Draft dated 3/2/97

SCHOOL OF BUSINESS WORKING PAPER NO. 274

A COMPARISON OF ARCHITECTURES FOR
EXACT COMPUTATION OF MARGINALS

Vasilica Lepar and Prakash P. Shenoy

February 1997"

Institute of Informatics
University of Fribourg
Site Regina Mundi
Rue Faucigny 2
CH-1700, Fribourg, Switzerland
vasilica.lepar @unifr.ch

School of Business
University of Kansas
Summerfield Hall
Lawrence, KS 66045-2003, USA
pshenoy@ukans.edu

T Comments and suggestions for improvement are welcome and will be gratefully appreciated.

TABLE OF CONTENTS

A B ST R A T ittt e 1
L INTRODUCTION . .ttt e e e et e et e e e anenes 1
2 BAYESIAN NETWORK MODELS & THREE PROBLEMS.........cccoooviiiiiiiiiiiiiis 2

2.1 Bayesian NetWork MOGEIS.c.ouiiiiiiii e 2

2.2 The Chest CliniC Problem.. ... 3

2.2 The Stud Farm Problem.........c.o 4

2.3 The Genetic Reproduction Problem...........ccooiiiiiiiiiii e, 5
3 THE LAURITZEN-SPIEGELHALTER ARCHITECTURE.........cctviiiiiiiiieeeiieeeeiiiiiinns 7
4 THE HUGIN ARCHITECTURE.ttt 12
5 THE SHENOY-SHAFER ARCHITECTURE. ..ottt 16
B COMPARISON ...ttt e e et eneae 19
ACKNOWLED GMENT S, ..ottt e enes 28
REFERENGCES ... oottt ettt ettt n e 28
APPENDIX. COUNTING STORAGE AND OPERATIONS.......coiiiiiiiiiiiiiiiie e 30

SELECTED WORKING PAPERS. ... 57

A COMPARISON OF ARCHITECTURES FOR
EXACT COMPUTATION OF MARGINALS

VasilicaLepar and Prakash P. Shenoy

ABSTRACT

In the last decade, several architectures have been proposed for exact computation of
marginals using local computation. In this paper we compare three architectures—
Lauritzen-Spiegelhalter, Hugin, and Shenoy-Shafer—from the perspective of graphical
structure for message propagation, message-passing scheme, storage efficiency, and
computational efficiency.

Key Words: Lauritzen-Spiegel halter architecture, Hugin architecture, Shenoy-Shafer
architecture, computing marginals

1 INTRODUCTION

In the last decade, several architectures have been proposed for exact computation of marginals of
multivariate discrete probability distributions. One of the pioneering architectures for computing
marginals was proposed by Pearl [1986]. Pearl’ s architecture appliesto singly connected Bayes
nets. For multiply connected Bayes nets, Pearl [1986] proposed the method of conditioning to
reduce amultiply connected Bayes net to severa singly connected Bayes nets.

In 1988, Lauritzen and Spiegelhalter [1988] proposed an aternative architecture for computing
marginals that appliesto any Bayes net. Subsequently, Jensen et al. [1990a, b] proposed a
modification of the Lauritzen-Spiegelhater architecture. We call this architecture the Hugin
architecture since this architecture isimplemented in Hugin, a software tool developed by the same
group. Recently, this architecture has been abstracted by Lauritzen and Jensen [1996] so that it
applies more generally to other domainsincluding the Dempster-Shafer’ s belief function theory.

Inspired by the work of Pearl, Shenoy and Shafer [1986] first adapted and generalized Pearl’s
architecture to the case of finding marginals of joint Dempster-Shafer belief functionsin join trees.
Later, inspired by the work of Lauritzen and Spiegelhalter [1988] for the case of probabilistic
reasoning, they proposed an abstract framework for computing marginalsin join trees that applies
to any domain satisfying some axioms [Shenoy and Shafer 1990]. We refer to this architecture as
the Shenoy-Shafer architecture. In a sense, the Shenoy-Shafer architecture can be considered as an
adaptation of Pearl’ s propagation scheme to the join tree graphical structure. Recently, Shenoy
[1997] has proposed arefinement of join trees, called binary join trees, designed to improve the
computational efficiency of the Shenoy-Shafer architecture.

A Comparison of Architectures For Exact Computation of Marginals 2

In this paper, we compare the Lauritzen-Spiegelhalter (LS), Hugin, and Shenoy-Shafer (SS)
architectures from the perspective of graphical structure for message propagation, the message
passing scheme, storage efficiency, and computational efficiency.

Our main findings are as follows. The Hugin architecture is more computationally efficient than
the LS architecture, and less storage efficient than the LS architecture. Thisis not surprising. What
issurprising isthat we are unable to make any genera statements regarding the relative storage
efficiencies of the LS and SS architectures, or the relative computational efficiencies of the Hugin
and SS architectures. For some problems, LS has |ess storage than SS, and for some problems,
SS has less storage than LS. For some problems, Hugin is more computationally efficient than SS
and for some problems, SSis more computationally efficient than Hugin. We identify some
aspects of the Hugin architecture that are better than SS, and some aspects of the SS architecture
that are better than Hugin. Hopefully, thiswill lead to improvementsin both architectures.

2 BAYESIAN NETWORK MODELS & THREE PROBLEMS

In this section, we will define a Bayesian network probability model and then describe three
problems: Lauritzen and Spiegelhalter’ s[1988] Chest Clinic (CC) problem, Jensen’s[1996] Stud
Farm (SF) and Genetic Reproduction (GR) problems. We will use the Chest Clinic problem to
illustrate the three architectures. We will compare the efficiencies of the three architectures using all
three problems. We start by defining a Bayesian network model.

2.1 Bayesian Network Models

First we introduce our notation. We denote variables by uppercase Roman alphabets, A, B, C,
etc., and the set of all variablesby Y . We denote subsets of variables by lowercase Roman
alphabetsc, s, t, etc. We denote the set of possible states of avariable X by Wy, and we assume
that the set of possible states of a subset ¢ of variablesis the Cartesian product of the state space of
individual variablesin the subset ¢, W, =" {W, | X T c}. We denote states of a subset of variables
by lowercase boldfaced letters such as x, y, etc. If x isastateof candb | ¢, then x P denotesthe
projection of x to b obtained by simply dropping states of variablesin ¢\ b. Of course, x °1 W,.

Suppose c isasubset of variables. A potential for cisafunctionc: W, ® R*, where R" is
the set of non-negative real numbers. We call ¢ the domain of potential c. We will denote
potentials by lowercase Greek |etters.

We define multiplication of potentials as follows. Suppose a is a potentia for a, and suppose b
isapotential for b. ThenaAb, read as a timesb, is apotential for aE b defined as follows:
@Ab)(x)=a(x Y b(x Dforalx T Wep.

A Comparison of Architectures For Exact Computation of Marginals 3

We define marginalization of potentials as follows. Suppose a is a potential for aand suppose
bi a Thenthemarginal of a to b, denoted by a_b, isapotential for b defined as follows: a_b(x)
=S{ax,y)|yT W, ,} foralx T W,.

A Bayesian network model consists of a connected acyclic digraph G = (Y, D), and a set of
conditional potentials {ky;} i y, where Y representsthe set of variables and D denotes the set of
directed arcs between pairs of variables. An acyclic digraph is afinite oriented graph with no
multiple arcs, and no directed cycles. If V and W are variablesin Y and thereisadirected arc from
W toV, writtenasW® V, thenwe say V isachild of W, and W isaparent of V. Let Pa(V) =
{WT Y ¢W® V} denotesthe set of parents of V. The conditional potentials{ky}y y satisfy
the following condition: Ky: Wy ¢ payy ® R" issuch that kV_Pa(V)(x) =1foreveryx 1 Weav)-
The assumption underlying a Bayesian network model isthat the prior joint probability distribution
P(Y)isgivenby P(Y) =A{k, |V T Y} For amore detailed description of a Bayesian network
model, see [Lauritzen and Spiegelhalter 1988, and Pearl 1986].

2.2 The Chest Clinic Problem

In this section, we will first describe Lauritzen and Spiegel halter's [1988] hypothetical Chest Clinic
problem, and next, a Bayesian network model for it.

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or
none of them, or more than one of them. A recent visit to Asiaincreases the chances of
tuberculosis, while smoking is known to be arisk factor for both lung cancer and
bronchitis. The results of asingle chest X-ray do not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence of dyspnoea.

Figure 1. The Bayesian Network for the Chest Clinic Problem

o &

A Comparison of Architectures For Exact Computation of Marginals 4

This problem is modeled as a Bayesian network as shown in Figure 1. In this network, A
denotes the variable visit to Asia?, S denotes Smoker?, T denotes Has Tuberculosis?, L denotes
Has Lung Cancer?, B denotes Has Bronchitis?, E denotes Has Either Tuberculosis or Lung
Cancer, X denotes Has positive X-ray?, and D denotes Has dyspnoea?. We assume that all
variables are binary. Assessments are given in Table 1, representing afictitious population coming
to achest clinic. Our notation uses a to indicate a positive response on the node A “visit to Asia?,
- ato indicate a negative response, and p(a) to stand for Pr(A = a). Similarly, t stands for the
presence of "tuberculosis’; s, smoker’; |, "lung cancer’; b, “bronchitis’; e "lung cancer or
bronchitis; x, "positive X-ray'; and d, "dyspnoea. The probability tables for negative responses
may be derived from Table 1.

Table 1. Conditional Probability Tablesfor the Chest Clinic Problem

a. p(a=.01 e pelht=1
pe|l, -t)=1
t: p(t|a)=.05 ple|-l,t)=1
p(t | ~a) =.01 p(e | -l, -t)=0
s: p(s)=.50 z: p(x|e)=.98
p(x | -e) =.05
[: p(l]s)=.10
p(l | =s) =.01 d p(d]|e, b)=.90
p(d|e, -b)=.70
b: p(b|s)=.60 p(d [-e, b) =.80
p(b | -s)=.30 p(d |[-e, =b)=.10

2.2 The Stud Farm Problem

The Stud Farm problem is taken from Jensen [1996].

The stallion Brian has sired Dorothy with the mare Ann and sired Eric with the mare Cecily.
Dorothy and Fred are the parents of Henry, and Eric has sired Irene with Gwenn. Ann isthe
mother of both Fred and Gwenn, but their fathers are in no way related. The colt John with the
parents Henry and Irene has been born recently; unfortunately, it turns out that John suffersfrom a
life threatening hereditary disease carried by arecessive gene. The disease is so serious that John is
displaced instantly, and as the stud farm wants the gene out of the production, Henry and Irene are
taken out of breeding. What are the probabilities for the remaining horses to be carriers of the
recessive gene?

A Comparison of Architectures For Exact Computation of Marginals 5

Figure 2. The Bayesian Network for the Stud Farm Problem

Table 2. Conditional Probability Tablesfor the Stud Farm Problem

a: p(l) = 0.99 ag: pf|l,a)=1
aj pG [h i) =1 p(f |1, ~a) = .50
p([h, =) =05 p(f | -l, @) = .50
p(c|h, -i)=0.5 p(f | =l, =a) = .25
p(| =h, i) =05
p(ic|-h,i)=05
p(j | =h, =i) =0.25
p(jc | =h, =i) = 0.50

Assessments are given in Table 2. Our notation uses| to indicate a positive response on the
node L 'isL pure?, -l toindicate anegative response, i.e., L isacarrier, and p(l) stand for Pr(L
=1). For each node with no parents—A, B, C, K—we have the same probability asfor L, and the
priors are denoted by a 5, ag, ac, and ax. The probability for a positive response on the node 'is F
pureif itsparentsL and A are pure' isp(f | I, a). For each node in this Bayesian network (except J)
with two parents—D, E, G, H, |—we have the same conditional probability asfor the node F
respectively ap, ag, ag, ay, ;. The probability tables for negative responses may be derived from
Table 2. Node J has 3 statesj, jc, js—j denotes John is pure, jc denotes John isacarrier, and js

A Comparison of Architectures For Exact Computation of Marginals

denotes John is sick. The conditional for J, a3, isgiven in Table 2. Finally note that we have the
observationo; that Johnissick, i.e, J=]s.

2.3 The Genetic Reproduction Problem

The Genetic Reproduction (GR) problem isfrom the field of genetics. The problem concerns
breeding and would typically be found in animal husbandry, but in order to make it more
interesting, we will state it in terms of human beings:

Florence (F) and Gregory (G) are about to reproduce. However, Gregory is Florence's
nephew, and in the annals of Bartholomew (B), the father of Florence and grandfather of
Gregory, alife-threatening disease has haunted. The disease is caused by a dominant alele
8, and appearsin arather |ate stage of the individua's life-time. Bartholomew married

twice, hence Florence and Gregory's mother are half-siblings. Neither Florence nor
Gregory, their parents, nor Gregory's grandmother have shown any signs of the disease.
What isthe risk that their child will inherit the fatal characteristic.

Figure 3. The Bayesian Network for the Genetic Reproduction Problem

A B C
' ' '
Ag Bd Cq
D E =
G
H

A Comparison of Architectures For Exact Computation of Marginals 7

Next, we construct a Bayesian network that models the inheritance of the fatal disease through
the genealogical structure. In general, we are interested in determining the genotype of the
individuals. To each individual, we associate a node labeled with his/her initial and having as states
the possible genotypes identified by the combinations of alleles. Hence, each individual is of
exactly one of the genotypes a;a, a;&, Or a,&.

In our problem, when alele a isdominant, then this person isacarrier of the disease. This
means that the genotypes ayay and & & are carriers of the disease, whereas aya, is not.

What can be observed is whether the disease is present or not, but this can only be determined
when the individual has reached a mature age due to the sneaky character of the disease. In order to
be able to enter relevant information on observed occurrences and ask for expectations of the
disease, we add a disease node to the elder and the upcoming generation. These nodes, |abeled
with the individualsinitial with subscript d, have two possible states, “yes’ and “no”,
corresponding to the presence or the absence of the disease, respectively.

Table 3. Conditional Probability Tablesfor Genetic Reproduction Problem

ana p(A =aa) = 0.0001 an p(B = asa) = 0.0025
p(A = ya&) = 0.0198 p(B=a&)=0.25
p(A = &a) = 0.9801 p(B = &a,) = 0.7475

ar. PA=y|lA=aa)=1 PAs=n|A=aa)=0
P(Ag=y[A=ax)=1 P(Ag=n[A=a&)=0
PAG=Y|A=3&)=0 PAg=n|A=ax)=1

ar PE=a& |A=ayay,B=aja) =1 PE=aa |[A=&a,B=a,3)=0
PE=a&|A=a4&,B=a,8)=0 PE=a& |A=aa&,B=a)=05
PE=aa|A=aa,B=a;)=0 PE=ax|A=3a,B=a,8)=05
PE=a& |[A=ay&,B=a,8) =05 PE=aa |[A=aa,B=a,3)=0
PE=aa|A=a4a,B=a;8)=05 PE=aa|A=aa,B=a;)=1
PE=a|A=aa,B=a;3)=0 PE=a|A=a, B=a;3)=0
PE=aa |[A=aqa&,B=a,3)=0 PE=aa |[A=a&a,B=a,3)=0
PE=a&|A=aa,B=aa)=1 PE=ala2 |A =&, B=a;&) =05
PE=a3|A=aa,B=a,3)=0 PE=a|A=a, B=a;3) =05
PE=aa |[A=a&,B=a,8) =05 PE=a& |A=&a,B=a,3)=0
PE=aa|A=q4a,B=a;) =05 PE=aa |A=aa,B=a3)=0
PE=a|A=aa B=a;3)=0 PE=a|A=aa, B=aa)=1

PE=aa|A=aa,B=a;a) =0.25
PE=a&|A=a&,B=aa)=05
PE=a&|A=a&,B=aa&) =0.25

Probability assessments are given in Table 3. The interpretation of these probabilitiesis
similarly to that for the previous problems. Our notation A = & & stand for A has a genotype &, a,.

A Comparison of Architectures For Exact Computation of Marginals 8

For nodes C and D we have the same probabilities as for node A, and the conditionals for these
nodes are denoted by a : and ap, respectively. For nodes B, Cg4, and Hy, we have the same
probabilities as node A 4, and the conditionals for these nodes are denoted by a By AC, and a Hy'
respectively. Nodes F, G, and H have two parents, and they have the same conditional
probabilities as node E and these are labeled af, ag, and a, respectively.

3 THE LAURITZEN-SPIEGELHALTER ARCHITECTURE

In this section , we describe the Lauritzen-Spiegelhalter architecture for computing marginals.

In a probabilistic model, we make inferences by computing the marginal of the joint probability
distribution for the variables of interest. For simplicity, we will assume that we are interested in the
marginal for al variables. When we have alarge number of variables, computing the joint is
computationally intractable. However, when the conditional potentials have small domains, we can
compute the marginals of the joint without explicitly computing the joint.

In the LS architecture, first we construct ajoin tree called ajunction tree, and then we
propagate messages in the junction tree. The junction tree is constructed from the directed acyclic
graph G as follows. First we construct amoral graph G™, next we triangulate G, and finally we
arangethecliquesin G™ inajoin tree.

The procedure for transforming a Bayesian network G into amoral graph G™is as follows.
First we “marry parents’ by adding undirected edges between every pair of parents, and then we
drop directions, i.e., replace directed arcs by undirected edges (see Figure 4). The resulting
undirected graph is called the moral graph G™ of G.

Figur e 4. Constructing the Moral Graph G™ from the Bayesian network G

O L & (D (L
] B N

Parents d| rections
(E)

Next we triangulate the moral graph G™ if it is not atriangulated graph. An undirected graph is
triangulated if every cycle of length n3 4 has a chord. Lauritzen and Spiegelhalter [1988] suggest
the maximum cardinality search algorithm developed by Tarjan and Y annakakis [1984] for

A Comparison of Architectures For Exact Computation of Marginals 9

checking whether an undirected graph is triangulated or not and for suggesting minimal fill-ins so
that the resulting graph istriangulated. In the Chest Clinic problem, the moral graph shownin
Figure 4 is not triangulated since we have a cycle SLEB of length 4 without a chord. A fill-in
suggested by the maximum cardinality search algorithmis{L, B}. Theresulting graphis
triangulated (see Figure 5).

Figure 5 A Triangulated Graph and a Corresponding Junction Tree

(A (’S) @ SLB
@o——C=»

©
® @ & T

Once we have atriangulated graph, we can arrange its cliques (maximal complete subsets of
variables) in ajoin tree. A join treeisatree whose nodes are subsets of variables such that if a
variableisin two distinct nodes, then the variable must be in every node on the path between the
two nodes. We will call the join tree whose nodes are the cliques of the triangulated moral graph a
junction tree. This data structure enables |ocal computations with potentials on domains within the
cliques. A junction tree for the Chest Clinic problem is shown in Figure 5.

Next we associate each conditional potential ky, with the clique that contains the subset
{V}E Pa(V). If we have observations, we model these as potentials and associate the potentials
with a clique that includes the domain of the potential. If a clique has more than one potential
associated with it, then we will assume that the combination of these potentialsis associated with
the clique.

For the Chest Clinic problem, suppose we have evidence that the patient has visited Asiaand
has Dyspnoea. We model this evidence as potentials o, for { A}and o for { D} . It is easy to show
that given the evidence, the posterior joint distribution is proportional to the product of all
potentialsincluding o, and op,.

Next we pick any node of the junction tree to be the root, and direct all edges of the junction
tree toward the root. The propagation in Lauritzen and Spiegelhalter’ s architecture is done in two
passes, inward and outward. In the inward pass, each node send a message to its inward neighbor,
and in the outward pass, each node sends a message to its outward neighbors. Precise rules are as
follows [Shafer 1996].

A Comparison of Architectures For Exact Computation of Marginals 10

Inwar d Pass (see Figure 6):

Figure 6. Inward Propagation (from ¢ to) in the LS Architecture

Cj cj¢-cjAc (6Cq)
Ci cit-ci/ci ©Cq)
Before After

Rule 1. Each node waits to send its message to its inward neighbor until it has received a
message from all its outward neighbors. If a node has no outward neighbors, it can send a
message right away.

Rule 2. When anode is ready to send a message to itsinward neighbor, it computes the
message by marginaizing its current potential to its intersection with the inward neighbor. It
sends this message to itsinward neighbor, and then it dividesits own current potential by the
message.

Rule 3. When a node receives a message from its outward neighbor, it replaces its current
potential with the product of that potential and the message.

The inward pass ends when the root has received a message from all its outward neighbors.
Outward Pass (see Figure 7):

Figure 7. Outward Propagation (from ¢; to) inthe LS Architecture

ci® c|&
ci¢ ci®=ci®Ac;® (GCq)
Before After

A Comparison of Architectures For Exact Computation of Marginals 11

Rule 1. Each node waits to send its messages to its outward neighbors until it has received the

message from itsinward neighbor. The root which has no inward neighbor can send a message

right away.

Rule 2. When anode is ready to send a message to its outward neighbor, it computes the

message by marginalizing its current potential to its intersection with the outward neighbor. It

sends this message to its outward neighbor.

Rule 3. When a node receives a message from its outward neighbor, it replaces its current

potential with the product of that potential and the message.

The outward pass ends when all |eaves have received messages from their inward neighbors.
At the end of the outward pass, the potential associated with each clique isthe margina of the
posterior joint for the clique (up to a normalization constant)..

Figures 8, 9 and 10 illustrate the computations in the L S architecture for the Chest Clinic
problem.

Figure 8. At the Beginning

@ cs=s Al Ab

ci=aA tA o,

c, =e

Cg =X C5=dAOD

Figure 9. At the End of the Inward Propagation

c16=ciA[coA[c, {L.BIACs (E B}] {L.E}Acg {B}] {T) Cab=cy/Cy {L.B}

_ CoAlcy (LB ACs (E B (L. BACe (8) c4 {L.B}ACs {E B}

@6

cat=

coC

" [coA[cs (LB Acs (E B (LBl Ace (B (T} [cq (LB ACg (E B} (LB}

cet=cs/Ce (B c5¢=c5/C5 {E B}

A Comparison of Architectures For Exact Computation of Marginals 12

Figure 10. At the End of the Outward Propagation

c1®=cq! @ @ Ca®=c W c3a{L, B}

co®= 02@01@_{1-} @ @ c3®= ngACz(E_{LvE}

Ce®= CGQACz(If{E} @ @ Cs®= 05@'\03@?{ E, B}

At the end of the outward pass, we have the marginal of the posterior distribution at each
clique. However, the stated task is the computation of the marginal of the posterior for each
variable in the Bayes net. We can compute the marginal for avariable from any clique marginal that
contains the variable. Since it is more efficient to compute the this marginal from asmaller clique,
we will do so from asmallest clique that contains the variable. For example, to compute the
marginal for E in the Chest Clinic problem, we can do so from the marginals of the following
cliques. {T, L, E},{L, E, B},{E, B, D} and{E, X}. Since {E, X} isthe clique with the smallest
number of states, it ismost efficient to compute the marginal for E from { E, X}. Of course, this
strategy ignores the computational cost of identifying a smallest clique.

4 THE HUGIN ARCHITECTURE

In this section, we sketch the Hugin architecture. Although it wasinitially described for computing
marginals of probability distributions [Jensen et al. 1990a, b], it has been recently extended by
Lauritzen and Jensen [1996] so that it is more widely applicable to domains that satisfy some
axioms.

We start by assuming that we have ajunction tree and the corresponding probability potentials
for each clique. We introduce a storage register between every two cliques whose domain isthe
intersection of the two cliques. We call this storage register a separator. Pick any node to be the
root. The propagation in Hugin architecture is done in two passes, inward and outward. In the
inward pass, each node send a message to itsinward neighbor, and in the outward pass, each node
sends a message to its outward neighbors.

A Comparison of Architectures For Exact Computation of Marginals 13

In the Hugin architecture, in the inward pass the sender does not divide the message. Instead,
we saveit in the separator. This requires more space, but it save computations (as we will see
shortly). On the outward pass, the separator divides the outward message by the message it has
stored before passing it on to be multiplied into the potentia of the recelving node. Notice that the
division isdonein the separator which has a smaller state space than either of the two cliques.

If we assume that at the beginning, each separator has the corresponding identity potentia i (a
potential whose values are identically one, and whose domain is same as the separator), then the
inward action is same as the outward. Precise rules are as follows [Shafer 1996

Figure 11. Inward Propagation (from g to) inthe Hugin Architecture

@a

@ cje= cjAci¢(€icq)

ci¢ (Gicg)

Before

After

Figure 12. Outward Propagation (from ¢; to) in the Hugin Architecture

{;) Cie

cjat (9

(9) ciw=cidh G 9 ciglc)

After

A Comparison of Architectures For Exact Computation of Marginals 14

Rule 1. Each non-root node waits to send its message to a given neighbor until it has received
messages from all its other neighbors.

Rule 2. Theroot waits to send messages to its neighbors until it has received messages from
them all.

Rule 3. When anode is ready to send its message to a particular neighbor, it computes the
message by marginaizing its current potential to itsintersection with this neighbor, and then it
sends the message to the separator between it and the neighbor.

Rule 4. When a separator receives a message New from one of its two nodes, it divides the
message by its current potential Old, send the quotient New/Old on to the other node, and then
replaces Old with New.

Rule 5. When a node receives amessage, it replacesiits current potential with the product of
the potential and the message.

Rules 1 and 2 force the propagation to movein to a“root” and then back out.

At the end of the propagation, the potentials on all the nodes and separators are marginals of the

posterior joint P Ac;.

Suppose Q isthe set of al cliques, and Gisthe set of all separators. Then at the beginning, at

the end of the inward pass, at the end of the outward pass, or at any step in the propagation
process, P (Aji o ¢i)/ (Ajj gCi).

Figures 13, 14 and 15 illustrate the computations in the Hugin architecture for the Chest Clinic

problem.

Figure 13. At the Beginning

ci=aA tA op @c4=sAlAb
i i

c,=e (TLE LEB

i [

A Comparison of Architectures For Exact Computation of Marginals

Figure 14. At the End of the Inward Propagation

c1¢= C]_AC2¢_{T} SLB) cst=cy

)
g

co61m c46iL. B}

Co¢= CzACg‘f{L,E}ACG(f{E} TLE LEB c3¢= C4E{L|B}AC56{E| B}

C3¢_{L E}

4
5

ceC{B} cs5¢{E B}

Cegl=C¢ EX EBD) cs¢=c:

¥
9

Figure 15. At the End of the Outward Propagation

Clm;: Cy! SLB C4¢t= C4(|A[C3¢t_{|—r B} / C4¢_{|—: B}]

)
o

Cl(lf{T} c3¢1:_{|-. B}

Co®=Co®[c @ {T}H/ c¢{T(TLE LEB) c3®=c3®[co®{L. B} / c3¢{L E}]

Y
0

C2¢E{Lv E}
Cz(lf{E} c3¢1:_{E. B}
Ce®=CeA[Co®{E}/ caC{E} @ @ c5®= c5®\[c3@{E B} / c5C{E B}]

We compute the marginal for avariable from the marginal for a smallest separator that contains
the variable. If thereis no separator that contains the variable then we compute it from the marginal
for asmallest clique that contains the variable. Like in the LS architecture, this strategy ignoresthe

computational cost of identifying the smallest separator or clique that contains the variable.

A Comparison of Architectures For Exact Computation of Marginals 16

5 THE SHENOY-SHAFER ARCHITECTURE

In this section, we sketch the Shenoy-Shafer architecture and illustrate it using the Chest Clinic
problem.

In the Shenoy-Shafer architecture, we start with a collection of potentials that define the joint
distribution. The domains of the potentials form a hypergraph. To this hypergraph, we add subsets
for which we desire marginals. For example, if we wish to compute marginals for each singleton
variable, we add these singleton variables to the hypergraph if they are not aready included in the
hypergraph. In the Chest Clinic problem, we start with a set of potentialsJ ={a, s, t, |, b, e, X,
d, 0a, Op}, and ahypergraph H = {{ A}, {S}, {A, T}, {S, L}, {S, B}, {T, L, E}, {E, X}, {E,
B, D}, {D}. {T}.{L}, {B}, {E}, {X}}.

Figure 16. A Binary Join Tree for the Chest Clinic Problem.

Op

Thefirst step in the Shenoy-Shafer architecture is to arrange the subsetsin H in abinary join
tree. A binary join treeisajoin tree such that no node has more than three neighbors. The binary
join tree construction process is motivated by the idea of fusion [Shenoy 1992] (called peeling by
Canningset al. [1968]), and the idea that all combinations should be done on abinary basis, i.e.,
potentials should be multiplied two at atime. A binary join tree is a data structure designed to cache

A Comparison of Architectures For Exact Computation of Marginals 17

computation so as to reduce the computation involved in combination and marginalization. A
binary join tree for the hypergraph in the Chest Clinic problem is shown in Figure 16.

Shenoy [1997] describes aformal procedure for constructing a binary join tree. Here we will
sketch this procedure. As per the fusion agorithm, when we delete a variable, we combine all
potentials that contain the variable in their domains and then marginalize the variable out of the
combination. The potentials that do not contain the variable in their domains remain unchanged.
For example, in the Chest Clinic problem, if we fuse the potentialsin J with respect to S, we get
{((sAl Ab) 1B a t, e x, d, 0a, Op}. The computation of sAl Ab isachieved using binary
fusion, i.e., wefirst combines and | , and then we combines Al and b. This suggests the binary
subtree shown in Figure 17. If we recursively implement this using the deletion sequence, say,
XASDBLE, we get the binary join tree shown in Figure 18.

Figure 17. A Binary Join Tree Suggested by Binary Fusion with respectto S

#(sm Ab)TL,B)

Notice that in Figure 18, many nodes are duplicated. If we have a pair of duplicate nodes that
are neighbors and merging these two nodes does not increase the number of neighbors of the
merged node to more than three, then we can merge the duplicated nodes into one node. If we do
thisin the Chest Clinic problem, the condensed binary join tree that is obtained is the one shown in
Figure 16. In general, we may not be able to always get rid of duplicate nodes [Shenoy 1997].

Once we have abinary join tree, we associate each potential with one of the subsetsin the
binary join tree that correspondsto its domain. Next, each node in the tree that needs to compute
the marginal for it requests a message from each of its neighbors. The messages are computed
using Rule 1 asfollows.

A Comparison of Architectures For Exact Computation of Marginals 18

Figure 18. A Binary Join Tree for the Chest Clinic Problem Suggested by Binary Fusion
a, oa S I
@ @ © E»

e

X G oD

Rule 1 (Computing Messages) Suppose r and s are neighbors, and suppose s has
requested amessage fromr. r in turn requests messages from its other neighbors, and after
it has received these messages, it computes the messageto s as follows. Informally, the
message that node r sends to its neighbor s is the combination of all messagesthat r
receives from its other nei ghbors together with its own probability potential marginalized to
rCs. Formally, suppose m® S denotes the message from r to s, suppose N(r) denotesthe
neighbors of r in the binary join tree, and suppose a, denotes the probability potential
associated with node r. Then the message from node r to its neighboring node s is
computed as foIIows

Oo= A{m Ot (N —{sh}Aa}
Noticethat aleaf of the join tree has only one neighbor and therefore when it hasreceived a
request for amessage, it can send it right away without waiting for any messages.

In Figure 17, notice that the messages displayed there satisfy Rule 1 above. When a node that
needs to compute the marginal for it has requested and received messages from all its neighbors,
then it computes the desired margina using Rule 2 asfollows.

A Comparison of Architectures For Exact Computation of Marginals 19

Rule 2 (Computing Marginals) When anode r has received a message from each of its
neighbors, it combines all messages together with its own probability potential and reports
the results asits marginal. If | (_jenoteﬁ the joint potential, then

i "=A{M®t] NN} Aa,

Each node in the binary join tree will have zero, one, two or more storage registers, one for
each input probability potentia (if any), and one for reporting the marginal of the joint (if a
margina for the node is desired). Each edge (separator) in the join tree would have at most two
storage register for the two messages, one in each direction. Figure 19 shows the storage
architecture for asimple join tree with two nodes. Each of the two nodes is assumed to have one
input potential. Also, we assume that we desire the marginal for both nodes. Notice that the
domain of the separator betweenr andsisrCs.

Figure 19. The Shenoy-Shafer Architecture for a Join Tree with Two Nodes

as <_ ar
m
S r
S® r
\ 4 m \ 4
s —p T

In the Chest Clinic problem, suppose we desire marginals for each of the variablesin the
problem. To achieve this, suppose that the singleton nodes{ A}, {S}, {T}, {L}, {B}, {E}, {X},
and { D} in the binary join tree of Figure 16 request a message from their neighbors. Notice that
not all messages are computed. For example, the message m-2® 58 s not computed sinceit is not
requested by any node.

Notice that unlike the LS and Hugin architectures, there are no division operationsin the SS
architecture. Also, notice that unlike the LS and Hugin architectures, the input potentials remain
unchanged during the propagation process in the SS architecture. Notice also that the marginal of
thejoint potential for avariable is computed at the corresponding singleton variable node of the
binary join tree.

6 COMPARISON

In this section, we will compare the Lauritzen-Spiegelhalter (LS), Hugin, and Shenoy-Shafer (SS)
architectures. In the comparison, we will focus our attention on the graphical structure for message

A Comparison of Architectures For Exact Computation of Marginals 20

propagation, the message-passing scheme, the storage efficiency, and the computational efficiency
of each architecture.

In all three architectures, we assume that we start with a Bayesian network representation of a
problem and that we have some evidence (observations or likelihoods) for some variables. The
task isto compute the marginals of the posterior distribution for al variables in the problem.

Graphical Structuresfor Message Propagation. In the LS and Hugin architectures,
propagation of potentialsis donein ajunction tree. In the SS architecture, propagation of potentials
isdonein abinary join tree. The nodes of ajunction tree are the cliques of atriangulated moral
graph of the original Bayesian network. A corresponding binary join tree includes these cliques as
well as several subsets of these cliques. Therefore, abinary join tree has more nodesthanin a
corresponding junction tree. For example, in the Chest Clinic problem, the junction tree shown in
Figure 5 has six nodes whereas the corresponding binary join tree shown in Figure 16 has 20
nodes. For the Stud Farm problem, the junction tree shown in Figure A.1 has 9 nodes and the
corresponding binary join treein Figure A.2 has 34 nodes. And in the Genetic Reproduction
problem, the junction tree shown in Figure A.3 has 10 nodes and the corresponding binary join
tree shown in Figure A.4 has 28 nodes. (Notice that if we start with abinary join tree and we
condense it by absorbing adjacent nodes that are subsets/supersets of each other, we get a
“corresponding junction tree.”)

Thejunction tree yields only marginals for the cliquesin the LS architecture, and marginals for
cliques and separators in the Hugin architecture. Since our stated task isto compute marginals of
singleton variables, there is further computation needed in these two architectures. Inthe LS
architecture, the marginal for a variable can be computed most efficiently from the marginal of the
smallest clique containing the variable. However, identifying the smallest clique itself involves
some computation. In the Hugin architecture, if avariable belongs to a separator, then the marginal
for the variable can be computed most efficiently from a smallest separator containing the variable.
If avariable does not belong to any separator, then its marginal can be computed most efficiently
from asmallest clique containing the variable. Identifying whether avariable isin some separator
or not, and identifying a smallest separator or asmallest clique containing the variable involves
some computation. In the SS architecture, if during the construction of abinary join tree, we
include all singleton subsets, then the graphical structure yields marginals for singletons at the end
of the message passing stage with no further computation required.

It is not necessary that we use junction trees for the LS and Hugin architectures. We could use
any join treeincluding binary join trees. However, given the message passing schemes of these
two architectures, it isinefficient (with respect to both computation and storage) to implement these
two message passing schemes on join trees with many nodes. We will be more specific about this
aspect when we discuss computational efficiencies of the three architectures. Also, it is not

A Comparison of Architectures For Exact Computation of Marginals 21

necessary that we use abinary join tree for the SS architecture. We could use any join tree
including junction trees. However, there is computational penalty in using non-binary join trees or
condensed junction trees for the SS message passing scheme. For these reasons, the LS
architecture is associated with junction trees, the Hugin architecture is associated with junction tree
with separators, and the SS architecture is associated with binary join trees constructed in the
manner described in Shenoy [1997].

M essage-Passing Schemes. In the LS architecture, first we arbitrarily designate a clique of
the junction tree as the root. The propagation of messages in done in two stages—the inward phase
where each clique send a message to its inward neighbor, and the outward phase in which each
clique sends a message to each of its outward neighbors. At the beginning we have an evidence
potential representation. And at the end of the outward phase, at each clique, we have the marginas
for it. Each cligue in the junction tree stores a potential. Computations are done by each cliquein
the junction tree.

In the Hugin architecture, we designate a node as the root. Each clique send a message to each
of the separators between it and its neighbors. When a separator receives a message from one of its
neighboring clique, it sends a message to its other neighboring clique. At al times, the joint
potential is equal to the product of the potentials at the cliques divided by the product of the
potentials at the separators. When all messages have been sent, the potential at each clique and at
each separator isthe margina of the joint for that node. Each clique and each separator in the
junction tree stores a potential. Computations are done by each clique and by each separator in the
junction tree.

In the SS architecture, nodes for which the marginals are desired request messages from all
their neighbors. When a node receives arequest for amessage, it in turn requests messages from
all its other neighbors. When all requested messages have been delivered, the marginals are
computed at the desired nodes. A node may store either no potential, or one potential (input or
output) or two or more potentials (one for each input, and output). Each edge (separator) between
two nodes may store one or two potentials. Computations are done only by nodes and not by
separators.

Although we have restricted our study in this article to Bayesian networks, all three
architectures are applicable more widely. Lauritzen and Jensen (1996) have described axioms that
generalize the LS and the Hugin architecture to other domains. These axioms include the axioms
proposed by Shenoy and Shafer (1990). A natural question is how generally applicable are these
three architectures. Since the Shenoy-Shafer architecture does not use the division operation, it is
clear that the Shenoy-Shafer architecture is more widely applicable that the L auritzen-Spiegel halter
or the Hugin architecture. For example, the problem of fast retraction proposed by Cowell and
David [1992] can be handled by all three architectures in the probabilistic domain. However, fast

A Comparison of Architectures For Exact Computation of Marginals 22

retraction cannot be handled in non-probabilistic domains by the Lauritzen-Spiegelhalter and Hugin
architectures as the axioms are not satisfied [Lauritzen and Jensen 1996]. Fast retraction is easily
handled in the Shenoy-Shafer architecture [Lauritzen and Shenoy 1996].

Storage Efficiencies. Inthe LS architecture, each cliquein the junction tree stores one
potential. Thus the total storage requirementswill depend on the number of cliquesin the junction
tree and state spaces of the cliques. If after propagating the messagesin the junction trees, we get a
new piece of evidence, then we will have to start again with the input and evidence potentials.
Also, auser may want to edit the input and evidence potentials. For these two reasons, we have to
also include the storage requirements for the input and evidence potentias. Also, at the end of the
outward propagation, we have only the marginals for the cliques. However, our stated task isthe
computation of the marginals for each variable. These marginals are computed from the clique
marginals. We will also include the storage requirements for storing the marginals of each variable.

In the Hugin architecture, each clique in the junction tree stores one potential. Also, each
separator between two adjacent cliques stores one potentia. Also, auser may need to edit the input
and evidence potentials. So these need to be stored separately. Therefore, we will also include the
storage space for storing the input and evidence potentials. Also, when all messages have been
computed, we have only the marginals for the cliques and separators. We still need to compute
marginals of singleton variables. So we will include storage space for the marginals of each
variable.

In the SS architecture, each node may have either zero, one, two or more potentials. If a node
has at least one input potential and it is a singleton node whose marginal is desired, then such a
node with have two or more potentials. If a node has neither an input potential nor is the marginal
for the node desired, then it will have zero potentias. In all other cases, it will have one potential
(either an input potential or an output potential). If we regard the edge between two adjacent nodes
as a separator, then each separator will have either one or two potentials depending on which
messages are requested. If both adjacent nodes request messages from each other, then each
separator will store two potentials. If only one message is requested, then a separator will store
only one potential.

Table 4. Storage Efficiencies of the Three Architectures for Three Sample Problems

Storage Efficiency Architectures
floating point numbers (fpn) LS Hugin SS
Chest Clinic with evidence for A and D 96 112 158
Stud Farm 214 262 376
Genetic Reproduction 368 425 457

A Comparison of Architectures For Exact Computation of Marginals 23

Table 4 displays the storage requirements for the three problems described in Section 2. In this
table, the storage requirements are described in units of floating point numbers (fpn). Thus, e.g.,
to store a potential whose domain consists of three binary variables, we will need storage space of
23 =8 fpn.

In general, it is easy to see that, assuming we are working with the same junction tree, the
Hugin architecture will have always more storage requirements than the LS architecture because of
storage at the separators.

In comparing the storage requirements of Hugin with SS architectures, there are no genera
results. Although abinary join tree has more nodes than a corresponding junction tree, not every
nodein abinary join tree has a potential associated with it. All input and evidence potential are
included in both architectures and al output potentials are also included in both architectures. So
the differences in storage are due to storage at cliques and separators in the Hugin architecture and
storage at separators in the SS architecture. In the Hugin architecture, al separators include exactly
one potential each, whereas in the SS architecture, most separators include two potentials and there
are usualy alot more separators in abinary join trees than in corresponding junction trees.
However, every cligue in ajunction tree stores a potential whereas these potentials are not present
in the SS architecture.

Figure 20. A Bayes net, aJunction Tree, and a Binary Join Tree

(20 O
©sh @)
& & © ©

In Table 4, we see that the SS architecture has more storage than the LS and Hugin
architectures for the three problems. It is easy to construct an artificial problem in which the SS
architecture has less storage than the LS and Hugin architectures. Consider a Bayes net with one
disease variable D and two symptom variables S; and S, as shown in Figure 20. Suppose we have
two pieces of evidence for nodes S; and S, respectively. A junction tree and abinary join tree are
also shown in Figure 20. Suppose that each of the three variable has 5 states. Then in all three
architectures we have the same storage for input (5 + 25 + 25 = 55 fpn), evidence (5 + 5= 10 fpn)
and output potentials (3*5 = 15 fpn). In the LS architecture we have a storage of 50 (= 2*25) fpn
at the two cliquesin the junction tree. In the Hugin architecture, we have atotal storage of 55 (=
2*25 + 5) fpn at the two cliques and one separator. In the SS architecture, we have atotal storage

A Comparison of Architectures For Exact Computation of Marginals 24

of 40 (= 4*2*5) at the 4 separators. Thusin this problem, SS has less storage than both the LS and
Hugin architectures.

Computational Efficiency. Itistraditional to study worst case order of magnitude
complexity of computational algorithms. From this perspective, there are no essential differences
between the three architectures. All three architectures compute the marginals using local
computation. In the worst case, the computational complexity of the three algorithms are
exponential in the size (# variables) of the largest clique.

Table 5. # Binary Arithmetic Operations for Some Sample Problems

Binary Arithmetic Operations Architecture
Problem LS Hugin SS

Chest Clinic with no evidence
binary additions 72 60 56
binary multiplications 84 84 122
binary divisions 36 16

Chest Clinic with evidence for A and D
binary additions 72 60 56
binary multiplications 96 96 124
binary divisions 36 16

Chest Clinic with evidence for A, D, Sand X
binary additions 72 60 56
binary multiplications 108 108 126
binary divisions 36 16

Stud Farm with evidence for J
binary additions 221 179 187
binary multiplications 248 248 345
binary divisions 108 48

Genetic Reproduction with evidence for Ay, B yand Cy
binary additions 400 346 334
binary multiplications 411 411 522
binary divisions 159 57

Here we will look at computational efficiencies of the three architectures using avery crude
measure; # binary arithmetic operations (additions, multiplications, and divisions). It is clear that
this crude measure does not describe the actual computational efficiency. This measure does not
include other operations such as table lookups, comparisons, read/write to memory, etc. Even this

A Comparison of Architectures For Exact Computation of Marginals 25

crude measure is difficult to measure in general. Our methodology is as follows. We solve the
three problems described in Section 2 under several scenarios, and we count the number of binary
additions, multiplications and divisions. Based on these observations, we identify the sources of
relative inefficiencies in each of the three architectures. And we list as many general conclusions as
we can.

First, the Hugin architecture always does fewer additions than the LS architecture. Thisis
because computation of marginals of singleton variablesis aways done from clique marginalsin
the LS architecture whereas in the Hugin architecture, it is done from the separator marginals for
some variables and clique marginals for some variables. Notice that we are ignoring the
computationa cost of identifying asmallest clique in the LS architecture and the cost of finding a
smallest separator or clique in the Hugin architecture.

Second, the LS and Hugin architectures always do the same number of multiplications. The
Hugin architecture is an adaptation of the LS architecture, and it is not surprising that this aspect of
the two architectures is the same.

Third, the Hugin architecture always does fewer divisions than the LS architecture. The Hugin
architecture does divisionsin the separator whereas the LS architecture does divisionsin the
cliques. Thiswas amajor motivation that led to the Hugin architecture. Since the Hugin
architecture is more computationally efficient than the LS architecture, we will restrict our
comparison of the SS architecture to the Hugin architecture.

Comparing the Hugin and SS architectures, in Table 5, we notice that sometimes SS does
fewer additions than Hugin (e.g., in Chest Clinic and Genetic Reproduction problems) and
sometimes Hugin does fewer additions than SS (e.g., in Stud Farm problem). A detailed
examination of the addition operations done in the two architectures reveals the following reasons.

In the Chest Clinic problem, SS does 4 fewer additions than the Hugin architecture. During the
outward propagation of the Hugin architecture (see Figure 15), node TLE computes two potentials,
cz (LB (stored at separator {L, E}) and cz 8 (stored at separator { E}). Computation of
cz b Biromez requires 4 additions, and computation of c2 & from c2 requires 6 additions for
atotal of 10 additions. If we had computed cz (& fromcz b E}, we would have done only 2
additions thus saving 4 additions. But there is no way we can do this given the arrangements of
cliquesin thejunction tree. In the SS architecture for the Chest Clinic problem, the binary join tree
(shown in Figure 16) has more nodes than in the junction tree and consequently there is more
caching of messages than in the Hugin architecture. The margina for E is computed from the node
{T, E} and thisrequiresonly 2 additions.

In the Stud Farm problem, Hugin does 8 fewer additions than the SS architecture. Hugin
computes the marginal of B from { B, E} (the smallest separator containing B), and computes the
marginal of H from {H, 1}, the smallest separator containing H (see Figure A.1 in the Appendix).

A Comparison of Architectures For Exact Computation of Marginals 26

Computing these two marginals requires 4 additions. In the SS architecture, the binary join treeis
constructed from the viewpoint of minimizing multiplications. Thus, the singleton node { E} is
connected to { A, E, H} and the singleton node { H} is connected to { A, E, H} via{A, H} (see
Figure A.2 in the Appendix). Thus computing marginal of E from { A, E, H} requires 6 additions
and computing marginal of H from { A, E, H} via{A, H} requires 6 additions for atotal of 12
additions, 8 more than in the Hugin architecture.

The number of multiplications donein Hugin and SS cannot be compared without accounting
the division operations in the Hugin architecture. In a sense, the Hugin does division operations to
avoid some multiplications (done in the SS architecture). Therefore we need to compare the
aggregate of multiplications and divisionsin Hugin to multiplications in the SS architecture. To
aggregate the number of multiplications and divisions, we can simply add them. Alternatively,
since on most chip architectures, afloating point division takes roughly 30 percent more time than
doing afloating point multiplication, we can aggregate multiplications and divisions by assuming 1
,=13".

For some problems, Hugin does fewer multiplications and divisions than the SS architecture,
and for some problems, SS does fewer multiplications than the aggregate of multiplications and
divisonsin Hugin. A detailed examination of the multiplications and divisions done in the two
architectures reveal s the following reasons.

Hugin does divisions as a substitute for multiplications (in the SS architecture), but it does
these divisions in the separators instead of in the cliques. On the other hand, the SS architecture
avoids divisions by doing multiplicationsin the cliques. For example, in the Hugin architecture for
the Chest Clinic problem, clique{L, E, B} does8 multiplicationsin the inward stage, 8
multiplications in the outward stage, and 4 divisionsin the separator {L, E} for atotal of 16
multiplications and 4 divisions. On the other hand, in the SS architecture, {L, E, B} does8
multiplicationsin the inward stage, and 16 multiplications in the outward stage (to send messages
to{L, B} and{E, B}) for atotal of 24 multiplications. Thus, even if we count adivision as 1.3
multiplication, Hugin is more efficient than SS.

In the SS architecture for the Chest Clinic problem, first we multiply s and| at node{S, L}
that requires 4 multiplications, and then we multiply sAl and b at node{S, L, B} requiring 8
multiplications for atotal of 12 multiplications. In the Hugin architecture for the Chest Clinic
problem, at the outset, we multiply s, | andb at clique{S, L, B} for atotal of 16 multiplications,
4 more than the SS architecture. Also, consider the multiplications done by clique{T, L, E} during
theinward stage—c,A c3¢_{L’ BAc 6¢_{E}. This requires 16 multiplications. Had we done these on
abinary basis by multiplying c3¢_{L‘ B and c6¢_{E} on{L, E} andthenc, and c3¢_{L' B A c6¢_{E}
on{T, L, E}, wewould have done 12 multiplications. Since there is no guarantee of doing binary

A Comparison of Architectures For Exact Computation of Marginals 27

multiplications in ajunction tree, the Hugin architecture does more multiplications than is done by
the SS architecture in ajoin tree crafted to guarantee binary multiplications.

Notice that the Hugin propagation can be donein any join tree assuming we start with aclique
marginal representation of the joint probability distribution. However since computations are done
at each node and at each separator, there isa computational penalty in introducing additional nodes
and separators. For example for the Chest Clinic problem with evidence for A and D, if we do
Hugin propagation in the binary join tree shown in Figure 16, it requires 56 additions, 170
multiplications and 52 divisions (see Table A.10 in the Appendix) compared to 60 additions, 96
multiplications and 16 divisions for the junction tree of Figure 5 (see Table A.7 in the Appendix).
Clearly, for the Hugin architecture, the junction tree in Figure 5 is more efficient than the binary
join tree of Figure 16.

The SS propagation can be done in any join tree assuming we start with an evidence potential
representation of the joint probability distribution. Since no computations are done at any
separator, and since the computations done at a node depends on the number of neighbors, there
may be a computational penalty if we use arbitrary join trees. For example, for the Chest Clinic
problem with evidence for A and D, if we do SS propagation in the junction tree shown in Figure
5, it requires 60 additions, and 140 multiplications (see Table A.9 in the Appendix) compared to 56
additions and 124 multiplications for the binary join tree of Figure 16 (see Table A.8 inthe
Appendix). Clearly, for the SS architecture, the binary join tree in Figure 16 is more efficient than
the junction tree of Figure 5 even though the latter isabinary join tree. Notice that if we restrict
ourselves to cliques, thereis no guarantee that we can always find ajunction tree that is a binary
join tree.

Overall, comparing LS and Hugin architectures, Hugin is computational more efficient than
LS, whereas LS is more storage efficient than LS. In a sense, Hugin sacrifices storage efficiency
to achieve better computational efficiency. We cannot make any general statements regarding
relative storage or relative computational efficiencies of Hugin and SS architectures. There are
some aspects of the Hugin architecture that are better than the SS architectures, namely divisionin
separators. There are some aspects of the SS architecture that are better than the Hugin architecture,
namely binary multiplications. Whether we can improve on these two architectures by borrowing
the strengths of the other is atopic that needs further research.

A Comparison of Architectures For Exact Computation of Marginals 28

Table 6. Computational Efficiency of the Three Architectures for Some Sample Problems

Computational Efficiency Architecture

Total # unit binary operations (ubo) LS Hugin SS

Assumingl, =1" =1+=1ubo
Chest Clinic with no evidence 192 160 178
Chest Clinic with evidencefor A and D 204 172 180
Chest Clinic with evidencefor A, D, Sand X 216 184 182
Stud Farm with evidence for J 577 475 532
Genetic Reproduction with evidence for Ay, B 4 and Cy 970 814 856

Assumingl+=1" =1ubo,1, =1.3ubo
Chest Clinic with no evidence 202.8 164.8 178
Chest Clinic with evidence for A and D 214.8 176.8 180
Chest Clinic with evidence for A, D, Sand X 226.8 188.8 182
Stud Farm with evidence for J 609.4 489.4 532
Genetic Reproduction with evidencefor A, Bgjand Cy | 1017.7 831.1 856
ACKNOWLEDGMENTS

Thisresearch was initiated during Spring 1996 when the second author was visiting the Institute of
Informatics at the University of Fribourg. The authors are grateful for support and encouragement
from Professor Juerg Kohlas. The paper has benefited from comments and suggestions by
Bernard Anrig, Rolf Haenni, Tuijalsotalo, Juerg Kohlas, Norbert Lehmann, Paul-Andre Monney,
and Dennis Nilsson.

REFERENCES

1. Cannings, C., E. A. Thompson and M. H. Skolnick (1978), “Probability functions on
complex pedigrees,” Advances in Applied Probability, 10, 26-61.

2. Cowel, R. and A. P. Dawid (1992), “Fast retraction of evidence in a probabilistic expert
system,” Satistics and Computing, 2, 37—40.

3. Jensen, F. V. (1996), An Introduction to Bayesian Networks, Springer-Verlag, NY.

4. Jensen, F. V., K. G. Olesen and S. K. Andersen (1990a), “An algebra of Bayesian belief
universes for knowledge-based systems,” Networks, 20(5), 637—659.

5. Jensen, F. V., S. L. Lauritzen and K. G. Olesen (1990b), “Bayesian updating in causal
probabilistic networks by local computation,” Computational Statistics Quarterly, 4, 269—
282.

10.

11.

12.

13.

14.

15.

A Comparison of Architectures For Exact Computation of Marginals 29

Lauritzen, S. L. and D. J. Spiegelhalter (1988), "Local computations with probabilities on
graphical structures and their application to expert systems (with discussion),” Journal of
Royal Statistical Society, Series B, 50(2), 157-224.

Lauritzen, S. L. and F. V. Jensen (1996), “Loca computation with valuations from a
commutative semigroup,” Technical Report No. R-96-2028, Ingtitute for Electronic Systems,
Department of Mathematics and Computer Science, Aalborg University, Aalborg, Denmark.

Lauritzen, S. L. and P. P. Shenoy (1996) “Computing marginals using local computation”,
Working Paper No 267, School of Business, University of Kansas, Lawrence, KS. Available
by anonymous ftp from ftp.bschool .ukans.edu/data/pub/pshenoy/wp267.ps.

Pearl, J. (1986), “Fusion, propagation and structuring in belief networks,” Artificial
Intelligence, 29, 241-288.

Shafer, G. (1996), Probabilistic Expert Systems, Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Shenoy, P. P. (1992), “Valuation-based systems: A framework for managing uncertainty in
expert systems,” in L. A. Zadeh and J. Kacprzyk (eds.), Fuzzy Logic for the Management of
Uncertainty, 83—104, John Wiley & Sons, New Y ork, NY.

Shenoy, P. P. (1997), “Binary join trees for computing marginals in the Shenoy-Shafer
architecture,” International Journal of Approximate Reasoning, in press.

Shenoy, P. P. and G. Shafer (1986), “ Propagating belief functions using local computation,”
|EEE Expert, 1(3), 43-52.

Shenoy, P. P. and G. Shafer (1990), “ Axioms for probability and belief-function
propagation,” in R. D. Shachter, T. S. Levitt, J. F. Lemmer and L. N. Kanal (eds.),
Uncertainty in Artificial Intelligence, 4, 169-198, North-Holland, Amsterdam. Reprinted in
Shafer, G. and J. Pearl, eds. (1990), Readings in Uncertain Reasoning, 575-610, Morgan
Kaufmann, San Mateo, CA.

Tarjan, R. E. and M. Y annakakis (1984), “ Simple linear time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,” SIAM
Journal of Computing, 13, 566-579.

APPENDIX. COUNTING STORAGE AND OPERATIONS

Figure A.1l. A Junction Treefor the Stud Farm Problem
a AarAap acAagAag akAag ojAa:

a (AEGI

AEHI

A Comparison of Architectures For Exact Computation of Marginals 31

Figure A.2. A Binary Join tree for the Stud Farm Problem

{A,D, F, H} {A,B,D, E}

A Comparison of Architectures For Exact Computation of Marginals 32

Figure A.3. A Junction Treefor the Genetic Reproduction Problem
agAay, Aog,

apA ac aH ay

A Comparison of Architectures For Exact Computation of Marginals 33

Figure A.4. A Binary Join Tree for the Genetic Reproduction Problem

OBd

OCd

acd@ Cd}

A Comparison of Architectures For Exact Computation of Marginals

Table A.1. Storage Requirementsfor Chest Clinic Problem with Evidence for A and D

Storage Requirements Storage Requirements
#fpn LS Hugin #fpn SS
Input Storage 36 36 At Nodeswith 1
Storage Register 42
Evidence Storage 4 4 At Nodes with 2
Storage Registers 14
Output Storage 16 16
Cligue Storage 40 40 At Separators with 1
Storage Register 10
Separator Storage 16 At Separators with 2
Storage Registers 92
TOTAL Storage 96 112 TOTAL Storage 158
LS and Hugin:

Input storage (@, s, t, |, bx,e,d):2+2+4+4+4+4+8+8=36
Evidence Storage (0,, 0Op): 4

Output Storage (8 variables with 2 each): 16

6 Cliques (2 with 2 variables, 4 with 3 variables): (2*4) + (4*8) = 40

5 Separators (2 with 1 variable, 3 with 2 variables): (2*2) + (3*4) = 16

SS:
3 Nodeswith 3 2 storage registers: (4 input potentialsat A (a, 0,), S(s), D (op) and 3 output
potentias): 14
11 Nodes with 1 storage register: (only output register T, E, X, L, B): 5*2=10
(only input register AT, SL, EX, SB, TLE, EBD): (4*4) + (2*8) =32
6 Nodes with O storage registers: 0

4 Separators with 1 register (SLB—SB =SB, LB—B =B, L—LE =L, X—EX = X): 10
15 separators with 2 registers (7 with 1 variable, 8 with 2 variables): 2*((7*2) + (8*4)) = 92

A Comparison of Architectures For Exact Computation of Marginals

Table A.2. Storage Requirements for Stud Farm Problem

35

Storage Requirements Storage Requirements
#fpn LS Hugin #fpn SS
Input Storage 70 70 At Nodeswith 1
Storage Register 72
Evidence Storage 3 3 At Nodes with 2
Storage Registers 26
Output Storage 25 25
Cligue Storage 116 116 At Separators with 1
Storage Register 36
Separator Storage 48 At Separators with 2
Storage Registers 242
TOTAL Storage 214 262 TOTAL Storage 376
LS and Hugin:

Input storage (12 potentials, 5 with 2 fpn, 6 with 8 fpn, 1 with 12 fpn): (5*2) + (6*8) + (1*12) =
70

Evidence Storage (1 potential 03): 3

Output Storage (11 variables with 2 fpn, 1 with 3fpn): 22+ 3=25

9 Clique storage (3 with 8 states, 1 with 12 states, 5 with 16 states) (3 * 8) + (1*12) + (5*16) =
24+ 12 +80=116

8 Separator storage (4 with 4 states, 4 with 8 states): (4* 4) + (4* 8) =16+ 32=48

SS:

13 Nodes with 1 storage register (only an output register): F, G, I, D, E, H. Storage=2*6 = 12
(only input register): AFL, BCE, AGK, HIJ, DFH, ABD, EGI

storage = (6*8) + (1*12) =48 + 12 =60

6 Nodes with 2 storageregisters (L, C, K, B, A, J): Storage = 2*2*5 + 2*3*1 = 26

15 Nodes with O storage registers. 0

9 Separators with 1 register (—AF = F, G—AG =G, |—HI = |, D—ADE =D, H—AH =H,

E—AEH, = E, DFH—ADFH = DFH, ABD—ABDE= ABD, EGI—AEGI = EGI): Storage =

(2*6) +(3*8) =12+24=36

24 Separators with 2 registers (6 with 1 variable, 9 with 2 variables, and 9 with 3 variables):

Storage = 2*(13 + 36 + 72) = 242

A Comparison of Architectures For Exact Computation of Marginals 36

Table A.3. Storage Requirements for Genetic Reproduction Problem

Storage Requirements Storage Requirements
#fpn LS Hugin #fpn SS
Input Storage 144 144 At Nodeswith 1
Storage Register 146
Evidence Storage 6 6 At Nodes with 2
Storage Registers 36
Output Storage 32 32
Cligue Storage 186 186 At Separators with 1
Storage Register 11
Separator Storage 57 At Separators with 2
Storage Registers 264
TOTAL Storage 368 425 TOTAL Storage 457
LS and Hugin:

Input storage (4 potentials with 3 fpn, 4 potentials with 6 fpn, 4 with 27 fpn): (4*3) + (4*6) +
(4*27)=12+24+108=144

Evidence Storage (3 potentials with 2 fpn): 6

Output Storage (4 variableswith 2 fpn, 8 variables with 3 fpn): 8 + 24 = 32

10 Cligue storage (4 with 6 states, 6 with 27 states) (4 * 6) + (6 *27) = 24 + 162 = 186

9 Separator storage (4 with 3 states, 5with 9 states): (4* 3) + (5* 9) =12+ 45=57

SS:

13 Nodes with 1 storage register (1 node with 2 fpn, 4 nodes with 3 fpn, 4 nodes with 6 fpn, 4
with 27 fpn): (1*2) + (4*3) + (4*6) + (4*27) =2+ 12+ 24 + 108 = 146

7 Nodes with 2 storage registers (3 with 2 fpn, 4 with 3 fpn): 2*((3*2) + (4*3))= 36

8 Nodes with O storage registers: 0

4 Separators with 1 register (1 with 2 fpn, 3with 3fpn): (1*2) + (3*3) =2+9=11

23 Separators with 2 registers (3 with 2 fpn, 9 with 3 fpn, and 11 with 9 fpn): 2*((3*2) + (9*3) +
(11*9)) = 2*(6 + 27 + 99) = 2* 132 = 264

A Comparison of Architectures For Exact Computation of Marginals 37

Table A.4. Computational Detailsin the LS Architecture for the Chest Clinic Problem Using the
Junction Treein Figure 5 with No Evidence

Computation # binary arithmetic operations
At node Details + ’
At the beginning:
{A, T} c, = aAt 4
{S, L, B} c,=sAl Ab 16
Inward propagation (root nodeis{A, T}): B
{E, X} cgb=cg/Cg B 2 4
{E, D, B} csb=cg/cg (0B 4 8
{S,L, B} cyb=cylc, B 4 8
{L,E, B} cat=[c, ~BAcs 5B/ 4 8 8
{T,L, E} c, b= [cA[c, (B Acy (BB (LB 6 16 8
AC6 {E}]/[CZA[C4_{L’ ?}ACS {E, B}] {L.E}
Ac6_{E}] {1} . .
(A, T} c 6= c A[c,A[c, W BAc (BB (LB 4
AC@ {E}]] {1} - 01@
Outward propagation: -
{A, T} cel?) 2
L, Cc,8=c,0c , C e
{T.L,E} 8= cc, ¢V et e l® 10 8
{L, E, B} 03@: C3QAC2¢I:{L'E}, C3¢E{L’ B}, C3¢I:{E’ B} 8 8
{S,L, B} C4®=cythice (- ® 8
{E, D, B} Cs=csAcy® EE’ B) 8
{E1 X} CGGI:: CGQAC2¢I:{E} 4
Computing marginals of singletons:
{A, T} c,® Al (margina for A) 2
v Ly c marginal for
{S,L, B} 4@ {5 (marginal for 9) 6
{A, T} c,@ m (marginal for T) 2
{T,L, E} cztﬂ:{L} (marginal for L) 6
, E, c marginal for
{L, E, B} 5@ (B (marginal for B) 6
{E, X} c6¢1:{E} (marginal for E) 2
{E, B, D} 05¢I:{D} (marginal for D) 6
{E, X} csm:{X} (marginal for X) 2
TOTALS 72 84 36

A Comparison of Architectures For Exact Computation of Marginals 38

Table A.5. Computational Detailsin the LS Architecture for the Chest Clinic Problem Using the
Junction Treein Figure 5 with Evidencefor A=a, D =d

Computation # binary arithmetic operations

At node Details + ’

At the beginning:

{A, T} c,=aA0 At 8
{S, L, B} c,=sAl Ab 16
{E, D, B} cs=dAop 8
Inward propagation (root nodeis{A, T}):

{E, X} cgb=cg/Cg B 2 4
{E, D, B} csb=cg/cg (0B 4 8
{S,L, B} cyb=cylc, B 4 8
{L, E, B} cqt=[c, (VB Ac. (EBYy 4 8 8

3 4 5
T,L, E} c,¢=[c,A[c, WBlAc, (BB (LB 6 16 8
{ 2 2A1Cy 5
AC6 {E}]/[CZA[C4 {L, B}ACS {E, B}] {L.E}
AC6_{E}]_{T}
(A, T} c,6=c,A[c A[[c, (WBAc, (BB (LB 4
AC@ {E}]] {1} - 01@
Outward propagation: -
(A, T} cel?) 2
{T,L, E} c,@=c,tc, ¢ c,a "B c,al® 10 8
2 20AC, 2™ rad
{L, E, B} 03@: C3QAC2¢I:{L'E}, C3¢E{L’ B}, C3¢I:{E’ B} 8 8
{S,L, B} C4®=cythice (- ® 8
{E, D, B} Cs®=csAcy® EE’ B) 8
{E1 X} CGGI:: CGQAC2¢I:{E} 4
Computing marginals of singletons:

{A, T} c,® A (marginal for A) 2

{S, L, B} c, i (marginal for S) 6
4

{A, T} c,@ {m (marginal for T) 2

{T,L, E} c,a t (marginal for L) 6
2

{L,E, B} c,at (B (marginal for B) 6
3

{E, X} c6¢1:{E} (marginal for E) 2

{E, B, D} ce@t D (marginal for D) 6
5
{E, X} csm:{X} (marginal for X) 2
TOTALS 72 96 36

A Comparison of Architectures For Exact Computation of Marginals 39

Table A.6. Computational Detailsin the LS Architecture for the Chest Clinic Problem Using the
Junction Tree in Figure 5 with the Evidence for A, D, S, and X

Computation # binary arithmetic operations

At node Details + ’

At the beginning:

{A, T} c,=aA0 At 8
{S L, B} c,=SAl AbAog 24
{E, D, B} cs=dAop 8

{E, X} Cg = XA 0y 4

Inward propagation (root nodeis{A, T}):

{E, X} Ceb=Cg/Cq 2 2 4
{E, D, B} cst=cg/cg (B 4 8
{S L, B} cyb=cylc, (BB 4 8
{L,E, B} cat=[c, VB Acs (EBYy 4 8 8

[c4_{L' B}Ac5_{E’ B}]_{L, B
{T.LE} c 6= [c Alc, (BAcy (58 48 6 16 8
AC6_{E}] / [CZA [C4_{L’ B}ACS_{ E, B}]_{L- E}
AC6_{E}]_{T}
AT} cie=ciAc,Allc, PAcy B8 8 4
AC6_{E}]]_{T} - 01@
Outward propagation:

(A, T} c, @M 2
{T,L,E} c,@=c,tic, @ c,et "B c,al? 10 8
{L,E, B} calt=cotic,@ V5 cae (B c e (BB 8 8
{S L, B} c, 8= c i (B 8
{E, D, B} cslh= cstic e (E B 8

{E, X} celt= cqthc, e (B 4

Computing marginals of singletons:

{A, T} clm:_{A} (margina for A) 2
{S, L, B} c 4¢1:_ s (marginal for S) 6

{A, T} cltﬂ:_m (marginal for T) 2
{T,L, E} cztﬂ:_{L} (marginal for L) 6
{L,E, B} c3¢1:_{ B) (marginal for B) 6

{E, X} c6¢1:_{E} (marginal for E) 2
{E, B, D} 05¢I:_{D} (marginal for D) 6

{E, X} csm:_{X} (marginal for X) 2

TOTALS 72 108 36

A Comparison of Architectures For Exact Computation of Marginals

40

Table A.7. Computational Detailsin the Hugin Architecture for the Chest Clinic Problem in the

Junction Tree in Figure 5 with Evidencefor A and D

Computation # binary arithmetic operations
At Node/Edge Details + ’
At the beginning:
{A, T} cy=aAo At 8
{S, L, B} c,=sAl Ab 16
{E, D, B} cs;=dAop 8
Inward propagation (root nodeis{A, T}):
{E, X} cg & 2
{E, B, D} cs (B8 4
{S,L, B} c, &8 4
{L,E, B} cat=[cy (B ACs (BB e HB 4 8
{T,L,E} c, 0= coAcyt M BAcy 1B e e 6 16
(A, T} cit=c A ¢ {7 =c,@ 4
Outward propagation: -
{A, T} c,& {T}i(margi nql for T) 2
AT-TLE c,® 7 /cyet?) 2
L, c,8=c,®[c C , C
{T,L,E} 8= @i [c 8 1T /e, e 1], e B 10 8
(margigal for E),QZM:{L’E}
TLE-LEB c,at -8 /ce B 4
, E, Ca8=c3® [C e "1, ¢ el
{LLE.B} cat=cyhi[c,at " /eyt cuwt® 8 8
LEB-SLB ! t® e, W8 4
{S,L, B} Ca=cyth[co -/, (B 8
LEB-EBD ot BB (BB 4
{E, D, B} Cs®= C5M[93®{E’Ei}/c5 {E.Bh 8
TLE-EX 8 {8 /¢y 1B 2
{E, X} Celt= cgti[Co® (B /ey B 4
Computing marginals of singletons:
{A, T} c,® Al (margina for A) 2
TLE-LEB [c,a 5B 2 (marginal for L) 2
LEB-SLB [ttt B (B (marginal for B) 2
{S, L, B} c4¢1:{5} (marginal for S) 6
{E, B, D} (:5¢1:{D} (marginal for D) 6
{E, X} Cel® X} (marginal for X) 2
TOTALS 60 96 16

A Comparison of Architectures For Exact Computation of Marginals 41

Table A.8. Computational Details in the SS Architecture for the Chest Clinic Problem using the
Binary Join Tree in Figure 16 with Evidence for A and D

Computation # binary arithmetic operations
At Node Detals + ’
Propagation of Messages
{A} aho,=nf®AT 2

(AT} AT _ (mA®ATAt)_{T} — @ TE 5 4

{S L} m® 3B =g Al 4
{S L, B} SLBOLB _ (mSL® SLBAb) {L.B} _ (| BOLEB 4 3
{E,B D} mEBD®EB:(ODAd) {E.B} _ FB®LEB 4 3

{E, X} nE®E_, E_ FOTE 5
{L,E B} -EBOLE_ (n,FB® LEBS }-B® LEB)_{L,E} _ 4 3

q-ERTLE
{T.L,E} mTLE® TE _ (eA =c) TLE)_{T, E 4 3
(T.E} mTERE _ (mT® TEX pTLE® THE- mE® EX 5 4
qTER T = (mE® TEX pTLE® TE)_T = mT®AT 5 4
qTERTLE _ T TE; O TE 4

{A, T} nf ™A= (M ATAL) A 2 4
{T.L,E} qTLE® LE = (mTE®TLEAe) {L,_E} — L EOLEB 4 3

{L,E} mEL = (m O LER rrfE 5 & (marg. for L) 2 4

{E, X} @ X = (m™® EAx) * (marg. for X) 2 4
{L,E B} -EBREB _ (”+E® LEB | }-B® LEB]_{E, B} 8 16

LEBOLB _ (n,{_E@ LEB [B® LEB)_{ L, B}

{L,B} nB®B= (P BOLBANEROLE) B (marg forB) | 2 4
{E, B, D} mo0® P = (PO EBPA) P 6 8
Computation of Marginals:

{A} n T A4 (ah0,p) 2
{s} sAn®S 2
(M AP TOTA TER T >
(5} TE®EL TERE >
{D} m-2% PA o, 2
TOTALS 56 124

A Comparison of Architectures For Exact Computation of Marginals 42

Table A.9. Computational Details in the SS Architecture for the Chest Clinic Problem Using the
Junction Tree in Figure 5 with Evidencefor A and D

Computation _ # binary arithmeti C operations
goﬁ%jgiiﬂgg Messages. Demls .

(A, T) T TE = (@AtAo,) | 2 8
{S,L, B} m-BOLEB = (s A| Ap) (LB 4 16
{E,D, B} nFEPPLEB = (dAop) (BB 4 8
{E, X} nPeTE=; E 2
{L.E, B) HEBOTLE_ (([FBODLEB, |/ SLBO LER (L, B 4 3
(T.L,E} ILEP LEB _ (o nffTO TLER] EBD TLE (L. 6} 4 16

TLER AT (o b EBD TLER nFXO TLE, T 5 16
TLED BX _ (o B8R TLES p ATO TLE (8} 5 16
{L,E, B} HEBPEBD _ TLEBLEB, | SLBO LER"(E,B) 4 3
HEBOLB _ (- ED LEB, [FBO® LEB (L, B) 4 3
Computation of Marginals:

{A, T} (ME®ATA c,) A (marg. for A) 2 4
{S,L, B} (mtEB®SBA ¢) S (marg. for 9) 6 8
AT—TLE m AT A AT T (marg. for T) 2
TLE—LEB (m'-EO LEBA (HEBRTLE) L (g, for L) 2 4
LEB—SLB (m-BO LEBR nd BB SLBY B (v, for B) 2 4
TLE—EX m 52 E A nP®E (marg. for E) 2
{E, D, B} (mF2® E8B4) P (marg. for D) 8
{E, X} (M EPEX A X (marg. for X) 4

TOTALS 60 140

A Comparison of Architectures For Exact Computation of Marginals

43

Table A.10. Computational Detailsin the Hugin Architecture for the Chest Clinic Problem using

the Binary Join Tree in Figure 16 with Evidence for A and D

Computation # binary arithmetic operations
At Node/Edge Details + ’
At the beginning:
{A} c,=aho, 2
Inward propagation (with root node { A}):
{E, X} Co=X=Cof Cyt 1B 2
{E, D, B} Ca=d, Cal= cahop, Ca¢ (BB 4 8
{S, L} cs=1,cyt=cyAs 4
{S L, B} csb=c, 0ib, cg¢HB 4 8
{L,E, B} cgl= cot (BB AC e (B c ¢ HB 4 8
{T,L,E} c,=e, , cs0= cAcgtth®, c e (T 4 8
{T,E} cgl=c,¢ BAC,¢{TE ceet™ 2 4
{A, T} Co=t, Cob=cohcgt T, cot W 2 4
{A} cq.¢= clAcgtt_{A} = c,®@(marginal for A) 2
Outward propagation:
A—AT c, @ cot A
{A, T} Co= ot [C, @ cot], coit T 2 4
AT—T co® {7/ cge P
{T} c1a@=cgt MA[co (M cge (T 2
(marginal for T)
T—TE C13 cgt {7
{T,E} Calh= Cglh[C1a®/ cg¢ ™, cott (B 2 4
TE—E ce® B/ c,¢ B
{E} Ca®=c,¢ B Acg (B / c e (B 2
(marginal for E)
E—EX C1408/ ¢ 1B
{E, X} C,8= C,0A [c 4,0/ ¢t (B, 2 4
czfﬂ:_ X (margina for X)
TE—TLE e c,¢{TE
{T,L, E} c,®=c, B[cg® c,¢ "B, ¢, {WB 4 8
TLE—LE c, @t/ cetB
(L, E cis@=ct U BA[c,a 5B/ e tHBY, 2 4
c 15@_ {t (marginal for L)
LE—LEB 5/ cgt M B

A Comparison of Architectures For Exact Computation of Marginals

(LEB} coB=ceflo® ce!=F e | 8 8
6 6 15 6 6
cos &%
LEB—LB cet (5B oo (b B A
Cig® {8} (marginal for B)
LB—SLB C 160/ c5¢{L' B} 4
{SL,B} cs®=cscig® cst' =], coar{SH, 8 8
5 5 16 5 5
csts (59
(s} ca®=cuthos® 5/ g, c @ 15 > 4
SL—s c,& % /s ,
{S} Cp®=sA[C4‘31?{5}/3] (marg. for S) 2
LEB—EB el {E,B}, cqt {E, B} 4
{E, B} C1o®=c5¢ {F B}A[Ce@{E’ B}/ ¢y (BB 4
EB—EDB C 108t/ co¢ (BB .
{E, D, B} Ca= 03@\[010015/ C3¢{E' B}], C3®{D} 5 8
EDB—D c3¢:|:{D} /o)
{D} c,7®= opA[c @ (P / o] (marg. for D) 2
TOTALS 60 116 46

A Comparison of Architectures For Exact Computation of Marginals

45

Table A.11. Computational Detailsin the LS Architecture for the Stud Farm Problem Using the

Junction Treein Figure A.1.

Computation # binary arithmetic operations
At node Details + ’
At the beginning:
{A,F L} c,=aAagAa, 16
{B, C, E} cs=acAaghag 16
{A, G, K} cg=akAag 8
{H,I,J Co=0jAQ, 12
Inward propagation (root nodeis{A, F, L}):
{H, 1,3 Col=Cg/Cy M1 8 12
{A, G, K} cgt=cglcg 4 8
{B,C, E} Cst=Cs/C5 (5 4 8
{A,E G, I} c,¢=[a,Acg Ny 8 16 16
{AE H, 1} cgt=[[a,Acg N AED A, RNy 8 16 16
{A, B, D,E} cs=[apA cs BB/ 8 16 16
{A,DEH} cat[[ajAcg MO EDAG, (NI IAEM] g 16 16
A [apA cg (BB (ADEy
[aDA Cs {B,E}] {é,D,E] {_A,D,H}
{ADFH} co&[ayA [[[ajAcg MO MWEDA 12 16 16
C_g {H,I}] {AEH} A [aDA C5_ {B, E}]_ {A, D, E]
A0 1TayA [[la Acg VS TAED
{Av Dr H}] {ArF}
{A,F,L} cy0=c,;AlayA[l[a,Acg MO AEDA 8 -
Cg {H,I}] {A’E,T}A [aDA C5 {B, E}] {A, D, E]
{A,D,H} _ c @
Outward propagation:
{A,F, L} c a AP 4
{A,D,FH} c, &= c,tc, e M c g tADH 8 16

A Comparison of Architectures For Exact Computation of Marginals

46

{A, D,E,H} Cqlt= cotiic,@ (A0 g ADE 16 16
CS@_{A,E, H}
{A, B, D,E} c,@=c thc e AP E ¢ (BB 12 16
{B,C, E} Ccs= cxh cyar (AEH 8
{A E,H, I} colt= cgtiic, it (B coar (A ET 20 16
ce {H 1

{AE, G, 1} c,@=c, 0 coe (MBI cgp 1AC 12 16
{A, G, K} o= cgth ¢, (MG 8

{H 1,3 Colt= coth coat M 12
Computing marginals of singletons:

{A,F L} c,¢ Y (marginal for L) 6

{A,F L} c, @ "N (margina for A) 6

{A,F L} c,® {7 (marginal for F) 6

{A, D, F, cza't_{D} (margina for D) 12

H}

{H, 1,3 co® M (marginal for H) 10

{H, 1,3 ot " (marginal for I) 10

{H, 1, J} cgcn_{J} (marginal for J) 9

{B, C, E} 05¢1:_{ B) (marginal for B) 6

{B, C, E} CS¢|:_{C} (marginal for C) 6

{B, C, E} 05¢I:_{E} (marginal for E) 6

{A, G, K} 0801:_{6} (marginal for G) 6

{A, G, K} cstﬂ:_{K} (margina for K) 6

TOTALS 221 248 108

A Comparison of Architectures For Exact Computation of Marginals

47

Table A.12. Computational Detailsin the Hugin Architecture for the Stud Farm Problem Using

the Junction Treein Figure A.1.

Computation # binary arithmetic operations
At node Details + .
At the beginning:
{A F L} cl=aLAaFAaA 16
{B,C, E} C5:acAaEAaB 16
{H.1.3 co = 0a, 12
Inward propagation (root nodeis{A, F, L}):
{H, 1, J} Co {H,1} 8
{A, G K} ¢, MG A
{A,E G, 1} c,t=a,Acg {Ac c ¢ {AE I} 8 16
’ ’ y C =la A C ! » = A C ,
{AE,H, 1} 6¢[|A8{AG}]{AEI}A9{HI} 8 16
“{AEH
C6¢_{ } i
» By U, cut=apA cs ', C e
{A, B,D,E} A= apA 5{BE} 4¢{ADE} 16
’ ’] C C T A C . L ,C . » Ly
{A,D,E NS 6¢{AEH}A 40 {A,D,E} 5¢ {A,D, H} 16
H}
’ y Iy C a A C 3 T C r '
{A.D,F 2 ayA cye AP e AP 12 16
H}
y Ty C =C A C ~ {A, =c
{A, F L} 8=c A 2¢{AF} L 3
Outward propagation: i}
{A,F, L} c, oA 4
AFL-ADFH c @t AP e tAP
I LR} C =C A\ C 3 ! C b ! ,
{ADFH} Z(I[; ZQA[l@{A F}/ 2¢{A F}] 8 16
~{A,D,H
- CZ@{ _}
ADFH—ADEH c,@ AP o g (ADH
{A, D,EH} C4lh= co0A [, 0 A D o ¢ (ADH 16 16
3 3 2 3
C3¢];_{A,D,E}, qutE{A,E, H}
ADEH- caetADE g, elADE
ABDE
4 4 3 4
c, @88
ABDE—BCE c, B EE/ cee (B EE
{B, C, E} cs@=c:0A [c @{B,E}/Cq:{A,D,E}] 8
5 5 4 5

A Comparison of Architectures For Exact Computation of Marginals

48

ADEH-AEHI ca@t AP B g g AEH
{AE H, 1} celt=cglh [ca@t DB cge MEHY, 20 16
CG@{A, E,I}’ CG@_{H, 1}
AEHI—AEGI cow (AE g (AR
{AE, G, 1} c, = c, 0 [ceat A EY) g e AEN, 12 16
@ (A

AEGI—AGK c, @ AG) cge 1A
{A, G, K} Cl= cgth [, A/ cge (ACh 8
AEHI—HIJ cett M1/ ce (1

{H 1,3 Colt= Colh [cett 11/ coe (M1 12
Computing marginals of singletons:

{A,F L} c,¢ Y (marginal for L) 6
AFL—ADFH (c1¢E A F})_{A} (margina for A) 2
AFL—ADFH (clozt_{A' F})_{F} (marginal for F) 2
ABDE—BCE (c 4¢I:_ {B E})_{E} (marginal for E) 2
ABDE—BCE (c 4<1¢_ {8 E})_{B} (marginal for B) 2
AEGI—AGK (c7¢l;_ A G})_{G} (margind for G) 2
AEHI—HIJ (c,a Ny M (marginal for H) 2
AEHI—HIJ (¢, (' 1 (marginal for 1) 2

{H, 1, J} cgcn_{J} (marginal for J) 9

{B, C, E} CS¢|:_{C} (marginal for C) 6
{A, G, K} cstﬂ:_{K} (margina for K) 6
ADFH—ADEH (c2¢]:_ {AD, H})_{D} (margina for D) 6

TOTALS 179 248

A Comparison of Architectures For Exact Computation of Marginals 49

Table A.13. Computational Detailsin the SS Architecture for the Stud Farm Problem Using the

Binary Join Treein Figure A.2.

Computation # binary arithmetic
operations
At node Details + 2
Propagation of Messages:
{H,1,% n1®PH = (o Aa,) 1) = pfile AR s 1o
{A, G, K} MOKOAGS (3 Kay) MG = pftOPAEG 4 g
(AE, G, 1} nPECI®AEI _ (o K nAGRAEGH (A, E.1}_ L AEI® AEHI 8 16
B, G, = (a, =
{A,E H, I} {AEHI® AEHL _ 8 16
EI® AEHI z . HI® AEH\ {A, E, H} _ ~AEHI® AEH2
(nf* Anf!) —
{B,C, E} nPCEPBE= a Aap) (BF 4 8
(B, E} PERABDE _ 5 K nfCE® BE 4
{A,B,DE} nftBDEPADE. 3 & PE®ABDE) (A.D.E} _ ,ADE®ADEH | g 16
FL® AF _ - _{AY F} _ F® ADFH
{A,F, L} nf* = (a,Aap) - nf 4 8
{A,D,F,H} nf{OFHOADH_ (o A nfiFO ADFH)"{A, D, H} 8 16
{A,D,E, ADEH® AEH, _ 8 16
H} (nﬁDH® ADEHR - \DE® ADEH)_{A, E H},
{AEH); f S8 AH_ s 8
(nf\DEHO AEH, § ABH,® AEHNT{A, H}
{A, H} nPHRA = (pf\EHZD AR T(A) 2
O AR - o
(A} a Anf™® A (marginal for A) 2
{A, E, H}, {EH,® ADEH_ AH® AEH, 5 | AEH® AEH,) 16)
{EH,® AEH, _ AH® AEH,; ADEH® AEH,
— pfEH,® AEHI
(A,D,E fADEH® ADH _ (ABH,® ADEH | ADE® ADEH\HA.D.H} _ | 15 39]
H} [r{:DH® ADFH,
DEH® ADE _ /. AEH,® ADEH; .~ ADH® ADEHy {A, D, E} _
ul = (nf=% Anf) -
{°DE® ABDE
{A,D,F, nOFHOAF = (3 A pfiDHO ADFH (A, F} 12 16]
H} - (\FRAFL
(A F, L} nfFeL = (@A nftFO AR U 5
{L} a Anf™ @ (marginal for L)

A Comparison of Architectures For Exact Computation of Marginals

50

{A, B, D, r,r‘ABDE®BE:(aDArﬁO\DE®ABDE)_{B, E} 12 16
E}
(B, E} mBE®BCE:aBAmABDE®BE' > 3
BE®B _ (agh {\BDE® BE)_{B}
{B} P BA ag (margina for B)
{B,C, E} nPCE C = (nPE® BCEA g) (G 6
{c} acA nPCE® € (marginal for C)
{A, E, H, |} nf\EHI®AEI — (n{-||® AEHIA rﬁD\EH1® AEHI)_{A, E, 1} 20 32
— mAEI® AEGI
n,f\EHI® HI — (rﬁAEI® AEHIA r,r‘O\EH1® AEHI)_{H, 1}
— ITT”® HIJ
{A, E, G, |} rrfO\EGI® AG: (a|A rr16\EI® AEGI)_{A,G} - mAG® AGK 12 16
{K} aA nf* K (marginal f9r K)
{H, 1,3 m"® = (1 HA) O 9 12
{3} m"® A 0, (marginal for J) 3
Computing marginals of singletons: j
(A, P (nf*PEATA RO AR 1 (marginal for F) 2 4
{A,D, E} (f*PEHO APEA nfABDES ADE) 1B} marginal for D) 6 8
{A, G} (nf*FCCACA nf EAC) 1S (marginal for G) 2 4
{H, 1} (nf SR KOy 1 (marginal for 1) 2 4
{A,E, H}, (nfENCATLA B © A8) {8 (marginal for E) 6 8
{A, H} (=AM K a) Y (marginal for H) 2 4
TOTALS 187 345

A Comparison of Architectures For Exact Computation of Marginals

51

Table A.14. Computational Detailsin the LS Architecture for the Genetic Reproduction Problem

Using the Junction Treein Figure A.3.

Computation # binary arithmetic operations
At node Details + ’
At the beginning:
, E, c,=aphAa
{D, E, G} 1 s 27
{A, A cs=anhan Ao, 12
{B,Bg c5=agAag Aog, 12
{C, Cg Cqio = acAac Aoc 12
Inward propagation (root nodels{D E, G}) <
) Cs0=cCy/C
(A A s8=cqlc, W 3 6
) CcC=cCg/C
{B,B 5¢=c5/cs 3 6
) Cgl=cCgq/C
{H, H gt=cg/cg M 3 6
{C,Cg C10¢=Cy9/Cqp < 3 6
{A, B, E} cat=[agA c, WA ¢ B/ 18 54 27
[ach c; WA cg (9] (88
{B,C,F} cot=[agA clo_{C}]/[aFA clo_{C}] _{B'F} 18 27 27
, G, c,t=[apAa agA a '
{F.G,H} cst=[ayha,, M/[ajA a, M 7O 18 27 27
" o lln A o e
{B, F, G} s¢=l[apA c;o (9 BPA 18 27 27
[anA a M 59
[[apA ¢ 7] DA
[aHA aHd {H}] _{F,G}_] {B, G}
{B, E, G} c, t=[[[aghcyy (] 1B PA 18 27 27
[aHAaHd {H}] {Fi G}] _{B’ A [agAcy WA
Cs {B}] {B, E}]/
' - C - , '
[lfarA ¢ 9] *PA
[apA ayy {H}l {F'_G}] {B'_G}A[aEA
c, Whc, (B (BEES
{D, E, G} c 8=c, A [[[agA ¢y (& BPA 27
[ayA ay {H}] {F G}] {B.G} [agh
{A}A ce B (BB EG_¢ ¢
Outward propagation:
{D,E, G} c, {5 18
{B,E,G} c,@t=c,tic,®F% c, BB c,q¢l®G 36 27
{A, B, E} o= catA c, @ 1B F) e B ce 48 27

A Comparison of Architectures For Exact Computation of Marginals

52

{A, Ad} C4¢|:= C4QAC3¢D_{A}
{B,Bg o= ot B
B,F,G} cglt=cgthc,®®® cal®P c.wlhC 36 27
{ 6®=CglAC; 6 6
F, G, H} c,@=c,thceat (7 ca 18 27
{ 7 7" Cp 7
{H, Hg Cgt= cgthc g tH 6
B, C, F} Cott= cothc it (B P c a (G 18 27
{ o®=CoWCq 9
{C, Cd} Clo(n:: 01005\09@_{0} 6
Computing marginals of singletons:
{D, E, G} cl¢{D} (marginal for D) 24
{D, E, G} c,¢ {8 (marginal for E) 24
{D, E, G} c,¢ {c (marginal for G) 24
{B, F, G} Ce® " (marginal for F) 24
{A, A4 c,® A (marginal for A) 3
{A, A4 c4¢1:{Ad} (marginal for Ay 4
{B, Bg c5¢I:{B} (marginal for B) 3
{B, Bg c5¢£{Bd} (marginal for By) 4
{C, Cg Co® {c (marginal for C) 3
{C, Cg Co® {Ca} (marginal for Cy) 4
{H, H} cg® {H} (marginal for H) 3
{H, H} 08@{Hd} (marginal for Hy) 4
TOTALS 400 411 159

A Comparison of Architectures For Exact Computation of Marginals 53

Table A.15. Computationa Details in the Hugin Architecture for the Genetic Reproduction
Problem Using the Junction Treein Figure A.3.

Computation # binary arithmetic operations
At node Details + ’
At the beginning:
{D, E, G} c,=aphag 27
{A A cy,=a,Aa, Ao 12
4=apAap A0p,
{B,B cc = agAag Ao 12
5= dgAdg AOp,
{C,C Cip=acAac Ao 12
_ 10 = 8cAdc AOc,
Inward propagation (root nodeis{D, E, G}):
(A Ag c, W 3
{B, Bg cs 1B 3
{C,Cg cyp ¢ 3
{H, Hg cg 3
{A, B, E} C3¢: aEA C4 {A}A C5 {B}, C3¢{B’ B} 18 54
{B, C, F} Cob=apA cyy 19, cot (B P 18 27
{F, G, H} ct=ayA ay M c e 18 27
7 HA ah, 7
{B,F,G} cet=[aphcy 91 BPA [ajha, P17 18 27
G oo 180
{B, E, G} C, 0= 3¢ B B Ac,e B G ¢ 0BG 18 27
D, E, G} citciA ¢ BT =c e 27
{ 1 1 2 1
Outward propagation: -
{D, E, G} c, {5 18
DEG—BEG c, @ EC /¢ eEG 9
{B,E, G} ¢, &= c,d [c,a{FF /e iFCY, 36 27
2 2 1)
cztﬂ:{B’ E}, CZ@{B’ ¢
BEG—ABE c,@ B8/ ce (BB
BEG—BFG c,@ B /e B G
{A, B, E} Calh= coth [, 0 (BB /e 1B B, 48 27
(o {B}(marg. for B), c3® {A}(marg. for A)
ABE—AA, ot M/ cye
ABE—BB, co@ B e
{A,Ag C,8=c,0A [c3¢t_{A}/ 4,4
{B, Bd} Cs@: C5(D5\ [C3¢B{B}/ qu

A Comparison of Architectures For Exact Computation of Marginals

{B,F, G} celh= cg®[c @t (B S /e B O, 36 27
ce 8P c.ah S
BFG—FGH cett (F &/ c e th O 9
{F, G, H} c, &= c,¢A[cett (7 c e (RO, 24 27
c7¢1:_{H} (marg. for H)
FGH—HH c,a M/ cge i 3
{H, Hg cg= cgti [, @ T/ cge 6
BFG—BCF co (F G/ coe (B P 9
{B,C, F} Co= ot [cg@t (T gt 1B 7, 24 27
cgtﬂ:_{C} (marg. for C)
BCF—CC,4 co® (D c)petS 3
{C,Cg C1o®= Cqp®[cg®t (P cppt 1 6
Computing marginals of singletons:
{D, E, G} cld:_{D} (marginal for D) 24
DEG—BEG [c,¢ B & (marginal for E) 6
DEG—BEG [c,¢ B & (margina for G) 6
BFG—BCF [ce® B F} (marginal for F) 6
{A A4 c4¢£— {Adk (marginal for Ay 4
{B, Bg c5¢1:_{Bd} (marginal for By) 4
{C, Cg cloal:_ {Ca} (marginal for Cy) 4
{H, H} 08¢1:_{Hd} (marginal for Hy) 4
TOTALS 346 411 57

A Comparison of Architectures For Exact Computation of Marginals

55

Table A.16. Computational Detailsin the SS Architecture for the Genetic Reproduction Problem

Using the Binary Join Treein Figure A 4.

Computation # binary arithmetic
operations
At node Details + .
Propagation of Messages:
{c.cj %4 C = (o Aac) @ 3 6
Q) LO®BCF_ CC@C ac 3
(B, C, F} ECFOBF = (5 A 0P BOR) (B, P} _ O BFG 18 97
{H, Hd} n‘r'Hd®H = ay 7{H}:mH®FGH 3
{F, G, H} nFeHOFCS (o A nﬁ@S‘FGH)*{ F.G}_ ,fG® BFG 18 97
(B, F, G} nPFOPBG _ ((BFOBFGK (FGRBFG) (B.G} _ 1 BGRBEG | 15 o7
{D, E, G} nPESPEC - (4 A q) (EC = OGP BEG 18 27
(B, E, G} PEGPBE, _ (PGB BEC | FGR BEG) (B. B} 18 27
{B. Bg mPed®E = <oBdAaBg)_{B} 3 6
{B} mB®BE1:aBArrP «®B 3
(A AJ T4 = (0,) S
{A} f®ABE_ aAAmA?ld®A 3
{A.B.B} nf' P BEL = (A nf' @455 (58 18 27
(B, E}, PE®BE, _ B®BE i ABE®BE, _ BE,®BEG 9
(BB, PR (PR REO O D (mag forE) | 6 9
{B,E,G} nPEG®BG_ (;PE®BEG (FGPBEG) (B.G} _ (BGOBFG | o5 gy
PECPEG_ ((BE2® BEG | BGO BEG) (E.C} _ |/ FGR DEG
(0.E0) PP (@ A nF OO (O % 2
{D} apA nP**®P (marg. for D) 3
{B, F, G} nPFO® BF _ (1P BFGK o BGRBFG) (BF} _ | BFOBCG | 35 5y
nPFGR Fe_ (BFOBFGL BGRBFG) {F. G} _ GO FGH
{B,C,F} mPCROC = (a A nPF® BCH {3 oa 27
{c} 9 CCa = POFOCH o
{C,C4 mOC® Ca= ac, Ant® CCay {Ca} 4
{Cd oc,A m-Cd® Ca (marg. for Cg)
{F. G H} MM = (@, A nf OO) 110 = iy 24 27
{H. Hy} UM Hd:(aHdA n'® ey (e (marg. for Hy) 6
{B, E}, mPE® B = (PE.® BE 4 pfABED BE) (B} 6 18

BEI® ABE _ BE,®BE, ; . B® BE,

56

A Comparison of Architectures For Exact Computation of Marginals
(8} PP %% = PSP B,
{B, Bg PP Bz (a g AnP® BB (B 4
{Bg og A mP24® Bd (marg. for B)
{A, B, E} nf*BEP A= (g A nPEOABE (A 24 27
(A} @AA _ ABEDA % a
{A Ag fA® A= (aAdA m® AAd)_{Ad} 4
{Ag op, A mMA® Ad (marg. for A)
Computing marginals of singletons:
{c mCC® CA (a A mPBCF® C) = pfC4® C4 p°® CCs 3
(marg. for C)
{H} @ HA nCH® H (marg. for H) 3
(B} BB® BA(aBA PE® By = (PB® B 1 ® BB 3
(marg. for B)
{A} A A (a A BEPA) = AP AR of® A 3
(marg. for A)
(B, F} (mPFE® BFA nPCFO BRY R (marg. for F) 6 9
{E, G} (mPES® ECA nPECP EG) G (marg. for G) 6 9
{B, E}, (mPEC® BB A nPEOBE) (B (marg. for E) 6 9
TOTALS 334 522

SELECTED WORKING PAPERS

Unpublished working papers are avail able via anonymous ftp from
Host: ftp://ftp.bschool.ukans.edu
User ID: (leave blank)

Password: (leave blank)
Directory: /data/pub/pshenoy/
File: wpxxx.ps (put appropriate Working Paper # in place of xxx)

No. 184. “Propagating Belief Functions with Local Computations,” Prakash P. Shenoy and Glenn
Shafer, February 1986. Appeared in | EEE Expert, 1(3), 1986, 43-52.

No. 190. “Propagating Belief Functionsin Qualitative Markov Trees,” Glenn Shafer, Prakash P.
Shenoy, and Khaled Mdllouli, June 1987. Appeared in International Journal of Approximate
Reasoning, 1(4), 1987, 349-400.

No. 197. “AUDITOR' SASSISTANT: A Knowledge Engineering Tool for Audit Decisions,”
Glenn Shafer, Prakash P. Shenoy, and Rajendra Srivastava, April 1988. Appeared in Auditing
Symposium I X: Proceedings of 1988 Touche Ors/University of Kansas Symposium on
Auditing Problems, 61-84, School of Business, University of Kansas, Lawrence, KS.

No. 200. “Probability Propagation,” Glenn Shafer and Prakash P. Shenoy, August 1988.
Appeared in Annals of Mathematics and Artificial Intelligence, 2(1-4), 1990, 327-352.

No. 203. “A Valuation-Based Language for Expert Systems,” Prakash P. Shenoy, August 1988.
Appeared in International Journal of Approximate Reasoning, 3(5), 1989, 383-411.

No. 209. “Axioms for Probability and Belief-Function Propagation,” Prakash P. Shenoy and
Glenn Shafer, November 1988. Appeared in Shachter, R. D., M. Henrion, L. N. Kanal, and
J. F. Lemmer (eds.), Uncertainty in Artificial Intelligence, 4, 1990, 169-198. Reprinted in
Shafer, G. and J. Pearl (eds.), Readings in Uncertain Reasoning, 1990, 575-610, Morgan
Kaufmann, San Mateo, CA.

No. 211. “MacEvidence: A Visua Evidential Language for Knowledge-Based Systems,” Yen-Teh
Hsia and Prakash P. Shenoy, March 1989. An 8-page summary of this paper appeared as “An
evidential language for expert systems,” in Ras, Z. W. (ed.), Methodol ogies for Intelligent
Systems, 4, 1989, 9-16, North-Holland, Amsterdam.

No. 213. “On Spohn’s Rule for Revision of Beliefs,” Prakash P. Shenoy, July 1989. Appeared in
International Journal of Approximate Reasoning, 5(2), 1991, 149-181.

No. 216. “Consistency in Vauation-Based Systems,” Prakash P. Shenoy, February 1990, revised
May 1991. Appeared in ORSA Journal on Computing, Vol. 6, No. 3, 1994, 281-291.

No. 220. “Vauation-Based Systems for Bayesian Decision Analysis,” Prakash P. Shenoy, April
1990, revised May 1991. Appeared in Operations Research, 40(3), 1992, 463—-484.

No. 221. “Vauation-Based Systems for Discrete Optimization,” Prakash P. Shenoy, June 1990.
Appeared in Bonissone, P. P., M. Henrion, L. N. Kanal, and J. F. Lemmer, eds.,
Uncertainty in Artificial Intelligence, 6, 1991, 385400, North-Holland, Amsterdam.

No. 223. “A New Method for Representing and Solving Bayesian Decision Problems,” Prakash
P. Shenoy, September 1990. Appeared in: Hand, D. J. (ed.), Artificial Intelligence
Frolnti%lrs in Statistics: Al and Satistics I11, 1993, 119-138, Chapman & Hall, London,
England.

No. 226. “Vauation-Based Systems: A Framework for Managing Uncertainty in Expert Systems,”
Prakash P. Shenoy, March, 1991. Appeared in: Zadeh, L. A. and J. Kacprzyk (eds.), Fuzzy
Logic for the Management of Uncertainty, 1992, 83-104, John Wiley and Sons, New Y ork,
NY.

No. 227. “Vauation Networks, Decision Trees, and Influence Diagrams. A Comparison,” Prakash

A Comparison of Architectures For Exact Computation of Marginals 58

P. Shenoy, June 1991. Appeared as. “A Comparison of Graphical Techniques for Decision
Anaysis’ in European Journal of Operational Research, Vol. 78, No. 1, 1994, 1-21.
No. 233. “Using Possibility Theory in Expert Systems,” Prakash P. Shenoy, September 1991.

Appeared in Fuzzy Sets and Systems, 52(2), 1992, 129-142.

No. 236. “Conditional Independence in Vauation-Based Systems,” Prakash P. Shenoy,
September 1991. Appeared in International Journal of Approximate Reasoning, 10(3),
1994, 203-234.

No. 238. “Vauation Networks and Conditional Independence,” Prakash P. Shenoy, September
1992. Appeared as “ Representing Conditional 1ndependence Relations by Valuation Networks”
in International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2(2),
1994, 143-165.

No. 239. “Game Trees for Decision Analysis,” Prakash P. Shenoy, February 1993. Revised
February 1994. An 8-page summary titled “Information Setsin Decision Theory” appeared in
Clarke, M., R. Kruse and S. Moral (eds.), Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, L ecture Notes in Computer Science No. 747, 1993, 318-325,
Springer-Verlag, Berlin.

No. 242. “A Theory of Coarse Utility,” Liping Liu and Prakash P. Shenoy, February 1993.
Revised September 1993. Appeared in Journal of Risk and Uncertainty, Vol. 11, 1995, pp.
17-49.

No. 245. “Modeling Ignorance in Uncertainty Theories,” Prakash P. Shenoy, April 1993.
Appeared in Gammerman, A. (ed.), Probabilistic Reasoning and Bayesian Belief
Networks, 1995, 71-96, Alfred Waller, Henley-on-Thames, UK.

No. 246. “Vauation Network Representation and Solution of Asymmetric Decision Problems,”
Prakash P. Shenoy, April 1993. Revised September 1995. A 10-page summary of this paper
appeared as “ Representing and Solving Asymmetric Decision problems Using Valuation
Networks” in Fisher, D. and H.-J. Lenz (eds.), Artificial Intelligence and Statistics V,
Lecture Notesin Statistics, 112, 99-108, Springer-Verlag, New Y ork, 1996.

No. 247. *Inducing Attitude Formation Models Using TETRAD,” Sanjay Mishraand Prakash P.
Shenoy, May 1993. Revised October 1993. Appeared as “ Attitude Formation Models: Insights
from TETRAD” in Cheeseman, P. and R. W. Oldford (eds.), Selecting Models from Data:
Artificial Intelligence and Statistics 1V, Lecture Notes in Statistics No. 89, 1994, 223-232,
Springer-Verlag, Berlin.

No. 258. “A Note on Kirkwood's Algebraic Method for Decision Problems,” Rui Guo and
Prakash P. Shenoy, November 1993. Revised May 1994. To appear in European Journal of
Operational Research, 1996.

No. 261. “A New Pruning Method for Solving Decision Trees and Game Trees,” Prakash P.
Shenoy, March 1994. Appeared in: Besnard, P. And S. Hanks (eds.), Uncertainty in
Artificial Intelligence: Proceedings of the Eleventh Conference, 1995, 482—490, Morgan
Kaufmann, San Francisco, CA.

No. 267. “Computing Marginals Using Local Computation,” Steffen L. Lauritzen and Prakash P.
Shenoy, July 1995, revised May 1996.

No. 270. “Binary Join Trees for Computing Marginals in the Shenoy-Shafer Architecture,”
Prakash P. Shenoy, December 1995. An 8-pp summary titled “Binary Join Trees’ appeared in:
Horvitz, E. and F. V. Jensen (eds.), Uncertainty in Artificial Intelligence: Proceedings of
the Twelfth Conference, 1996, 492—499, Morgan Kaufmann, San Francisco, CA.

No. 271. “ A Comparison of Graphical Techniques for Asymmetric Decision Problems,” Concha
Bielza and Prakash P. Shenoy, February 1996, revised June 1996.

No. 273. “ A Forward Monte Carlo Method for Solving Influence Diagrams Using Local
Computation,” John M. Charnes and Prakash P. Shenoy, February 1996.

