
Draft dated 3/2/97

SCHOOL OF BUSINESS WORKING PAPER NO. 274

A COMPARISON OF ARCHITECTURES FOR
EXACT COMPUTATION OF MARGINALS

Vasilica Lepar and Prakash P. Shenoy

February 1997†

Institute of Informatics
University of Fribourg

Site Regina Mundi
Rue Faucigny 2

CH-1700, Fribourg, Switzerland
vasilica.lepar@unifr.ch

School of Business
University of Kansas

Summerfield Hall
Lawrence, KS 66045-2003, USA

 pshenoy@ukans.edu

† Comments and suggestions for improvement are welcome and will be gratefully appreciated.

TABLE OF CONTENTS

ABSTRACT....... .1

1 INTRODUCTION...1

2 BAYESIAN NETWORK MODELS & THREE PROBLEMS...2

2.1 Bayesian Network Models..2

2.2 The Chest Clinic Problem...3

2.2 The Stud Farm Problem...4

2.3 The Genetic Reproduction Problem..5

3 THE LAURITZEN-SPIEGELHALTER ARCHITECTURE..7

4 THE HUGIN ARCHITECTURE...12

5 THE SHENOY-SHAFER ARCHITECTURE...16

6 COMPARISON..19

ACKNOWLEDGMENTS..28

REFERENCES28

APPENDIX. COUNTING STORAGE AND OPERATIONS...30

SELECTED WORKING PAPERS..57

A COMPARISON OF ARCHITECTURES FOR
EXACT COMPUTATION OF MARGINALS

Vasilica Lepar and Prakash P. Shenoy

ABSTRACT

In the last decade, several architectures have been proposed for exact computation of
marginals using local computation. In this paper we compare three architectures—
Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer—from the perspective of graphical
structure for message propagation, message-passing scheme, storage efficiency, and
computational efficiency.

Key Words: Lauritzen-Spiegelhalter architecture, Hugin architecture, Shenoy-Shafer
architecture, computing marginals

1 INTRODUCTION

In the last decade, several architectures have been proposed for exact computation of marginals of

multivariate discrete probability distributions. One of the pioneering architectures for computing

marginals was proposed by Pearl [1986]. Pearl’s architecture applies to singly connected Bayes

nets. For multiply connected Bayes nets, Pearl [1986] proposed the method of conditioning to

reduce a multiply connected Bayes net to several singly connected Bayes nets.

In 1988, Lauritzen and Spiegelhalter [1988] proposed an alternative architecture for computing

marginals that applies to any Bayes net. Subsequently, Jensen et al. [1990a, b] proposed a

modification of the Lauritzen-Spiegelhalter architecture. We call this architecture the Hugin

architecture since this architecture is implemented in Hugin, a software tool developed by the same

group. Recently, this architecture has been abstracted by Lauritzen and Jensen [1996] so that it

applies more generally to other domains including the Dempster-Shafer’s belief function theory.

Inspired by the work of Pearl, Shenoy and Shafer [1986] first adapted and generalized Pearl’s

architecture to the case of finding marginals of joint Dempster-Shafer belief functions in join trees.

Later, inspired by the work of Lauritzen and Spiegelhalter [1988] for the case of probabilistic

reasoning, they proposed an abstract framework for computing marginals in join trees that applies

to any domain satisfying some axioms [Shenoy and Shafer 1990]. We refer to this architecture as

the Shenoy-Shafer architecture. In a sense, the Shenoy-Shafer architecture can be considered as an

adaptation of Pearl’s propagation scheme to the join tree graphical structure. Recently, Shenoy

[1997] has proposed a refinement of join trees, called binary join trees, designed to improve the

computational efficiency of the Shenoy-Shafer architecture.

A Comparison of Architectures For Exact Computation of Marginals 2

In this paper, we compare the Lauritzen-Spiegelhalter (LS), Hugin, and Shenoy-Shafer (SS)

architectures from the perspective of graphical structure for message propagation, the message

passing scheme, storage efficiency, and computational efficiency.

Our main findings are as follows. The Hugin architecture is more computationally efficient than

the LS architecture, and less storage efficient than the LS architecture. This is not surprising. What

is surprising is that we are unable to make any general statements regarding the relative storage

efficiencies of the LS and SS architectures, or the relative computational efficiencies of the Hugin

and SS architectures. For some problems, LS has less storage than SS, and for some problems,

SS has less storage than LS. For some problems, Hugin is more computationally efficient than SS

and for some problems, SS is more computationally efficient than Hugin. We identify some

aspects of the Hugin architecture that are better than SS, and some aspects of the SS architecture

that are better than Hugin. Hopefully, this will lead to improvements in both architectures.

2 BAYESIAN NETWORK MODELS & THREE PROBLEMS

In this section, we will define a Bayesian network probability model and then describe three

problems: Lauritzen and Spiegelhalter’s [1988] Chest Clinic (CC) problem, Jensen’s [1996] Stud

Farm (SF) and Genetic Reproduction (GR) problems. We will use the Chest Clinic problem to

illustrate the three architectures. We will compare the efficiencies of the three architectures using all

three problems. We start by defining a Bayesian network model.

2.1 Bayesian Network Models

First we introduce our notation. We denote variables by uppercase Roman alphabets, A, B, C,

etc., and the set of all variables by Ψ. We denote subsets of variables by lowercase Roman

alphabets c, s, t, etc. We denote the set of possible states of a variable X by ΩX, and we assume

that the set of possible states of a subset c of variables is the Cartesian product of the state space of

individual variables in the subset c, Ωc = ×{ΩX | X ∈ c}. We denote states of a subset of variables

by lowercase boldfaced letters such as x , y , etc. If x is a state of c and b ⊆ c, then x↓b denotes the

projection of x to b obtained by simply dropping states of variables in c \ b. Of course, x↓b ∈ Ωb.

Suppose c is a subset of variables. A potential for c is a function χ: Ωc → +, where + is

the set of non-negative real numbers. We call c the domain of potential χ. We will denote

potentials by lowercase Greek letters.

We define multiplication of potentials as follows. Suppose α is a potential for a, and suppose β
is a potential for b. Then α⊗β, read as α times β, is a potential for a∪b defined as follows:

(α⊗β)(x) = α(x↓a) β(x↓b) for all x ∈ Ωa∪b.

A Comparison of Architectures For Exact Computation of Marginals 3

We define marginalization of potentials as follows. Suppose α is a potential for a and suppose

b ⊆ a. Then the marginal of α to b, denoted by α↓b, is a potential for b defined as follows: α↓b(x)

= Σ{α(x , y) | y ∈ Ωa \ b} for all x ∈ Ωb.

A Bayesian network model consists of a connected acyclic digraph G = (Ψ, ∆), and a set of

conditional potentials {κV}V ∈ Ψ, where Ψ represents the set of variables and ∆ denotes the set of

directed arcs between pairs of variables. An acyclic digraph is a finite oriented graph with no

multiple arcs, and no directed cycles. If V and W are variables in Ψ and there is a directed arc from

W to V, written as W→V, then we say V is a child of W, and W is a parent of V. Let Pa(V) =

{W ∈ Ψ  W→V} denotes the set of parents of V. The conditional potentials {κV}V ∈ Ψ satisfy

the following condition: κV: Ω{V}∪Pa(V) → + is such that κV
↓Pa(V)(x) = 1 for every x ∈ ΩPa(V).

The assumption underlying a Bayesian network model is that the prior joint probability distribution

P(Ψ) is given by P(Ψ) = ⊗{κV | V ∈ Ψ} For a more detailed description of a Bayesian network

model, see [Lauritzen and Spiegelhalter 1988, and Pearl 1986].

2.2 The Chest Clinic Problem

In this section, we will first describe Lauritzen and Spiegelhalter's [1988] hypothetical Chest Clinic

problem, and next, a Bayesian network model for it.

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or
none of them, or more than one of them. A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X-ray do not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence of dyspnoea.

Figure 1. The Bayesian Network for the Chest Clinic Problem

A S

T L B

E

DX

A Comparison of Architectures For Exact Computation of Marginals 4

This problem is modeled as a Bayesian network as shown in Figure 1. In this network, A

denotes the variable visit to Asia?, S denotes Smoker?, T denotes Has Tuberculosis?, L denotes

Has Lung Cancer?, B denotes Has Bronchitis?, E denotes Has Either Tuberculosis or Lung

Cancer, X denotes Has positive X-ray?, and D denotes Has dyspnoea?. We assume that all

variables are binary. Assessments are given in Table 1, representing a fictitious population coming

to a chest clinic. Our notation uses a to indicate a positive response on the node A `visit to Asia?',

¬ a to indicate a negative response, and p(a) to stand for Pr(A = a). Similarly, t stands for the

presence of `tuberculosis'; s, `smoker'; l, `lung cancer'; b, `bronchitis'; e `lung cancer or

bronchitis'; x, `positive X-ray'; and d, `dyspnoea'. The probability tables for negative responses

may be derived from Table 1.

Table 1. Conditional Probability Tables for the Chest Clinic Problem

α: p(a) = .01 ε: p(e | l, t) = 1

p(e | l, ¬ t) = 1

τ: p(t | a) = .05 p(e | ¬l, t) = 1

p(t | ¬a) = .01 p(e | ¬l, ¬ t)= 0

σ: p(s) = .50 ζ: p(x | e) = .98

p(x | ¬e) = .05

λ: p(l | s) = .10

p(l | ¬s) = .01 δ: p(d | e, b) = .90

p(d | e, ¬b) = .70

β: p(b | s) = .60 p(d |¬e, b) = .80

p(b | ¬s) = .30 p(d |¬e, ¬b)= .10

2.2 The Stud Farm Problem

The Stud Farm problem is taken from Jensen [1996].

The stallion Brian has sired Dorothy with the mare Ann and sired Eric with the mare Cecily.

Dorothy and Fred are the parents of Henry, and Eric has sired Irene with Gwenn. Ann is the

mother of both Fred and Gwenn, but their fathers are in no way related. The colt John with the

parents Henry and Irene has been born recently; unfortunately, it turns out that John suffers from a

life threatening hereditary disease carried by a recessive gene. The disease is so serious that John is

displaced instantly, and as the stud farm wants the gene out of the production, Henry and Irene are

taken out of breeding. What are the probabilities for the remaining horses to be carriers of the

recessive gene?

A Comparison of Architectures For Exact Computation of Marginals 5

Figure 2. The Bayesian Network for the Stud Farm Problem

A (Ann)L B (Brian) C (Cecily) K

F (Fred) D (Dorothy) E (Eric) G (Gwenn)

H (Henry) I (Irene)

J (John)

Table 2. Conditional Probability Tables for the Stud Farm Problem

αL: p(l) = 0.99 αF: p(f | l, a) = 1

αJ p(j | h, i) = 1 p(f | l, ¬a) = .50

p(j | h, ¬ i) = 0.5 p(f | ¬l, a) = .50

p(jc | h, ¬ i) = 0.5 p(f | ¬l, ¬a) = .25

p(j | ¬h, i) = 0.5

p(jc | ¬h, i) = 0.5

p(j | ¬h, ¬ i) = 0.25

p(jc | ¬h, ¬ i) = 0.50

Assessments are given in Table 2. Our notation uses l to indicate a positive response on the

node L 'is L pure?', ¬l to indicate a negative response, i.e., L is a carrier, and p(l) stand for Pr(L

= l). For each node with no parents—A, B, C, K—we have the same probability as for L, and the

priors are denoted by αA, αB, αC, and αK. The probability for a positive response on the node 'is F

pure if its parents L and A are pure' is p(f | l, a). For each node in this Bayesian network (except J)

with two parents—D, E, G, H, I—we have the same conditional probability as for the node F

respectively αD, αE, αG, αH, αI. The probability tables for negative responses may be derived from

Table 2. Node J has 3 states j, jc, js—j denotes John is pure, jc denotes John is a carrier, and js

A Comparison of Architectures For Exact Computation of Marginals 6

denotes John is sick. The conditional for J, αJ, is given in Table 2. Finally note that we have the

observation οJ that John is sick, i.e., J = js .

2.3 The Genetic Reproduction Problem

The Genetic Reproduction (GR) problem is from the field of genetics. The problem concerns

breeding and would typically be found in animal husbandry, but in order to make it more

interesting, we will state it in terms of human beings:

Florence (F) and Gregory (G) are about to reproduce. However, Gregory is Florence’s
nephew, and in the annals of Bartholomew (B), the father of Florence and grandfather of
Gregory, a life-threatening disease has haunted. The disease is caused by a dominant allele
a1, and appears in a rather late stage of the individual's life-time. Bartholomew married
twice, hence Florence and Gregory's mother are half-siblings. Neither Florence nor
Gregory, their parents, nor Gregory's grandmother have shown any signs of the disease.
What is the risk that their child will inherit the fatal characteristic.

Figure 3. The Bayesian Network for the Genetic Reproduction Problem

A

Ad

B

Bd

C

Cd

D E F

G

H

Hd

A Comparison of Architectures For Exact Computation of Marginals 7

Next, we construct a Bayesian network that models the inheritance of the fatal disease through

the genealogical structure. In general, we are interested in determining the genotype of the

individuals. To each individual, we associate a node labeled with his/her initial and having as states

the possible genotypes identified by the combinations of alleles. Hence, each individual is of

exactly one of the genotypes a1a1, a1a2, or a2a2.

In our problem, when allele a1 is dominant, then this person is a carrier of the disease. This

means that the genotypes a1a1 and a1a2 are carriers of the disease, whereas a2a2 is not.

What can be observed is whether the disease is present or not, but this can only be determined

when the individual has reached a mature age due to the sneaky character of the disease. In order to

be able to enter relevant information on observed occurrences and ask for expectations of the

disease, we add a disease node to the elder and the upcoming generation. These nodes, labeled

with the individuals initial with subscript d, have two possible states, “yes” and “no”,

corresponding to the presence or the absence of the disease, respectively.

Table 3. Conditional Probability Tables for Genetic Reproduction Problem

αA p(A = a1a1) = 0.0001 αB p(B = a1a1) = 0.0025
p(A = a1a2) = 0.0198 p(B = a1a2) = 0.25
p(A = a2a2) = 0.9801 p(B = a2a2) = 0.7475

αAd
p(Ad = y | A = a1a1) = 1 p(Ad = n | A = a1a1) = 0
p(Ad = y | A = a1a2) = 1 p(Ad = n | A = a1a2) = 0
p(Ad = y | A = a2a2) = 0 p(Ad = n | A = a2a2) = 1

αE P(E = a1a1 | A = a1a1, B = a1a1) = 1 P(E = a1a1 | A = a1a2, B = a2a2) = 0
P(E = a1a2| A = a1a1, B = a1a1) = 0 P(E = a1a2 | A = a1a2, B = a2a2) = 0.5
P(E = a2a2 | A = a1a1, B = a1a1) = 0 P(E = a2a2 | A = a1a2, B = a2a2) = 0.5

P(E = a1a1 | A = a1a1, B = a1a2) = 0.5 P(E = a1a1 | A = a2a2, B = a1a1) = 0
P(E = a1a2 | A = a1a1, B = a1a2) = 0.5 P(E = a1a2 | A = a2a2, B = a1a1) = 1
P(E = a2a2 | A = a1a1, B = a1a2) = 0 P(E = a2a2 | A = a2a2, B = a1a1) = 0

P(E = a1a1 | A = a1a1, B = a2a2) = 0 P(E = a1a1 | A = a2a2, B = a1a2) = 0
P(E = a1a2 | A = a1a1, B = a2a2) = 1 P(E = a1a2 | A = a2a2, B = a1a2) = 0.5
P(E = a2a2 | A = a1a1, B = a2a2) = 0 P(E = a2a2 | A = a2a2, B = a1a2) = 0.5

P(E = a1a1 | A = a1a2, B = a1a1) = 0.5 P(E = a1a1 | A = a2a2, B = a2a2) = 0
P(E = a1a2 | A = a1a2, B = a1a1) = 0.5 P(E = a1a2 | A = a2a2, B = a2a2) = 0
P(E = a2a2 | A = a1a2, B = a1a1) = 0 P(E = a2a2 | A = a2a2, B = a2a2) = 1

P(E = a1a1| A = a1a2, B = a1a2) =0.25
P(E = a1a2 | A = a1a2, B = a1a2) = 0.5
P(E = a2a2 | A = a1a2, B = a1a2) =0.25

Probability assessments are given in Table 3. The interpretation of these probabilities is

similarly to that for the previous problems. Our notation A = a1a2 stand for A has a genotype a1a2.

A Comparison of Architectures For Exact Computation of Marginals 8

For nodes C and D we have the same probabilities as for node A, and the conditionals for these

nodes are denoted by αC and αD, respectively. For nodes Bd, Cd, and Hd, we have the same

probabilities as node Ad, and the conditionals for these nodes are denoted by αBd
, αCd

, and αHd
,

respectively. Nodes F, G, and H have two parents, and they have the same conditional

probabilities as node E and these are labeled αF, αG, and αH, respectively.

3 THE LAURITZEN-SPIEGELHALTER ARCHITECTURE

In this section , we describe the Lauritzen-Spiegelhalter architecture for computing marginals.

In a probabilistic model, we make inferences by computing the marginal of the joint probability

distribution for the variables of interest. For simplicity, we will assume that we are interested in the

marginal for all variables. When we have a large number of variables, computing the joint is

computationally intractable. However, when the conditional potentials have small domains, we can

compute the marginals of the joint without explicitly computing the joint.

In the LS architecture, first we construct a join tree called a junction tree, and then we

propagate messages in the junction tree. The junction tree is constructed from the directed acyclic

graph G as follows. First we construct a moral graph Gm, next we triangulate Gm, and finally we

arrange the cliques in Gm in a join tree.

The procedure for transforming a Bayesian network G into a moral graph Gm is as follows.

First we “marry parents” by adding undirected edges between every pair of parents, and then we

drop directions, i.e., replace directed arcs by undirected edges (see Figure 4). The resulting

undirected graph is called the moral graph Gm of G.

Figure 4. Constructing the Moral Graph Gm from the Bayesian network G

SA

T L B

E

X D

SA

T L B

E

X D

SA

T L B

E

X D

Marry
Parents

Drop
directions

Next we triangulate the moral graph Gm if it is not a triangulated graph. An undirected graph is

triangulated if every cycle of length n ≥ 4 has a chord. Lauritzen and Spiegelhalter [1988] suggest

the maximum cardinality search algorithm developed by Tarjan and Yannakakis [1984] for

A Comparison of Architectures For Exact Computation of Marginals 9

checking whether an undirected graph is triangulated or not and for suggesting minimal fill-ins so

that the resulting graph is triangulated. In the Chest Clinic problem, the moral graph shown in

Figure 4 is not triangulated since we have a cycle SLEB of length 4 without a chord. A fill-in

suggested by the maximum cardinality search algorithm is {L, B}. The resulting graph is

triangulated (see Figure 5).

Figure 5 A Triangulated Graph and a Corresponding Junction Tree

SA

T L B

E

X D E X

S L B

L E B

E B D

A T

T L E

Once we have a triangulated graph, we can arrange its cliques (maximal complete subsets of

variables) in a join tree. A join tree is a tree whose nodes are subsets of variables such that if a

variable is in two distinct nodes, then the variable must be in every node on the path between the

two nodes. We will call the join tree whose nodes are the cliques of the triangulated moral graph a

junction tree. This data structure enables local computations with potentials on domains within the

cliques. A junction tree for the Chest Clinic problem is shown in Figure 5.

Next we associate each conditional potential κV with the clique that contains the subset

{V}∪Pa(V). If we have observations, we model these as potentials and associate the potentials

with a clique that includes the domain of the potential. If a clique has more than one potential

associated with it, then we will assume that the combination of these potentials is associated with

the clique.

For the Chest Clinic problem, suppose we have evidence that the patient has visited Asia and

has Dyspnoea. We model this evidence as potentials οA for {A}and οD for {D}. It is easy to show

that given the evidence, the posterior joint distribution is proportional to the product of all

potentials including οA and οD.

Next we pick any node of the junction tree to be the root, and direct all edges of the junction

tree toward the root. The propagation in Lauritzen and Spiegelhalter’s architecture is done in two

passes, inward and outward. In the inward pass, each node send a message to its inward neighbor,

and in the outward pass, each node sends a message to its outward neighbors. Precise rules are as

follows [Shafer 1996].

A Comparison of Architectures For Exact Computation of Marginals 10

Inward Pass (see Figure 6):

Figure 6. Inward Propagation (from ci to cj) in the LS Architecture

After

χj′ = χj⊗χi↓(ci∩cj)

χi′ = χi / χi↓(ci∩cj)ci

cjχj

χi

Before

ci

cj

• Rule 1. Each node waits to send its message to its inward neighbor until it has received a

message from all its outward neighbors. If a node has no outward neighbors, it can send a

message right away.

• Rule 2. When a node is ready to send a message to its inward neighbor, it computes the

message by marginalizing its current potential to its intersection with the inward neighbor. It

sends this message to its inward neighbor, and then it divides its own current potential by the

message.

• Rule 3. When a node receives a message from its outward neighbor, it replaces its current

potential with the product of that potential and the message.

The inward pass ends when the root has received a message from all its outward neighbors.

Outward Pass (see Figure 7):

Figure 7. Outward Propagation (from cj to ci) in the LS Architecture

Before

ci

cj χj′′

χi′

After

χj′′

χi′′ = χi′⊗χj′′↓(ci∩cj)ci

cj

A Comparison of Architectures For Exact Computation of Marginals 11

• Rule 1. Each node waits to send its messages to its outward neighbors until it has received the

message from its inward neighbor. The root which has no inward neighbor can send a message

right away.

• Rule 2. When a node is ready to send a message to its outward neighbor, it computes the

message by marginalizing its current potential to its intersection with the outward neighbor. It

sends this message to its outward neighbor.

• Rule 3. When a node receives a message from its outward neighbor, it replaces its current

potential with the product of that potential and the message.

The outward pass ends when all leaves have received messages from their inward neighbors.

At the end of the outward pass, the potential associated with each clique is the marginal of the

posterior joint for the clique (up to a normalization constant)..

Figures 8, 9 and 10 illustrate the computations in the LS architecture for the Chest Clinic

problem.

Figure 8. At the Beginning

A T

T L E

E X

S L B

L E B

E B D

χ1 = α⊗ τ⊗ oA χ4 =σ ⊗λ⊗β

χ2 =ε

χ6 =ξ χ5 = δ⊗ο D

Figure 9. At the End of the Inward Propagation

A T

T L E

E X

S L B

L E B

E B D χ5′ = χ5 / χ5
↓{E, B}

χ4′ = χ4 / χ4
↓{L, B}

χ6′ = χ6 / χ6
↓{E}

χ2⊗[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}⊗χ6
↓{E}

[χ2⊗[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}⊗χ6
↓{E}]↓{T}

χ2′ =

χ1′ = χ1⊗[χ2⊗[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}⊗χ6
↓{E}]↓{T}

χ4
↓{L, B}⊗χ5

↓{E, B}

[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}
χ3′ =

A Comparison of Architectures For Exact Computation of Marginals 12

Figure 10. At the End of the Outward Propagation

A T

T L E

E X

S L B

L E B

E B D

χ1′′ = χ1′

χ2′′ = χ2′⊗χ1′′↓{T}

χ6′′ = χ6′⊗χ2′′↓{E}

χ3′′ = χ3′⊗χ2′′↓{L, E}

χ5′′ = χ5′⊗χ3′′↓{E, B}

χ4′′ = χ4′⊗χ3′′↓{L, B}

At the end of the outward pass, we have the marginal of the posterior distribution at each

clique. However, the stated task is the computation of the marginal of the posterior for each

variable in the Bayes net. We can compute the marginal for a variable from any clique marginal that

contains the variable. Since it is more efficient to compute the this marginal from a smaller clique,

we will do so from a smallest clique that contains the variable. For example, to compute the

marginal for E in the Chest Clinic problem, we can do so from the marginals of the following

cliques: {T, L, E}, {L, E, B}, {E, B, D} and {E, X}. Since {E, X} is the clique with the smallest

number of states, it is most efficient to compute the marginal for E from {E, X}. Of course, this

strategy ignores the computational cost of identifying a smallest clique.

4 THE HUGIN ARCHITECTURE

In this section, we sketch the Hugin architecture. Although it was initially described for computing

marginals of probability distributions [Jensen et al. 1990a, b], it has been recently extended by

Lauritzen and Jensen [1996] so that it is more widely applicable to domains that satisfy some

axioms.

We start by assuming that we have a junction tree and the corresponding probability potentials

for each clique. We introduce a storage register between every two cliques whose domain is the

intersection of the two cliques. We call this storage register a separator. Pick any node to be the

root. The propagation in Hugin architecture is done in two passes, inward and outward. In the

inward pass, each node send a message to its inward neighbor, and in the outward pass, each node

sends a message to its outward neighbors.

A Comparison of Architectures For Exact Computation of Marginals 13

In the Hugin architecture, in the inward pass the sender does not divide the message. Instead,

we save it in the separator. This requires more space, but it save computations (as we will see

shortly). On the outward pass, the separator divides the outward message by the message it has

stored before passing it on to be multiplied into the potential of the receiving node. Notice that the

division is done in the separator which has a smaller state space than either of the two cliques.

If we assume that at the beginning, each separator has the corresponding identity potential ι (a
potential whose values are identically one, and whose domain is same as the separator), then the

inward action is same as the outward. Precise rules are as follows [Shafer 1996]:

Figure 11. Inward Propagation (from ci to cj) in the Hugin Architecture

cj

ci χi′

χj cj

ci χi′

χj′ = χj⊗χi′↓(ci∩cj)

Before After

χi′↓(ci∩cj)ι

Figure 12. Outward Propagation (from cj to ci) in the Hugin Architecture

cj

ci χi′

χj′′

Before

χi′↓(ci∩cj)

cj

ci χi′′ = χi′⊗(χj′′↓(ci∩cj) / χi′↓(ci∩cj))

After

χj′′↓(ci∩cj)

χj′′

A Comparison of Architectures For Exact Computation of Marginals 14

• Rule 1. Each non-root node waits to send its message to a given neighbor until it has received

messages from all its other neighbors.

• Rule 2. The root waits to send messages to its neighbors until it has received messages from

them all.

• Rule 3. When a node is ready to send its message to a particular neighbor, it computes the

message by marginalizing its current potential to its intersection with this neighbor, and then it

sends the message to the separator between it and the neighbor.

• Rule 4. When a separator receives a message New from one of its two nodes, it divides the

message by its current potential Old, send the quotient New/Old on to the other node, and then

replaces Old with New.

• Rule 5. When a node receives a message, it replaces its current potential with the product of

the potential and the message.

Rules 1 and 2 force the propagation to move in to a “root” and then back out.

At the end of the propagation, the potentials on all the nodes and separators are marginals of the

posterior joint P ∝ ⊗χi.

Suppose Θ is the set of all cliques, and Γ is the set of all separators. Then at the beginning, at

the end of the inward pass, at the end of the outward pass, or at any step in the propagation

process, P ∝ (⊗i∈Θ χi) / (⊗i∈Γ χi).

Figures 13, 14 and 15 illustrate the computations in the Hugin architecture for the Chest Clinic

problem.

Figure 13. At the Beginning

A T

T L E

E X

S L B

L E B

E B D

χ1 = α⊗ τ⊗ oA χ4 =σ ⊗λ⊗β

χ2 =ε

χ6 =ξ χ5 = δ⊗ο D

ι

ι

ι

ι

ι

A Comparison of Architectures For Exact Computation of Marginals 15

Figure 14. At the End of the Inward Propagation

A T

T L E

E X

S L B

L E B

E B D

χ4′ = χ4

χ5′ = χ5χ6′ = χ6

χ4′↓{L, B}χ2′↓{T}

χ5′↓{E, B}

χ3′↓{L, E}

χ6′↓{E}

χ2′ = χ2⊗χ3′↓{L, E}⊗χ6′↓{E} χ3′ = χ4′↓{L, B}⊗χ5′↓{E, B}

χ1′ = χ1⊗χ2′↓{T}

Figure 15. At the End of the Outward Propagation

A T

T L E

E X

S L B

L E B

E B D

χ3′′↓{L, B}

χ3′′↓{E, B}

χ2′′↓{L, E}

χ2′′↓{E}

χ1′′↓{T}

χ2′′ = χ2′⊗[χ1′′↓{T} / χ2′↓{T}]

χ1′′ = χ1′ χ4′′ = χ4′⊗[χ3′′↓{L, B} / χ4′↓{L, B}]

χ6′′ = χ6′⊗[χ2′′↓{E} / χ6′↓{E}] χ5′′ = χ5′⊗[χ3′′↓{E, B} / χ5′↓{E, B}]

χ3′′ = χ3′⊗[χ2′′↓{L, E} / χ3′↓{L, E}]

We compute the marginal for a variable from the marginal for a smallest separator that contains

the variable. If there is no separator that contains the variable then we compute it from the marginal

for a smallest clique that contains the variable. Like in the LS architecture, this strategy ignores the

computational cost of identifying the smallest separator or clique that contains the variable.

A Comparison of Architectures For Exact Computation of Marginals 16

5 THE SHENOY-SHAFER ARCHITECTURE

In this section, we sketch the Shenoy-Shafer architecture and illustrate it using the Chest Clinic

problem.

In the Shenoy-Shafer architecture, we start with a collection of potentials that define the joint

distribution. The domains of the potentials form a hypergraph. To this hypergraph, we add subsets

for which we desire marginals. For example, if we wish to compute marginals for each singleton

variable, we add these singleton variables to the hypergraph if they are not already included in the

hypergraph. In the Chest Clinic problem, we start with a set of potentials ϑ = {α, σ, τ, λ, β, ε, ξ,

δ , οA, οD}, and a hypergraph Η = {{A}, {S}, {A, T}, {S, L}, {S, B}, {T, L, E}, {E, X}, {E,

B, D}, {D}, {T}, {L}, {B}, {E}, {X}}.

Figure 16. A Binary Join Tree for the Chest Clinic Problem.

{L, E, B}

{A}

{S, L, B}

{S}

{S, B}

{E, B}

{D}

{B}

{X}

{L}

α, οA

τ

σ

λ

β

δ

οD

ξ

ε

{A, T}

{S, L}

{T, E}

{E, X}

{T, L, E}

{E, B, D}

{L, E}

{L, B}{T}

{E}

The first step in the Shenoy-Shafer architecture is to arrange the subsets in H in a binary join

tree. A binary join tree is a join tree such that no node has more than three neighbors. The binary

join tree construction process is motivated by the idea of fusion [Shenoy 1992] (called peeling by

Cannings et al. [1968]), and the idea that all combinations should be done on a binary basis, i.e.,

potentials should be multiplied two at a time. A binary join tree is a data structure designed to cache

A Comparison of Architectures For Exact Computation of Marginals 17

computation so as to reduce the computation involved in combination and marginalization. A

binary join tree for the hypergraph in the Chest Clinic problem is shown in Figure 16.

Shenoy [1997] describes a formal procedure for constructing a binary join tree. Here we will

sketch this procedure. As per the fusion algorithm, when we delete a variable, we combine all

potentials that contain the variable in their domains and then marginalize the variable out of the

combination. The potentials that do not contain the variable in their domains remain unchanged.

For example, in the Chest Clinic problem, if we fuse the potentials in ϑ with respect to S, we get

{(σ⊗λ⊗β)↓{L, B}, α, τ, ε, ξ, δ , οA, οD}. The computation of σ⊗λ⊗β is achieved using binary

fusion, i.e., we first combine σ and λ, and then we combine σ⊗λ and β. This suggests the binary

subtree shown in Figure 17. If we recursively implement this using the deletion sequence, say,

XASDBLE, we get the binary join tree shown in Figure 18.

Figure 17. A Binary Join Tree Suggested by Binary Fusion with respect to S

{S, L, B}

{S}

{S, L} {S, B}

{S, L}

σ λ

βσ λ

σ⊗λ β

{L, B}

(σ⊗λ⊗β)↓{L, B}

Notice that in Figure 18, many nodes are duplicated. If we have a pair of duplicate nodes that

are neighbors and merging these two nodes does not increase the number of neighbors of the

merged node to more than three, then we can merge the duplicated nodes into one node. If we do

this in the Chest Clinic problem, the condensed binary join tree that is obtained is the one shown in

Figure 16. In general, we may not be able to always get rid of duplicate nodes [Shenoy 1997].

Once we have a binary join tree, we associate each potential with one of the subsets in the

binary join tree that corresponds to its domain. Next, each node in the tree that needs to compute

the marginal for it requests a message from each of its neighbors. The messages are computed

using Rule 1 as follows.

A Comparison of Architectures For Exact Computation of Marginals 18

Figure 18. A Binary Join Tree for the Chest Clinic Problem Suggested by Binary Fusion

{L, E, B}

{A}

{S, L, B}

{S}

{S, B}

{E, B}

{D}

{B}

{X}

{L}

α, οA τ σ λ

β

δ οDξ

ε

{A, T}1

{A, T}2

{S, L}1

{S, L}2

{T}2

{T, E}1

{T, E}2{E}3

{E, X}2

{E, X}1

{T, L, E}1

{T, L, E}2

{E, D, B}1

{E, D, B}2

{L, E}2

{L, E}1

{L, B}1

{L, B}2

{T}1

{T}3

{E}2 {E}1

Rule 1 (Computing Messages) Suppose r and s are neighbors, and suppose s has
requested a message from r. r in turn requests messages from its other neighbors, and after
it has received these messages, it computes the message to s as follows. Informally, the
message that node r sends to its neighbor s is the combination of all messages that r
receives from its other neighbors together with its own probability potential marginalized to
r∩s. Formally, suppose µ r→s denotes the message from r to s, suppose N(r) denotes the
neighbors of r in the binary join tree, and suppose αr denotes the probability potential
associated with node r. Then the message from node r to its neighboring node s is
computed as follows:

µ r→s = (⊗{µ t → r | t ∈ (N(r) – {s})}⊗αr}
↓r∩s

Notice that a leaf of the join tree has only one neighbor and therefore when it has received a
request for a message, it can send it right away without waiting for any messages.

In Figure 17, notice that the messages displayed there satisfy Rule 1 above. When a node that

needs to compute the marginal for it has requested and received messages from all its neighbors,

then it computes the desired marginal using Rule 2 as follows.

A Comparison of Architectures For Exact Computation of Marginals 19

Rule 2 (Computing Marginals) When a node r has received a message from each of its
neighbors, it combines all messages together with its own probability potential and reports
the results as its marginal. If ϕ denotes the joint potential, then

ϕ↓r = ⊗{µ t → r | t ∈ N(r)}⊗αr

Each node in the binary join tree will have zero, one, two or more storage registers, one for

each input probability potential (if any), and one for reporting the marginal of the joint (if a

marginal for the node is desired). Each edge (separator) in the join tree would have at most two

storage register for the two messages, one in each direction. Figure 19 shows the storage

architecture for a simple join tree with two nodes. Each of the two nodes is assumed to have one

input potential. Also, we assume that we desire the marginal for both nodes. Notice that the

domain of the separator between r and s is r∩s.

Figure 19. The Shenoy-Shafer Architecture for a Join Tree with Two Nodes

ϕ
↓s

αs

ϕ
↓r

αr

rs
 µ

r → s

µ
s → r

In the Chest Clinic problem, suppose we desire marginals for each of the variables in the

problem. To achieve this, suppose that the singleton nodes {A}, {S}, {T}, {L}, {B}, {E}, {X},

and {D} in the binary join tree of Figure 16 request a message from their neighbors. Notice that

not all messages are computed. For example, the message µSLB→SB is not computed since it is not

requested by any node.

Notice that unlike the LS and Hugin architectures, there are no division operations in the SS

architecture. Also, notice that unlike the LS and Hugin architectures, the input potentials remain

unchanged during the propagation process in the SS architecture. Notice also that the marginal of

the joint potential for a variable is computed at the corresponding singleton variable node of the

binary join tree.

6 COMPARISON

In this section, we will compare the Lauritzen-Spiegelhalter (LS), Hugin, and Shenoy-Shafer (SS)

architectures. In the comparison, we will focus our attention on the graphical structure for message

A Comparison of Architectures For Exact Computation of Marginals 20

propagation, the message-passing scheme, the storage efficiency, and the computational efficiency

of each architecture.

In all three architectures, we assume that we start with a Bayesian network representation of a

problem and that we have some evidence (observations or likelihoods) for some variables. The

task is to compute the marginals of the posterior distribution for all variables in the problem.

Graphical Structures for Message Propagation. In the LS and Hugin architectures,

propagation of potentials is done in a junction tree. In the SS architecture, propagation of potentials

is done in a binary join tree. The nodes of a junction tree are the cliques of a triangulated moral

graph of the original Bayesian network. A corresponding binary join tree includes these cliques as

well as several subsets of these cliques. Therefore, a binary join tree has more nodes than in a

corresponding junction tree. For example, in the Chest Clinic problem, the junction tree shown in

Figure 5 has six nodes whereas the corresponding binary join tree shown in Figure 16 has 20

nodes. For the Stud Farm problem, the junction tree shown in Figure A.1 has 9 nodes and the

corresponding binary join tree in Figure A.2 has 34 nodes. And in the Genetic Reproduction

problem, the junction tree shown in Figure A.3 has 10 nodes and the corresponding binary join

tree shown in Figure A.4 has 28 nodes. (Notice that if we start with a binary join tree and we

condense it by absorbing adjacent nodes that are subsets/supersets of each other, we get a

“corresponding junction tree.”)

The junction tree yields only marginals for the cliques in the LS architecture, and marginals for

cliques and separators in the Hugin architecture. Since our stated task is to compute marginals of

singleton variables, there is further computation needed in these two architectures. In the LS

architecture, the marginal for a variable can be computed most efficiently from the marginal of the

smallest clique containing the variable. However, identifying the smallest clique itself involves

some computation. In the Hugin architecture, if a variable belongs to a separator, then the marginal

for the variable can be computed most efficiently from a smallest separator containing the variable.

If a variable does not belong to any separator, then its marginal can be computed most efficiently

from a smallest clique containing the variable. Identifying whether a variable is in some separator

or not, and identifying a smallest separator or a smallest clique containing the variable involves

some computation. In the SS architecture, if during the construction of a binary join tree, we

include all singleton subsets, then the graphical structure yields marginals for singletons at the end

of the message passing stage with no further computation required.

It is not necessary that we use junction trees for the LS and Hugin architectures. We could use

any join tree including binary join trees. However, given the message passing schemes of these

two architectures, it is inefficient (with respect to both computation and storage) to implement these

two message passing schemes on join trees with many nodes. We will be more specific about this

aspect when we discuss computational efficiencies of the three architectures. Also, it is not

A Comparison of Architectures For Exact Computation of Marginals 21

necessary that we use a binary join tree for the SS architecture. We could use any join tree

including junction trees. However, there is computational penalty in using non-binary join trees or

condensed junction trees for the SS message passing scheme. For these reasons, the LS

architecture is associated with junction trees, the Hugin architecture is associated with junction tree

with separators, and the SS architecture is associated with binary join trees constructed in the

manner described in Shenoy [1997].

Message-Passing Schemes. In the LS architecture, first we arbitrarily designate a clique of

the junction tree as the root. The propagation of messages in done in two stages—the inward phase

where each clique send a message to its inward neighbor, and the outward phase in which each

clique sends a message to each of its outward neighbors. At the beginning we have an evidence

potential representation. And at the end of the outward phase, at each clique, we have the marginals

for it. Each clique in the junction tree stores a potential. Computations are done by each clique in

the junction tree.

In the Hugin architecture, we designate a node as the root. Each clique send a message to each

of the separators between it and its neighbors. When a separator receives a message from one of its

neighboring clique, it sends a message to its other neighboring clique. At all times, the joint

potential is equal to the product of the potentials at the cliques divided by the product of the

potentials at the separators. When all messages have been sent, the potential at each clique and at

each separator is the marginal of the joint for that node. Each clique and each separator in the

junction tree stores a potential. Computations are done by each clique and by each separator in the

junction tree.

In the SS architecture, nodes for which the marginals are desired request messages from all

their neighbors. When a node receives a request for a message, it in turn requests messages from

all its other neighbors. When all requested messages have been delivered, the marginals are

computed at the desired nodes. A node may store either no potential, or one potential (input or

output) or two or more potentials (one for each input, and output). Each edge (separator) between

two nodes may store one or two potentials. Computations are done only by nodes and not by

separators.

Although we have restricted our study in this article to Bayesian networks, all three

architectures are applicable more widely. Lauritzen and Jensen (1996) have described axioms that

generalize the LS and the Hugin architecture to other domains. These axioms include the axioms

proposed by Shenoy and Shafer (1990). A natural question is how generally applicable are these

three architectures. Since the Shenoy-Shafer architecture does not use the division operation, it is

clear that the Shenoy-Shafer architecture is more widely applicable that the Lauritzen-Spiegelhalter

or the Hugin architecture. For example, the problem of fast retraction proposed by Cowell and

David [1992] can be handled by all three architectures in the probabilistic domain. However, fast

A Comparison of Architectures For Exact Computation of Marginals 22

retraction cannot be handled in non-probabilistic domains by the Lauritzen-Spiegelhalter and Hugin

architectures as the axioms are not satisfied [Lauritzen and Jensen 1996]. Fast retraction is easily

handled in the Shenoy-Shafer architecture [Lauritzen and Shenoy 1996].

Storage Efficiencies. In the LS architecture, each clique in the junction tree stores one

potential. Thus the total storage requirements will depend on the number of cliques in the junction

tree and state spaces of the cliques. If after propagating the messages in the junction trees, we get a

new piece of evidence, then we will have to start again with the input and evidence potentials.

Also, a user may want to edit the input and evidence potentials. For these two reasons, we have to

also include the storage requirements for the input and evidence potentials. Also, at the end of the

outward propagation, we have only the marginals for the cliques. However, our stated task is the

computation of the marginals for each variable. These marginals are computed from the clique

marginals. We will also include the storage requirements for storing the marginals of each variable.

In the Hugin architecture, each clique in the junction tree stores one potential. Also, each

separator between two adjacent cliques stores one potential. Also, a user may need to edit the input

and evidence potentials. So these need to be stored separately. Therefore, we will also include the

storage space for storing the input and evidence potentials. Also, when all messages have been

computed, we have only the marginals for the cliques and separators. We still need to compute

marginals of singleton variables. So we will include storage space for the marginals of each

variable.

In the SS architecture, each node may have either zero, one, two or more potentials. If a node

has at least one input potential and it is a singleton node whose marginal is desired, then such a

node with have two or more potentials. If a node has neither an input potential nor is the marginal

for the node desired, then it will have zero potentials. In all other cases, it will have one potential

(either an input potential or an output potential). If we regard the edge between two adjacent nodes

as a separator, then each separator will have either one or two potentials depending on which

messages are requested. If both adjacent nodes request messages from each other, then each

separator will store two potentials. If only one message is requested, then a separator will store

only one potential.

Table 4. Storage Efficiencies of the Three Architectures for Three Sample Problems

Storage Efficiency Architectures

floating point numbers (fpn) LS Hugin SS

Chest Clinic with evidence for A and D 96 112 158

Stud Farm 214 262 376

Genetic Reproduction 368 425 457

A Comparison of Architectures For Exact Computation of Marginals 23

Table 4 displays the storage requirements for the three problems described in Section 2. In this

table, the storage requirements are described in units of floating point numbers (fpn). Thus, e.g.,

to store a potential whose domain consists of three binary variables, we will need storage space of

23 = 8 fpn.

In general, it is easy to see that, assuming we are working with the same junction tree, the

Hugin architecture will have always more storage requirements than the LS architecture because of

storage at the separators.

In comparing the storage requirements of Hugin with SS architectures, there are no general

results. Although a binary join tree has more nodes than a corresponding junction tree, not every

node in a binary join tree has a potential associated with it. All input and evidence potential are

included in both architectures and all output potentials are also included in both architectures. So

the differences in storage are due to storage at cliques and separators in the Hugin architecture and

storage at separators in the SS architecture. In the Hugin architecture, all separators include exactly

one potential each, whereas in the SS architecture, most separators include two potentials and there

are usually a lot more separators in a binary join trees than in corresponding junction trees.

However, every clique in a junction tree stores a potential whereas these potentials are not present

in the SS architecture.

Figure 20. A Bayes net, a Junction Tree, and a Binary Join Tree

D

S1 S2

{D, S1} {D, S2}

D

S1 S2

{D, S1} {D, S2}

In Table 4, we see that the SS architecture has more storage than the LS and Hugin

architectures for the three problems. It is easy to construct an artificial problem in which the SS

architecture has less storage than the LS and Hugin architectures. Consider a Bayes net with one

disease variable D and two symptom variables S1 and S2 as shown in Figure 20. Suppose we have

two pieces of evidence for nodes S1 and S2, respectively. A junction tree and a binary join tree are

also shown in Figure 20. Suppose that each of the three variable has 5 states. Then in all three

architectures we have the same storage for input (5 + 25 + 25 = 55 fpn), evidence (5 + 5 = 10 fpn)

and output potentials (3*5 = 15 fpn). In the LS architecture we have a storage of 50 (= 2*25) fpn

at the two cliques in the junction tree. In the Hugin architecture, we have a total storage of 55 (=

2*25 + 5) fpn at the two cliques and one separator. In the SS architecture, we have a total storage

A Comparison of Architectures For Exact Computation of Marginals 24

of 40 (= 4*2*5) at the 4 separators. Thus in this problem, SS has less storage than both the LS and

Hugin architectures.

Computational Efficiency. It is traditional to study worst case order of magnitude

complexity of computational algorithms. From this perspective, there are no essential differences

between the three architectures. All three architectures compute the marginals using local

computation. In the worst case, the computational complexity of the three algorithms are

exponential in the size (# variables) of the largest clique.

Table 5. # Binary Arithmetic Operations for Some Sample Problems

Binary Arithmetic Operations Architecture

Problem LS Hugin SS

Chest Clinic with no evidence

binary additions 72 60 56

binary multiplications 84 84 122

binary divisions 36 16

Chest Clinic with evidence for A and D

binary additions 72 60 56

binary multiplications 96 96 124

binary divisions 36 16

Chest Clinic with evidence for A, D, S and X

binary additions 72 60 56

binary multiplications 108 108 126

binary divisions 36 16

Stud Farm with evidence for J

binary additions 221 179 187

binary multiplications 248 248 345

binary divisions 108 48

Genetic Reproduction with evidence for Ad, Bd and Cd

binary additions 400 346 334

binary multiplications 411 411 522

binary divisions 159 57

Here we will look at computational efficiencies of the three architectures using a very crude

measure: # binary arithmetic operations (additions, multiplications, and divisions). It is clear that

this crude measure does not describe the actual computational efficiency. This measure does not

include other operations such as table lookups, comparisons, read/write to memory, etc. Even this

A Comparison of Architectures For Exact Computation of Marginals 25

crude measure is difficult to measure in general. Our methodology is as follows. We solve the

three problems described in Section 2 under several scenarios, and we count the number of binary

additions, multiplications and divisions. Based on these observations, we identify the sources of

relative inefficiencies in each of the three architectures. And we list as many general conclusions as

we can.

First, the Hugin architecture always does fewer additions than the LS architecture. This is

because computation of marginals of singleton variables is always done from clique marginals in

the LS architecture whereas in the Hugin architecture, it is done from the separator marginals for

some variables and clique marginals for some variables. Notice that we are ignoring the

computational cost of identifying a smallest clique in the LS architecture and the cost of finding a

smallest separator or clique in the Hugin architecture.

Second, the LS and Hugin architectures always do the same number of multiplications. The

Hugin architecture is an adaptation of the LS architecture, and it is not surprising that this aspect of

the two architectures is the same.

Third, the Hugin architecture always does fewer divisions than the LS architecture. The Hugin

architecture does divisions in the separator whereas the LS architecture does divisions in the

cliques. This was a major motivation that led to the Hugin architecture. Since the Hugin

architecture is more computationally efficient than the LS architecture, we will restrict our

comparison of the SS architecture to the Hugin architecture.

Comparing the Hugin and SS architectures, in Table 5, we notice that sometimes SS does

fewer additions than Hugin (e.g., in Chest Clinic and Genetic Reproduction problems) and

sometimes Hugin does fewer additions than SS (e.g., in Stud Farm problem). A detailed

examination of the addition operations done in the two architectures reveals the following reasons.

In the Chest Clinic problem, SS does 4 fewer additions than the Hugin architecture. During the

outward propagation of the Hugin architecture (see Figure 15), node TLE computes two potentials,

χ″↓{L, E} (stored at separator {L, E}) and χ″↓{E} (stored at separator {E}). Computation of

χ″↓{L, E} from χ″ requires 4 additions, and computation of χ″↓{E} from χ″ requires 6 additions for

a total of 10 additions. If we had computed χ″↓{E} from χ″↓{L, E}, we would have done only 2

additions thus saving 4 additions. But there is no way we can do this given the arrangements of

cliques in the junction tree. In the SS architecture for the Chest Clinic problem, the binary join tree

(shown in Figure 16) has more nodes than in the junction tree and consequently there is more

caching of messages than in the Hugin architecture. The marginal for E is computed from the node

{T, E} and this requires only 2 additions.

In the Stud Farm problem, Hugin does 8 fewer additions than the SS architecture. Hugin

computes the marginal of B from {B, E} (the smallest separator containing B), and computes the

marginal of H from {H, I}, the smallest separator containing H (see Figure A.1 in the Appendix).

A Comparison of Architectures For Exact Computation of Marginals 26

Computing these two marginals requires 4 additions. In the SS architecture, the binary join tree is

constructed from the viewpoint of minimizing multiplications. Thus, the singleton node {E} is

connected to {A, E, H} and the singleton node {H} is connected to {A, E, H} via {A, H} (see

Figure A.2 in the Appendix). Thus computing marginal of E from {A, E, H} requires 6 additions

and computing marginal of H from {A, E, H} via {A, H} requires 6 additions for a total of 12

additions, 8 more than in the Hugin architecture.

The number of multiplications done in Hugin and SS cannot be compared without accounting

the division operations in the Hugin architecture. In a sense, the Hugin does division operations to

avoid some multiplications (done in the SS architecture). Therefore we need to compare the

aggregate of multiplications and divisions in Hugin to multiplications in the SS architecture. To

aggregate the number of multiplications and divisions, we can simply add them. Alternatively,

since on most chip architectures, a floating point division takes roughly 30 percent more time than

doing a floating point multiplication, we can aggregate multiplications and divisions by assuming 1

÷ = 1.3 ×.

For some problems, Hugin does fewer multiplications and divisions than the SS architecture,

and for some problems, SS does fewer multiplications than the aggregate of multiplications and

divisions in Hugin. A detailed examination of the multiplications and divisions done in the two

architectures reveals the following reasons.

Hugin does divisions as a substitute for multiplications (in the SS architecture), but it does

these divisions in the separators instead of in the cliques. On the other hand, the SS architecture

avoids divisions by doing multiplications in the cliques. For example, in the Hugin architecture for

the Chest Clinic problem, clique {L, E, B} does 8 multiplications in the inward stage, 8

multiplications in the outward stage, and 4 divisions in the separator {L, E} for a total of 16

multiplications and 4 divisions. On the other hand, in the SS architecture, {L, E, B} does 8

multiplications in the inward stage, and 16 multiplications in the outward stage (to send messages

to {L, B} and {E, B}) for a total of 24 multiplications. Thus, even if we count a division as 1.3

multiplication, Hugin is more efficient than SS.

In the SS architecture for the Chest Clinic problem, first we multiply σ and λ at node {S, L}

that requires 4 multiplications, and then we multiply σ⊗λ and β at node {S, L, B} requiring 8

multiplications for a total of 12 multiplications. In the Hugin architecture for the Chest Clinic

problem, at the outset, we multiply σ, λ and β at clique {S, L, B} for a total of 16 multiplications,

4 more than the SS architecture. Also, consider the multiplications done by clique {T, L, E} during

the inward stage—χ2⊗χ3′↓{L, E}⊗χ6′↓{E}. This requires 16 multiplications. Had we done these on

a binary basis by multiplying χ3′↓{L, E} and χ6′↓{E} on {L, E} and then χ2 and χ3′↓{L, E}⊗χ6′↓{E}

on {T, L, E}, we would have done 12 multiplications. Since there is no guarantee of doing binary

A Comparison of Architectures For Exact Computation of Marginals 27

multiplications in a junction tree, the Hugin architecture does more multiplications than is done by

the SS architecture in a join tree crafted to guarantee binary multiplications.

Notice that the Hugin propagation can be done in any join tree assuming we start with a clique

marginal representation of the joint probability distribution. However since computations are done

at each node and at each separator, there is a computational penalty in introducing additional nodes

and separators. For example for the Chest Clinic problem with evidence for A and D, if we do

Hugin propagation in the binary join tree shown in Figure 16, it requires 56 additions, 170

multiplications and 52 divisions (see Table A.10 in the Appendix) compared to 60 additions, 96

multiplications and 16 divisions for the junction tree of Figure 5 (see Table A.7 in the Appendix).

Clearly, for the Hugin architecture, the junction tree in Figure 5 is more efficient than the binary

join tree of Figure 16.

The SS propagation can be done in any join tree assuming we start with an evidence potential

representation of the joint probability distribution. Since no computations are done at any

separator, and since the computations done at a node depends on the number of neighbors, there

may be a computational penalty if we use arbitrary join trees. For example, for the Chest Clinic

problem with evidence for A and D, if we do SS propagation in the junction tree shown in Figure

5, it requires 60 additions, and 140 multiplications (see Table A.9 in the Appendix) compared to 56

additions and 124 multiplications for the binary join tree of Figure 16 (see Table A.8 in the

Appendix). Clearly, for the SS architecture, the binary join tree in Figure 16 is more efficient than

the junction tree of Figure 5 even though the latter is a binary join tree. Notice that if we restrict

ourselves to cliques, there is no guarantee that we can always find a junction tree that is a binary

join tree.

Overall, comparing LS and Hugin architectures, Hugin is computational more efficient than

LS, whereas LS is more storage efficient than LS. In a sense, Hugin sacrifices storage efficiency

to achieve better computational efficiency. We cannot make any general statements regarding

relative storage or relative computational efficiencies of Hugin and SS architectures. There are

some aspects of the Hugin architecture that are better than the SS architectures, namely division in

separators. There are some aspects of the SS architecture that are better than the Hugin architecture,

namely binary multiplications. Whether we can improve on these two architectures by borrowing

the strengths of the other is a topic that needs further research.

A Comparison of Architectures For Exact Computation of Marginals 28

Table 6. Computational Efficiency of the Three Architectures for Some Sample Problems

Computational Efficiency Architecture

Total # unit binary operations (ubo) LS Hugin SS

Assuming 1÷ = 1 × = 1 + = 1 ubo

Chest Clinic with no evidence 192 160 178

Chest Clinic with evidence for A and D 204 172 180

Chest Clinic with evidence for A, D, S and X 216 184 182

Stud Farm with evidence for J 577 475 532

Genetic Reproduction with evidence for Ad, Bd and Cd 970 814 856

Assuming 1 + = 1 × = 1 ubo, 1÷ = 1.3 ubo

Chest Clinic with no evidence 202.8 164.8 178

Chest Clinic with evidence for A and D 214.8 176.8 180

Chest Clinic with evidence for A, D, S and X 226.8 188.8 182

Stud Farm with evidence for J 609.4 489.4 532

Genetic Reproduction with evidence for Ad, Bd and Cd 1017.7 831.1 856

ACKNOWLEDGMENTS

This research was initiated during Spring 1996 when the second author was visiting the Institute of

Informatics at the University of Fribourg. The authors are grateful for support and encouragement

from Professor Juerg Kohlas. The paper has benefited from comments and suggestions by

Bernard Anrig, Rolf Haenni, Tuija Isotalo, Juerg Kohlas, Norbert Lehmann, Paul-Andre Monney,

and Dennis Nilsson.

REFERENCES

1. Cannings, C., E. A. Thompson and M. H. Skolnick (1978), “Probability functions on
complex pedigrees,” Advances in Applied Probability, 10 , 26-61.

2. Cowell, R. and A. P. Dawid (1992), “Fast retraction of evidence in a probabilistic expert
system,” Statistics and Computing, 2 , 37–40.

3. Jensen, F. V. (1996), An Introduction to Bayesian Networks, Springer-Verlag, NY.

4. Jensen, F. V., K. G. Olesen and S. K. Andersen (1990a), “An algebra of Bayesian belief
universes for knowledge-based systems,” Networks, 20(5), 637–659.

5. Jensen, F. V., S. L. Lauritzen and K. G. Olesen (1990b), “Bayesian updating in causal
probabilistic networks by local computation,” Computational Statistics Quarterly, 4 , 269–
282.

A Comparison of Architectures For Exact Computation of Marginals 29

6. Lauritzen, S. L. and D. J. Spiegelhalter (1988), "Local computations with probabilities on
graphical structures and their application to expert systems (with discussion)," Journal of
Royal Statistical Society, Series B, 50(2), 157-224.

7. Lauritzen, S. L. and F. V. Jensen (1996), “Local computation with valuations from a
commutative semigroup,” Technical Report No. R-96-2028, Institute for Electronic Systems,
Department of Mathematics and Computer Science, Aalborg University, Aalborg, Denmark.

8. Lauritzen, S. L. and P. P. Shenoy (1996) “Computing marginals using local computation”,
Working Paper No 267, School of Business, University of Kansas, Lawrence, KS. Available
by anonymous ftp from ftp.bschool.ukans.edu/data/pub/pshenoy/wp267.ps.

9. Pearl, J. (1986), “Fusion, propagation and structuring in belief networks,” Artificial
Intelligence, 29 , 241–288.

10. Shafer, G. (1996), Probabilistic Expert Systems, Society for Industrial and Applied
Mathematics, Philadelphia, PA.

11. Shenoy, P. P. (1992), “Valuation-based systems: A framework for managing uncertainty in
expert systems,” in L. A. Zadeh and J. Kacprzyk (eds.), Fuzzy Logic for the Management of
Uncertainty, 83–104, John Wiley & Sons, New York, NY.

12. Shenoy, P. P. (1997), “Binary join trees for computing marginals in the Shenoy-Shafer
architecture,” International Journal of Approximate Reasoning, in press.

13. Shenoy, P. P. and G. Shafer (1986), “Propagating belief functions using local computation,”
IEEE Expert, 1(3), 43-52.

14. Shenoy, P. P. and G. Shafer (1990), “Axioms for probability and belief-function
propagation,” in R. D. Shachter, T. S. Levitt, J. F. Lemmer and L. N. Kanal (eds.),
Uncertainty in Artificial Intelligence, 4, 169-198, North-Holland, Amsterdam. Reprinted in
Shafer, G. and J. Pearl, eds. (1990), Readings in Uncertain Reasoning, 575–610, Morgan
Kaufmann, San Mateo, CA.

15. Tarjan, R. E. and M. Yannakakis (1984), “Simple linear time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,” SIAM
Journal of Computing, 13 , 566-579.

APPENDIX. COUNTING STORAGE AND OPERATIONS

Figure A.1. A Junction Tree for the Stud Farm Problem

A D E H A E H I

A D F H A B D E A E G I

A F L B C E H I JA G K

αL⊗αF⊗αA

αH αD

αC⊗αE⊗αB αK⊗αG οJ⊗αJ

αI

A Comparison of Architectures For Exact Computation of Marginals 31

Figure A.2. A Binary Join tree for the Stud Farm Problem

{L}

{A, D, F, H}

{A, F, L}

{C}

{B, C, E}

{K}

{A, G, K}{F}

{J}

{H, I, J}

{A, F}{D, F, H}

{A, D, H}

{A, B, D, E}

{B}

{B, E}{A, B, D}

{A, D, E}

{A, E, G, I}

{G}

{A, G}{E, G, I}

{A, E, I}

{I}

{H, I}

{A, E, H, I}

{A, E, H}1

{D}

{A, D, E, H}

{H}

{A, H}

{A}

αL

αA

αC αK

αB

οJ

αF

αD

αE αG αJ

αH αI

{E}

{A, E, H}2

A Comparison of Architectures For Exact Computation of Marginals 32

Figure A.3. A Junction Tree for the Genetic Reproduction Problem

B E G B F G

B Bd

A B E B C FA Ad C Cd

D E G F G H H Hd

αE

αF

αH αHd
αD ⊗ αG

αA ⊗ αAd
⊗ oAd

αB ⊗ αB d
⊗oB d

αC ⊗αCd
⊗ oCd

A Comparison of Architectures For Exact Computation of Marginals 33

Figure A.4. A Binary Join Tree for the Genetic Reproduction Problem

{Cd}

{C}

{C, Cd}

αA

{Hd}

{H}

{H, Hd}

{Ad}

{A}

{A, Ad}

{Bd}

{B}

{B, Bd}

{B, C, F}

{B, F}

{F, G, H}

{F, G}

{B, F, G}

{B, G}

{D}

{D, E, G}

{G, E}

{B, E, G}

{A, B, E}

{B, E}1

{B, E}2

{E}

αB αC

αD

αAd
αBd αCd

αHd

αE αF

αG

αH{F}

{G}

οAd οBd οCd

A Comparison of Architectures For Exact Computation of Marginals 34

Table A.1. Storage Requirements for Chest Clinic Problem with Evidence for A and D

Storage Requirements

fpn LS Hugin

Storage Requirements

fpn SS

Input Storage 36 36 At Nodes with 1

Storage Register 42

Evidence Storage 4 4 At Nodes with 2

Storage Registers 14

Output Storage 16 16

Clique Storage 40 40 At Separators with 1

Storage Register 10

Separator Storage 16 At Separators with 2

Storage Registers 92

TOTAL Storage 96 112 TOTAL Storage 158

LS and Hugin:

Input storage (α, σ, τ, λ, β, ξ, ε, δ): 2 + 2 + 4 + 4 + 4 + 4 + 8 + 8 = 36

Evidence Storage (οA, οD): 4

Output Storage (8 variables with 2 each): 16

6 Cliques (2 with 2 variables, 4 with 3 variables): (2*4) + (4*8) = 40

5 Separators (2 with 1 variable, 3 with 2 variables): (2*2) + (3*4) = 16

SS :

3 Nodes with ≥ 2 storage registers: (4 input potentials at A (α, οA), S (σ), D (οD) and 3 output

potentials): 14

11 Nodes with 1 storage register: (only output register T, E, X, L, B): 5*2 = 10

 (only input register AT, SL, EX, SB, TLE, EBD): (4*4) + (2*8) = 32

6 Nodes with 0 storage registers: 0

4 Separators with 1 register (SLB—SB = SB, LB—B = B, L—LE = L, X—EX = X): 10

15 separators with 2 registers (7 with 1 variable, 8 with 2 variables): 2*((7*2) + (8*4)) = 92

A Comparison of Architectures For Exact Computation of Marginals 35

Table A.2. Storage Requirements for Stud Farm Problem

Storage Requirements

fpn LS Hugin

Storage Requirements

fpn SS

Input Storage 70 70 At Nodes with 1

Storage Register 72

Evidence Storage 3 3 At Nodes with 2

Storage Registers 26

Output Storage 25 25

Clique Storage 116 116 At Separators with 1

Storage Register 36

Separator Storage 48 At Separators with 2

Storage Registers 242

TOTAL Storage 214 262 TOTAL Storage 376

LS and Hugin:

Input storage (12 potentials, 5 with 2 fpn, 6 with 8 fpn, 1 with 12 fpn): (5*2) + (6*8) + (1*12) =

70

Evidence Storage (1 potential οJ): 3
Output Storage (11 variables with 2 fpn, 1 with 3 fpn): 22 + 3 = 25

9 Clique storage (3 with 8 states, 1 with 12 states, 5 with 16 states) (3 * 8) + (1*12) + (5 *16) =

24 + 12 + 80 = 116

8 Separator storage (4 with 4 states, 4 with 8 states): (4 * 4) + (4 * 8) = 16 + 32 = 48

SS :

13 Nodes with 1 storage register (only an output register): F, G, I, D, E, H. Storage = 2*6 = 12

 (only input register): AFL, BCE, AGK, HIJ, DFH, ABD, EGI

storage = (6*8) + (1*12) = 48 + 12 = 60

6 Nodes with 2 storage registers (L, C, K, B, A, J): Storage = 2*2*5 + 2*3*1 = 26

15 Nodes with 0 storage registers: 0

9 Separators with 1 register (F—AF = F, G—AG = G, I—HI = I, D—ADE = D, H—AH = H,

E—AEH1 = E, DFH—ADFH = DFH, ABD—ABDE= ABD, EGI—AEGI = EGI): Storage =

(2*6) + (3*8) = 12 + 24 = 36

24 Separators with 2 registers (6 with 1 variable, 9 with 2 variables, and 9 with 3 variables):

Storage = 2*(13 + 36 + 72) = 242

A Comparison of Architectures For Exact Computation of Marginals 36

Table A.3. Storage Requirements for Genetic Reproduction Problem

Storage Requirements

fpn LS Hugin

Storage Requirements

fpn SS

Input Storage 144 144 At Nodes with 1

Storage Register 146

Evidence Storage 6 6 At Nodes with 2

Storage Registers 36

Output Storage 32 32

Clique Storage 186 186 At Separators with 1

Storage Register 11

Separator Storage 57 At Separators with 2

Storage Registers 264

TOTAL Storage 368 425 TOTAL Storage 457

LS and Hugin:

Input storage (4 potentials with 3 fpn, 4 potentials with 6 fpn, 4 with 27 fpn): (4*3) + (4*6) +

(4*27) = 12 + 24 + 108 = 144

Evidence Storage (3 potentials with 2 fpn): 6
Output Storage (4 variables with 2 fpn, 8 variables with 3 fpn): 8 + 24 = 32

10 Clique storage (4 with 6 states, 6 with 27 states) (4 * 6) + (6 *27) = 24 + 162 = 186

9 Separator storage (4 with 3 states, 5 with 9 states): (4 * 3) + (5 * 9) = 12 + 45 = 57

SS :

13 Nodes with 1 storage register (1 node with 2 fpn, 4 nodes with 3 fpn, 4 nodes with 6 fpn, 4

with 27 fpn): (1*2) + (4*3) + (4*6) + (4*27) = 2 + 12 + 24 + 108 = 146

7 Nodes with 2 storage registers (3 with 2 fpn, 4 with 3 fpn): 2*((3*2) + (4*3))= 36

8 Nodes with 0 storage registers: 0

4 Separators with 1 register (1 with 2 fpn, 3 with 3 fpn): (1*2) + (3*3) = 2 + 9 = 11

23 Separators with 2 registers (3 with 2 fpn, 9 with 3 fpn, and 11 with 9 fpn): 2*((3*2) + (9*3) +

(11*9)) = 2*(6 + 27 + 99) = 2*132 = 264

A Comparison of Architectures For Exact Computation of Marginals 37

Table A.4. Computational Details in the LS Architecture for the Chest Clinic Problem Using the
Junction Tree in Figure 5 with No Evidence

Computation # binary arithmetic operations
At node Details + × ÷

At the beginning:

{A, T} χ1 = α⊗τ 4

{S, L, B} χ4 = σ⊗λ⊗β 16
Inward propagation (root node is {A, T}):

{E, X} χ6′ = χ6 / χ6
↓{E} 2 4

{E, D, B} χ5′ = χ5 / χ5
↓{E, B} 4 8

{S, L, B} χ4′ = χ4 / χ4
↓{L, B} 4 8

{L, E, B} χ3′ = [χ4
↓{L, B}⊗χ5

↓{E, B}
]
 /

[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}
4 8 8

{T, L, E} χ2′ = [χ2⊗[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L,E}

⊗χ6
↓{E}] / [χ2⊗[χ4

↓{L, B}⊗χ5
↓{E, B}]↓{L, E}

⊗χ6
↓{E}

]
↓{T}

6 16 8

{A, T} χ1′ = χ1⊗[χ2⊗[[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}

⊗χ6
↓{E}]]↓{T} = χ1′′

4

Outward propagation:

{A, T} χ1′′↓{T} 2

{T, L, E} χ2′′ = χ2′⊗χ1′′↓{T}, χ2′′↓{L, E}, χ2′′↓{E} 10 8

{L, E, B} χ3′′ = χ3′⊗χ2′′↓{L, E}, χ3′′↓{L, B}, χ3′′↓{E, B} 8 8

{S, L, B} χ4′′ = χ4′⊗χ3′′↓{L, B} 8

{E, D, B} χ5′′ = χ5′⊗χ3′′↓{E, B} 8

{E, X} χ6′′ = χ6′⊗χ2′′↓{E} 4
Computing marginals of singletons:

{A, T} χ1′′↓{A} (marginal for A) 2

{S, L, B} χ4′′↓{S} (marginal for S) 6

{A, T} χ1′′↓{T} (marginal for T) 2

{T, L, E} χ2′′↓{L} (marginal for L) 6

{L, E, B} χ3′′↓{B} (marginal for B) 6

{E, X} χ6′′↓{E} (marginal for E) 2

{E, B, D} χ5′′↓{D} (marginal for D) 6

{E, X} χ6′′↓{X} (marginal for X) 2

TOTALS 72 84 36

A Comparison of Architectures For Exact Computation of Marginals 38

Table A.5. Computational Details in the LS Architecture for the Chest Clinic Problem Using the
Junction Tree in Figure 5 with Evidence for A = a, D = d

Computation # binary arithmetic operations
At node Details + × ÷

At the beginning:

{A, T} χ1 = α⊗οA⊗τ 8

{S, L, B} χ4 = σ⊗λ⊗β 16

{E, D, B} χ5 = δ⊗οD 8
Inward propagation (root node is {A, T}):

{E, X} χ6′ = χ6 / χ6
↓{E} 2 4

{E, D, B} χ5′ = χ5 / χ5
↓{E, B} 4 8

{S, L, B} χ4′ = χ4 / χ4
↓{L, B} 4 8

{L, E, B} χ3′ = [χ4
↓{L, B}⊗χ5

↓{E, B}
]
 /

[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}
4 8 8

{T, L, E} χ2′ = [χ2⊗[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L,E}

⊗χ6
↓{E}] / [χ2⊗[χ4

↓{L, B}⊗χ5
↓{E, B}]↓{L, E}

⊗χ6
↓{E}

]
↓{T}

6 16 8

{A, T} χ1′ = χ1⊗[χ2⊗[[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}

⊗χ6
↓{E}]]↓{T} = χ1′′

4

Outward propagation:

{A, T} χ1′′↓{T} 2

{T, L, E} χ2′′ = χ2′⊗χ1′′↓{T}, χ2′′↓{L, E}, χ2′′↓{E} 10 8

{L, E, B} χ3′′ = χ3′⊗χ2′′↓{L, E}, χ3′′↓{L, B}, χ3′′↓{E, B} 8 8

{S, L, B} χ4′′ = χ4′⊗χ3′′↓{L, B} 8

{E, D, B} χ5′′ = χ5′⊗χ3′′↓{E, B} 8

{E, X} χ6′′ = χ6′⊗χ2′′↓{E} 4
Computing marginals of singletons:

{A, T} χ1′′↓{A} (marginal for A) 2

{S, L, B} χ4′′↓{S} (marginal for S) 6

{A, T} χ1′′↓{T} (marginal for T) 2

{T, L, E} χ2′′↓{L} (marginal for L) 6

{L, E, B} χ3′′↓{B} (marginal for B) 6

{E, X} χ6′′↓{E} (marginal for E) 2

{E, B, D} χ5′′↓{D} (marginal for D) 6

{E, X} χ6′′↓{X} (marginal for X) 2

TOTALS 72 96 36

A Comparison of Architectures For Exact Computation of Marginals 39

Table A.6. Computational Details in the LS Architecture for the Chest Clinic Problem Using the
Junction Tree in Figure 5 with the Evidence for A, D, S, and X

Computation # binary arithmetic operations
At node Details + × ÷

At the beginning:

{A, T} χ1 = α⊗οA⊗τ 8

{S, L, B} χ4 = σ⊗λ⊗β⊗οS 24

{E, D, B} χ5 = δ⊗οD 8

{E, X} χ6 = ξ⊗οX 4
Inward propagation (root node is {A, T}):

{E, X} χ6′ = χ6 / χ6
↓{E} 2 4

{E, D, B} χ5′ = χ5 / χ5
↓{E, B} 4 8

{S, L, B} χ4′ = χ4 / χ4
↓{L, B} 4 8

{L, E, B} χ3′ = [χ4
↓{L, B}⊗χ5

↓{E, B}
]
 /

[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}
4 8 8

{T, L, E} χ2′ = [χ2⊗[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L,E}

⊗χ6
↓{E}] / [χ2⊗[χ4

↓{L, B}⊗χ5
↓{E, B}]↓{L, E}

⊗χ6
↓{E}

]
↓{T}

6 16 8

{A, T} χ1′ = χ1⊗[χ2⊗[[χ4
↓{L, B}⊗χ5

↓{E, B}]↓{L, E}

⊗χ6
↓{E}]]↓{T} = χ1′′

4

Outward propagation:

{A, T} χ1′′↓{T} 2

{T, L, E} χ2′′ = χ2′⊗χ1′′↓{T}, χ2′′↓{L, E}, χ2′′↓{E} 10 8

{L, E, B} χ3′′ = χ3′⊗χ2′′↓{L, E}, χ3′′↓{L, B}, χ3′′↓{E, B} 8 8

{S, L, B} χ4′′ = χ4′⊗χ3′′↓{L, B} 8

{E, D, B} χ5′′ = χ5′⊗χ3′′↓{E, B} 8

{E, X} χ6′′ = χ6′⊗χ2′′↓{E} 4
Computing marginals of singletons:

{A, T} χ1′′↓{A} (marginal for A) 2

{S, L, B} χ4′′↓{S} (marginal for S) 6

{A, T} χ1′′↓{T} (marginal for T) 2

{T, L, E} χ2′′↓{L} (marginal for L) 6

{L, E, B} χ3′′↓{B} (marginal for B) 6

{E, X} χ6′′↓{E} (marginal for E) 2

{E, B, D} χ5′′↓{D} (marginal for D) 6

{E, X} χ6′′↓{X} (marginal for X) 2

TOTALS 72 108 36

A Comparison of Architectures For Exact Computation of Marginals 40

Table A.7. Computational Details in the Hugin Architecture for the Chest Clinic Problem in the
Junction Tree in Figure 5 with Evidence for A and D

Computation # binary arithmetic operations
At Node/Edge Details + × ÷
At the beginning:

{A, T} χ1 = α⊗οA⊗τ 8

{S, L, B} χ4 = σ⊗λ⊗β 16

{E, D, B} χ5 = δ⊗οD 8
Inward propagation (root node is {A, T}):

{E, X} χ6
↓{E} 2

{E, B, D} χ5
↓{E, B} 4

{S, L, B} χ4
↓{L, B} 4

{L, E, B} χ3′ = [χ4
↓{L, B}⊗χ5

↓{E, B}
], χ3′↓{L, E} 4 8

{T, L, E} χ2′ = χ2⊗χ3′↓{L, E}⊗χ6
↓{E}, χ2′↓{T} 6 16

{A, T} χ1′ = χ1⊗ χ2′↓{T} = χ1′′ 4
Outward propagation:

{A, T} χ1′′↓{T} (marginal for T) 2

AT–TLE χ1′′↓{T} / χ2′↓{T} 2

{T, L, E} χ2′′ = χ2′⊗[χ1′′↓{T} / χ2′↓{T}], χ2′′↓{E}

(marginal for E), χ2′′↓{L, E}
10 8

TLE–LEB χ2′′↓{L, E} / χ3′↓{L, E} 4

{L, E, B} χ3′′ = χ3′⊗[χ2′′↓{L, E} / χ3′↓{L, E}], χ3′′↓{L, B},

χ3′′↓{ E, B}
8 8

LEB–SLB χ3′′↓{ L, B} / χ4
↓{L, B} 4

{S, L, B} χ4′′ = χ4′⊗[χ3′′↓{L, B} / χ4
↓{L, B}] 8

LEB–EBD χ3′′↓{E, B} / χ5
↓{E, B} 4

{E, D, B} χ5′′ = χ5′⊗[χ3′′↓{E, B} / χ5
↓{E, B}] 8

TLE–EX χ2′′↓{E} / χ6
↓{E} 2

{E, X} χ6′′ = χ6′⊗[χ2′′↓{E} / χ6
↓{E}] 4

Computing marginals of singletons:

{A, T} χ1′′↓{A} (marginal for A) 2

TLE–LEB [χ2′′↓{L, E}]↓{L} (marginal for L) 2

LEB–SLB [χ3′′↓{ L, B}]↓{B} (marginal for B) 2

{S, L, B} χ4′′↓{S} (marginal for S) 6

{E, B, D} χ5′′↓{D} (marginal for D) 6

{E, X} χ6′′↓{X} (marginal for X) 2

TOTALS 60 96 16

A Comparison of Architectures For Exact Computation of Marginals 41

Table A.8. Computational Details in the SS Architecture for the Chest Clinic Problem using the
Binary Join Tree in Figure 16 with Evidence for A and D

Computation # binary arithmetic operations
At Node Details + × ÷

Propagation of Messages

{A} α⊗οA = µA→AT 2

{A, T} µAT→T = (µA→AT⊗τ)↓{T} = µT→ΤΕ 2 4

{S, L} µSL→SLB = σ⊗λ 4

{S, L, B} µSLB→LB = (µSL→SLB⊗β)↓{L, B} = µLB→LEB 4 8

{E, B D} µEBD→EB = (οD⊗δ)↓{E, B} = µEB→LEB 4 8

{E, X} µEX→E = ζ↓E = µE→TE 2

{L, E, B} µLEB→LE = (µEB→LEB⊗µLB→LEB)↓{L, E} =

µLE→TLE
4 8

{T, L, E} µTLE→TE = (ε⊗µLE→TLE)↓{T, E} 4 8

{T, E} µTE→E = (µT→TE⊗µTLE→TE)↓E = µE→EX,

µTE→T = (µE→TE⊗µTLE→TE)↓T = µT→AT,

µTE→TLE = µT→TE⊗µE→TE

2

2

4

4

4

{A, T} µAT→A = (µT→AT⊗τ)↓A 2 4

{T, L, E} µTLE→LE = (µTE→TLE⊗ε)↓{L, E} = µLE→LEB 4 8

{L, E} µLE→L = (µTLE→LE⊗µLEB→LE)↓L (marg. for L) 2 4

{E, X} µEX→X = (µTE→E⊗ξ)↓X (marg. for X) 2 4

{L, E, B} µLEB→EB = (µLE→LEB⊗µLB→LEB]↓{E, B},

µLEB→LB = (µLE→LEB⊗µEB→LEB)↓{L, B}
8 16

{L, B} µLB→B = (µSLB→LB⊗µLEB→LB)↓B (marg. for B) 2 4

{S, L, B} µSLB→SL = (µLB→SLB⊗β)↓{S, L} 4 8

{S, L} µSL→S = (µSLB→SL⊗λ)↓S 2 4

{E, B, D} µEBD→D = (µEB→EBD⊗δ)↓D 6 8
Computation of Marginals:

{A} µAT→A⊗(α⊗οA) 2

{S} σ⊗µSL→S 2

{T} µAT→T⊗µTE→T 2

{E} µEX→E⊗µTE→E 2

{D} µEBD→D⊗οD 2

TOTALS 56 124

A Comparison of Architectures For Exact Computation of Marginals 42

Table A.9. Computational Details in the SS Architecture for the Chest Clinic Problem Using the
Junction Tree in Figure 5 with Evidence for A and D

Computation # binary arithmetic operations
At Node/Edge Details + × ÷
Propagation of Messages:

{A, T} µAT→TLE = (α⊗τ⊗οA)↓T 2 8

{S, L, B} µSLB→LEB = (σ⊗λ⊗β)↓{L, B} 4 16

{E, D, B} µEBD→LEB = (δ⊗οD)↓{E, B} 4 8

{E, X} µEX→TLE = ζ↓E 2

{L, E, B} µLEB→ΤLE = (µEBD→LEB⊗µSLB→LEB)↓{L, E} 4 8

{T, L, E} µTLE→LEB = (ε⊗µAT→TLE⊗µLEB→TLE)↓{L, E}

µTLE→AT = (ε⊗µLEB→TLE⊗µEX→TLE)↓T

µTLE→EX = (ε⊗µLEB→TLE⊗µAT→TLE)↓{E}

4

6

6

16

16

16

{L, E, B} µLEB→EBD = (µTLE→LEB⊗µSLB→LEB)↓{E, B}

µLEB→LB = (µLE→LEB⊗µEB→LEB)↓{L, B}
4

4

8

8
Computation of Marginals:

{A, T} (µTLE→AT⊗χ1)↓A (marg. for A) 2 4

{S, L, B} (µLEB→SLB⊗χ4)↓S (marg. for S) 6 8

AT—TLE µTLE→ΑΤ ⊗ µAT→TLE (marg. for T) 2

TLE—LEB (µTLE→LEB⊗µLEB→TLE)↓L (marg. for L) 2 4

LEB—SLB (µSLB→LEB⊗µLEB→SLB)↓B (marg. for B) 2 4

TLE—EX µTLE→E ⊗µEX→E (marg. for E) 2

{E, D, B} (µEB→EBD⊗χ6)↓D (marg. for D) 6 8

{E, X} (µTLE→EX ⊗ξ)↓X (marg. for X) 2 4

TOTALS 60 140

A Comparison of Architectures For Exact Computation of Marginals 43

Table A.10. Computational Details in the Hugin Architecture for the Chest Clinic Problem using
the Binary Join Tree in Figure 16 with Evidence for A and D

Computation # binary arithmetic operations
At Node/Edge Details + × ÷
At the beginning:

{A} χ1 = α⊗οA 2
Inward propagation (with root node {A}):

{E, X} χ2 = ξ = χ2′, χ2′↓{E} 2

{E, D, B} χ3 = δ , χ3′ = χ3⊗οD, χ3′↓{E, B} 4 8

{S, L} χ4 = λ, χ4′ = χ4⊗σ 4

{S, L, B} χ5′ = χ4′⊗β, χ5′↓{L, B} 4 8

{L, E, B} χ6′ = χ3′ ↓{E, B}⊗χ5′ ↓{L, B}, χ6′↓{L, E} 4 8

{T, L, E} χ7 = ε, , χ7′ = χ7⊗χ6′↓{L, E}, χ7′↓{T, E} 4 8

{T, E} χ8′ = χ2′↓{E}⊗χ7′↓{T, E}, χ8′↓{T} 2 4

{A, T} χ9 = τ, χ9′ = χ9⊗χ8′↓{T}, χ9′↓{A} 2 4

{A} χ1′ = χ1⊗χ9′↓{A} = χ1′′ (marginal for A) 2
Outward propagation:

A—AT χ1′′ / χ9′↓{A} 2

{A, T} χ9′′ = χ9′⊗[χ1′′ / χ9′↓{A}], χ9′′↓{T} 2 4

AT—T χ9′′↓{T}
 / χ8′↓{T} 2

{T} χ13 ′′ = χ8′↓{T}⊗[χ9′′↓{T}/ χ8′↓{T}]

(marginal for T)

2

T—TE χ13 ′′ / χ8′↓{T} 2

{T, E} χ8′′ = χ8′⊗[χ13 ′′ / χ8′↓{T}], χ8′′↓{E} 2 4

TE—E χ8′′↓{E} / χ2′↓{E} 2

{E} χ14 ′′ = χ2′↓{E}⊗[χ8′′↓{E} / χ2′↓{E}]

(marginal for E)

2

E—EX χ14 ′′ / χ2′↓{E} 2

{E, X} χ2′′= χ2′⊗[χ14 ′′ / χ2′↓{E}],

χ2′′↓{X} (marginal for X)

2 4

TE—TLE χ8′′ / χ7′↓{T, E} 4

{T, L, E} χ7′′ = χ7′⊗[χ8′′ / χ7′↓{T, E}], χ7′′↓{L, E} 4 8

TLE—LE χ7′′↓{L, E}
 / χ6′↓{L, E} 4

{L, E} χ15 ′′ = χ6′↓{L, E}⊗[χ7′′↓{L, E}
 / χ6′↓{L, E}],

χ15 ′′↓{L} (marginal for L)

2 4

LE—LEB χ15 ′′ / χ6′↓{L, E} 4

A Comparison of Architectures For Exact Computation of Marginals 44

{L, E, B} χ6′′ = χ6′⊗[χ15 ′′ / χ6′↓{L, E}], χ6′′↓{L, B},

χ6′′↓{E, B}
8 8

LEB—LB χ6′′↓{L, B} / χ5′↓{L, B} 4

{L, B} χ16 ′′ = χ5′↓{L, B}⊗[χ6′′↓{L, B}
 / χ5′↓{B}],

χ16 ′′↓{B} (marginal for B)

2 4

LB—SLB χ16 ′′ / χ5′↓{L, B} 4

{S, L, B} χ5′′ = χ5′⊗[χ16 ′′ / χ5′↓{L, B}], χ5′′↓{S, L},

χ5′′↓{S, B}
8 8

SLB—SL χ5′′↓{S, L}
 / χ4′ 4

{S, L} χ4′′ = χ4′⊗[χ5′′↓{S, L} / χ4′], χ4′′↓{S} 2 4

SL—S χ4′′↓{S} / σ 2

{S} χ11 ′′ = σ⊗[χ4′′↓{S} / σ] (marg. for S) 2

LEB—EB χ6′′↓{E, B} / χ3′↓{E, B} 4

{E, B} χ10 ′′ = χ3′↓{E, B}⊗[χ6′′↓{E, B} / χ3′↓{E, B}] 4

EB—EDB χ10 ′′ / χ3′↓{E, B} 4

{E, D, B} χ3′′= χ3′⊗[χ10 ′′ / χ3′↓{E, B}], χ3′′↓{D} 6 8

EDB—D χ3′′↓{D} / οD 2

{D} χ17 ′′ = οD⊗[χ3′′↓{D} / οD] (marg. for D) 2

TOTALS 60 116 46

A Comparison of Architectures For Exact Computation of Marginals 45

Table A.11. Computational Details in the LS Architecture for the Stud Farm Problem Using the
Junction Tree in Figure A.1.

Computation # binary arithmetic operations
At node Details + × ÷

At the beginning:

{A, F, L} χ1 = αL⊗αF⊗αA 16

{B, C, E} χ5 = αC⊗αE⊗αB 16

{A, G, K} χ8 = αK⊗αE 8

{H, I, J} χ9 = οJ⊗αJ 12
Inward propagation (root node is {A, F, L}):

{H, I, J} χ9′ = χ9 / χ9
↓{H, I} 8 12

{A, G, K} χ8′ = χ8 / χ8
↓{A, G} 4 8

{B, C, E} χ5′ = χ5 / χ5
↓{B, E} 4 8

{A, E, G, I} χ7′ = [αI
 ⊗χ8

↓{A, G}
]
 /

[αI
 ⊗χ8

↓{A, G}]↓{A, E, I}
8 16 16

{A, E, H, I} χ6′ = [[αI
 ⊗χ8

↓{A, G}]↓{A, E, I} ⊗χ9
↓{H,I}] /

 [[αI
 ⊗χ8

↓{A, G}]↓{A, E, I} ⊗χ9
↓{H,I}] ↓{A, E,H}

8 16 16

{A, B, D,E} χ4′ = [αD ⊗ χ5
↓{B, E}] /

[αD ⊗ χ5
↓{B, E}]↓{A, D, E}

8 16 16

{A, D,E,H} χ3′=[[αI
 ⊗χ8

↓{A, G}]↓{A, E, I}⊗χ9
↓{H,I}]↓{A,E,H}

⊗ [αD ⊗ χ5
↓{B, E}]↓{A, D, E}/

[[[αI
 ⊗χ8

↓{A, G}]↓{A, E, I}⊗χ9
↓{H,I}]↓{A,E,H} ⊗

[αD ⊗ χ5
↓{B, E}]↓{A, D, E]↓{A, D, H}

8 16 16

{A,D,F,H } χ2′= [αH
 ⊗ [[[αI

 ⊗χ8
↓{A, G}]↓{A, E, I} ⊗

χ9
↓{H,I}]↓{A,E,H} ⊗ [αD ⊗ χ5

↓{B, E}]↓{A, D, E]
↓{A, D, H}] / [αH

 ⊗ [[[αI
 ⊗χ8

↓{A, G}]↓{A, E, I}

⊗χ9
↓{H,I}]↓{A,E,H} ⊗ [αD ⊗ χ5

↓{B, E}]↓{A, D, E]
↓{A, D, H}] ↓{A, F}

12 16 16

{A, F, L} χ1′ = χ1 ⊗[αH
 ⊗[[[αI

 ⊗χ8
↓{A, G}]↓{A, E, I} ⊗

χ9
↓{H,I}]↓{A,E,H} ⊗ [αD ⊗ χ5

↓{B, E}]↓{A, D, E]
↓{A, D, H} = χ1′′

8 -

Outward propagation:

{A, F, L} χ1′′↓{A, F} 4

{A,D,F,H } χ2′′ = χ2′⊗χ1′′↓{A,F}, χ2′′↓{A, D, H} 8 16

A Comparison of Architectures For Exact Computation of Marginals 46

{A, D,E,H} χ3′′ = χ3′⊗χ2′′↓{A, D, H}, χ3′′↓{A, D, E},

 χ3′′↓{A,E, H}
16 16

{A, B, D,E} χ4′′ = χ4′⊗χ3′′↓{A, D, E}, χ4′′↓{B, E} 12 16

{B, C, E} χ5′′ = χ5′⊗ χ3′′↓{A,E, H} 8

{A, E, H, I} χ6′′ = χ6′⊗χ2′′↓{E}, χ6′′↓{A, E,I},

 χ6′′↓{H, I}
20 16

{A, E, G, I} χ7′′ = χ7′⊗ χ6′′↓{A, E,I}, χ7′′↓{A,G} 12 16

{A, G, K} χ8′′ = χ8′⊗ χ7′′↓{A,G} 8

{H, I, J} χ9′′ = χ9′⊗ χ6′′↓{H, I} 12
Computing marginals of singletons:

{A, F, L} χ1′↓{L} (marginal for L) 6

{A, F, L} χ1′′ ↓{A} (marginal for A) 6

{A, F, L} χ1′′ ↓{F} (marginal for F) 6

{A, D, F,

H}

χ2′′ ↓{D} (marginal for D) 12

{H, I, J} χ9′′↓{H} (marginal for H) 10

{H, I, J} χ9′′↓{I} (marginal for I) 10

{H, I, J} χ9′′↓{J} (marginal for J) 9

{B, C, E} χ5′′↓{B} (marginal for B) 6

{B, C, E} χ5′′↓{C} (marginal for C) 6

{B, C, E} χ5′′↓{E} (marginal for E) 6

{A, G, K} χ8′′↓{G} (marginal for G) 6

{A, G, K} χ8′′↓{K} (marginal for K) 6

TOTALS 221 248 108

A Comparison of Architectures For Exact Computation of Marginals 47

Table A.12. Computational Details in the Hugin Architecture for the Stud Farm Problem Using
the Junction Tree in Figure A.1.

Computation # binary arithmetic operations
At node Details + × ÷

At the beginning:

{A, F, L} χ1 = αL⊗αF ⊗αA 16

{B, C, E} χ5 = αC ⊗αE⊗αB 16

{A, G, K} χ8 = αK⊗αE 8

{H, I, J} χ9 = οJ⊗αJ 12
Inward propagation (root node is {A, F, L}):

{H, I, J} χ9
↓{H, I} 8

{A, G, K} χ8
↓{A, G} 4

{B, C, E} χ5
↓{B, E} 4

{A, E, G, I} χ7′ = αI
 ⊗χ8

↓{A, G}, χ7′ ↓{A, E, I} 8 16

{A, E, H, I} χ6′ = [αI
 ⊗χ8

↓{A, G}]↓{A, E, I} ⊗χ9
↓{H, I}

χ6′ ↓{A, E,H}
8 16

{A, B, D,E} χ4′ = αD ⊗ χ5
↓{B, E}, χ4′ ↓{A, D, E} 8 16

{A, D, E,

H}

χ3′= χ6′↓{A,E,H} ⊗ χ4′ ↓{A, D, E}, χ3′ ↓{A, D, H} 8 16

{A, D, F,

H}

χ2′= αH
 ⊗ χ3′↓{A, D, H} χ2′↓{A, F} 12 16

{A, F, L} χ1′ = χ1 ⊗ χ2′↓{A, F} = χ1′′ 8
Outward propagation:

{A, F, L} χ1′′↓{A, F} 4

AFL-ADFH χ1′′↓{A, F} / χ2′↓{A, F} 4

{A,D,F,H } χ2′′ = χ2′⊗[χ1′′↓{A, F} / χ2′↓{A, F}],

 χ2′′↓{A, D, H}
8 16

ADFH—ADEH χ2′′↓{A, D, H} / χ3′↓{A, D, H} 8

{A, D,E,H} χ3′′ = χ3′⊗ [χ2′′↓{A, D, H} / χ3′↓{A, D, H}] ,

χ3′′↓{A, D, E}, χ3′′↓{A,E, H}
16 16

ADEH-

ABDE

χ3′′↓{A, D, E} / χ4′↓{A, D, E} 8

{A, B, D,E} χ4′′ = χ4′⊗[χ3′′↓{A, D, E} / χ4′↓{A, D, E}],

χ4′′↓{B, E}
12 16

ABDE—BCE χ4′′↓{B, E} / χ5′↓{B, E} 4

{B, C, E} χ5′′ = χ5′⊗ [χ4′′↓{B, E} / χ5′↓{A, D, E}] 8

A Comparison of Architectures For Exact Computation of Marginals 48

ADEH–AEHI χ3′′↓{A, D, E} / χ6′↓{A, E, H} 8

{A, E, H, I} χ6′′ = χ6′⊗ [χ3′′↓{A, D, E} / χ6′↓{A, E, H}],

 χ6′′↓{A, E,I}, χ6′′↓{H, I}
20 16

AEHI—AEGI χ6′′↓{A, E, I} / χ7′↓{A, E, I} 8

{A, E, G, I} χ7′′ = χ7′⊗ [χ6′′↓{A, E, I} / χ7′↓{A, E, I}],

χ7′′↓{A,G}
12 16

AEGI—AGK χ7′′↓{A,G} / χ8′↓{A, G} 4

{A, G, K} χ8′′ = χ8′⊗ [χ7′′↓{A,G} / χ8′↓{A, G}] 8

AEHI—HIJ χ6′′↓{H, I} / χ9′↓{H, I} 4

{H, I, J} χ9′′ = χ9′⊗ [χ6′′↓{H, I} / χ9′↓{H, I}] 12
Computing marginals of singletons:

{A, F, L} χ1′↓{L} (marginal for L) 6

AFL—ADFH (χ1′′↓{A, F})↓{A} (marginal for A) 2

AFL—ADFH (χ1′′↓{A, F})↓{F} (marginal for F) 2

ABDE—BCE (χ4′′↓{B, E})↓{E} (marginal for E) 2

ABDE—BCE (χ4′′↓{B, E})↓{B} (marginal for B) 2

AEGI—AGK (χ7′′↓{A, G})↓{G} (marginal for G) 2

AEHI—HIJ (χ7′′↓{H, I})↓{H} (marginal for H) 2

AEHI—HIJ (χ7′′↓{H, I })↓{I} (marginal for I) 2

{H, I, J} χ9′′↓{J} (marginal for J) 9

{B, C, E} χ5′′↓{C} (marginal for C) 6

{A, G, K} χ8′′↓{K} (marginal for K) 6

ADFH—ADEH (χ2′′↓{A, D, H})↓{D} (marginal for D) 6

TOTALS 179 248 48

A Comparison of Architectures For Exact Computation of Marginals 49

Table A.13. Computational Details in the SS Architecture for the Stud Farm Problem Using the
Binary Join Tree in Figure A.2.

Computation # binary arithmetic
operations

At node Details + × ÷
Propagation of Messages:

{H, I, J} µHIJ→HI = (οJ⊗αJ)
↓{H, I} = µHI→AEHI 8 12

{A, G, K} µAGK→AG = (αK⊗αG)↓{A, G} = µAG→AEGI 4 8

{A, E, G, I} µAEGI→ΑEI = (αI⊗µAG→AEGI)↓{A, E, I}= µAEI→AEHI 8 16

{A, E, H, I} µAEHI→ΑEH1 =

(µAEI→AEHI⊗µHI→AEHI)↓{A, E, H}= µAEH1→ΑEH2
8 16

{B, C, E} µBCE→ΒE = (αC⊗αE)↓{B, E} 4 8

{B, E} µBE→ABDE = αB⊗µBCE→ΒE 4

{A, B, D,E} µABDE→ΑDE = (αD⊗µBE→ABDE)↓{A, D, E} = µADE→ADEH 8 16

{A, F, L} µAFL→AF = (αL⊗αF)↓{A, F} = µAF→ADFH 4 8

{A,D,F,H } µADFH→ΑDH = (αH⊗µAF→ADFH)↓{A, D, H} 8 16

{A, D, E,

H}

µADEH→ΑEH2 =

(µADH→ADEH⊗µADE→ADEH)↓{A, E, H}2

8 16

{A, E, H}2 µAEH2→ΑH =

(µADEH→ΑEH2⊗µAEH1→ΑEH2)↓{A, H}

4 8

{A, H} µAH→A = (µAEH2→AH)↓{A}

µAH→ΑΕH2 = αA

2

{A} αA⊗µAH→A (marginal for A) 2

{A, E, H}2 µAEH2→ADEH= µAH→ΑΕH2⊗µAEH1→ΑEH2

µAEH2→ΑΕH1 = µAH→ΑΕH2⊗µADEH→ΑEH1

= µAEH1→ΑΕHI

- 16 -

{A, D, E,

H}

µADEH→ΑDH = (µAEH2→ADEH⊗µADE→ADEH)↓{A, D, H} =
µADH→ΑDFH;

µADEH→ΑDE = (µAEH2→ADEH⊗µADH→ADEH)↓{A, D, E} =
µADE→ΑBDE

16 32 -

{A, D, F,

H}

µADFH→ΑF = (αH⊗µADH→ΑDFH)↓{A, F}

= µAF→ΑFL

12 16 -

(A, F, L} µAFL→L = (αF⊗µAF→ΑFL)↓{L} 6 8

{L} αL⊗µAFL→L (marginal for L) 2

A Comparison of Architectures For Exact Computation of Marginals 50

{A, B, D,

E}

µABDE→ΒΕ = (αD⊗µADE→ΑBDE)↓{B, E} 12 16 -

{B, E} µBE→BCE = αB⊗µABDE→ΒΕ,

µBE→B = (αE⊗µABDE→ΒΕ)↓{B}
2 8 -

{B} µBE→B⊗αB (marginal for B) 2

{B, C, E} µBCE→C = (µBE→ BCE⊗αE)↓{C} 6 8

{C} αC⊗µBCE→C (marginal for C) 2

{A, E, H, I} µAEHI→ΑEI = (µHI→ΑEHI⊗µAEH1→ΑΕHI)↓{A, E, I}

 = µAEI→AEGI

µAEHI→HI = (µAEI→ΑEHI⊗µAEH1→ΑΕHI)↓{H, I}

 = µHI→HIJ

20 32 -

{A, E, G, I} µAEGI→AG = (αI⊗µAEI→AEGI)↓{A, G} = µAG→AGK 12 16 -

{A, G, K} µAGK→K = (µAG→AGK⊗αG)↓{K} 6 8 -

{K} αK⊗µAGK→K (marginal for K) 2

{H, I, J} µHIJ→J= (µHI→HIJ⊗αJ)
↓{J} 9 12 -

{ J} µHIJ→J⊗οJ
 (marginal for J) 3 -

Computing marginals of singletons:

{A, F} (µAFL→AF⊗µADFH→AF)↓{F} (marginal for F) 2 4

{A, D, E} (µADEH→ADE⊗µABDE→ADE)↓{D}(marginal for D) 6 8

{A, G} (µAEGI→AG⊗µAGK→AG)↓{G} (marginal for G) 2 4

{H, I} (µAEHI→HI ⊗µHIJ→HI)↓{I} (marginal for I) 2 4

{A, E, H}1 (µAEHI→AEH1⊗µAEH2 →AEH1)↓{E} (marginal for E) 6 8

{A, H} (µAEH2→AH ⊗αA
)↓{H} (marginal for H) 2 4

TOTALS 187 345

A Comparison of Architectures For Exact Computation of Marginals 51

Table A.14. Computational Details in the LS Architecture for the Genetic Reproduction Problem
Using the Junction Tree in Figure A.3.

Computation # binary arithmetic operations
At node Details + × ÷

At the beginning:

{D, E, G} χ1 = αD⊗αG 27

{A, Ad} χ4 = αA⊗αAd
⊗οAd

12

{B, Bd} χ5 = αB⊗αBd
⊗οBd

12

{C, Cd} χ10 = αC⊗αCd
⊗οCd

12
Inward propagation (root node is {D, E, G}):

{A, Ad} χ4′ = χ4 / χ4
↓{A} 3 6

{B, Bd} χ5′ = χ5 / χ5
↓{B} 3 6

{H, Hd} χ8′ = χ8 / χ8
↓{H} 3 6

{C, Cd} χ10 ′ = χ10 / χ10
↓{C} 3 6

{A, B, E} χ3′ = [αE ⊗ χ4
↓{A}⊗ χ5

↓{B}
]
 /

[αE ⊗ χ4
↓{A}⊗ χ5

↓{B}]↓{B, E}
18 54 27

{B, C, F} χ9′ = [αF ⊗ χ10
↓{C}] / [αF ⊗ χ10

↓{C}]↓{B, F} 18 27 27

{F, G, H} χ7′ = [αH⊗αHd

 ↓{H}] / [αH ⊗ αHd

 ↓{H}]↓{F, G} 18 27 27

{B, F, G} χ6′ =[[αF ⊗ χ10
↓{C}]↓{B, F}⊗

[αH ⊗ αHd

 ↓{H}]↓{F, G}] /

 [[αF ⊗ χ10
↓{C}]↓{B, F}⊗

[αH ⊗ αHd

 ↓{H}]↓{F, G}] ↓{B, G}

18 27 27

{B, E, G} χ2′ = [[[αF⊗χ10
↓{C}]↓{B, F}⊗

[αH⊗αHd

↓{H}]↓{F, G}]↓{B, G}⊗[αE⊗χ4
↓{A}⊗

χ5
↓{B}]↓{B, E}] /

 [[[αF ⊗ χ10
↓{C}]↓{B, F}⊗

[αH ⊗ αHd
 ↓{H}]↓{F, G}]↓{B, G}⊗[αE⊗

χ4
↓{A}⊗χ5

↓{B}]↓{B, E}]↓{E, G}

18 27 27

{D, E, G} χ1′ = χ1
 ⊗ [[[αF ⊗ χ10

↓{C}]↓{B, F}⊗
[αH ⊗ αHd

 ↓{H}]↓{F, G}] ↓{B, G} ⊗ [αE⊗
χ4

↓{A}⊗ χ5
↓{B}]↓{B, E}] ↓{E, G} = χ1′′

27

Outward propagation:

{D, E, G} χ1′′↓{E, G} 18

{B, E, G} χ2′′ = χ2′⊗χ1′′↓{E, G}, χ2′′↓{B, E}, χ2′′↓{B, G} 36 27

{A, B, E} χ3′′ = χ3′⊗ χ2′′↓{B, E }, χ3′′↓{B}, χ3′′↓{A} 48 27

A Comparison of Architectures For Exact Computation of Marginals 52

{A, Ad} χ4′′ = χ4′⊗χ3′′↓{A} 6

{B, Bd} χ5′′ = χ5′⊗χ3′′↓{B} 6

{B, F, G} χ6′′ = χ6′⊗χ2′′↓{B, G}, χ6′′↓{B, F}, χ6′′↓{F, G} 36 27

{F, G, H} χ7′′ = χ7′⊗χ6′′↓{F, G}, χ7′′↓{H} 18 27

{H, Hd} χ8′′ = χ8′⊗χ7′′↓{H} 6

{B, C, F} χ9′′ = χ9′⊗χ6′′↓{B, F}, χ9′′↓{C} 18 27

{C, Cd} χ10 ′′ = χ10 ′⊗χ9′′↓{C} 6
Computing marginals of singletons:

{D, E, G} χ1′↓{D} (marginal for D) 24

{D, E, G} χ1′ ↓{E} (marginal for E) 24

{D, E, G} χ1′ ↓{G} (marginal for G) 24

{B, F, G} χ6′′ ↓{F} (marginal for F) 24

{A, Ad} χ4′′↓{A} (marginal for A) 3

{A, Ad} χ4′′↓{Ad} (marginal for Ad) 4

{B, Bd} χ5′′↓{B} (marginal for B) 3

{B, Bd} χ5′′↓{Bd} (marginal for Bd) 4

{C, Cd} χ10 ′′↓{C} (marginal for C) 3

{C, Cd} χ10 ′′↓{Cd} (marginal for Cd) 4

{H, Hd} χ8′′↓{H} (marginal for H) 3

{H, Hd} χ8′′↓{Hd} (marginal for Hd) 4

TOTALS 400 411 159

A Comparison of Architectures For Exact Computation of Marginals 53

Table A.15. Computational Details in the Hugin Architecture for the Genetic Reproduction
Problem Using the Junction Tree in Figure A.3.

Computation # binary arithmetic operations
At node Details + × ÷

At the beginning:

{D, E, G} χ1 = αD⊗αG 27

{A, Ad} χ4 = αA⊗αAd
⊗οAd

12

{B, Bd} χ5 = αB⊗αBd
⊗οBd

12

{C, Cd} χ10 = αC⊗αCd
⊗οCd

12
Inward propagation (root node is {D, E, G}):

{A, Ad} χ4
↓{A} 3

{B, Bd} χ5
↓{B} 3

{C, Cd} χ10
↓{C} 3

{H, Hd} χ8
↓{H} 3

{A, B, E} χ3′ = αE ⊗ χ4
↓{A}⊗ χ5

↓{B}, χ3′↓{B, E} 18 54

{B, C, F} χ9′ = αF ⊗ χ10
↓{C}, χ9′↓{B, F} 18 27

{F, G, H} χ7′ = αH ⊗ αHd

 ↓{H}, χ7′↓{F, G} 18 27

{B, F, G} χ6′ = [αF⊗χ10
↓{C}]↓{B, F}⊗ [αH⊗αHd

↓{H}]↓{F,

G}, χ6′↓{B, G}
18 27

{B, E, G} χ2′ = χ3′↓{B, E}⊗χ6′↓{B, G}, χ2′↓{E, G} 18 27

{D, E, G} χ1′= χ1
 ⊗ χ2′↓{E, G} = χ1′′ 27

Outward propagation:

{D, E, G} χ1′′↓{E, G} 18

DEG—BEG χ1′′↓{E, G} / χ2′↓{E, G} 9

{B, E, G} χ2′′ = χ2′⊗ [χ1′′↓{E, G} / χ2′↓{E, G}],

χ2′′↓{B, E}, χ2′′↓{B, G}
36 27

BEG—ABE χ2′′↓{B, E} / χ3′↓{B, E} 9

BEG—BFG χ2′′↓{B, G} / χ6′↓{B, G} 9

{A, B, E} χ3′′ = χ3′⊗ [χ2′′↓{B, E} / χ3′↓{B, E}],

 χ3′′↓{B}(marg. for B), χ3′′↓{A}(marg. for A)

48 27

ABE—AAd χ3′′↓{A}/ χ4′ 3

ABE—BBd χ3′′↓{B}/ χ5′ 3

{A, Ad} χ4′′ = χ4′⊗ [χ3′′↓{A}/ χ4′] 6

{B, Bd} χ5′′ = χ5′⊗ [χ3′′↓{B}/ χ5′] 6

A Comparison of Architectures For Exact Computation of Marginals 54

{B, F, G} χ6′′ = χ6′⊗[χ2′′↓{B, G} / χ6′↓{B, G}],

χ6′′↓{B, F}, χ6′′↓{F, G}

36 27

BFG—FGH χ6′′↓{F, G} / χ7′↓{F, G} 9

{F, G, H} χ7′′ = χ7′ ⊗[χ6′′↓{F, G} / χ7′↓{F, G}],

χ7′′↓{H} (marg. for H)

24 27

FGH—HHd χ7′′↓{H} / χ8′↓{H} 3

{H, Hd} χ8′′ = χ8′⊗[χ7′′↓{H} / χ8′↓{H}] 6

BFG—BCF χ6′′↓{F, G} / χ9′↓{B, F} 9

{B, C, F} χ9′′ = χ9′⊗[χ6′′↓{F, G} / χ9′↓{B, F}],

χ9′′↓{C} (marg. for C)

24 27

BCF—CCd χ9′′↓{C} / χ10 ′↓{C} 3

{C, Cd} χ10 ′′ = χ10 ′⊗[χ9′′↓{C} / χ10 ′↓{C}] 6
Computing marginals of singletons:

{D, E, G} χ1′↓{D} (marginal for D) 24

DEG—BEG [χ1′ ↓{E, G}]↓{E} (marginal for E) 6

DEG—BEG [χ1′ ↓{E, G}]↓{G} (marginal for G) 6

BFG—BCF [χ6′′ ↓{B, F}]↓{F } (marginal for F) 6

{A, Ad} χ4′′↓{Ad} (marginal for Ad) 4

{B, Bd} χ5′′↓{Bd} (marginal for Bd) 4

{C, Cd} χ10 ′′↓{Cd} (marginal for Cd) 4

{H, Hd} χ8′′↓{Hd} (marginal for Hd) 4

TOTALS 346 411 57

A Comparison of Architectures For Exact Computation of Marginals 55

Table A.16. Computational Details in the SS Architecture for the Genetic Reproduction Problem
Using the Binary Join Tree in Figure A.4.

Computation # binary arithmetic
operations

At node Details + × ÷
Propagation of Messages:

{C, Cd} µCCd→C = (οCd
⊗αCd

)↓{C} 3 6

{C} µC→BCF = µCCd→C⊗αC 3

{B, C, F} µBCF→BF = (αF⊗µC→BCF)↓{B, F} = µBF→BFG 18 27

{H, Hd} µHHd→Η = αHd

↓{H} = µH→FGH 3

{F, G, H} µFGH→FG= (αH⊗µH→FGH)↓{F, G}= µFG→BFG 18 27

{B, F, G} µBFG→ΒG = (µBF→BFG⊗µFG→BFG)↓{B, G} = µBG→BEG 18 27

{D, E, G} µDEG→EG = (αD⊗αG)↓{E, G} = µEG→BEG 18 27

{B, E, G} µBEG→ΒE2 = (µBG→BEG⊗µEG→BEG)↓{B, E} 18 27

{B, Bd} µBBd→B = (οBd
⊗αBd

)↓{B} 3 6

{B} µB→BE1 = αB⊗µBBd→B 3

{A, Ad} µAAd→A = (οAd
⊗αAd

)↓{A} 3 6

{A} µA→ΑBE = αA⊗µAAd→A 3

{A, B, E} µABE→ΒΕ1 = (αE⊗µA→ΑBE)↓{B, E} 18 27

{B, E}1 µBE1→ΒΕ2 = µB→BE1⊗µABE→ΒΕ1 = µBE2→BEG 9

{B, E}2 µBE2→E = (µBEG→ΒE2⊗µBE1→ΒΕ2)↓{E} (marg. for E) 6 9

{B, E, G} µBEG→ΒG = (µBE2→BEG⊗µEG→BEG)↓{B, G} = µBG→BFG

µBEG→ΕG = (µBE2→BEG⊗µBG→BEG)↓{E, G} = µEG→DEG

36 54

{D, E, G} µDEG→D = (αG⊗µEG→DEG)↓{D} 24 27

{D} αD ⊗ µDEG→D (marg. for D) 3

{B, F, G} µBFG→ΒF = (µFG→BFG⊗µBG→BFG)↓{B,F} = µBF→BCG

µBFG→FG = (µBF→BFG⊗µBG→BFG)↓{F, G} = µFG→FGH

36 54

{B, C, F} µBCF→C = (αF⊗µBF→BCF)↓{C} 24 27

{C} µC→CCd = µBCF→C⊗αC 3

{C, Cd} µCCd→Cd = (αCd
⊗µC→CCd)↓{Cd} 4 6

{Cd} οCd
⊗µCCd→Cd (marg. for Cd) 2

{F, G, H} µFGH→H = (αH ⊗µFG→FGH)↓{H} = µH→HHd 24 27

{H, Hd} µHHd→Hd = (αHd
⊗µH→HHd)↓{Hd} (marg. for Hd) 4 6

{B, E}1 µBE1→Β = (µBE2→BE1⊗µABE→BE)↓{B}

µBE1→ΑΒΕ = µBE2→BE1⊗µB→BE1

6 18

A Comparison of Architectures For Exact Computation of Marginals 56

{B} µB→BBd = µBE1→B⊗αB 3

{B, Bd} µBBd→Bd= (αBd
⊗µB→BBd)↓{Bd} 4 6

{Bd} οBd
⊗µBBd→Bd (marg. for Bd) 2

{A, B, E} µABE→A = (αE⊗µBE1→ABE)↓{A} 24 27

{A} µA→AAd = µABE→A ⊗ αA 3

{A, Ad} µAAd→Ad= (αAd ⊗ µA→AAd)↓{Ad} 4 6

{Ad} οAd ⊗ µAAd→Ad (marg. for Ad) 2
Computing marginals of singletons:

{C} µCCd→C⊗(αC⊗µBCF→C) = µCCd→C⊗µC→CCd

(marg. for C)

3

{H} µHHd→H⊗µFGH→H (marg. for H) 3

{B} µBBd→B⊗(αB⊗µBE1→B) = µBBd→B⊗µB→BBd

(marg. for B)

3

{A} µAAd→A⊗(αA⊗µABE→A) = µAAd→A⊗ µA→AAd

(marg. for A)

3

{B, F} (µBFG→BF⊗µBCF→BF)↓{F} (marg. for F) 6 9

{E, G} (µDEG→EG⊗µBEG→EG)↓{G} (marg. for G) 6 9

{B, E}2 (µBEG→BE2⊗µBE1→BE2)↓{E} (marg. for E) 6 9

TOTALS 334 522

SELECTED WORKING PAPERS
Unpublished working papers are available via anonymous ftp from

Host: ftp://ftp.bschool.ukans.edu
User ID: (leave blank)
Password: (leave blank)
Directory: /data/pub/pshenoy/
File: wpxxx.ps (put appropriate Working Paper # in place of xxx)

No. 184. “Propagating Belief Functions with Local Computations,” Prakash P. Shenoy and Glenn
Shafer, February 1986. Appeared in IEEE Expert, 1(3), 1986, 43–52.

No. 190. “Propagating Belief Functions in Qualitative Markov Trees,” Glenn Shafer, Prakash P.
Shenoy, and Khaled Mellouli, June 1987. Appeared in International Journal of Approximate
Reasoning, 1(4), 1987, 349–400.

No. 197. “AUDITOR’S ASSISTANT: A Knowledge Engineering Tool for Audit Decisions,”
Glenn Shafer, Prakash P. Shenoy, and Rajendra Srivastava, April 1988. Appeared in Auditing
Symposium IX: Proceedings of 1988 Touche Ors/University of Kansas Symposium on
Auditing Problems, 61–84, School of Business, University of Kansas, Lawrence, KS.

No. 200. “Probability Propagation,” Glenn Shafer and Prakash P. Shenoy, August 1988.
Appeared in Annals of Mathematics and Artificial Intelligence, 2(1–4), 1990, 327–352.

No. 203. “A Valuation-Based Language for Expert Systems,” Prakash P. Shenoy, August 1988.
Appeared in International Journal of Approximate Reasoning, 3(5), 1989, 383-411.

No. 209. “Axioms for Probability and Belief-Function Propagation,” Prakash P. Shenoy and
Glenn Shafer, November 1988. Appeared in Shachter, R. D., M. Henrion, L. N. Kanal, and
J. F. Lemmer (eds.), Uncertainty in Artificial Intelligence, 4 , 1990, 169–198. Reprinted in
Shafer, G. and J. Pearl (eds.), Readings in Uncertain Reasoning, 1990, 575–610, Morgan
Kaufmann, San Mateo, CA.

No. 211. “MacEvidence: A Visual Evidential Language for Knowledge-Based Systems,” Yen-Teh
Hsia and Prakash P. Shenoy, March 1989. An 8-page summary of this paper appeared as “An
evidential language for expert systems,” in Ras, Z. W. (ed.), Methodologies for Intelligent
Systems, 4 , 1989, 9–16, North-Holland, Amsterdam.

No. 213. “On Spohn’s Rule for Revision of Beliefs,” Prakash P. Shenoy, July 1989. Appeared in
International Journal of Approximate Reasoning, 5(2), 1991, 149–181.

No. 216. “Consistency in Valuation-Based Systems,” Prakash P. Shenoy, February 1990, revised
May 1991. Appeared in ORSA Journal on Computing, Vol. 6, No. 3, 1994, 281–291.

No. 220. “Valuation-Based Systems for Bayesian Decision Analysis,” Prakash P. Shenoy, April
1990, revised May 1991. Appeared in Operations Research, 40(3), 1992, 463–484.

No. 221. “Valuation-Based Systems for Discrete Optimization,” Prakash P. Shenoy, June 1990.
Appeared in Bonissone, P. P., M. Henrion, L. N. Kanal, and J. F. Lemmer, eds.,
Uncertainty in Artificial Intelligence, 6 , 1991, 385–400, North-Holland, Amsterdam.

No. 223. “A New Method for Representing and Solving Bayesian Decision Problems,” Prakash
P. Shenoy, September 1990. Appeared in: Hand, D. J. (ed.), Artificial Intelligence
Frontiers in Statistics: AI and Statistics III, 1993, 119–138, Chapman & Hall, London,
England.

No. 226. “Valuation-Based Systems: A Framework for Managing Uncertainty in Expert Systems,”
Prakash P. Shenoy, March, 1991. Appeared in: Zadeh, L. A. and J. Kacprzyk (eds.), Fuzzy
Logic for the Management of Uncertainty, 1992, 83–104, John Wiley and Sons, New York,
NY.

No. 227. “Valuation Networks, Decision Trees, and Influence Diagrams: A Comparison,” Prakash

A Comparison of Architectures For Exact Computation of Marginals 58

P. Shenoy, June 1991. Appeared as: “A Comparison of Graphical Techniques for Decision
Analysis” in European Journal of Operational Research, Vol. 78, No. 1, 1994, 1–21.

No. 233. “Using Possibility Theory in Expert Systems,” Prakash P. Shenoy, September 1991.
Appeared in Fuzzy Sets and Systems, 52(2), 1992, 129–142.

No. 236. “Conditional Independence in Valuation-Based Systems,” Prakash P. Shenoy,
September 1991. Appeared in International Journal of Approximate Reasoning, 10(3),
1994, 203–234.

No. 238. “Valuation Networks and Conditional Independence,” Prakash P. Shenoy, September
1992. Appeared as “Representing Conditional Independence Relations by Valuation Networks”
in International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2(2),
1994, 143–165.

No. 239. “Game Trees for Decision Analysis,” Prakash P. Shenoy, February 1993. Revised
February 1994. An 8-page summary titled “Information Sets in Decision Theory” appeared in
Clarke, M., R. Kruse and S. Moral (eds.), Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, Lecture Notes in Computer Science No. 747, 1993, 318–325,
Springer-Verlag, Berlin.

No. 242. “A Theory of Coarse Utility,” Liping Liu and Prakash P. Shenoy, February 1993.
Revised September 1993. Appeared in Journal of Risk and Uncertainty, Vol. 11, 1995, pp.
17–49.

No. 245. “Modeling Ignorance in Uncertainty Theories,” Prakash P. Shenoy, April 1993.
Appeared in Gammerman, A. (ed.), Probabilistic Reasoning and Bayesian Belief
Networks, 1995, 71–96, Alfred Waller, Henley-on-Thames, UK.

No. 246. “Valuation Network Representation and Solution of Asymmetric Decision Problems,”
Prakash P. Shenoy, April 1993. Revised September 1995. A 10-page summary of this paper
appeared as “Representing and Solving Asymmetric Decision problems Using Valuation
Networks” in Fisher, D. and H.-J. Lenz (eds.), Artificial Intelligence and Statistics V,
Lecture Notes in Statistics, 112 , 99–108, Springer-Verlag, New York, 1996.

No. 247. “Inducing Attitude Formation Models Using TETRAD,” Sanjay Mishra and Prakash P.
Shenoy, May 1993. Revised October 1993. Appeared as “Attitude Formation Models: Insights
from TETRAD” in Cheeseman, P. and R. W. Oldford (eds.), Selecting Models from Data:
Artificial Intelligence and Statistics IV, Lecture Notes in Statistics No. 89, 1994, 223–232,
Springer-Verlag, Berlin.

No. 258. “A Note on Kirkwood’s Algebraic Method for Decision Problems,” Rui Guo and
Prakash P. Shenoy, November 1993. Revised May 1994. To appear in European Journal of
Operational Research, 1996.

No. 261. “A New Pruning Method for Solving Decision Trees and Game Trees,” Prakash P.
Shenoy, March 1994. Appeared in: Besnard, P. And S. Hanks (eds.), Uncertainty in
Artificial Intelligence: Proceedings of the Eleventh Conference, 1995, 482–490, Morgan
Kaufmann, San Francisco, CA.

No. 267. “Computing Marginals Using Local Computation,” Steffen L. Lauritzen and Prakash P.
Shenoy, July 1995, revised May 1996.

No. 270. “Binary Join Trees for Computing Marginals in the Shenoy-Shafer Architecture,”
Prakash P. Shenoy, December 1995. An 8-pp summary titled “Binary Join Trees” appeared in:
Horvitz, E. and F. V. Jensen (eds.), Uncertainty in Artificial Intelligence: Proceedings of
the Twelfth Conference, 1996, 492–499, Morgan Kaufmann, San Francisco, CA.

No. 271. “A Comparison of Graphical Techniques for Asymmetric Decision Problems,” Concha
Bielza and Prakash P. Shenoy, February 1996, revised June 1996.

No. 273. “A Forward Monte Carlo Method for Solving Influence Diagrams Using Local
Computation,” John M. Charnes and Prakash P. Shenoy, February 1996.

