3. Such nodes and arcs tell us about the
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qualitative structure of the joint probability distribution for the uncertainties. The node at the

start of an arc is called a predecessor node and the node at the end of an arc is called a successor
node. That is, given A ‡ B, A is the predecessor node and B is the successor node. The lack of

an arc between two chance nodes signifies conditional independence. For example, in Figure 4,
the lack of an arc from Exchange Rate-year 1 to Exchange Rate-year 3 implies that these two

chance variables are conditionally independent given Exchange Rate-year 2. At the numerical

level, for each chance node we need to specify a set of possible states and a set of conditional
probability distributions, one for each state of its predecessors.

Deterministic nodes (double ovals) are a special type of chance node in that they have a
degenerate conditional probability distribution. That is, given the states of its predecessors, there

is only one possible state for the deterministic node. Consequently, this state has probability one.

Since the deterministic node is conditionally deterministic, there is no need to specify the
conditional probability distribution for it. However, for each deterministic node, we must specify

a mathematical function that defines the state of the deterministic node as a function of the states

of its predecessor nodes. Also, if any predecessor nodes are chance nodes, then the state it
represents is uncertain. Deterministic nodes, although not required in the modeling process, are

useful for depicting the decision problem more descriptively. In the influence diagram in Figure
4, there are four deterministic nodes, Cash Flow-year 0, Cash Flow-year 1, Cash Flow-year 2.

and Cash Flow-year 3.

The third element of the graphical part of an influence diagram are the information
constraints, which specify what the decision-maker knows and does not know at the time a

decision is to be made. Arcs that point into decision nodes represent these information
constraints. Such arcs are called sequence arcs and indicate that the true states of the predecessor

nodes will be known at the time the decision has to be made. The absence of an arc pointing

from a chance node into a decision node indicates the true state of the chance node will not be
known at the time of the decision. For example, in the influence diagram in Figure 4, when the

decision in year 0 has to be made, none of the true states of exchange rates are known. However,
for the decision in year 1, the true state of exchange rate in year 1 is known and the true states of

exchange rates in year 2 and 3 are unknown, and for the decision in year 2, the true states of

exchange rates in year 1 and 2 are known and the true state of exchange rate 3 is unknown.
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The fourth, and final, element of an influence diagram is the consequences, which are

represented by value nodes. Value nodes are shown as rounded rectangles. In the influence
diagram in Figure 4, there is one value node (labeled NPV). For each value node, a payoff

function that depends on the states of the predecessor nodes, must be specified. As with
deterministic nodes, if an arc points into a value node then the predecessor node is relevant for

the determination of the final value and the arcs signifies the domain of the payoff function.

Although an influence diagram may have more than one value node, for this paper, we limit our
influence diagrams to having only one value node.

An influence diagram is solved by sequentially deleting nodes. The information constraints
dictate the deletion sequence. A maximization or minimization process, depending on the

objective of the decision problem, is used to delete decision nodes. They also are deleted in

reverse order. In other words, the last decision node is deleted first, the next to last decision node
is deleted second, and so on until all decision nodes have been deleted. Chance nodes are deleted

by calculating expected values. Chance nodes whose true states will not be known at the time a

decision has to be made must be deleted before the decision node can be deleted. Chance nodes
whose true states will be known at the time a decision has to be made are deleted after the

decision node is deleted. This deletion process continues until only the value node remains. The
value node then provides the decision-maker with the resulting expected payoff and the optimal

strategy can be constructed from the details of the deletion of the decision nodes.

Influence diagrams may be an alternative framework for modeling and valuing real options
[Lander 1997]. An influence diagram graphical representation of this three-year decision

problem is shown in Figure 4, and the numerical part of the influence diagram is detailed in
Table 1. Using the same basic information as the decision tree model and the binomial model,

the initial and follow-on optimal strategies determined by and the resulting valuations obtained

from the influence diagram model are (1) the same as those of the decision tree model when p =
0.631 and the discount rate used in valuing the investment opportunity is 10.5% or (2) the same

as those of the binomial model when p = 0.5 and the discount rate used in valuing the investment
opportunity is 5%. Thus an influence diagram model can emulate either a decision tree model or

a binomial model, depending on the inputs. Yet, if the decision tree inputs are used, we see that

the influence diagram valuations are also subject to the discount rate criticism.
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The ability of an influence diagram to represent a decision problem in a more conceptual or

descriptive and yet compact manner is readily seen. Comparing Figures 1a and 1b to Figure 4
shows it is still easy to “tell a story” from the influence diagram and to see the relationships

between the decision problem’s variables, but that it is not easy at all to do so with the decision
tree model. The influence diagram has only 11 nodes, whereas the decision tree has 100 nodes.

3.3.1 Strengths and Weaknesses of Influence Diagrams
For modeling and valuing investment opportunities having real options, influence diagrams have
the same strengths as decision trees. However, in addition, influence diagrams can model

continuous variables and can represent “relationships between variables equally well whether
those variables are discrete, continuous, or a mixture of both” [Smith 1989, p. 363]. They have a

more efficient solution procedure than do decision trees. The solution procedure for influence

diagrams takes advantage of conditional independence and then can (1) allow for local
computations to compute the required conditionals and (2) use local computations on the space

of chance variables and on the joint space, as well as on the space of strategies. No preprocessing

of the probabilities is required if there are conditionals for each chance node [Shenoy 1994].
Evidence propagation, where the probability distribution of one or more of the uncertainties is

updated to reflect the revised knowledge of the decision-maker, is easy to do in an influence
diagram model. Thus, from a modeling perspective, project monitoring is a relatively

straightforward process and generally does not require the development of new models.

Most importantly, although influence diagrams and decision trees are mathematically
equivalent, influence diagrams do not graphically display all possible scenarios. Influence

diagrams represent “relationships between the problems component decision variables and
random vectors, rather than the relationships between each possible combination of decision and

outcome that might occur” [Smith 1989, p. 363]. Thus, in an influence diagram, independence

between events can be more easily seen and the size of an influence diagram grows linearly in
the number of variables, versus exponentially as with decision trees. The relevant problem

details are present in an influence diagram but they are represented locally.
As shown in our decision problem, influence diagram models can be a comparable decision-

making framework to both the decision tree and option-based decision-making frameworks for

modeling and valuing investment opportunities having real options. Since influence diagrams
and decision trees are mathematically equivalent representations of a decision problem [Howard
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and Matheson 1981], a correctly specified influence diagram model will give the same results as

a decision tree model, and vice versa. Also, under certain conditions, a decision tree model will
give the same results as an option-based model [Teisberg 1995, Smith and Nau 1995]. Then it

follows that, under the same conditions, an influence diagram will also give the same results as
an option-based model.

Influence diagrams, as with decision trees, also may be useful for modeling the investment

opportunity when combined with option pricing techniques for valuing the investment
opportunity. In other words, management could use the graphical part of an influence diagram to

explore the features and characteristics of an investment opportunity and to develop a fuller
understanding of the investment opportunity and the decision(s) to be made. Then, option pricing

techniques could be used for determining the optimal strategy and for valuing the investment

opportunity. Thus, given an influence diagram’s ability to better represent the decision problem,
an influence diagram model may be extremely useful even when option pricing techniques are

used for valuation.

As with any decision-making framework, however, influence diagrams have a set of
weaknesses. First, they require each uncertainty be modeled by a set of conditional probability

distributions [Shenoy 1994] and dummy states be used when the decision problem is asymmetric
[Bielza and Shenoy 1996]. In order to be solved exactly, the chance and decision variables all

have to have discrete state spaces. Also, because influence diagrams have a more efficient

solution procedure than that for decision trees and since they grow linearly in the number of
variables, using influence diagrams does address the exponential growth problem of decision

trees. But, influence diagrams still suffer from the issue of the appropriate discount rate when an
option is present. As previously mentioned, however, a NPV profile will show the range of

discount rates where the optimal strategy (or at least the initial decision) does not change, option

value is more robust to errors in the investment rule as option value increases [McDonald 1999],
and option-based models are also subject to discount rate errors when market prices are not

available [Fama and French 1997, McDonald 1999]. Finally, when the underlying asset is not a
traded asset, influence diagram models share the problem of estimating the probabilities of the

future uncertain cash flows with traditional DCF analyses, decision tree models, and possibly

option-based models.
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4 SUMMARY AND CONCLUSIONS

In our decision problem, we see the basic similarities and differences of the various decision-
making frameworks.

1. The decision tree and binomial tree are structurally the same when there is one 2-state
uncertainty and the decision alternatives are explicitly included in the model. Both of these

models grow exponentially as variable and time periods are added to the model. Therefore,

they are unsuited for modeling large problems.
2. The solved decision tree and the solved binomial tree yield different valuations due to the

different asset pricing models assumed and, accordingly, the different probabilities and
discount rates used in valuing the investment opportunity.

3. Even with different resulting values, the optimal strategies (initial and follow-on actions) are

not necessarily different for the two models.
4. Depending on the inputs, an influence diagram model can emulate either a decision tree

model or a binomial option-based model and can be an alternative decision-making

framework for investment opportunities having real options.
5. Influence diagrams are superior in how they graphically represent and present decision

problems. They are more descriptive of the decision problem, better illustrate the
relationships between and among the decision problem’s variables, and grow linearly as time

periods and variables are added to the model.

This decision problem illustrates that an influence diagram model is more easily
implemented for real options analyses and can readily be used by corporate managers to value

investment opportunities having real options. Practically, therefore, this research may provide a
means for bringing real options analyses into the applied arena.

Yet, influence diagrams have other advantages not shown by this particular example, and this

is an area for future research to demonstrate. First, due to the lack of restrictive modeling
assumptions and their ability to grow more slowly, influence diagram models can better handle

decision problems where there are multiple uncertainties and many time periods. In the decision
problem presented here, the number of units produced, revenue, liquidation values, and costs

(production, exit, and entry) are all known and constant. These assumptions may not be

reasonable. And the probability for each period of an “up” move (p) in the exchange rate is
assumed to be the same and is not dependent on the type of move that occurred last period.
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These assumptions may not be reasonable either. It may be more likely for the exchange rate to

depreciate (appreciate) in period t + 1 if it depreciated (appreciated) in period t. Also, assuming a
binomial distribution for the exchange rate limits the exchange rate to only moving up or down

in the next period, and at the same rate of change (i.e., u and d are constant).
Consider the following decision problem. The time horizon is four years and produce,

liquidate, or postpone decisions need to be made each period. There are a total of six

uncertainties modeled. The first three uncertainties are relevant during periods 1, 2, and 3. Of
these three uncertainties, two have trinomial distributions and one has a binomial distribution.

The last three uncertainties are relevant during period 4 and, again, two have trinomial
distributions and one has a binomial distribution. Also, for each period, the probabilities for at

least one uncertainty are conditioned on the previous outcome. A compactly designed tree model

for this decision problem has over 42,600 nodes. Yet one possible influence diagram graphical
representation of this decision problem has a total of only 22 nodes (of which 8 are deterministic

nodes, which can be omitted). Also, option-pricing techniques cannot handle this many

uncertainties unless only the resulting net cash flow or value per period is modeled as the
uncertainty.

For a second example, again consider the decision problem presented in this paper. It would
be more reasonable to assume that exchange rates are a function of some set of macroeconomic

variables (instead of assuming that exchange rates follow a random walk over time). For

example, the exchange rate could be modeled as a 2-state variable, but as a function of the U.S.
interest rate, the U.K interest rate, and the spot exchange rate, and according to an interest rate

parity or no-arbitrage relationship. In such a model, the exchange rate does not follow a well-
defined binomial process. Decision tree models can handle any uncertainty model, and so can

handle this easily. Binomial trees cannot handle this as easily, however, as now the u, d, and p

values for each time period and node may well be different, violating the underlying assumptions
of a binomial model. An influence diagram model can also easily handle this model for the

exchange rate. In addition, since influence diagrams grow more slowly as time periods and
variables are added, influence diagrams can easily include the modeling of the estimation process

as well as the modeling of the valuation process. Thus, not only can influence diagram models

handle more complex decision problems but they can also more thoroughly model decision
problems.
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Finally, since the solution procedure for influence diagram models can take advantage of

conditional independence and can solve decision problems using local computations, they may
not require the joint probability distribution. Therefore, in addition to being well suited for

modeling and valuing traditional investment opportunities having real options, influence
diagrams models may also be well suited both for modeling complex decision problems and for

solving such complex decision problems, like those found in more real world or sophisticated

capital budgeting decision-making.
In conclusion, influence diagram models allow for the development of richer models of

uncertainty. They can easily model multiple uncertainties, may include the modeling of any
required estimation processes, can model both continuous distributions and discrete distributions

or combinations of each, and take advantage of conditional independence and solve the decision

problem using local computations. Since real world investment opportunities are often complex
due to the number and modeling of uncertainties, influence diagram models may prove to be a

more efficient and tractable method for modeling and valuing such problems, which today are

impossible to model and value using the current decision-making frameworks.
However, none of the capital budgeting decision-making frameworks discussed in this paper

is without implementation difficulties. Each decision-making framework requires at least one
input that is difficult to estimate and each has its own set of weaknesses. Sometimes the choice

of which decision-making framework to use may be obvious. Usually, however, there is no one

ideal decision-making framework to always use. This is especially true when managerial
flexibility is valuable, the optimal strategy is sensitive to the risky discount rate used in valuing

the investment opportunity, and there are “modeling problems” with using option pricing
techniques. However, we believe this is when influence diagram models may be the most useful,

thus bringing real options analyses into widespread practice.
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Figure 1a. Top-Half of Decision/Binomial Tree Structure
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Figure 1b. Bottom-Half of Decision/Binomial Tree Structure

produce
 [+] 

liquidate

depreciate
p

appreciate
1-p

produce

liquidate

depreciate
p

depreciate
p

appreciate
1-p

produce

liquidate

appreciate
1-p

produce

liquidate

depreciate
p

appreciate
1-p

produce

liquidate

depreciate
p

depreciate
p

appreciate
1-p

produce

liquidate

appreciate
1-p

postpone

depreciate
p

depreciate
p

appreciate
1-p

produce

liquidate

depreciate
p

depreciate
p

appreciate
1-p

produce

liquidate

appreciate
1-p

produce

liquidate

depreciate
p

appreciate
1-p

produce

liquidate

depreciate
p

depreciate
p

appreciate
1-p

produce

liquidate

appreciate
1-p

postpone

appreciate
1-p

postpone



Modeling and Valuing Real Options Using Influence Diagrams 26

Figure 2a. Top-Half of Solved Decision Tree
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Figure 2b. Bottom-Half of Solved Decision Tree
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Figure 3a. Top-Half of Solved Binomial Tree
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Figure 3b. Bottom-Half of Solved Binomial Tree
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Figure 4. Influence Diagram Graphical Representation
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Table 1. Numerical Information for the Influence Diagram in Figure 4

Variable Name
(symbol)

States
(symbols) Probabilities/Values

Decision - yr. 0
(D0)

produce (p0),
liquidate (l0),
postpone (d0)

Decision - yr. 1
(D1)

produce (p1),
liquidate (l1),
postpone (d1)

Decision - yr. 2
(D2)

produce (p2),
liquidate (l2)

C1 P(.)
2.4 pa

Exchange Rate - yr. 1
(C1)

($)
2.4
1.6 1.6 1–p

C2 P(.|C1=2.4) P(.|C1=1.6)
2.88 p 0
1.92 1–p p

Exchange Rate - yr. 2
(C2)

($)
2.88
1.92
1.28 1.28 0 1–p

C3 P(.|C2=2.88) P(.|C2=1.92) P(.|C2=1.28)
3.456 p 0 0
2.304 1–p p 0
1.536 0 1–p p

Exchange Rate - yr. 3
(C3)

($)
3.456
2.304
1.536
1.024 1.024 0 0 1–p

D0 V0
P0 –1.8
l0 0.2

Cash Flow - yr. 0
(V0)

($)

d0 –0.1

D0, D1 V1
p0, p1 C1 – 1.8
p0, l1 C1 + 0.2
p0, d1 C1 – 0.1
l0, *b 0
d0, p1 –1.9
d0, l1 0.2

Cash Flow - yr. 1
(V1)

($)

d0, d1 0
(continued on next page)
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(continued from previous page)
Variable Name
(symbol)

States
(symbols) Probabilities/Values

D0, D1, D2 V2
p0, p1, p2 C2–1.8
p0, p1, l2 C2+0.2
p0, l1, * 0

p0, d1, p2 –1.9
p0, d1, l2 0.2
l0, *, * 0

d0, p1, p2 C2–1.8
d0, p1, l2 C2+0.2
d0, l1, * 0

d0, d1, p2  –1.9

Cash Flow - yr. 2
(V2)

($)

d0, d1, l2 0.2

D0, D1, D2 V3
p0, p1, p2 C3
p0, p1, l2 0
p0, l1, * 0

p0, d1, p2 C3
p0, d1, l2 0
l0, *, * 0

d0, p1, p2 C3
d0, p1, l2 0
d0, l1, * 0

d0, d1, p2 C3

Cash Flow - yr. 3
(V3)

($)

d0, d1, l2 0

NPVc

(NPV)
($) V0 + (V1 / (1 + DR)) + (V2 / (1 + DR)2) +

(V3 / (1 + DR)3)

Notes.
a. For solving the influence diagram, p = 0.631 when using the decision tree parameters and p =

0.5 when using the binomial parameters.
b. A * here indicates the decision alternative(s) omitted give the same values.
c. For solving the influence diagram, DR = 10.5% when using the decision tree parameters and

DR = 5% when using the binomial parameters.



Modeling and Valuing Real Options Using Influence Diagrams 33

Diane M. Lander is an Assistant Professor of Finance at Babson College in Massachusetts. She

received a BS in genetics from the University of California at Davis, an MBA from the
University of North Texas, and PhD in business from the University of Kansas. Before becoming

a professor, Dr. Lander did extensive work as a programmer and systems programmer, and has
managed a systems group. She also has owned and run her own retail business. Her primary

research interest is the practical implementation of the real options approach to capital budgeting.

In 1996, she was awarded the University of Kansas Graduate School Dissertation Fellowship for
her work in this area. Dr. Lander’s research has appeared in Advances in Financial Economics

and The Quarterly Review of Economics and Finance.

Prakash P. Shenoy is the Ronald G. Harper Distinguished Professor of Artificial Intelligence in

Business at the University of Kansas. He received his B.Tech. in Mechanical Engineering from
Indian Institute of Technology, Bombay and his M.S. and Ph.D. in Operations Research from

Cornell University, Ithaca, NY. His research interests are in uncertain reasoning, expert systems,

and decision analysis. He serves as the North American editor for International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, and is an Associate Editor for

Management Science and International Journal of Approximate Reasoning. Further details are
available from his homepage at http://lark.cc.ukans.edu/~pshenoy.


