
 

 

LOCAL 
COMPUTATION 

IN 
HYPERTREES 

 

 
by 

 
Glenn Shafer and Prakash P. Shenoy 

 
August 1988 

Revised June 1991 
 
 

School of Business 
University of Kansas 

Summerfield Hall 
Lawrence, KS 66045-2003 USA 

 
 
 

© 1988 Glenn Shafer and Prakash P. Shenoy 



  ii 

 

 
Table of Contents 

 

 
 

Foreword............................................................................................................... iv 

Acknowledgments.................................................................................................. v 

Introduction............................................................................................................ 1 

Some Ideas from Graph Theory ............................................................................. 5 
2.1. Hypertrees ............................................................................................. 5 
2.2. Hypertree Covers................................................................................... 9 
2.3. Trees ................................................................................................... 10 
2.4. Markov Trees ...................................................................................... 14 
2.5. Proofs .................................................................................................. 18 

Probability Propagation........................................................................................ 19 
3.1. Arrays, Potentials, and Probability Distributions ................................. 20 
3.2. Combination and Factorization of Arrays ............................................ 21 
3.3. Marginalizing Arrays .......................................................................... 23 
3.4. Marginalizing Factorizations ............................................................... 23 
3.5. Computing Marginals in Markov Trees ............................................... 25 
3.6. Simultaneous Propagation in Markov Trees ........................................ 33 
3.7 An Example ......................................................................................... 38 
3.7. Proofs .................................................................................................. 41 

An Axiomatic Framework for Local Computation of Marginals .......................... 43 
4.1. The Axiomatic Framework.................................................................. 43 
4.2. The Propagation Scheme ..................................................................... 45 
4.3. Proofs .................................................................................................. 46 



  iii 

Belief-Function Propagation ................................................................................ 47 
5.1. Basic Definitions ................................................................................. 48 
5.2. Projection and Vacuous Extension of Subsets ..................................... 50 
5.3. Dempster's Rule of Combination ......................................................... 51 
5.4. Marginalization for Belief Functions ................................................... 54 
5.5. Local Computation for Belief Functions.............................................. 55 
5.6. Implementation Issues ......................................................................... 55 
5.7. Proofs .................................................................................................. 56 

Conditional Probability ........................................................................................ 57 
6.1. The Theory of Conditional Probability ................................................ 58 
6.2. Conditioning Factorizations................................................................. 66 
6.3. Conditional Independence in Modeling ............................................... 67 
6.4. Local Computation in Probability Trees. ............................................. 70 
6.5. Lauritzen and Spiegelhalter's Algorithm.............................................. 79 
6.6. Proofs .................................................................................................. 87 

An Axiomatic Framework for Discrete Optimization ........................................... 93 
7.1. The Axiomatic Framework.................................................................. 94 
7.2 The Axioms.......................................................................................... 97 
7.3. Solving a VBS Using Local Computation ........................................... 98 

7.3.1. Phase One: Finding a Rooted Markov Tree Arrangement............ 98 
7.3.2. Phase Two: Finding the Marginal of the Joint Valuation ........... 102 
7.3.3. Phase Three: Finding a Solution ................................................ 105 

7.4. Mitten’s Axioms for Dynamic Programming..................................... 106 
7.5 Other Applications of the Axiomatic Framework ............................... 107 

7.5.1. Most Probable Configuration..................................................... 107 
7.5.2. Most Plausible Configuration .................................................... 108 

7.6. Conclusions....................................................................................... 109 
7.7. Proofs ................................................................................................ 110 

Constraint Satisfaction Problems........................................................................ 113 
8.1. Constraint Satisfaction Problems....................................................... 113 
8.2. An Example....................................................................................... 115 

References.......................................................................................................... 119 



  iv 

 

 
Acknowledgments 

 

 
 
Research for this monograph has been supported by NSF grants IST–8610293, 
IRI–8902444, and grants from the Peat Marwick Foundation's Research 
Opportunities in Auditing program. The authors have profited from conversations 
and correspondence with Chien-Chung Chan, Arthur P. Dempster, Yen-Teh Hsia, 
Augustine Kong, Khaled Mellouli, Judea Pearl, Debra Zarley and Lianwen Zhang. 
 



 
CHAPTER ONE 

 
Some Ideas from Graph Theory 

 

 
 
Most of the ideas reviewed here have been studied extensively in the literature of 
graph theory (see Berge [1973], Golumbic [1980], and Maier [1983]). A number of 
the terms we use are new, however - among them, hypertree, branch, twig, bud, 
and Markov tree. As we have already explained in the introduction, a hypertree is 
what other authors have called an acyclic or decomposable hypergraph. A Markov 
tree is what authors in database theory have called a join tree (see Beeri et al. 
[1983] or Maier [1983]). We have borrowed the term Markov tree from probability 
theory, where it means a tree of variables in which separation implies probabilistic 
conditional independence given the separating variables. We first used the term in 
a non-probabilistic context in Shenoy and Shafer [1986], where we justified it in 
terms of a concept of qualitative independence analogous to probabilistic 
independence. 
 As we shall see, hypertrees are closely related to Markov trees. The vertices 
of a Markov tree are always hyperedges of a hypertree, and the hyperedges of a 
hypertree can always be arranged in a Markov tree. The main novelty of our 
exposition is its reliance on this close relationship. By exploiting it, we derive the 
most important properties of hypertrees from geometrically obvious properties of 
trees.  
 We limit our study of hypertrees to an investigation of the properties that we 
need for this monograph. For a more thorough study of hypertrees, using only 
slightly different definitions, see Lauritzen, Speed, and Vijayan [1984]. 
 Section 2.1 consists mostly of definitions. We define hypergraphs, twigs and 
branches in hypergraphs, hypertrees, hypertree construction sequences, branchings, 
skeletons, and hypertree covers. Section 2.2 reviews the more familiar topic of 
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trees, with an emphasis on tree construction sequences rather than on the fact that a 
tree is connected and acyclic. Section 2.3 finally introduces Markov trees, explains 
how they are related to hypertrees, and exploits the relation. Section 2.4 spells out 
proofs for some of the displayed propositions. 

2.1. Hypergraphs and Hypertrees 

We call a finite nonempty set H of nonempty subsets of a finite set X a hypergraph 
on X. We call the elements of H hyperedges. We call the elements of X vertices. 

Twig and Branch. Suppose t and b are distinct hyperedges in a hypergraph H. We 
say that b is a branch for t if the following conditions are satisfied: 

 (i) The hyperedges t and b overlap. In symbols, t∩b≠∅. 
 (ii) Every vertex in t that is also contained in another hyperedge 
of H is also contained in b. In other words, if X∈t and X∈h, where 
h∈H and h≠t, then X∈b. 

If a hyperedge t in a hypergraph H has a branch in H, we say that t is a twig in H. 
 In a hypergraph consisting of a single hyperedge, that hyperedge is not a 
twig, because there is no other hyperedge that intersects it. In a hypergraph 
consisting of two intersecting hyperedges, both are twigs. Figure 2.1 shows some 
examples of twigs in a larger hypergraph. As this figure illustrates, a twig may 
have more than one branch. 
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Figure 2.1. Of the five hyperedges in this hypergraph, only two are 
twigs: {S, T, V} and {W, Y, Z}. The twig {S, T, V} has only one 
branch, {T, V, W, X}. The twig {W, Y, Z} has two branches, {T, V, 
W, X} and {U, V, W}. 
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Hypertrees. We are interested in hypergraphs that can be constructed step-by-step 
by adding twigs. We call such hypergraphs hypertrees. More precisely, we call a 
hypergraph a hypertree if there is an ordering of its hyperedges, say h1h2...hn, such 
that hk is a twig in the hypergraph {h1, h2, ..., hk} whenever 2≤k≤n. We call any 
such ordering of the hyperedges a hypertree construction sequence for the 
hypertree. We call the first hyperedge in a hypertree construction sequence the root 
of the hypertree construction sequence. 
 Notice that when we construct a hypertree following a hypertree 
construction sequence, we have a hypertree at every step along the way; if h1h2...hn 
is a hypertree construction sequence for H, and 1≤k<n, then the subset {h1, h2, ..., 
hk} of H is also a hypertree, and h1h2...hk is a hypertree construction sequence for 
it. 
 A hypergraph consisting of a single hyperedge, say H={h}, qualifies as a 
hypertree; in this case there is only one hypertree construction sequence, the 
“sequence” consisting only of h. A hypergraph consisting of two hyperedges, say 
H={h, h’}, is a hypertree if and only if h∩h'≠∅; in this case, there are two 
hypertree construction sequences, hh' and h'h. A hypergraph consisting of three 
hyperedges is a hypertree if and only if one of the hyperedges has a nonempty 
intersection with both the others and contains their intersection, if any. Figure 2.2 



  8 

illustrates some of the possibilities in the case of three hyperedges. Figure 2.3 
shows a larger hypertree. 

Figure 2.2. Some hypergraphs on {W, X, Y, Z}. All these 
hypergraphs have exactly three hyperedges. The hypergraph H1 is a 
hypertree, and all six orderings of its three hyperedges are hypertree 
construction sequences. The hypergraph H2 is a hypertree, but it has 
only four hypertree construction sequences: {W, X}{X, Y}{Y, Z}, 
{X, Y}{W, X}{Y, Z}, {X, Y}{Y, Z}{W, X}, and {Y, Z}{X, Y}{W, 
X}. The hypergraph H3 is not a hypertree.  

H1 
W X Y

Z

 

H2 W X ZY  

H3 
W X

Z

Y
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Figure 2.3. A hypertree on {A, T, S, L, B, E, D, X}. The sequence 
{A, T}{T, L, E}{L, B, E}{S, L, B}{B, E, D}{E, X} and the sequence 
{L, B, E}{T, L, E}{B, E, D}{S, L, B}{A, T}{E, X} are two of its 
many hypertree construction sequences. This hypertree is related to an 
example of local computation studied by Lauritzen and Spiegelhalter 
[1988]. 
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 One aspect of the potential complexity of hypertree construction sequences 
is the possibility that when we add a twig, we may change whether or not a 
hyperedge already present is a twig. Figure 2.4 shows an example. The hyperedge 
h2 is a twig in {h1, h2}, but it is no longer a twig after the twig h3 is added. Adding 
yet another twig, h4, makes h2 a twig again. 



  10 

Figure 2.4. The hypergraph {h1, h2, h3, h4} is a hypertree, and 
h1h2h3h4 is a hypertree construction sequence for it. The hyperedge h2 
is a twig in {h1, h2} and in {h1, h2, h3, h4} but not in {h1, h2, h3}. 
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Finding Hypertree Construction Sequences. Given a hypertree, how can we find 
a hypertree construction sequence for it? 
 The examples that we have considered so far may suggest that we can 
always find a hypertree construction sequence simply by starting with an arbitrary 
hyperedge and arbitrarily adding twigs. As Figure 2.5 illustrates, this does not 
always work. If we add the wrong twig at one point, we may find that we cannot 
continue the sequence at a later point. 
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Figure 2.5. The hypergraph {h1, h2, h3, h4} is a hypertree; h1h2h4h3 is 
one hypertree construction sequence for it. 
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On the other hand, h1h2h3h4 is not a hypertree construction sequence. 
We can get as far as h3; h1h2h3 is a hypertree construction sequence. 
But we cannot continue by adding h4, because h4 is not a twig in {h1, 
h2, h3, h4}. 
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 Fortunately, there is a simple algorithm, called maximum cardinality search, 
which enables us to find hypertree construction sequences easily. Given a 
hypertree, we select an arbitrary hyperedge to begin the sequence. Then we 
repeatedly find and add a hyperedge that contains the largest possible number of 
vertices that are in hyperedges we have already selected. Such a hyperedge, as it 
turns out, will always be a twig when we add it. If we use maximum cardinality 
search in the example of Figure 2.5, we might begin with h1 and then add h2, but 
we would not then add h3, which contains only X from among the vertices {U, V, 
X, Z} that are in hyperedges we have already selected. Instead, we would add h4, 
which contains both X and V. Thus we would obtain the hypertree construction 
sequence h1h2h4h3. In section 2.3, we prove that maximum cardinality search 
always works (Proposition 2.9). 
 Notice that maximum cardinality search also provides a way to check 
whether a hypergraph is a hypertree. If we are not sure whether H is a hypertree 
when we begin, then we check whether each hyperedge the algorithm selects is a 
twig when we add it. If find one that is not, H is not a hypertree. Otherwise, H is a 
hypertree. For more information on maximum cardinality search, see Tarjan and 
Yannakakis [1984]. 

Deletion Sequences. If h1h2...hn is a hypertree construction sequence, then we call 
the reversed ordering, hnhn–1...h1, a hypertree deletion sequence. An ordering of the 
hyperedges of a hypertree is a hypertree deletion sequence if and only if when we 
delete the hyperedges in that order, the hyperedge that we delete at each step 
(except the last step, when we delete the only remaining hyperedge) is a twig in the 
hypergraph remaining just before its deletion. This intermediate hypergraph is 
itself a hypertree, of course. When we tear down a hypertree following a hypertree 
deletion sequence, as when we construct it following a hypertree construction 
sequence, the hypergraphs along the way are all hypertrees. 
 Suppose we arbitrarily select a twig from a hypertree and delete it. Is the 
hypergraph that is left a hypertree? As we show in section 2.3, the answer is yes 
(Proposition 2.10). If H is a hypertree, and t is a twig in H, then H–{t} is a 
hypertree. It follows from this that we can obtain a hypertree deletion sequence for 
a hypertree by successively deleting twigs in an arbitrary manner. No matter which 
twig we delete, there will be another twig to delete next. (Since what remains is a 
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hypertree, it has some hypertree construction sequence, and the hyperedge that 
comes last in this sequence will be a twig.) 
 In a small example, it may be easy to identify twigs, and hence the idea of 
arbitrarily deleting twigs may provide a practical way to find a hypertree deletion 
sequence and hence a hypertree construction sequence. In a large hypergraph, 
however, it may be computationally expensive to find a twig. Hence it is more 
practical in general to find hypertree construction sequences using maximum 
cardinality search. 

Skeletons. We call a hyperedge in a hypergraph H superfluous if it is contained in 
another hyperedge of H. A superfluous hyperedge is a twig, and any hyperedge 
that contains it is a branch for it. 
 Deletion of a superfluous hyperedge will not affect whether any other 
hyperedge is superfluous. Indeed, no deletion of any hyperedge can make another 
hyperedge superfluous if it was not superfluous already. And deleting a hyperedge 
b that is superfluous itself cannot make a superfluous hyperedge non-superfluous. 
(If the superfluous hyperedge t is contained in b, but b is superfluous itself, then t 
will still be contained in b's branch after b is deleted.) So we can delete the 
superfluous hyperedges from a hypergraph in any order; each one will still be 
superfluous just before it is deleted, and the hypergraph that remains at the end will 
have no superfluous hyperedges. 
 We call a hypergraph that has no superfluous hyperedges skeletal. We call 
the skeletal hypergraph that remains after we delete any superfluous hyperedges 
from a hypergraph H the skeleton of H. It is easy to see that a hypergraph is a 
hypertree if and only if its skeleton is a hypertree. (Adding twigs, superfluous or 
not, to a hypertree produces another hypertree; it merely extends the hypertree 
construction sequence. As have already mentioned, we will show in section 2.3 
that removing twigs from a hypertree also produces another hypertree.) 

Branchings. Since each hyperedge we add as we construct a hypertree is a twig 
when it is added, it has at least one branch in the hypertree at that point. Suppose 
we choose such a branch, say β(h), for each hyperedge h we add. By doing so, we 
define a mapping β from H–{h1} to H, where h1 is the root of the hypertree 
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construction sequence. We will call this function a branching for the hypertree 
construction sequence. 
 Since a twig may have more than one branch, a hypertree construction 
sequence may have more than one branching. In Figure 2.2, for example, the 
hypertree construction sequence {W, X}{X, Y}{X, Z} for H1 has two branchings, 
β1 and β2, which agree on {X, Y} but disagree on {X, Z}; β1({X, Y}) = β2({X, Y}) 
= {W, X} but β1({X, Z}) = {W, X} and β2({X, Z}) = {X, Y}.  
 This example also reveals that a given branching sometimes serves more 
than one hypertree construction sequence. The branching β1 qualifies as a 
branching for {W, X}{X, Z}{X, Y} as well as for {W, X}{X, Y}{X, Z}. These 
construction sequences have, of course, the same root, {W, X}. 
 Two hypertree construction sequences that have the same branching always 
have the same root. The root is easily identifiable from the branching; it is the one 
hyperedge not assigned to a branch by the branching. So in addition to talking 
about roots of hypertree construction sequences, we may also talk about roots of 
branchings. The root of a branching β is the root of the hypertree construction 
sequences for which β qualifies as a branching. 
 Since a branching can serve more than one hypertree construction sequence 
for a given hypertree, we will sometimes speak of it as a branching for the 
hypertree, without specifying a particular hypertree construction sequence. 

Hypertree Covers. As we explained in chapter 1, local computation requires two 
things. The joint probability distribution, belief function, or other object with 
which we are working must factor into functions each involving a small set of 
variables. And these sets of variables must form a hypertree. 
 If the sets of variables form instead a hypergraph that is not a hypertree, then 
we must enlarge it until it is a hypertree. We can talk about this enlargement in two 
different ways. We can say we are adding larger hyperedges, keeping the 
hyperedges already there. Or, alternatively, we can say we are replacing the 
hyperedges already there with larger hyperedges. The choice between these two 
ways of talking does not matter much, because the presence of superfluous twigs 
(hyperedges contained in other hyperedges) does not affect whether a hypergraph 
is a hypertree, and because the computational cost of the procedures we will be 
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describing depends primarily on the size of the largest hyperedges, not on the 
number of the smaller hyperedges [Kong 1986]. 
 We will say that a hypergraph H is covered by a hypergraph H* if for every 
h in H there is an element h* of H* such that h⊆h*. A hypergraph is covered by 
any hypergraph that contains it. On the other hand, if H is covered by H*, then it 
is also covered by the skeleton of H*. 
 We will say that H* is a hypertree cover for H if H* is a hypertree and 
covers H. Figure 2.6 shows a hypergraph that is not a hypertree and a hypertree 
cover for it. 

Figure 2.6. Left: A hypergraph that is not a hypertree. Right: A 
hypertree cover for it. This is the same hypertree we saw in Figure 
2.3. 
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 Finding a hypertree cover is never difficult. The hypertree {X}, which 
consists of the single hyperedge X, is a hypertree cover for any hypergraph on X. 
Finding a hypertree cover without large hyperedges, or finding a hypertree cover 
whose largest hyperedge is as small as possible, may be very difficult. In chapter 1, 
we gave references to authors who have studied heuristics that often produce 
reasonably good hypertree covers. Here we shall only add that these heuristics 
generally produce as a by-product a hypertree construction sequence and a 
branching for the hypertree cover. 
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2.2. Trees 

We now review a more familiar and visually transparent topic—the theory of trees. 
Our understanding of trees, like our understanding of hypertrees, will be based on 
the idea of step-by-step construction. 
 The definitions of graph and tree we give here are conventional, because this 
suits our purposes in the next section. After reading section 2.1, the reader might 
expect something less conventional. In section 2.1, instead of defining a 
hypergraph as a pair (X, H), where X consists of vertices and H consists of subsets 
of X, we defined it simply as a nonempty set H of nonempty sets. The reader 
might expect a similar emphasis on edges in our definition of a graph. We might 
say that a graph is a set of two-element sets, or equivalently, that it is a hypergraph 
in which each hyperedge has exactly two elements. But instead we will revert to 
the more familiar idea that a graph is a pair, a set of vertices and a set of edges. 
 The displayed propositions in this section are all visually obvious, and so it 
should not be necessary for the reader to stop to review formal proofs for them. For 
those readers who would like to do so, however, such proofs are provided in 
Section 2.4. 

Graphs. Formally, then, a graph is a pair (V, E), where V is a finite nonempty set 
and E is a set of two-element subsets of V. We call the elements of V vertices, and 
we call the elements of E edges.  
 This definition allows a vertex to be isolated—i.e., not contained in any 
edge. If E is empty, then all the vertices are isolated. 
 Suppose (V, E) is a graph. If {v, v’} is an element of E, then we say that v 
and v' are neighbors, or that they are connected by an edge. If v1v2...vn is a 
sequence of distinct vertices, where n>1, and {vk, vk+1}∈E for k=1,2, ..., n–1, then 
we call v1v2...vn a path. If v and v' are distinct elements of V, and there is a path 
v1v2...vn such that v=v1 and v'=vn, then we say that v and v' are connected by the 
path. If every two distinct elements of V are connected by at least one path, then 
we say that (V, E) is connected. If v1v2...vn is a path, n>2, and {vn, v1}∈E, then we 
call v1v2...vn a cycle.  
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 We call a vertex of a graph a leaf if it is contained in one and only one edge, 
and we call the other vertex in that edge the bud for the leaf. 

Trees. We emphasize the step-by-step construction of trees, just as we emphasized 
the step-by-step construction of hypertrees. But we think of this construction in 
terms of vertices, not edges. To construct a hypertree, we added at each step a 
hyperedge that qualified as a twig. To construct a tree, we will add at each step a 
vertex that qualifies as a leaf. The following proposition describes this step-by-step 
construction in several different ways. 

Proposition 2.1. Suppose (V, E) is a graph and v1v2...vn is an ordering 
of its vertices. Then the following conditions are equivalent. 
(i) Each vertex after the first in the sequence v1v2...vn is connected by 
an edge to exactly one preceding vertex. (It may be connected by an 
edge to one or more or none of the following vertices.) 
(ii) Suppose we draw the graph (V, E) following the sequence 
v1v2...vn. (This means we start with a dot for v1, then add a dot for v2, 
then add a dot for v3, and so on; when we add a dot for v, we draw an 
edge between v and any v' already in the picture such that {v, v’}∈E.) 
Then we will draw exactly one new edge for each new dot. In other 
words, each dot we draw after the first will be a leaf in the graph just 
after it is added. 
(iii) Suppose we start with (V, E) and successively delete vn, vn–1, and 
so on, until only v1 remains. (Deleting vk means that we remove vk 
from the set of vertices and remove all edges containing vk from the 
set of edges.) Then at each step the vertex we are deleting is a leaf in 
the graph just before it is deleted. 
(iv) For k=2,3, ..., n, the vertex vk is a leaf in the graph ({v1, v2, ..., 
vk}, Ek), where Ek is the subset of E consisting of those edges that 
contain only vertices in {v1, v2, ..., vk}. 

 We call an ordering v1v2...vn of the elements of V a tree construction 
sequence for the graph (V, E) if it satisfies one (and hence all) of the conditions of 
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Proposition 2.1. We call a graph (V, E) a tree if it satisfies one (and hence all) of 
the conditions of the following proposition. 

Proposition 2.2. Suppose (V, E) is a graph. Then the following 
conditions are equivalent. 
(i) The elements of V can be ordered in a tree construction sequence. 
(ii) The graph (V, E) is connected and has no cycles. 
(iii) Whenever v and v' are distinct vertices in (V, E), there is a unique 
path from v to v'. 

 If v1v2...vn is a tree construction sequence for (V, E), then we call the reverse 
ordering, vnvn–1...v1, a tree deletion sequence for (V, E). 
 Notice that a graph with a single vertex, say v, qualifies as a tree; the 
sequence consisting only of v is both a tree construction sequence and a tree 
deletion sequence for the tree ({v},∅). As we build a tree up following a tree 
construction sequence, or tear it down following a tree deletion sequence, the 
graph we have at each step in the process is itself a tree. 
 We call the first vertex in a tree construction sequence the root of the tree 
construction sequence. 

Proposition 2.3. For every vertex v in a tree, there is at least one tree 
construction sequence with v as its root. 

This proposition is geometrically obvious; we simply add edges outwards from v. 

Buddings. Since each vertex we add as we construct a tree is a leaf when it is 
added, it has a bud in the tree at that point. Given a tree construction sequence and 
a vertex v that is not the root, let β(v) denote the bud for v as it is added. This 
defines a mapping β from V–{v1} to V, where v1 is the root. We will call this 
mapping the budding for the tree construction sequence. 
 The budding for a tree construction sequence is analogous to the branching 
for a hypertree construction sequence, but there are significant differences. 
Whereas there may be many branchings for a given hypertree construction 
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sequence, there is only one budding for a given tree construction sequence. In fact, 
there is only one budding with a given root: 

Proposition 2.4. Two tree construction sequences for a given tree have 
the same budding if and only if they have the same root. 

Figure 2.7. If t is the root, then  
 —t is the bud for u,  
 —u is the bud for v, w, and x,  
 —and w is the bud for y. 

t

u
v

w
x

y  
 

 To see geometrically that this proposition is true, we imagine identifying the 
budding by moving outwards from the root. Of the two vertices in each edge, the 
one closer to the root is the bud for the one farther from the root. (See Figure 2.7.) 
 Suppose we are given the vertices of a tree, but we have not yet decided on 
the edges. If we begin by selecting one of the vertices to serve as a root, then 
choosing the edges becomes equivalent to choosing a budding. The preceding 
proposition said that the edges determine the budding. The following proposition 
says that the budding determines the edges. 

Proposition 2.5. If (V, E) is a tree, β is a budding for (V, E), and v1 is 
the root for the budding, then E={{v, β(v)}|v∈(V–{v1})}. 
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Once we have chosen a root, the edges and the budding are merely two different 
forms of the same information. 

Leaves in Trees. If a tree construction sequence consists of more than one vertex, 
then the final vertex in the sequence will be a leaf in the final tree. This establishes 
a geometrically obvious fact: a tree with more than one vertex has at least one leaf. 
 It is equally obvious that a tree with more than one vertex has at least two 
leaves. To prove this formally, consider how the number of leaves can change as 
we follow a tree construction sequence. When we have only two vertices, both are 
leaves. At each step after that, the number of leaves is unchanged (this happens if 
we attach the new leaf to a vertex v that was a leaf, because v will no longer be a 
leaf) or increases by one (this happens if we attach a new leaf to a vertex that 
already is not a leaf). 
 With a little more effort, we can also prove another geometrically obvious 
fact: when we delete a leaf from a tree, what remains is a tree. 

Proposition 2.6. If (V, E) is a tree, v is a leaf in (V, E), and v' is the 
bud for v, then (V–{v}, E–{{v, v’}}) is also a tree. 

 We can form a tree deletion sequence for a tree by deleting leaves in an 
arbitrary way. When we delete a leaf from a tree, a smaller tree will remain, and 
hence there will be yet another leaf we can delete, until only one vertex remains in 
the tree. So we can start by deleting any leaf in the initial tree, and at any point in 
the sequence, we can continue by deleting any leaf in the remaining tree. We need 
not fear that by choosing the wrong leaf to delete at some point we will land 
ourselves in a situation where the deletion sequence cannot be continued. 

2.3. Markov Trees 

As we explained in the introduction, important information about a hypertree can 
often be presented most clearly by means of a Markov tree. In this section, we will 
define Markov trees, show how they are related to hypertrees, and use the relation 
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to prove some of the assertions about hypertrees that we made in section 2.1. In the 
following chapters, we will use Markov trees to explain visually ideas about local 
computation in hypertrees. 

Definition. We call a tree (H, E) a Markov tree if the following conditions are 
satisfied: 

(i) H is a hypergraph. 
(ii) If {h, h’}∈E, then h∩h'≠∅. 
(iii) If h and h' are distinct vertices, and X is in both h and h', then X is 
in every vertex on the path from h to h'. 

Condition (iii) can also be expressed by saying that the vertices that contain any 
particular element X are connected in the tree (H, E). Figure 2.8 shows two 
Markov trees. 

Figure 2.8. Two Markov trees. 
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Markov Trees and Hypertrees. Our formal definition of a Markov tree does not 
state that the vertex set H is a hypertree, but it implies that it is. This is part of the 
following proposition. 
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Proposition 2.7. Suppose (H, E) is a Markov tree. Then H is a 
hypertree. Any tree construction sequence for (H, E) is a hypertree 
construction sequence for H. The budding for the tree construction 
sequence is a branching for the hypertree construction sequence. Any 
leaf in (H, E) is a twig in H. 

The last statement in this proposition brings out the fact that as we delete leaves 
from a Markov tree (a visually transparent operation), we are deleting twigs from 
the hypertree.  
 If (H, E) is a Markov tree, then we call it a Markov tree representative for 
the hypertree H. It follows from the following proposition that every hypertree H 
has at least one Markov tree representative. 

Proposition 2.8. Suppose H is a hypertree, β is a branching for H, and 
h1 is the root of β. Then (H, E) is a Markov tree, where  
 E={{h, β(h)}|h∈(H–{h1})}. (2.1) 
If h1h2...hn is a hypertree construction sequence for H, with β as its 
branching, then it is a tree construction sequence for (H, E), with β is 
its budding. 

 Propositions 2.7 and 2.8 describe the close relationship between hypertrees 
(with their hypertree construction sequences and branchings) and Markov trees 
(with their tree construction sequences and buddings). Since the relationship is 
somewhat complex, it may be useful to describe it in more detail. One way of 
doing this is to spell out what given information about a hypertree does to 
determine a Markov tree. We can do this by repeating Proposition 2.8 in various 
ways: 

 When we specify a hypertree, we have specified the vertices for 
a Markov tree. 

 When we specify a hypertree and a hypertree construction 
sequence for it, we have specified the vertices and a tree construction 
sequence for a Markov tree. 



  23 

 When we specify a hypertree and a branching for it, we have 
specified a Markov tree and a budding for it (or a Markov tree and a 
root for it). 

 When we specify a hypertree, a hypertree construction 
sequence for it, and a branching for the hypertree construction 
sequence, we have specified a Markov tree and a tree construction 
sequence for it. 

Another way is to say what given information about a Markov tree tells us about 
the hypertree formed by its vertices. This is done by the following statements, 
which follow from Proposition 2.7 together with what we learned about trees in the 
preceding section. 

 When we specify a Markov tree, we have specified a hypertree 
and a branching for each possible root. 

 When we specify a Markov tree and a root for it, we have 
specified a hypertree and a branching. 

 When we specify a Markov tree and tree construction sequence 
for it, we have specified a hypertree, a tree construction sequence, and 
a branching. 

Notice also that if H is a hypertree and h1 is a hyperedge in H, then equation (2.1) 
represents a one-to-one correspondence between the branchings for H that have h1 
as their root and the Markov tree representatives for H. (Proposition 2.8 tells us 
that if β is a branching that has h1 as its root, then (H, {{h, β(h)}|h∈(H–{h1})}) is 
a Markov tree. On the other hand, Proposition 2.5 implies that if 
(H, {{h, β(h)}|h∈(H–{h1})}) is a tree, then β is a budding for it, and hence, by 
Proposition 2.7, a branching for H.) 

 Given a hypertree, we can choose any hyperedge as root, and then we get all 
the Markov tree representatives by looking at the different branchings with that 
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root. Figure 2.9 shows the three Markov tree representatives of the hypertree in 
Figure 2.3. 

Figure 2.9. If we choose {L, E, B} as the root for the hypertree in 
Figure 2.3, then {L, E, B} must serve as the branch for {T, L, E}, {E, 
B, D}, and {S, L, B}, and {T, L, E} must serve as the branch for {A, 
T}. This leaves only {E, X}, which can use {L, E, B}, {T, L, E}, or 
{E, B, D} as its branch. It follows that the hypertree has exactly three 
Markov tree representations, which differ only in where the leaf {E, 
X} is attached. 
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{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

{A, T}
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{E, B, D}

{A, T}

{T, L, E}
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{L, E, B}

{E, B, D}  
 

Which Representation is More Useful? We have developed two different 
representations for the same information. On the one hand, we have hypertrees, 
with hypertree construction sequences and branchings. On the other hand, we have 
Markov trees, with tree construction sequences and buddings. What are the roles of 
these two representations? When should we use one, and when should we use the 
other? 
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 As we will see in the following chapters, the methods of local computation 
that we study in this book involve moving step-by-step backwards and then 
sometimes forward in a hypertree construction sequence. At each step, we perform 
computations that involve a hyperedge and its branch. This means that we need to 
specify the hypertree, a construction sequence, and a branching for it. When all 
these things are specified, it is really a matter of taste which representation we say 
we are working with. We can equally well say that we are working with a 
hypertree construction sequence and a branching or that we are working with a tree 
construction sequence and a budding for a Markov tree. We can say that we are 
working step-by-step backwards and then forward in a hypertree construction 
sequence. Or we can say that we are working inward and then outward in a 
Markov tree, dealing with the vertices in the order specified by a particular tree 
deletion sequence as we move inward, and then reversing the order as we move 
outward. 
 Strictly speaking, however, it is only if we are using a serial computer that 
we must completely specify a construction or deletion sequence. If we are working 
with a parallel computer, in which different processors are made to correspond to 
the different vertices of the Markov tree, and in which communication links are 
provided between the vertices that are directly connected by edges in the Markov 
tree, then we can program the computer to work inwards and then outwards in the 
tree without specifying completely a sequence in which successive hyperedges are 
dealt with. In this context, the Markov tree representation will be more appropriate 
than the hypertree representation. 
 Our own work has been limited to serial computers, but we find the Markov 
tree representation very useful for pedagogical purposes. Trees are very accessible 
to the visual imagination, and we can see many things more clearly if we do not 
clutter the picture by specifying the particular tree construction sequence. Hence 
we rely heavily on the Markov tree representation in our explanations of local 
computation in the following chapters. 
 Even for the theoretical purposes of this chapter, the Markov tree 
representation is very useful. As we will see shortly, we can use this representation 
to give transparent proofs of statements we made about hypertrees in section 2.1. 
The main pedagogical limitation of hypertrees is the danger that they will be over-
interpreted. It must always be kept in mind that the edges that join the vertices in a 
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Markov tree have only a computational significance. They do not always have a 
meaning in terms of the practical problem that led to the computational problem. 
Typically, that the practical problem determines only a hypertree (or perhaps a 
hypergraph for which we find a hypertree cover). This hypertree may have many 
Markov tree representations, and a particular pair of vertices may be linked by an 
edge in some of these representations and not in others. 

Using Markov Trees to Learn about Hypertrees. Here we will use the Markov 
tree representation to prove two statements about hypertrees that we made without 
proof in section 2.1. 
 First consider our assertion that maximum cardinality search always works. 
If we start with an arbitrary hyperedge h1 in a hypertree, then find a hyperedge h2 
that has as many elements in common with h1 as possible, then find a hyperedge h3 
that has as many elements in common with h1∪h2 as possible, and so on, then the 
resulting sequence h1h2...hn will be a hypertree construction sequence. The 
following proposition states this more formally. 

Proposition 2.9. Suppose H is a hypertree, and h1h2...hn is an ordering 
of its elements such that 

|hi∩(h1∪h2∪...∪hi-1)| = maxi≤j≤n |hj∩(h1∪h2∪...∪hi-1)| 
for i=2, ..., n. Then h1h2...hn is a hypertree construction sequence. 

Proof. It suffices to show that there is a Markov tree representative with h1h2...hn 
as a tree construction sequence. We can prove this by induction. We know that any 
Markov tree representative has a tree construction sequence that begins with h1. So 
we only need to show that if there is a Markov tree representative with a tree 
construction sequence that begins with h1h2...hi-1, then there is one with a tree 
construction sequence that begins with h1h2...hi. 
 Figure 2.10 shows by example how we can go from a Markov tree with h1h2, 
..., hi-1 as the beginning of a tree construction sequence to one with h1h2...hi as the 
beginning of a tree construction sequence. We simply replace the first edge on the 
path from hj to hi with an edge between hj and hi, where hj is the vertex in {h1, h2, 
..., hi-1} that is nearest hi. By the Markov property, every vertex along this path 
from hj to hi contains everything that hi has in common with h1∪h2∪...∪hi-1. And 
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this is all they can have in common with h1∪h2∪...∪hi-1, since hi has a maximal 
intersection with h1∪h2∪...∪hi-1. It follows that any element X that hj has in 
common with the vertex to which it was connected by the edge now removed will 
also be in all the vertices along the new path to that vertex. Hence the new tree still 
has the Markov property. End of Proof. 
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Figure 2.10. This Markov tree has a tree construction sequence 
beginning with h1h2h3h4. 
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Suppose h5 has a maximum intersection with h1∪h2∪h3∪h4—i.e., h5 
has at least as many elements in common with h1∪h2∪h3∪h4 as any of 
the remaining hyperedges do. By the Markov property, all the 
elements that h5 has in common with h1∪h2∪h3∪h4 must be in every 
vertex on the path from h4 to h5. Moreover, h7 cannot have anything 
else common with h4; otherwise it would have more in common with 
h1∪h2∪h3∪h4 than h5 does. This means that we can replace the link 
between h4 and h7 with a link between h4 and h5, without destroying 
the Markov property: 
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If h4 and h7 contains a particular element X, then X will also be in h5, 
h9 and h10, and hence the set of vertices containing it will remain 
connected. 
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 The preceding proposition says in particular that we can begin a hypertree 
construction sequence with an arbitrary hyperedge. It is also true, as we stated but 
did not prove in section 2.1, that we can end a hypertree construction sequence 
with an arbitrary twig. 

Proposition 2.10. If H is a hypertree, and t is a twig in H, then there is 
a hypertree construction sequence for H that ends with t. 

Proof. It suffices to show that there is a Markov tree representative for H that has t 
as a leaf. To do this, we consider an arbitrary Markov tree representative for H. 
Suppose t is not a twig in this Markov tree. Then we construct a new tree by 
deleting the edge between t and each of its neighbors, putting a new edge from t to 
b, and putting a new edge from each former neighbor of t to b, except for the single 
former neighbor that is still connected to b by a path (see Figure 2.11). This new 
tree has t as a leaf, and it is a Markov tree. To see that it is a Markov tree, consider 
any two vertices h1 and h2 in the tree that have an element X in common. We must 
show that X is also in any vertex h on the path between h1 and h2. This will 
certainly be true if this path is the same as the path between h1 and h2 in the old 
tree, because the old tree was a Markov tree. Suppose, then, that the path between 
h1 and h2 is different in the new tree, and that h is on the new path but not on the 
old path. The fact that the new path is different means that the old path went 
through t, and the fact that h is on the new path but not the old path means that h is 
either on the old path from h1 to b or on the old path from h2 to b. Since the old 
path went through t, X is in t and hence also in b, which is a branch for t. So X is 
also in the any vertex on the old path from h1 to b or on the old path from h2 to b. 
End of Proof. 
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Figure 2.11. The vertex t is not a leaf in this Markov tree, but we 
assume that it is a twig, with branch b, in the hypertree formed by the 
vertices of the Markov tree. 

t b

h

h

1

2

 

We remove all the edges between t and other vertices. Then we make 
the graph a tree again by putting an edge between b and t and an edge 
between b and each of t's former neighbors, except the one that was 
originally connected to b by a path that did not go through t. 
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The new tree has t as a leaf, and it is a Markov tree. To see that it is a 
Markov tree, suppose that the vertices h1 and h2 have an element X in 
common. They were originally connected by a path that went through 
t, and every vertex on this path contained X. Now they are connected 
by a new path. Does every vertex in the new path contain X? Yes. 
Since X is in t, it is in the branch b. Hence it is in the other vertex in 
the path from h1 to b, and this is the only vertex in the new path that 
was not in the old path. 
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2.4. Additional Proofs 

Proof of Proposition 2.1. The equivalence of the four conditions is obvious; they 
say the same thing in slightly different words. It is easiest to see first that (i) and 
(ii) are equivalent, then that (i) and (iii) are equivalent, and then that (iii) and (iv) 
are equivalent. 

Proof of Proposition 2.2. First let us show that (i) implies (ii). Let v1v2...vn be a tree 
construction sequence for (V, E). Every vertex after v1 in this sequence is 
connected by an edge to an earlier vertex, its bud. The bud, if it is not already v1, is 
connected in turn to its own bud. Since there are only a finite number of vertices, 
this path must end eventually at v1. Thus every vertex is connected by a path to v1. 
It follows that any two vertices are connected by a path to each other. Thus (V, E) 
is connected. It is easy to see also that (V, E) has no cycles. Suppose C is a subset 
of V. In order for C to be a cycle in (V, E), every vertex in C would have to be 
connected to two other vertices in C. But since a vertex can only be connected to 
one earlier vertex in the tree construction sequence v1v2...vn, the vertex in C that 
appears last in this sequence can be connected to only other vertex in C. 
 It is easy to see that (ii) implies (iii), for being connected means that there is 
path between any two vertices, and a cycle can be constructed from two distinct 
paths and vice versa. 
 We can complete the proof by showing that (iii) implies (i). Suppose there is 
a unique path connecting any two vertices. Start with an arbitrary vertex and call it 
v1. If there is at least one more vertex, then choose one, say v1', let v2 be the first 
vertex after v1 on the unique path from v1 to v1'. The sequence v1v2 is a tree 
construction sequence, and we can extend this sequence step-by-step until it 
includes all the vertices in V. Indeed, if v1v2...vk is a tree construction sequence, 
and there is still at least one vertex not in this sequence, then we can choose one 
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such vertex, say vk', and let vk+1 be the first vertex not already in the sequence that 
we encounter on the unique path from v1 to vk'. It is connected by an edge to just 
one of the vertices already in the sequence, the one just before it on the path. (Were 
it also connected by an edge to another, there would be more than one path from it 
to v1.) So v1v2...vkvk+1 is still a tree construction sequence. 

Proof of Proposition 2.3. This is proven in the last paragraph of the proof of the 
preceding proposition. 

Proof of Proposition 2.4. The budding explicitly identifies the root; it is the one 
vertex that is not assigned a bud by the budding. To see that the root determines the 
budding, note that for any budding β with root v1 and any vertex v distinct from v1, 
the sequence v, β(v), β(β(v)), β(β(β(v))), and so on, is a path from v to v1. Since 
the path from v to v1 is unique, β(v) is unique. 

Proof of Proposition 2.5. This is obvious if we consider the tree construction 
sequence for which β is the budding and recall condition (ii) of Proposition 2.1. 

Proof of Proposition 2.6. By Proposition 2.3, we can choose a tree construction 
sequence v1v2...vn for (V, E) with v≠v1. Say v=vk. By the definition of tree 
construction sequence, v is connected by an edge to a vertex earlier in the 
sequence, say vj. Since v is a leaf and v' is its bud, we have vj=v'. Moreover, v is 
not connected by an edge to any vertex later in the sequence. In other words, vk 
does not serve as a bud for any vertex later in the sequence. Hence the sequence 
with vk removed is still a tree construction sequence—a tree construction sequence 
for (V–{v}, E–{{v, v’}}). 

Proof of Proposition 2.7. Let h1h2...hn be a tree construction sequence for the 
Markov tree (H, E), and let β be its budding. In order to show that h1h2...hn is a 
hypertree construction sequence, with β as a branching, it suffices to show that 
hi∩β(hi) ≠ ∅ and (h1∪h2∪...∪hi-1)∩hi = β(hi)∩hi for i = 2, ..., n. The condition 
hi∩β(hi) ≠ ∅ follows from condition (i) of the definition of Markov tree. To show 
that i = β(hi)∩hi, suppose that X is contained in both hi and hj, where j < i. It 
suffices to show that X is in β(hi). By condition (iii) of the definition of Markov 
tree, X is also in every node on the path between hi and hj. Is β(hi) on this path? 
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Yes it is. The path hi, β(hi), β(β(hi)), β(β(β(hi))), and so on leads sooner or later 
back to h1, as does the path hj, β(hj), β(β(hj)), β(β(β(hj))), and so on; so the path 
from hi to hj follows the first of these paths until it comes to an element in the 
second path (either h1 or an earlier common element) and then follows the other 
path back out to hj. So β(hi) is on the path between hi and hj, and hence X is in 
β(hi). 
 Suppose h is a leaf in (H, E). As we noted in the comments following 
Proposition 2.6, this implies that we can choose a tree construction sequence for 
(H, E) that ends with h. Since this tree construction sequence is a hypertree 
construction sequence for H, h is a twig in H. 

Proof of Proposition 2.8. Since {h2, β(h2)}, {h3, β(h3)}, ..., {hn, β(hn)} are the edges 
of the graph (H, E), and β(hi) is in {h1, h2, ..., hi-1} for i=2, ...,n, the sequence 
h1h2...hn is a tree construction sequence for (H, E), and hence (H, E), is a tree. 
Condition (ii) in the definition of Markov tree is satisfied because a twig and its 
branch always have nonempty intersection. To see that condition (iii) is satisfied, 
consider two hyperedges hi and hj that contain X. We may assume without loss of 
generality that i<j. By the definition of branch, X must be contained in hβ(j), which 
is just before hj on the path from hi to hj. If β(hj)=hi, we are done; otherwise we 
may apply the same argument to show that X is also contained in the vertex just 
before hi or β(hj), whichever comes later in the construction sequence. We may 
conclude by induction that X is contained in every vertex hk along the path 
between hi and hj. 





 
 
 
CHAPTER THREE 

 
Probability Propagation 

 

 
 
In this chapter, we explain local computation for probability distributions. More 
precisely, we show how computation of marginal probabilities can be facilitated 
when a joint probability distribution is given in factored form, and the sets of 
variables involved in the factors form a hypertree. 
 We postpone for the moment consideration of how probability distributions 
in factored form might arise. We will return to this question in chapter 6, after we 
discuss conditional probability. 
 We begin this chapter by introducing basic definitions and notation for 
probability distributions, marginalization, and combination. In section 3.1, we 
introduce a notation for probability distributions and for the more general functions 
that we call potentials and arrays. In section 3.2, we study the combination of 
arrays, and in section 3.3, we define marginalization for arrays. 
 In section 3.4, we show how local computation can be used to marginalize a 
factorization on a hypergraph to the smaller hypergraph resulting from the deletion 
of a twig. Though brief and simple, this section is the heart of this chapter. Once 
we know how to delete a twig, we can reduce a hypertree to a single hyperedge by 
successively deleting twigs. When we have reduced a factorization on a hypertree 
to a factorization on a single hyperedge, it is no longer a factorization; it is simply 
the marginal for the hyperedge. 
 In section 3.5, we shift our attention from a hypertree to the Markov tree 
determined by a branching for the hypertree. Using this Markov tree, we describe 
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more graphically the process of marginalizing to a single hyperedge. Our 
description is based on the idea that each vertex in the tree is a processor, which 
can operate on arrays for the variables it represents and then send the result to a 
neighboring processor. In section 3.6, we generalize this idea to a scheme of 
simultaneous computation and message passing that produces marginals for all the 
vertices in the Markov tree. In section 3.7, we give an example of probability 
propagation. In section 3.8, we give proofs of the displayed propositions. 
 Our treatment of local computation in this chapter applies to arrays in 
general, not just to probability distributions. We take this approach not because the 
greater generality is of practical importance, but rather because it distances us from 
probabilistic interpretations and allows us to concentrate on purely computational 
aspects of our problem. In particular, it frees us from the temptation to seek a 
probabilistic interpretation for every step in the computation. 
 When considered as schemes for the computation of probabilities, the 
schemes presented in this chapter are similar to earlier work by Pearl [1986], 
Shenoy and Shafer [1986] and Lauritzen and Spiegelhalter [1988]. They represent 
a simplification of all this earlier work, however, for they avoid the need for 
divisions. In chapter 6, we will delve into the details of the probability case, and 
we will show how the general schemes presented here relate to the schemes studied 
by Pearl and by Lauritzen and Spiegelhalter. 

3.1. Arrays, Potentials, and Probability Distributions 

We use the symbol WX for the set of possible values of a variable X, and we call 
WX the frame for X. We will be concerned with a finite set X of variables, and we 
will assume that all the variables in X have finite frames. 
 Given a finite nonempty set h of variables, we let Wh denote the Cartesian 
product of WX for X in h; Wh = ×{WX | X∈h}. We call Wh the frame for h. We call 
elements of Wh configurations of h. We use lower-case, bold-faced letters such as 
x, y, etc. to denote configurations. If x is a configuration of g, y is a configuration 
of h, and g∩h=∅, then (x, y) is a configuration of g∪h. 
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 We call any real-valued function on Wh an array on h. We call the array a 
potential if the values it assigns to the configurations are non-negative and not all 
zero. We call a potential a probability distribution if the values it assigns to the 
configurations add to one. Given a potential that is not a probability distribution, 
we can construct a probability distribution by dividing all the potential's values by 
their sum. 
 It is convenient to extend this terminology to the case where the set of 
variables h is empty. We adopt the convention that the frame for the empty set ∅ 
consists of a single configuration, and we will use the symbol ♦ to name that 
configuration; W∅={♦}. To be consistent with our notation above, we will adopt 
the convention that if x is a configuration for g, then (x, ♦) = x. Also note that to 
specify an array A on ∅, we need to specify only a single real number, the value of 
A(♦). If this real number is positive, the array A is a potential; if it is equal to one, 
the array A is a probability distribution. 
 When A is an array on a set of variables h, we will call h the domain of A, 
and we will write domain(A)=h. 
 Two arrays A and B on h are proportional if there is a positive number c 
such that A(x) = cB(x) for all x in Wh. We will write A ∝ B to indicate that A and 
B are proportional. 

3.2. Combination and Factorization of Arrays 

In this section, we learn how to combine arrays, and we learn what it means for an 
array to factor on a hypergraph. 
 In order to develop a notation for the combination of arrays, we first need a 
notation for the projection of configurations from one frame to a smaller frame. 
Here projection simply means dropping extra coordinates; if (w, x, y, z) is a 
configuration of {W, X, Y, Z}, for example, then the projection of (w, x, y, z) to 
{W, X} is simply (w, x), which is a configuration of {W, X}. If g and h are sets of 
variables, h⊆g, and x is a configuration of g, then we will let x↓h denote the 
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projection of x to h. The projection x↓h is always a configuration of h. If h=∅, then 
of course x↓h=♦. 

Combination. We combine arrays by pointwise multiplication; if G and H are 
arrays on g and h respectively, then their combination GH is the array on g∪h 
given by   
 (GH)(x) = G(x↓g)H(x↓h) (3.1) 
for all x∈Wg∪h. 
 Formula (3.1) is merely a careful way of saying that we multiply the two 
arrays together. It may clarify this to consider a more concrete example. Suppose 
g={W, X, Y} and h={Y, Z}. Then (3.1) reduces to the statement that (GH)(w, x, y, 
z) = G(w, x, y)H(y, z). 
 If G and H are potentials, their combination GH need not be a potential; it is 
possible that the array GH is such that (GH)(x) = 0 for all x. When we are 
propagating probabilities, we avoid situations where this happens, because we 
want to be able to normalize to get a probability distribution. If G and H are 
potentials on g and h, respectively, and there exists a configuration x of g∪h such 
that 
 G(x↓g)H(x↓h) > 0, 

then we will say that G and H are combinable and that GH is the combination of G 
and H. If G(x↓g)H(x↓h) = 0 for all x∈Wg∪h, then we will say that potentials G and H 
are not combinable. 

Vacuous Extension. Suppose h⊆g, and suppose A is an array on h. Then we let 
A↑g denote the array on g given by  
 A↑g(x) = A(x↓h) 
for all x∈Wg. We call A↑g the vacuous extension of A to g. The idea of vacuous 
extension does not add anything essential to the ideas of this chapter, but it is 
useful in the exposition. We can explain formula (3.1), for example, by saying that 
we get GH by vacuously extending both G and H to g∪h and then multiplying 
them. 
 Suppose h⊆g, and B is an array on g. We say that B is carried by h if there is 
some array A on h such that B = A↑g. This idea will be of use to us in chapter 6. 
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Factorization. Suppose A is an array on a finite set of variables X, and suppose H 
is a hypergraph on X. If A is equal to a combination of arrays on the hyperedges of 
H, say  
 A = Π{Ah | h∈H}, (3.2) 

where Ah is an array on h, then we say that A factors on H into the arrays Ah. 
 If A is an array on X, and A factors on a hypergraph H on X, then ∪H = X. 
This is implicit in the definition, because the right-hand side of (3.2) is an array on 
∪H. 
 When A does factor on H, the arrays Ah are not unique. We can multiply 
one of them by a non-zero constant if we compensate by dividing another by the 
same constant. More generally, if g and h overlap, then we can multiply Ag and 
divide Ah by any array on g∩h that has no zero values. 
 It is important, in applications, to recognize that if an array A factors on the 
hypergraph H, and the hypergraph H* covers H, then A also factors on H*. 
Actually, this statement is precisely correct under our definitions only if 
∪H=∪H*. If ∪H is a proper subset of ∪H*, then it is really only the vacuous 
extension A↑∪H* that factors on H*. To obtain a factorization of A↑∪H* on H*, it is 
necessary, in general, to assign each hyperedge h in H to a particular hyperedge in 
H* that contains it. After we have done this, a particular hyperedge g in H* may 
or may not have hyperedges from H assigned to it. If it has none assigned to it, we 
let Bg be the array Ig given by Ig(x) = 1 for all x∈Wg. If it has one or more h from 
H assigned to it, we let Bg be Ig combined with the Ah for all the h assigned to it. 
Then we will have A↑∪H* = [Π{Bg | g∈H*}]. 
 It is sufficient, in order for A to factor on H, that A be proportional to a 
product of arrays on the hyperedges. Indeed, if 
 A ∝ Π{Ah | h∈H}, (3.3) 

where Ah is an array on h, then a representation of the form (3.2) can be obtained 
simply by incorporating the constant of proportionality into one of the Ah.  
 Though the theory in this chapter applies to arrays in general, we are mainly 
interested in factorizations of probability distributions. This means that we are 
concerned primarily with arrays that are potentials, for when a probability 
distribution P factors on a hypergraph, the arrays Ah in the factorization can be 
assumed to be potentials. Indeed, since P is not identically zero, none of the Ah can 
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be identically zero. And we can assume that Ah(x)≥0 for all h and all x. Since P 
does not take any negative values, the factorization would remain valid if we 
replaced all negative Ah(x) by their absolute values. 
 In practice, relations of proportionality such as (3.3) are common when we 
are working with probability distributions. We will give a fuller account of the 
reasons for this in chapter 6; here let us say simply that factorizations of 
probability distributions are often reduced to proportionalities when we condition 
on observations. 
 If we are given potentials Ah and are told that the product Π{Ah | h∈H} is 
proportional to a probability distribution, then in principle we can find the constant 
of proportionality using the fact that the values of the probability distribution must 
add to one. In practice, this may be infeasible, since it requires a summation over 
the elements of the frame WX. As we shall see in the next section, however, this is 
not a serious problem when the hypergraph is a hypertree with hyperedges small 
enough to make local computation feasible. In that case, we can postpone finding 
the constant of proportionality until we have marginalized to a hyperedge using 
local computations. 

3.3. Marginalizing Arrays 

In this section, we introduce the idea of marginalizing an array from one set of 
variables to a smaller set of variables.  
 Suppose g and h are sets of variables, h⊆g, and G is an array on g. The 
marginal of G on h, denoted by G↓h, is an array on h. It is defined by  
 G↓h(x) = Σ{G(x, y) | y∈Wg–h} 

for all x∈Wh. For example, if G is an array on the variables {W, X, Y, Z}, then the 
marginal G↓{W,X} is given by G↓{W,X}(w, x) = Σy,zG (w, x, y, z), where the 
summation is over all possible values of Y and Z. 
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Proposition 3.1. If h1⊆h2⊆g and G is an array on g, then (G↓h2)↓h1 = 
G↓h1. 

 The distributive law of arithmetic says that c(a+b) = ca+cb. It follows from 
the distributive law that marginalization preserves proportionality; if A is an array, 
and c is a real number, then (cA)↓h = cA↓h. Here is a more general statement: 

Proposition 3.2. If G and H are arrays on g and h, respectively, then 
(GH)↓g = G(H↓g∩h). 

 When h⊆g and the array P is a probability distribution on g, the marginal P↓h 
is P's marginal on h in the usual probabilistic sense; P↓h(x) is the probability that 
the variables in h take the values in x. 

3.4. Marginalizing Factorizations 

In this section, we learn how to adjust a factorization on a hypergraph to account 
for the deletion of a twig. This can be accomplished by local computations, 
computations involving only the arrays on the twig and a branch for the twig. This 
elimination of a twig by local computation is the key to the computation of 
marginals from a factorization on a hypertree, for by successively deleting twigs, 
we can reduce the hypertree to a single hyperedge. 
 Suppose H is a hypergraph on X, t is a twig in H, and b is a branch for t. 
The twig t may contain some vertices that are not contained in any other hyperedge 
in H. These are the vertices in the set t–b. Deleting t from H means reducing H to 
the hypergraph H–{t}, none of whose hyperedges contain any of the vertices in t-
b. 
 Suppose A is an array on X, suppose A factors on H, and suppose we have 
stored A in factored form. In other words, we have stored an array Ah for each h in 
H, and we know that A = Π{Ah | h∈H}. Adjusting this factorization of A on H to 
account for the deletion of the twig t means reducing it to a factorization of A↓X' on 
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H-{t}, where X'=X–(t–b)=∪(H–{t}). Can we do this? Yes. The following 
proposition tells us that if A factors on H, then A↓X' factors on H–{t}, and the 
second factorization can be obtained from the first by a local computation that 
involves only t and a branch. 

Proposition 3.3. Under the assumptions of the preceding paragraph, 
 A↓X' = (AbAt

↓t∩b) Π{Ah | h∈H–{t, b}}. (3.4) 

Formula (3.4) says that A↓X' factors on the hypergraph H–{t}. The potential on b is 
multiplied by At

↓t∩b, and the potentials on the other elements of H–{t} are 
unchanged. 
 This result is especially interesting in the case of hypertrees, because in this 
case repeated application of (3.4) allows us to obtain A's marginal on any 
particular hyperedge of H. If we want the marginal on a hyperedge h1, we choose a 
construction sequence beginning with h1, say h1h2...hn, and we choose a branching 
for this construction sequence. Let Xk denote h1∪...∪hk, and let Hk denote {h1, h2, 
..., hk} for k=1, ..., n–1. We use (3.4) to delete the twig hn, so that we have a 
factorization of A↓Xn–1 on the hypertree Hn–1. Then we use (3.4) again to delete the 
twig hn–1, so that we have a factorization of A↓Xn–2 on the hypertree Hn–2. And so 
on, until we have deleted all the hyperedges except h1, so that we have a 
factorization of A↓X1 on the hypertree H1—i.e., we have the marginal A↓h1. At each 
step, the computation is local, in the sense that it involves only a twig and a branch. 
 We are most interested, of course, in the case where A is a probability 
distribution. In this case, as we mentioned in the preceding section, the 
factorization we wish to marginalize may be a proportionality rather than an 
equality. In other words, we may begin with a factorization of a potential that is 
only proportional to the probability distribution that interests us. Eventually, we 
will need to find the constant of proportionality, but since marginalization 
preserves proportionality, we may postpone the normalization until the final step, 
where we have reduced the potential to its marginal on the single hyperedge with 
which we are concerned, and hence normalization requires summation only over 
the frame for this hyperedge. 
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3.5. Computing Marginals in Markov Trees 

As we learned in chapter 2, the choice of a branching for a hypertree determines a 
Markov tree for the hypertree. We now look at our scheme for computing a 
marginal from the viewpoint of this Markov tree. This change in viewpoint does 
not necessarily affect the implementation of the computation, but it gives us a 
richer understanding. It gives us a picture in which message passing, instead of 
deletion, is the dominant metaphor, and in which we have great flexibility in how 
the message passing is controlled.  
 Why did we talk about deleting the hyperedge hk as we projected hk's array 
to the branch β(hk)? The point was simply to remove hk from our attention. The 
"deletion" had no computational significance, but it helped make clear that hk and 
the array on it were of no further use. What was of further use was the smaller 
hypertree that would remain were hk deleted. 
 When we turn from the hypertree to the Markov tree, deletion of twigs 
translates into deletion of leaves. But a tree is easier to visualize than a hypertree. 
We can remove a leaf or a whole branch of a tree from our attention without 
leaning so heavily on metaphorical deletion. And a Markov tree also allows 
another, more useful, metaphor. We can imagine that each vertex of the tree is a 
processor, and we can imagine that the marginal is a message that one processor 
passes to another. Within this metaphor, vertices no longer relevant are kept out of 
our way by the rules guiding the message passing, not by deletion. 
 We cover a number of topics in this section. We begin by reviewing our 
marginalization scheme in the hypertree setting and seeing how its details translate 
into the Markov tree setting. We formulate precise descriptions of the operations 
that are carried out by each vertex and precise definitions of the messages that are 
passed from one vertex to another. Then we turn to questions of timing—whether a 
vertex uses a message as soon as it is received or waits for all its messages before it 
acts, how the order in which the vertices act is constrained, and whether the 
vertices act in serial or in parallel. We explain how the Markov tree can be 
expanded into an architecture for the parallel computation, with provisions for 
storing messages as well as directing them. We explain how this architecture 
handles updating when inputs are changed. And finally, we explain how our 
computation can be directed by a simple forward-chaining production system.  
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Translating to the Markov Tree. We now translate our marginalization scheme 
from the hypertree to the Markov tree. 
 Recall the details in the hypertree setting. We have an array A on X, in the 
form of a factorization on a hypertree H. We want the marginal for the hyperedge 
h1. We choose a hypertree construction sequence with h1 as its root, say h1h2...hn, 
and we choose a branching β for h1h2...hn. On each hyperedge hi, we have an array 
Ahi. We repeatedly apply the following operation: 

Operation H. Marginalize the array now on hk to β(hk). Change the 
array now on β(hk) by combining it with this marginal. 

 We apply Operation H first for k=n, then for k=n–1, and so on, down to k=2. 
The array assigned to h1 at the end of this process is the marginal on h1. 
We want now to re-describe Operation H, and the process of its repeated 
application, in terms of the actions of processors located at the vertices of the 
Markov tree (H, E) determined by the branching β. 
 The vertices of (H, E) are the hyperedges h1, h2, ..., hn. We imagine that a 
processor is attached to each of the hi. The processor attached to hi can store an 
array defined on hi, can compute the marginal of this array on hi∩hj, where hj is a 
neighboring vertex, can send the marginal to hj as a message, can accept an array 
on hi (or any smaller set of variables) as a message from a neighbor, and can 
change the array it has stored by combining it with such an incoming message. 
 The edges of (H, E) are  
 {hn, β(hn)}, {hn–1, β(hn–1)}, ..., {h3, β(h3)}, {h2, h1}. 

When we move from hn to β(hn), then from hn–1 to β(hn–1), and so on, we are 
moving inwards in this Markov tree, from the outer leaves to the root h1. The 
repeated application of Operation H by the processors located at the vertices 
follows this path. 
 In order to recast Operation H in terms of these processors, we need some 
more notation. Let Curh denote the array currently stored by the processor at vertex 
h of (H, E). In terms of the local processors and the Curh, Operation H becomes 
the following:  
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Operation M1. Vertex h computes Curh
↓h∩β(h), the marginal of Curh to 

β(h). It sends Curh
↓h∩β(h) as a message to vertex β(h). Vertex β(h) 

accepts the message Curh
↓h∩β(h) and changes Curβ(h) by multiplying it 

by Curh
↓h∩β(h). 

 At the outset, Curh = Ah for every vertex h. Operation M1 is executed first 
for h=hn, then for h=hn–1, and so on, down to h=h2. At the end of this propagation 
process, the array Curh1, the array stored at h1, is the marginal of A on h1. 

An Alternative Operation. Operation M1 prescribes actions by two processors, h 
and β(h). We now give an alternative, Operation M2, which is executed by a single 
processor. Since it is executed by a single processor, Operation M2 will be easier 
for us to think about when we discuss alternative control regimes for the process of 
propagation. 
 Operation M2 differs from Operation M1 only in that it requires a processor 
to combine the messages it receives all at once, rather than incorporating them into 
the combination one by one as they arrive. Each time Operation M1 is executed for 
an h such that β(h)=g, the processor g must change the array it stores by combining 
it with the incoming message. But if processor g can store all its incoming 
messages, then it can delay the combination until it is its turn to marginalize. If we 
take this approach, then we can replace Operation M1 with the following: 

Operation M2a. Vertex h combines the array Ah with all the messages 
it has received, and it calls the result Curh. Then it computes 
Curh

↓h∩β(h), the marginal of Curh to h∩β(h). It sends Curh
↓h∩β(h) as a 

message to β(h). 

 Operation M2a involves action by only one processor, the processor h. When 
Operation M2a is executed by hn, there is no combination, because hn, being a leaf 
in the Markov tree, has received no messages. The same is true for the other leaves 
in the Markov tree. But for vertices that are not leaves in the Markov tree, the 
operation will involve both combination and marginalization. 
 After Operation M2a has been executed by hn, hn–1, and so on down to h2, the 
root h1 will have received a number of messages but will not yet have acted. To 
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complete the process, h1 must combine all its messages and its original array Ah1, 
thus obtaining the marginal A↓h1. We may call this Operation M2b: 

Operation M2b. Vertex h combines the array Ah with all the messages 
it has received, and it reports the result to the user of the system. 

 So Operation M2 actually consists of two operations. Operation M2a is 
executed successively by hn, hn–1, and so on down to h2. Then Operation M2b is 
executed by h1. 
 Operation M2 simplifies our thinking about control, or the flow of 
computation, because it allows us to think of control as moving with the 
computation in the Markov tree. In our marginalization scheme, control moves 
from one vertex to another, from the outer leaves inward towards the root. If we 
use Operation M2, then a vertex is computing only when it has control. 

Formulas for the Messages. We have described verbally how each vertex 
computes the message it sends to its branch. Now we will translate this verbal 
description into a formula that constitutes a recursive definition of the messages. 
The formula will not make much immediate contribution to our understanding, but 
it will serve as a useful reference in the next section, when we discuss how to 
extend our scheme for computing a single marginal to a scheme for computing all 
marginals. 
 Let Mh→β(h) denote the message sent by vertex h to its bud. Our description 
of Operation M2a tells us that  
 Mh→β(h) = Curh

↓h∩β(h), 

where  
 Curh = Ah Π{Mg→β(g) | g∈H and β(g)=h}. 

Putting these two formulas together, we have  
 Mh→β(h) = (Ah Π{Mg→β(g) | g∈H and β(g)=h})↓h∩β(h). (3.5) 

If h is a leaf, then there is no g∈H such that h=β(g), and so (3.5) reduces to 
 Mh→β(h) = Ah

↓h∩β(h), (3.6) 

by the convention that an empty combination is equal to one. 
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 Formula (3.5) constitutes a recursive definition of Mh→β(h) for all h, 
excepting only the root h1 of the budding β. The special case (3.6) defines Mh→β(h) 
for the leaves; a further application of (3.5) defines Mh→β(h) for vertices one step in 
towards the root from the leaves; a third application defines Mh→β(h) for vertices 
two steps in towards the root from the leaves; and so on. 
 We can also represent Operation M2b by a formula:  
 A↓h = Ah Π{Mg→β(g) | g∈H and β(g)=h}. (3.7) 

Storing the Messages. If we want to think in terms of Operation M2, then we must 
imagine that our processors have a way to store incoming messages. 
 Figure 3.1 depicts an architecture that provides for such storage. The figure 
shows a storage register at vertex g for each of g's neighbors. The registers for 
neighbors on the side of g away from the goal vertex are used to store incoming 
messages. The register for the neighbor in the direction of the goal vertex is used to 
store the vertex's outgoing message. The registers serve as communication links 
between neighbors; the outgoing register for one vertex being the incoming register 
for its neighbor in the direction of the goal vertex. 

Figure 3.1. A typical vertex processor g, with incoming messages 
from vertices f and e and outgoing message to h; here g=β(f)=β(e) and 
h=β(g). 
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 The message Mg→β(g), which vertex g stores in the register linking g to its 
bud, is an array on g∩β(g). It is the marginal for the bud of an array on g. 

Flexibility of Control. Whether we use operation M1 or M2, it is not necessary to 
follow exactly the order hn, hn–1, and so on. The final result will be the same 
provided only that a processor never sends a message until after it has received and 
absorbed all the messages it is supposed to receive. 
 This point is obvious when we look at a picture of the Markov tree. 
Consider, for example a Markov tree with 15 vertices, as in Figure 3.2. The 
vertices are numbered from 1 to 15 in this picture, indicating a construction 
sequence h1h2...h15. Since we want to find the marginal for vertex 1, all our 
messages will be sent towards vertex 1, in the directions indicated by the arrows. 
Our scheme calls for a message from vertex 15 to vertex 3, then a message from 
vertex 14 to vertex 6, and so on. But we could just as well begin with messages 
from 10 and 11 to 5, follow with a message from 5 to 2, then messages from 12, 
13, and 14 to 6, from 6 and 15 to 3, and so on. 

Figure 3.2. A tree with 15 vertices. 
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 Returning to the metaphor of deletion, where each vertex is deleted when it 
sends its message, we can say that the only constraint on the order in which the 
vertices act is that each vertex must be a leaf when it acts; all the vertices that used 
it as a branch must have sent their messages to it and then been deleted, leaving it a 
leaf. 
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 The different orders of marginalization that obey this constraint correspond, 
of course, to the different tree construction sequences for (H, E) that use the 
branching β. 
 So far, we have been thinking about different sequences in which the 
vertices might act. This is most appropriate if we are really implementing the 
scheme on a serial computer. But if the different vertices really did have 
independent processors that could operate in parallel, then some of the vertices 
could act simultaneously. Figure 3.3 illustrates one way this might go for the 
Markov tree of Figure 3.2. In step 1, all the leaf processors project to their 
branches. In step 2, vertices 4, 5, and 6 (which would be leaves were the original 
leaves deleted) project. And so on. 

Figure 3.3. An example of the message-passing scheme for 
computation of the marginal of vertex 1. 
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 If the different processors take different amounts of time to perform 
Operation M2 on their inputs, then the lock-step timing of Figure 3.3 may not 
provide the quickest way to find the marginal for h1. It may be quicker to allow a 
processor to act as soon as it receives messages from its leaves, whether or not all 
the other processors that started along with these leaves have finished.  
 In general, the only constraint, in the parallel as in the serial case, is that 
action move inwards towards h1. Each vertex must receive and absorb all its 
messages from vertices farther away from h1 before sending its own message on 
towards h1. (In terms of Figure 3.1, each processor must wait until all its incoming 
registers are filled before it can compute a message to put in its outgoing register.) 
If we want to get the job done as quickly as possible, we will demand that each 
processor go to work as quickly as possible subject to this constraint. But the job 
will get done eventually provided only that all the processors act eventually. It will 
get done, for example, if each processor checks on its inputs periodically or at 
random times and acts if it has those inputs [Pearl 1986].  
 If we tell each processor who its neighbors are and which one of these 
neighbors lies on the path towards the goal, then no further global control or 
synchronization is needed. Each processor knows that it should send its outgoing 
message as soon as it can after receiving all its incoming messages. The leaf 
processors, which have no incoming messages, can act immediately. The others 
must wait their turn.  

Updating Messages. Suppose we have completed the computation of A↓h1, the 
marginal for our goal vertex. And suppose we now find reason to change A by 
changing one or more of our inputs, the Ah. If we have implemented the 
architecture just described, with storage registers between each of the vertices, then 
we may be able to update the marginal A↓h1 without discarding all the work we 
have already done. If we leave some of the inputs unchanged, then some of the 
computations may not need to be repeated. 
 Unnecessary computation can be avoided without global control. We simply 
need a way of marking arrays, to indicate that they have received any needed 
updating. Suppose the processor at each vertex h can recognize the mark on any of 
its inputs (on Ah, our direct input, or on any message Mg→β(g) from a vertex g that 
has h as its bud), and can write the mark on its own output, the message Mh→β(h). 
When we wish to update the computation of A↓h1, we put in the new values for 
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those Ah we wish to change, and we mark all the Ah, both the ones we have 
changed, and the others, which we do not want to change. Then we run the system 
as before, except that a processor, instead of waiting for its incoming registers to 
be full before it acts, waits until all its inputs are marked. The processor can 
recognize when an input is marked without being changed, and in this case it 
simply marks its output instead of re-computing it. 
 Of course, updating can also be achieved with much less control. As Pearl 
[1986] has emphasized, hardly any control at all is needed if we are indifferent to 
the possibility of wasted effort. If we do not care whether a processor repeats the 
same computations, we can forget about marking arrays and simply allow each 
processor to re-compute its output from its inputs periodically or at random times. 
Under these circumstances, any change in one of the Ag will eventually be 
propagated through the system to change A↓h1. 
 The idea of updating is theoretically important in probability theory because 
of the example of conditioning. We often want to condition a probability 
distribution on the observed values of one or more variables. Conditioning on a 
variable X can be achieved by multiplying a factorization of the probability 
distribution by a potential on X. Since this new potential on X can be incorporated 
in the potential on any hyperedge containing X, conditioning on X can be achieved 
by changing the input potential in just one of the hyperedges in the hypertree. We 
will give an example of this in section 3.7, in this chapter. We will develop the 
general theory in chapter 6. 

A Simple Production System. In reality, we will never have a parallel computer 
organized precisely to fit our problem. Our story about passing messages between 
independent processors should be thought of as metaphor, not as a guide to 
implementation. Implementations can take advantage, however, of the modularity 
the metaphor reveals. 
 One way to take advantage of this modularity, even on a serial computer, is 
to implement the computational scheme in a simple forward-chaining production 
system. A forward-chaining production system consists of a working memory and 
a rule-base, a set of rules for changing the contents of the memory. (See Brownston 
et al. [1985] or Davis and King [1984].) 
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 A very simple production system is adequate for our problem. We need a 
working memory that initially contains Ah for each vertex h of (H, E), and a rule-
base consisting of just two rules, corresponding to Operations M2a and M2b. 

Rule 1: If Ah is in working memory and Mg→β(g) is in working 
memory for every g such that β(g)=h, then use (3.6) to compute 
Mh→β(h), and place it in working memory. 

Rule 2: If Ah1 is in working memory and Mg→β(g) is in working 
memory for every g such that β(g)=h1, then use (3.7) to compute A↓h1, 
and print the result. 

 Initially, there will be no Mg→β(g) at all in working memory, so Rule 1 can 
fire only for h such that there is no g with β(g)=h—i.e., only for h that are leaves. 
But eventually Rule 1 will fire for every vertex except the root h1. Then Rule 2 will 
fire, completing the computation. Altogether, there will be n firings, one for each 
vertex in the Markov tree. 
 Production systems are usually implemented so that a rule will fire only 
once for a given instantiation of its antecedent; this is called refraction [Brownston 
et al. 1985, pp. 62–63]. If our simple production system is implemented with 
refraction, there will be no unnecessary firings of rules; only the n firings that are 
needed will occur. Even without refraction, however, the computation will 
eventually be completed. 
Since refraction allows a rule to fire again for a given instantiation when the inputs 
for that instantiation are changed, this simple production system will also handle 
updating efficiently, performing only those re-computations that are necessary.  

3.6. Simultaneous Propagation in Markov Trees 

In the preceding section, we were concerned with the computation of the marginal 
on a single vertex of the Markov tree. In this section, we will be concerned with 
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how to compute the marginals on all vertices simultaneously. As we will see, this 
can be done efficiently with only slight changes in architecture or rules. 

Computing all the Marginals. If we can compute the marginal of A on one 
hyperedge in H, then we can compute the marginals on all the hyperedges in H. 
We simply compute them one after the other. It is obvious, however, that this will 
involve much duplication of effort. How can we avoid the duplication? 
 The first point to notice in answering this question is that we only need one 
Markov tree. Though there may be many Markov tree representatives for H, any 
one of them can serve for the computation of all the marginals. Once we have 
chosen a Markov tree representative (H, E), then no matter which element h of H 
interests us, we can choose a tree construction sequence for (H, E) that begins with 
h, and since this sequence is also a hypertree construction sequence for H, we can 
apply the method of section 3.4 to it to compute A↓h. 
 The second point to notice is that the message passed from one vertex to 
another, say from f to g, will be the same no matter what marginal we are 
computing. If β is the budding that we use to compute A↓h, the marginal on h, and 
β' is the budding we use to compute A↓h', and if β(f)=β'(f)=g, then the message 
Mf→β(f) that we send from f to g when computing A↓h is the same as the message 
Mf→β'(f) that we send from f to g when computing A↓h'. To see that this is true, think 
about Figure 3.4. Since g is the branch for f in both computations, h and h' are both 
on the g side of the edge {f, g}. All the computation leading up to the message 
passed from f to g takes place on the other side, the f side, and is not influenced by 
whether the ultimate goal, after the passage through f and g, is h or h'.  
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Figure 3.4.  
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 Since the value of Mf→β(f) does not depend on the budding β, we may write 
Mf→g instead of Mf→β(f) when β(f)=g. 
 If we compute marginals for all the vertices, then we will eventually 
compute both Mf→g and Mg→f for every edge {f, g}. We will compute Mf→g when 
we compute the marginal on g or on any other vertex on the g side of the edge, and 
we will compute Mg→f when we compute the marginal on g or on any other vertex 
on the g side of the edge. 
 We can easily generalize the recursive definition of Mg→β(g) that we gave in 
section 3.5 to a recursive definition of Mg→h for all neighbors g and h. To do so, we 
merely restate (3.5) in a way that replaces references to the budding β by 
references to neighbors and the direction of the message. We obtain 
 Mg→h = (Ag Π{Mf→g | f∈(Ng–{h})})↓g∩h, (3.8) 

where Ng is the set of all g's neighbors in (H, E). If g is a leaf vertex, then (3.8) 
reduces to Mg→h = Ag

↓g∩h. 
 After we carry out the recursion to compute Mg→h for all pairs of neighbors g 
and h, we can compute the marginal of A on each h by  
 A↓h = Ah Π{Mg→h | g∈Nh}. (3.9) 

The General Architecture. A slight modification of the architecture shown in 
Figure 3.1 will allow us to implement the simultaneous computation of the 
marginals on all the hyperedges. We simply put both two storage registers between 
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every pair of neighbors f and g, as in Figure 3.5. One register stores the message 
from f to g; the other stores the message from g to f. 
 Figure 3.6 shows a more elaborate architecture for the simultaneous 
computation. In addition to the storage registers that communicate between 
vertices, this figure shows registers where the original arrays, the Ah, are put into 
the system and the marginals, the A↓h, are read out. 

Figure 3.5. The two storage registers between f and g. 
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Figure 3.6. Several vertices, with storage registers for communication 
between themselves and with the user. 
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 In the architecture of Figure 3.1, computation is controlled by the simple 
requirement that a vertex g must have messages in all its incoming registers before 
it can compute a message to place in its outgoing register. In the architecture of 
Figure 3.6, computation is controlled by the requirement that a vertex g must have 
messages in all its incoming registers except the one from h before it can compute 
a message to send to h. 
 This basic requirement leaves room for a variety of control regimes. Most of 
the comments we made about the flexibility of control for Figure 3.1 carry over to 
Figure 3.6. 
 In particular, updating can be handled efficiently if a method is provided for 
marking updated inputs and messages. If we change just one of the input, then 
efficient updating will save about half the work involved in simply re-performing 
the entire computation. To see that this is so, consider the effect of changing the 
input Ah in Figure 3.4. This will change the message Mg→f, but not the message 
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Mf→g. The same will be true for every edge; one of the two messages will have to 
be recomputed, but not the other. 
 It may be enlightening to look at how the lock-step control we illustrated 
with Figure 3.3 might generalize to simultaneous computation of the marginals for 
all vertices. Consider a lock-step regime where at each step, each vertex looks and 
sees what messages it has the information to compute, computes these messages, 
and sends them. After all the vertices working are done, they look again, see what 
other messages they now have the information to compute, compute these 
messages, and send them. And so on. Figure 3.7 gives an example. At the first step, 
the only messages that can be computed are the messages from the leaves to their 
branches. At the second step, the computation moves inward. Finally, at step 3, it 
reaches vertex 2, which then has the information needed to compute its own 
marginal and messages for all its neighbors. Then the messages move back out 
towards the leaves, with each vertex along the way being able to compute its own 
marginal and messages for all its other neighbors as soon as it receives the message 
from its neighbor nearest vertex 2. 
 In the first phase, the inward phase, a vertex sends a message to only one of 
its neighbors, the neighbor towards the center. In the second phase, the outward 
phase, a vertex sends k–1 messages, where k is the number of its neighbors. Yet 
the number of messages sent in the two phases is roughly the same, because the 
leaf vertices participate in the first phase and not in the second. 
 There are seven vertices in the longest path in the tree of Figure 3.7. 
Whenever the number of vertices in the longest path is odd, the lock-step control 
regime will result in computation proceeding inwards to a central vertex and then 
proceeding back outwards to the leaves. Whenever this number is even, there will 
instead be two central vertices that send each other messages simultaneously, after 
which they both send messages back outwards towards the leaves. 
 If we really do have independent processors for each vertex, then we do not 
have to wait for all the computations that start together to finish before taking 
advantage of the ones that are finished to start new ones. We can allow a new 
computation to start whenever a processor is free and it has the information 
needed. On the other hand, we need not require that the work be done so promptly. 
We can assume that processors look for work to do only at random times. But no 
matter how we handle these issues, the computation will converge to some 
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particular vertex or pair of neighboring vertices and then move back out from that 
vertex or pair of vertices. 
 There is exactly twice as much message passing in our scheme for 
simultaneous computation as there was in our scheme for computing a single 
marginal. Here every pair of neighbors exchange messages; there only one 
message was sent between every pair of neighbors. Notice also that we can make 
the computation of any given marginal the beginning of the simultaneous 
computation. We can single out any hyperedge h (even a leaf), and forbid it to send 
a message to any neighbor until it has received messages from all its neighbors. If 
we then let the system of Figure 3.7 run, it will behave just like the system of 
Figure 3.3 with h as the root, until h has received messages from all its neighbors. 
At that point, h can compute its marginal and can also send messages to all its 
neighbors; the second half of the message passing then proceeds, with messages 
moving back in the other direction. 

The Corresponding Production System. Implementing simultaneous 
computation in a production system requires only slight changes in our two rules. 
The following will work: 

Rule 1': If Ag is in working memory, and Mf→g is in working memory 
for every f in Ng–{h}, then use (3.8) to compute Mg→h, and place it in 
working memory. 

Rule 2': If Ah is in working memory, and Mg→h is in working memory 
for every g in Nh, then use (3.9) to compute A↓h, and print the result. 

 Initially, there will be no Mf→g at all in working memory, so Rule 1' can fire 
only for g and h such that Ng–{h} is empty—i.e., only when g is a leaf and h is its 
bud. But eventually Rule 1' will fire in both directions for every edge {g, h}. Once 
Rule 1' has fired for all the neighbors g of h, in the direction of h, Rule 2' will fire 
for h. Altogether, there will be 3n–2 firings, two firings of Rule 1' for each of the 
n–1 edges, and one firing of Rule 2' for each of the n vertices. 
 As the count of firings indicates, our scheme for simultaneous computation 
finds marginals for all the vertices with roughly the same effort that would be 
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required to find marginals for three vertices if this were done by running the 
scheme of section 3.5 three times. 

Figure 3.7. An example of the message-passing scheme for 
simultaneous computation of all marginals. 
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3.7 An Example 

This example is adapted from Shachter and Heckerman [1987]. Consider three 
variables D, B and G representing diabetes, blue toe, and glucose in urine, 
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respectively. The frame for each variable has two configurations. D=d will 
represent the proposition diabetes is present (in some patient) and D=~d will 
represent the proposition diabetes is not present. Similarly for B and G. Let P 
denote the joint probability distribution for {D, B, G}. We will assume that B and 
G are conditionally independent (with respect to P) given D. As we will explain in 
chapter 6, this means that we can factor P as follows. 

 P = PD PB|D PG|D (3.10) 
where PD is the marginal on {D} (PD=P↓{D}), PB|D is a potential on {D, B} called 
the conditional of B given D, and PG|D is a potential on {D, G} called the 
conditional of G given D. (This means that PD(d) is the probability that D=d, 
PB|D(d, b) is the conditional probability that B=b given that D=d, and so on.) 
 Suppose the potentials PD, PB|D, and PG|D have the values shown in Figure 
3.8. 

Figure 3.8. The potentials PD, PB|D, and PG|D. 
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 Formula (3.10) tells us that P factors on the hypertree {{D}, {D, B}, {D, 
G}}. Since we would like to compute the marginals for B and G, we will expand 
the hypertree to include the hyperedges {B} and {G}. This does not take us outside 
of our theory, because we can replace (3.10) with the equivalent formula 
 P = PD PB|D PG|D I{B} I{G}, 

where I{B}(x) = 1 for all x∈W{B}, and I{G}(x) = 1 for all x∈W{G}. Figure 3.9 show 
the expanded hypertree and a Markov tree representative. 
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Figure 3.9. The hypertree and a Markov tree representative. 
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 Figure 3.10 shows the results of propagating the potentials following the 
scheme described in section 2. For each vertex h, the input potentials are shown as 
Ih and the output potentials are shown as Oh. All the messages are also shown. 

Figure 3.10. The initial propagation of potentials. 
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 Now suppose we observe that the patient has blue toe. As we will explain in 
chapter 6, this can be taken into account by changing the input for variable B to the 
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array that assigns the value 1 to b and the value 0 to ~b. If we change this one input 
and leave the other inputs unchanged, the product of the inputs will be proportional 
to the posterior probability distribution given the observation. Thus we can find the 
posterior marginal probabilities by propagating and then normalizing the output 
potentials. This is done in Figure 3.11. 

Figure 3.11. The results of propagation after the presence of blue toe 
is observed. 
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 The probability for diabetes has increased from .1 to .2059 and consequently 
the probability for glucose in urine has also increased from .0990 to .1932. Now 
suppose the patient is tested for glucose in urine, the results indicate that there is 
none. This information is represented by a potential that assigns the value 0 to g 
and the value 0 to ~g. The other potentials remain the same as before. Figure 3.12 
shows the results of propagating now. The probability of diabetes has decreased 
from .2059 to .0255. 
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Figure 3.12. The results of propagation after absence of glucose in 
urine is observed. 
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3.8. Proofs 

Proof of Proposition 3.1. If h1⊆h2⊆g and G is an array on g, then (G↓h2)↓h1 = G↓h1. 
 (G↓h2)↓h1(x)  = Σ{(G↓h2)(x, y) | y∈Wh2–h1} 
  = Σ{Σ{G(x, y, z) | z∈Wg–h2} | y∈Wh2–h1} 
  = Σ{G(x, y, z) | z∈Wg–h2, y∈Wh2–h1} 
  = Σ{G(x, w) | w∈Wg–h1} 
  = G↓h1(x). 

Proof of Proposition 3.2. Suppose G and H are arrays on g and h respectively. 
Then 
 (GH)↓g(x)  = Σ{(GH)(x, y) | y∈Wh–g} 
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  = Σ{G(x)H(x↓g∩h, y) | y∈Wh–g} 
  = G(x) Σ{H(x↓g∩h, y) | y∈Wh–g} 
  = G(x)H↓g∩h(x↓g∩h) 
  = (GH↓g∩h)(x). 

Proof of Proposition 3.3. We have 
 A = At Π{Ah | h∈(H–{t})}, 

and Π{Ah | h∈(H–{t})} is an array on X'. So by Proposition 3.2, 
 A↓X' = At

↓t∩X' Π{Ah | h∈H–{t}}. 

This can also be written 
 A↓X' = At

↓t∩b Π{Ah | h∈H–{t}}. (3.11) 

Finally, we can rewrite (3.11) as (3.4). 



 
 
 
CHAPTER FOUR 

 
Axioms for Local Computation of Marginals 

 

 
 
In the preceding chapter, we learned how to find marginal probabilities using local 
computations for joint probability distributions that factor on hypertrees. Now we 
will distill the essential features that make this local computation possible into a 
small set of axioms. 
 The present chapter is short because the work was really all done in the 
preceding chapter. The theory we developed there was based on Propositions 3.1 
and 3.2, together with the associativity and commutativity of multiplication. So we 
can simply think of combination and marginalization as primitive operations and 
adopt Propositions 3.1 and 3.2, along with the associativity and commutativity of 
combination, as axioms. 
 The important point is that these axioms are satisfied in many other 
computational problems in addition to the problem of marginalizing probabilities. 
After stating the axioms and sketching how they imply the computational theory of 
the preceding chapter, we list some of these other problems. We will examine 
some of them in detail in later chapters. 
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4.1. The Axiomatic Framework 

Variables and Valuations. We begin with a finite nonempty set X and a 
nonempty set Vh for each subset h of X. We call elements of X variables, and we 
call subsets of X domains. We call elements of Vh valuations on h. We write V for 
∪{Vh|h⊆X}, the set of all valuations. 

Combination. We assume that ⊗ is a binary operation on the set of valuations. In 
other words, we assume that for any two valuations G and H there is a third 
valuation, denoted by G⊗H. We call G⊗H the combination of G and H. If G and H 
are valuations on g and h respectively, then G⊗H is a valuation on g∪h. 

Marginalization. We assume also that for every pair h and g of domains such that 
h⊆g, there is a mapping that maps every valuation on g to a valuation on h. We 
write G↓h for the valuation to which the valuation G on g is mapped. We call G↓h 
the marginal of G on h. 

Axioms. We assume that combination and marginalization satisfy these three 
axioms. 

Axiom A1 (Commutativity and associativity of combination): If G, H, 
and K are valuations, then G⊗H = H⊗G and G⊗(H⊗K) = (G⊗H)⊗K. 

Axiom A2 (Consonance of marginalization): If h1⊆h2⊆g and G is a 
valuation on g, then (G↓h2)↓h1 = G↓h1. 

Axiom A3 (Modularity): If G and H are valuations on g and h, 
respectively, then (G⊗H)↓g = G⊗(H↓g∩h). 

 Axiom A1 can also be expressed by saying that the binary operation ⊗ is 
commutative and associative, or by saying that the pair (V,⊗) form a commutative 
semigroup. It follows from Axiom A1 that the result of combining two or more 
valuations does not depend on the order of combination. So instead of writing an 
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expression such as (...((Ah1⊗Ah2)⊗Ah3)⊗...⊗Ahn), which indicates the order of 
combination, we can write simply Ah1⊗Ah2⊗Ah3⊗

...⊗Ah or ⊗{Ahi | i=1, ..., n}. 
 Axioms A2 and A3 are essentially identical to Propositions 3.1 and 3.2, 
respectively, of the preceding chapter. 

Factorization. Suppose H is a hypergraph on X, and suppose  
A = ⊗{Ah|h∈H}, 

where for each domain h in H, Ah is a valuation on h. Then we say that A, which is 
a valuation on ∪H, factors on H. 

4.2. Computational Theory 

Now we formulate and prove two propositions that reproduce the basic 
computational theory of Chapter 3. 
 The first proposition is essentially identical to Proposition 3.3 of the 
preceding chapter. It concerns a hypergraph H on X, a twig t in H, and a branch b 
for t. We write H' for H–{t} and X' for ∪H' = X–(t–b). 

Proposition 4.1. Suppose the valuation A factors on the hypergraph 
H; 

A = ⊗{Ah|h∈H}, 
where Ah is a valuation on h. Then  
 A↓X' = Ab⊗At↓t∩b⊗(⊗{Ah | h∈H–{t, b}}). (4.1) 

Formula (4.1) says that the marginal A↓X' factors on H'. On b we have the factor 
Ab⊗At↓t∩b, and on each other h in H', we have the original factor Ah. 
 The computational significance of Proposition 4.1 is the same as the 
computational significance of Proposition 3.3. Whenever a hypergraph as a twig, 
we can reduce a factorization on that hypergraph to the smaller hypergraph without 
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the twig, using only computations involving the twig and its branch. We do not 
need to work with all the variables in the hypergraph. 
 The proof of Proposition 4.1 is the same as the proof of Proposition 3.3, 
except that this time the steps are justified by our axioms. Notice that we use only 
Axioms A1 and A3. 

Proof of Proposition 4.1. By Axiom A1, we can write  
 A = (⊗{Ah | h∈H') ⊗ At. 
Applying Axiom A3 to this expression, we obtain 
 A↓X' = (⊗{Ah | h∈H') ⊗ At↓t∩X'. 
Since b is a branch for t, t∩X' = t∩b. So 
 A↓X' = (⊗{Ah | h∈H') ⊗ At↓t∩b. 
By Axiom A1, we can rearrange the order of the factors in this 
expression to obtain (4.1). End of Proof. 

 Axiom A2 becomes relevant when H is a hypertree, and we want to apply 
Proposition (4.1) repeatedly in order to find A's marginal on a hyperedge. We dealt 
with this case informally in Chapter 3. This time around, we will state the result 
more formally. This requires considerable notation. 
 First, suppose H is a hypertree, suppose h1h2...hn is a hypertree construction 
sequence for H, and suppose β is a branching for h1h2...hn. Let Xk denote 
h1∪...∪hk, and let Hk denote {h1, h2, ..., hk}, for k=1, ..., n. 
 Next, suppose {Ah|h∈H} is a collection of valuations; Ah is a valuation on h 
for each h. For each k between 1 and n, inclusive, we define a collection of 
valuations {Ah,k|h∈Hk}, where Ah,k is a valuation on h. We do so recursively, 
working backwards from n. We set Ah,n = Ah, so that {Ah,n|h∈Hn} is the same as 
{Ah|h∈H}. We then define {Ah,n-1|h∈Hn-1} by setting 

Ab(hn),n-1 = Ab(hn),n⊗Ahn,n↓hn∩b(hn) 
and Ah,n-1 = Ah,n for all other h in Hn-1. And for k from n-1 down to 2, we similarly 
and successively define {Ah,k-1|h∈Hk-1} in terms of {Ah,k|h∈Hk} by setting  

Ab(hk),k-1 = Ab(hk),k⊗Ahk,k↓hk∩b(hk) 
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and Ah,k-1 = Ah,k for all other h in Hk-1. 
 Notice that we can compute the collections {Ah,k|h∈Hk} step by step, using 
only computations involving the twigs and their branches. The step from 
{Ah,k|h∈Hk} to {Ah,k-1|h∈Hk-1} involves only a marginalization from hk to 
hk∩b(hk) and then a combination on b(hk). 
 Now we can state our conclusion formally: 

Proposition 4.2. If A = ⊗{Ah|h∈H}, then 
 A↓Xk = ⊗{Ah,k|h∈Hk} (4.2) 
for k=1, ...,n-1. 

Since Hk={h1}, X1=h1, and {Ah1,1}, (4.2) reduces to  
 A↓h1 = Ah1,1 (4.3) 

when k=1. Thus the step-by-step computations on the twigs and their branches 
enable us to find A's marginal on h1. Since we can find a hypertree construction 
sequence beginning with an arbitrary hyperedge, this means we can find the 
marginal on an arbitrary hyperedge using local computations. 

Proof of Proposition 4.2. By Proposition 4.1, 
 ⊗{Ah,r|h∈Hr} = (⊗{Ah,r+1|h∈Hr+1})↓Xr 
for r=k, ...,n-1. So 
 ⊗{Ah,k|h∈Hk} = (⊗{Ah,k+1|h∈Hk+1})↓Xk 
  = ((⊗{Ah,k+2|h∈Hk+2})↓Xk+1)↓Xk 
  . . . 
  = ((...((⊗{Ah,n|h∈Hn})↓Xn–1)↓Xn–

2...)↓Xk+1)↓Xk. 
  = ((...(A↓Xn–1)↓Xn–2...)↓Xk+1)↓Xk. 
By Axiom A2, the last expression is equal to A↓Xk. End of Proof. 
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 Propositions 4.1 and 4.2 simply repeat, in the general setting of our axioms, 
what we learned about probability in section 3.4 of the preceding chapter. 
Everything that we said about computation in Markov trees in sections 3.5 and 3.6 
also carries over to this general setting. 

4.3. Instances of the Axioms 

In chapter 3, we satisfied Axioms A1, A2, and A3 by assigning a finite frame to 
each variable, taking valuations to be real-valued functions on the frames of for 
sets of variables, taking combination to be multiplication, and taking 
marginalization to be marginalization in the usual probability sense. Here is list of 
other examples. We will study some of these examples in greater detail in later 
chapters. 
 Finding marginals is of some interest in all these examples, but in most of 
the examples the main goal is to find what we call, in general, solution 
configurations. They, too, can be found by local computation when a valuation 
factors on a hypertree. In chapter 7, we will show how the axiomatic framework of 
this chapter can be extended to an axiomatic framework that accounts for such 
local computation of solution configurations. 

Belief Functions. In the next chapter, we will show Axioms A1, A2, and A3 are 
satisfied if we take valuations to be belief functions, combine them by Dempster's 
rule of combination, and marginalize them in the standard way. 
 We would like to remark here that we first understood local computation, 
and first isolated the axioms, in our study of the belief function case. This work is 
reported in Shenoy and Shafer [1986], Shenoy, Shafer and Mellouli [1986], and 
Shafer, Shenoy and Mellouli [1987]. We have presented the probability case first 
in this book only because we expect it to be more familiar and transparent to most 
of our readers. 

Constraint Satisfaction.  
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Discrete Optimization.  

Sparse Linear Equations.  





 
 
 
CHAPTER FIVE 

 

Belief-Function Propagation 
 

 
 
In this chapter, we study the problem of propagating belief functions using local 
computations. This problem has been examined previously by Shafer and Logan 
[1987], Shenoy and Shafer [1986], Shenoy, Shafer and Mellouli [1986], Kong 
[1986], Dempster and Kong [1986], Shafer, Shenoy and Mellouli [1987], and 
Mellouli [1987]. 
 In the case of belief functions, the idea of factoring a single probability 
distribution into potentials is replaced by the idea of decomposing evidence into 
independent items of evidence—items that involve independent uncertainties. Each 
item of evidence is represented by a belief function that bears on a few variables, 
and the belief functions are combined by Dempster's rule. The result is a belief 
function representing the total evidence on all the variables.  
 We begin by defining belief functions, basic probability assignment 
functions, plausibility functions, and commonality functions. All of these functions 
contain the same information and they can all be defined mathematically in terms 
of a random non-empty subset. 
 Next, we introduce the ideas of projecting a subset from one frame to a 
subset of a smaller frame and vacuously extending a subset from one frame to a 
subset of a larger frame. 
 Using projection of subsets, we define marginals of belief functions. 
 The combination operator for belief functions, the operator that plays the 
role of multiplication for potentials, is Dempster's rule of combination. 
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Mathematically, the rule corresponds to finding the distribution of the intersection 
of independent random non-empty subsets, conditional on this intersection being 
non-empty. Intuitively, combination of belief functions by this rule corresponds to 
pooling the evidence on which the belief functions is based. The combination 
results in a belief function that is supposed to represent the pooled evidence. We 
give two descriptions of Dempster's rule, one in terms of basic probability 
assignments, and one in terms of commonality functions. 
 We use the axiomatic framework of chapter 4 to demonstrate that if the 
belief functions being combined by Dempster's rule bear on separate hyperedges of 
a hypertree of variables, marginals of the belief function resulting from the 
combination can be obtained using local computation. 
 We conclude by discussing implementation of the belief-function 
propagation algorithm. 

5.1. Basic Definitions 

The definitions we give here are purely mathematical; we define belief functions in 
terms of random non-empty subsets. We should caution the reader, however, that 
the idea of a random subset does not provide an appropriate intuitive basis for the 
interpretation of belief functions as assessments of evidence. For information on 
the interpretation of belief functions, see Shafer [1976, 1987]. 

Random Non-Empty Subset. Suppose WX is the frame for a variable X, its set of 
possible values. A random subset S  of WX is defined by giving a probability 
measure on the set of all subsets of WX. In other words, we assign to the subsets of 
WX non-negative numbers adding to one. We write Pr[S=A] for the non-negative 
number assigned to the subset A of WX, and we call Pr[S=A] the probability that S  
is equal to A. If Pr[S=∅] = 0, then we say that the random subset S  is non-empty. 
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Belief Function. A function Bel that assigns a degree of belief Bel(A) to every 
subset A of WX is called a belief function on X if there exists a random non-empty 
subset S  of WX such that Bel is given by 
 Bel(A) = Pr[S⊆A] 

for every subset A of WX. Intuitively, the number Bel(A) is the degree to which we 
judge given evidence to support the proposition that the true value of X is in A, or 
the degree to which we think it reasonable to believe this proposition on the basis 
of that evidence alone. 
 A subset A of WX is called a focal element of Bel if Pr[S=A] is positive. 
 The simplest belief function on X is the one corresponding to the random 
subset that is equal to the whole set WX with probability one. We call this belief 
function the vacuous belief function on X. The set WX itself is its only focal 
element. The vacuous belief function on X is appropriate for representing the 
opinion that given evidence is irrelevant to X. 

Basic Probability Assignment Function. The information contained in a belief 
function can be expressed in several different ways. One way is in terms of the 
basic probability assignment function m, defined by 
 m(A) = Pr[S=A] 

for every subset A of WX. Since S  is non-empty, m(∅)=0, and since WX is finite, 
 ∑{m(A) | A⊆WX} = 1. 

Intuitively, m(A) measures the belief that is committed exactly to A (and to nothing 
smaller or larger). We can express Bel in terms of m as follows: 
 Bel(A) = Pr[S⊆A] 
  = ∑{Pr[S=B] | B⊆A} 
  = ∑{m(B) | B⊆A}. 
It is shown in Shafer [1976, Ch. 2] that we can also obtain m from Bel: 

 m(A) = ∑{(–1)|A–B| Bel(B) | B⊆A}, 

where |A–B| denotes the number of elements in the set A–B.  

Plausibility Function. Another way of expressing the information contained in a 
belief function Bel is in terms of the plausibility function Pl, which is given by 
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 Pl(A) = 1 – Bel(WX–A) = Pr[S∩A≠∅] 

for every subset A of WX. Intuitively, Pl(A) measures the extent to which given 
evidence fails to refute A. To recover Bel from Pl, we use the relation 
 Bel(A) = 1 – Pl(WX–A). 

Notice that Bel(A) ≤ Pl(A) for every subset A of WX. Both Bel and Pl are 
monotone: Bel(A) ≤ Bel(B) and Pl(A) ≤ Pl(B) whenever A⊆B. 

Commonality Function. Finally, the information in Bel or m or Pl is also 
contained in the commonality function Q, defined by 
 Q(A) = Pr[S⊇A] = ∑{m(B) | B⊇A} 

for every subset A of WX. The following proposition tells us that we can recover S  
or m from Q and also states another property of commonality functions. 

Proposition 5.1. Let Q and m be commonality function and basic 
probability assignment function corresponding to S . Then 
 m(A) = Pr[S=A] = Σ{(–1)|B–A| Q(B) | B⊇A} 
for all subsets A of WX, and 
 Σ{(–1)|A|+1 Q(A) | ∅≠A⊆WX} = 1. (5.1) 

 It is shown in Shafer [1976, Ch.2] that 
 Q(A) = ∑{(–1)|B|+1 Pl(B) | ∅≠B⊆A}, (5.2) 

and 

 Pl(A) = ∑{(–1)|B|+1Q(B) | ∅≠B⊆A} 

for every non-empty subset A of WX. We do not need formulas for the empty set, 
since Q(∅) = 1 and Pl(∅) = 0 for any belief function. Notice also that if the set A 
contains only a single element, then (5.2) reduces to Q(A) = Pl(A). 
 Our definitions generalize straightforwardly to sets of variables. A random 
subset S  of Wh, where h is a finite set of variables, is defined by giving a 
probability measure on the set of all subsets of Wh. We call Bel a belief function on 
h if there exists a random non-empty subset S  of Wh such that Bel(A) = Pr[S⊆A] 
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for every subset A of Wh. We call m a basic probability assignment function for h 
if there exists a random non-empty subset S  of Wh such that m(A) = Pr[S=A] for 
every subset A of Wh. We call Pl a plausibility function for h if there exists a 
random non-empty subset S  of Wh such that Pl(A) = Pr[S∩A≠∅] for every subset 
A of Wh. And finally, we call Q a commonality function for h if there exists a 
random non-empty subset S  of Wh such that Q(A) = Pr[S⊇A] for every subset A of 
Wh. 
 In chapter 3, we established the convention that W∅, the frame for the empty 
set ∅, consists of a single element, ♦; W∅={♦}. This implies that there is only one 
random non-empty subset of W∅; it is equal to the whole frame W∅ with 
probability one. And hence there is only one belief function on ∅; it has the values 
Bel(∅)=0, and Bel(W∅)=1. The corresponding values for m, Pl, and Q are m(∅)=0 
and m(W∅)=1, Pl(∅)=0 and Pl(W∅)=1, and Q(∅)=1 and Q(W∅)=1. 

5.2. Projection and Vacuous Extension of Subsets 

In this section, we define projection of a subset of one frame to a subset of a 
smaller frame and vacuous extension of a subset of a frame to a subset of a larger 
frame. 

Projection. If A is subset of W{W,X,Y,Z}, for example, then the marginal of A to a 
subset of W{W,X} consists of the elements of W{W,X} which can be obtained by 
projecting elements of A to W{W,X}.  
 If g and h are sets of variables, h⊆g, and Ag is a non-empty subset of Wg, 
then the projection of Ag to Wh, denoted by Ag

↓h, is given by 
 Ag

↓h = {x↓h | x ∈ Ag} 

We will adopt the convention that the projection of the empty subset is the empty 
subset. 
 The projection of a non-empty subset is always non-empty. If h=∅ and 
Ag≠∅, then Ag

↓h = {♦}. Note that the definition implies that Ag
↓g = Ag. 
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Vacuous Extension. By vacuous extension of a subset of a frame to a subset of a 
larger frame, we mean a cylinder set extension. If A is a subset of W{W,X}, for 
example, then the vacuous extension of A to W{W,X,Y,Z} is A×W{Y,Z}.  
 If g and h are sets of variables, g⊆h, g≠h, and Ag is a subset of Wg, then the 
vacuous extension of Ag to Wh is Ag×Wh–g. If Ag is a subset of Wg, then the vacuous 
extension of Ag to Wg is defined to be Ag. We will let Ag

↑h denote the vacuous 
extension of Ag to Wh. 
 We shall now state some results regarding this operation on subsets. 

Lemma 5.1. Suppose Ag is a subset of Wg and suppose h1⊆h2⊆g. Then 
 Ag

↓h1 = (Ag
↓h2)↓h1. 

Lemma 5.2. Suppose Ag and Bh are subsets of Wg and Wh respectively. 
Then 
 (Ag

↑g∪h∩Bh
↑g∪h)↓g = Ag∩(Bh

↓h∩g). 

5.3. Dempster's Rule of Combination 

Dempster's rule of combination is a rule for forming a new belief function from 
two or more belief functions. Consider two random non-empty subsets Sg and Sh 
of Wg and Wh respectively. Suppose Sg and Sh are probabilistically independent, 
i.e., 
 Pr[Sg=Ag and Sh=Ah] = Pr[Sg=Ag] Pr[Sh=Ah] 

for all subsets Ag of Wg and Ah of Wh. Suppose also that Pr[Sg
↑(g∪h)∩Sh

↑(g∪h)≠∅] > 
0. Let S  be the random non-empty subset that has the probability distribution of 
Sg

↑(g∪h)∩Sh
↑(g∪h) conditional on Sg

↑(g∪h)∩Sh
↑(g∪h)≠∅, i.e., 

 Pr[S=A] = Pr[Sg
↑(g∪h)∩Sh

↑(g∪h)=A] / Pr[Sg
↑(g∪h)∩Sh

↑(g∪h)≠∅]  

for every non-empty subset A of Wg∪h. If Bel1 and Bel2 are belief functions for g 
and h corresponding to Sg and Sh respectively, then we call the belief function for 
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g∪h corresponding to S  the orthogonal sum of Bel1 and Bel2. The orthogonal sum 
of Bel1 and Bel2 is denoted by Bel1⊕Bel2. The rule for forming Bel1⊕Bel2 is called 
Dempster's rule of combination. If the bodies of evidence on which Bel1 and Bel2 

are based are independent, then Bel1⊕Bel2 is supposed to represent the result of 
pooling these two bodies of evidence. 
 It is obvious from the definitions that the operation ⊕ has the following 
properties: 

Existence: Bel1⊕Bel2 exists unless there is a subset A of Wh such that 
Bel1(A)=1 and Bel2(Wh–A)=1. 

Commutativity: Bel1⊕Bel2=Bel2⊕Bel1. 

Associativity: (Bel1⊕Bel2)⊕Bel3=Bel1⊕(Bel2⊕Bel3). 

In general, Bel⊕Bel≠Bel. The belief function Bel⊕Bel will favor the 
same subsets as Bel, but it will do so with twice the weight of 
evidence, as it were. 

Vacuousness: If Bel1 is vacuous, then Bel1⊕Bel2=Bel2. 

 Note that Dempster's rule of combination as defined above involves 
vacuously extending the random non-empty subsets Sg and Sh to subsets of a 
common frame (Wg∪h) and then intersecting the two random non-empty subsets. 
 Dempster's rule can be expressed in terms of the probability mass 
assignment function. We will do so in two stages. First we will describe the 
vacuous extension of a basic probability assignment function. Next we will define 
the combination of two basic probability assignment functions on a common set of 
variables. 

Proposition 5.2. Suppose that m is a basic probability assignment 
function for g. Suppose that h⊇g. Then the vacuous extension of m to 
h is given as follows: 
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  m(B) if A = B↑h for some B⊆Wg 
 m↑h(A) =   (5.3) 
  0  otherwise 

 Suppose that Bel1 and Bel2 are two belief functions on g corresponding to 
random non-empty subsets S1 and S2 respectively. Let the basic probability 
assignment functions for Bel1, Bel2 and Bel1⊕Bel2 be denoted by m1, m2 and m, 
respectively. Then for any non-empty subset A of Wg, we have 

 m(A)  = Pr[S=A] = Pr[S1∩S2=A] / Pr[S1∩S2≠∅] 
  = ∑{m1(B) m2(C) | B∩C = A} / ∑{m1(B)m2(C) | B∩C ≠ ∅} 
  = K–1 ∑{m1(B1) m2(B2) | B1∩B2 = A} (5.4) 
where K–1 is a normalizing constant given by  

 K  = ∑{m1(B1)m2(B2) | B1∩B2 ≠ ∅} 
  = ∑{∑{m1(B1)m2(B2) | B1∩B2 = A} | ∅≠A⊆Wh} 
  = ∑{m(A) | ∅≠A⊆Wh}  (5.5) 
where K does not depend on A. 
 Dempster's rule can also be described in terms of commonality functions. 
First let us describe vacuous extension of commonality functions. 

Proposition 5.4. Suppose Q is a commonality function for g. Suppose 
that h⊇g. Then the vacuous extension of Q to h is given as follows: 
 Q↑h(A) = Q(A↓g) (5.6) 
for all subsets A of Wh. 

 Suppose that Bel1 and Bel2 are two belief functions on g corresponding to 
random non-empty subsets S1 and S2 respectively. If the commonality functions 
for Bel1, Bel2, and Bel1⊕Bel2 are denoted by Q1, Q2, and Q, respectively, then 
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 Q(A) = Pr[S⊇A] 
  = K–1 Pr[S1∩S2⊇A] 
  = K–1 Pr[S1⊇A and S2⊇A] 
  = K–1 Pr[S1⊇A] Pr[S2⊇A] 
  = K–1 Q1(A) Q2(A), (5.7) 
where K = Pr[S1∩S2≠∅] does not depend on A. 
 Substituting (5.5) in (5.1) results in an expression for K: 

 K = ∑{(–1)|A|+1 Q1(A) Q2(A) | ∅≠A⊆Wh}. (5.8) 

 Implementing Dempster's rule for belief functions on h is computationally 
expensive when Wh is large. Whether the rule is implemented using basic 
probability assignment functions or commonality functions, the number of terms in 
(5.5) or (5.8) involves a term for every non-empty subset A of Wh, and the number 
of these subsets increases exponentially with the size of Wh. This means that we 
face a computation of exponential complexity even if we are trying to find the 
value of the orthogonal sum Bel1⊕Bel2 only for a single subset A of Wh. 
 This computational complexity seems to be intrinsic to Dempster's rule. It is 
possible in some cases to exploit special structure in the belief functions being 
combined in order to reduce the complexity [Barnett, 1981]. But there does not 
seem to be any general way of implementing the rule that will always involve 
fewer computations than are involved in (5.4) and (5.5), or (5.7) and (5.8). 

5.4. Marginalization for Belief Functions 

In this section, we first introduce the idea of marginalizing a belief function from 
one set of variables to a smaller set of variables. 
 Suppose that Bel is a belief function for g corresponding to random non-
empty subset Sg of Wg and suppose h⊆g. The marginal of Bel to h, denoted by 
Bel↓h, is the belief function corresponding to the random non-empty subset Sg

↓h. 
 We are using standard probability notation here. The random non-empty 
subset Sg

↓h is a "function" of the random non-empty subset Sg in the sense that 
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whenever Sg=A, Sg
↓h=A↓h. Thus Sg

↓h is a well-defined random non-empty subset 
of Wh. The following proposition gives an explicit description of Sg

↓h in terms of 
Sg. 

Lemma 5.1. Suppose that Sg is a random non-empty subset of Wg. 
Then Sg

↓h is the random non-empty subset of Wh given by 
 Pr[Sg

↓h=A] = Σ{Pr[Sg=B] | B⊆Wg such that B↓h=A} 
for all subsets A of Wh. 

 The marginalization of basic probability assignment function, plausibility 
function and commonality function are defined likewise. Suppose that m, Pl and Q 
represent basic probability assignment function, plausibility function and 
commonality function, respectively, for g with random non-empty subset Sg. The 
marginal of m, Pl, and Q to h, denoted by m↓h, Pl↓h, and Q↓h, respectively, is the 
basic probability assignment function, plausibility function and commonality 
function, respectively, corresponding to random non-empty subset Sg

↓h. 

Proposition 5.2. Suppose that m and Q are basic probability 
assignment function and commonality function, respectively, for g. 
Suppose that h⊆g. Then the marginal of m and Q for h are given as 
follows: 
 m↓h(A) = Σ{m(B) | B⊆Wg such that B↓h=A} (5.9) 
and 
 Q↓h(A) = Σ{(–1)|B|–|A| Q(B) | B⊆Wg such that B↓h=A} (5.10) 
for all subsets A of Wh. 

5.5. Local Computation for Belief Functions 

In chapter 4 we saw that in order to compute the marginal of a valuation (that 
factors on a hypertree) using local computations, it is necessary for the projection 
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and combination operation to satisfy certain axioms. In this chapter, valuations on 
h correspond to belief functions on h, and combination and marginalization 
operators correspond to Dempster's rule of combination and marginalization of 
belief functions. We have already shown that Dempster's rule of combination 
satisfies Axiom A1. The following two theorems assert that Axioms A2 and A3 are 
also satisfied by these two operations. 

Theorem 5.1. Suppose Belg is a belief function for g and suppose 
h1⊆h2⊆g. Then 
 Belg

↓h1 = (Belg
↓h2)↓h1 

Theorem 5.2. Suppose Belg and Belh are belief function for g and h 
respectively. Then 
 (Belg

↑g∪h ⊕ Belh
↑g∪h)↓g = Belg ⊕ (Belh

↓h∩g) 

5.6. Implementation Issues 

Since the combination and marginalization operations for belief functions satisfy 
Axioms A1 to A3, we can compute the marginals using a scheme similar to that 
presented chapter 3 in great detail for probabilities and repeated in chapter 4. Here 
we will not repeat the scheme for belief functions. Instead we will make a few 
observations regarding implementation of the scheme. 
 The most natural implementation of the belief function propagation scheme 
is using basic probability assignment functions. Belief functions are most easily 
assessed in terms of basic probability assignment functions. The vacuous extension 
of basic probability assignment functions, given in (5.3), is a simple operation 
involving only a change of the focal elements to their cylinder extension. The 
marginalization of basic probability assignment functions, given in (5.5), while 
involving more computations than vacuous extension, is also fairly inexpensive. 
Combining basic probability assignment functions using Dempster's rule, given in 
(5.4) and (5.5), involves the most computational expense of the three operations. It 
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should be noted here that similar to potentials, we can avoid the renormalization of 
basic probability assignment functions until the very end. 
 Another implementation of the belief function propagation scheme is using 
commonality functions. Commonality functions have no intuitive interpretations. 
Hence, we may have to translate assessed belief functions from basic probability 
assignment functions to commonality functions. The vacuous extension of 
commonality functions, given in (5.4), involves a little more than changing the 
names of the focal elements. Marginalization of commonality functions, given in 
(5.6), is computationally expensive. However, this is offset by the fact that 
combining commonality functions using Dempster's rule is simply pointwise 
multiplication (where the points correspond to subsets). Again, we can avoid 
renormalization, given in (5.10), until the very end. However, to report the results, 
we will have to translate the commonality functions back to basic probability 
assignment functions. 

5.7. Proofs 

 



Proof of Theorem 5.2
Suppose Qg and Qh are commonality functions (CFs) for g and h correspond-
ing to Belg and Belh, respectively, and let Q denote the CF Qg ⊕Qh for g∪h.
Then, for all subsets A of Wg∪h,

Q(A) = K · Qg(A↓g) · Qh(A↓h),

where the constant K does not depend on subset A (see Eq. (5.7)). Thus,
for all subsets B of Wg, it follows from Eq. (5.10) that:

Q↓g(B) =
∑

{(−1)|A|−|B|Q(A)|A ⊆ Wg∪h such that A↓g = B}
= K ·

∑
{(−1)|A|−|B|Qg(A↓g) · Qh(A↓h)|A ⊆ Wg∪h such that A↓g = B}

= K · Qg(B)
∑

{(−1)|A|−|B|Qh(A↓h)|A ⊆ Wg∪h such that (A↓h)↓g∩h = B↓g∩h}
= K · Qg(B) · Q↓g∩h

h (B↓g∩h)

Note: Proof of Theorem 5.2 was added in May 2025. In [Shenoy and Shafer,
1990], we stated that a proof of the corresponding theorem in that paper
could be found in this working paper, and it wasn’t there.
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CHAPTER SIX 

 
Conditional Probability 

 

 
 
One of the themes of this book is that conditionals need not be the primitives of a 
language for the assessment of evidence. In chapters 2 and 3, we showed that the 
language of conditionals is not necessary to the local computation of probabilities. 
In chapter 4, we presented belief functions as one mode of evidential assessment 
that does not rely on conditionals. Having made these negative points, we now 
need to round out the picture by looking at conditional probability and exploring 
the roles it can play. 
 As we mentioned in the introduction, conditional probability plays an 
important role in probabilistic modeling, especially when causal ideas are 
involved. We will not explore this point in detail here, but we will discuss how 
conditional independence is involved in probabilistic modeling, and how such 
modeling yields factorizations that can be exploited by the methods of chapter 3. 
 Conditional probability also plays a role in the algorithmsss for local 
computation studied by Kelly and Barclay [1973], Pearl [1986], and Lauritzen and 
Spiegelhalter [1988]. Here we will explain how conditional probability is involved 
in the motivation for these authors' algorithms, and how their algorithms are related 
to the algorithms we learned in chapter 3. As we will see, Pearl's algorithm is 
essentially the algorithm of section 3.6 applied to a factorization of a special form, 
while Lauritzen and Spiegelhalter's algorithm differs only slightly from the 
algorithm of section 3.6. 
 We begin, in section 6.1, with a theoretical study of conditional probability. 
Here we translate standard ideas about conditional probability into a terminology 
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and a notation compatible with the terminology and notation introduced in chapter 
3. In section 6.2, we apply what we have learned to the problem of conditioning a 
factored probability distribution on new evidence. In section 6.3, we take up the 
role of conditional independence in causal modeling, and we define probability 
trees. In section 6.4, we review the computational role of Bayes's theorem in 
statistical inference, and we show that the algorithm of section 3.6, applied to 
probability trees, results in the generalization of Bayes's theorem developed by 
Kelly and Barclay and Pearl. In section 6.5, we take up the algorithm for local 
computation studied by Lauritzen and Spiegelhalter. Finally, in section 6.6, we 
give proofs of the displayed propositions. 

6.1. The Theory of Conditional Probability 

In this section, we study conditional probability, conditional independence, and 
Markov probability distributions. We develop for these topics a notation and 
terminology consistent with the notation and terminology we have already 
developed for unconditional probability distributions on sets of variables. 
 A conditional probability is a ratio of probabilities, and it may be considered 
ill-defined if the probability in its denominator is zero. Hence the possibility of 
zero probabilities can make discussions of conditional probability awkward. We 
will seek to minimize this awkwardness. 
 We do want to allow zero probabilities. At first glance, it might seem 
reasonable to prohibit them in a theoretical discussion. Perhaps every event should 
be allowed at least some tiny probability, on the grounds of our own fallibility 
[Pearl 1986]. But relationships among variables often make certain combinations 
of values impossible, and clarity of thought requires that we be able to represent 
this impossibility by giving the combinations probability zero [Lauritzen and 
Spiegelhalter 1988]. 
 We do two things to deal with the problem of zero probabilities. First, we 
adopt the convention that division by zero yields zero. Second, we emphasize 
ratios of entire probability distributions (or, more generally, potentials) rather than 
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individual probabilities. It turns out that the probability distributions in whose 
ratios we are interested are usually of a special type; the denominator is a marginal 
of the numerator. This, as we will see, implies that the ratios can be handled, in 
many respects, as if the denominators were never zero. 
 Zero probabilities also complicate the idea of probabilistic independence. 
When zero probabilities are not allowed, independence and conditional 
independence can be defined simply in terms of factorization. But when zero 
probabilities are allowed, factorization is not enough to imply conditional 
independence. As it turns out, this is not a problem for us; the conditional 
independence relations with which we are concerned are relations among 
hyperedges in a hypertree, and factorization on the hypertree is enough to 
guarantee these particular conditional independence relations. But for the sake of 
completeness, we investigate what conditional independence adds, in general, to 
factorization. 
 We base our formal definition of conditional probability on two general 
ideas, the idea of a ratio potential and the idea of an indicator potential. A ratio 
potential is the ratio of a potential to one of its marginals. An indicator potential is 
a potential that takes only the values zero and one. 
 We begin with some general comments about division for potentials. Then 
we introduce ratio potentials and indicator potentials, and we define conditional 
probability. Then we study independence and the implications for probability 
distributions of factorization on hypertrees. 
 Mathematically, we are working in the framework established in chapter 3. 
Our potentials are real-valued functions on the Cartesian products of the finite 
frames of a finite set of variables X. 

The Division of Potentials. Division, like multiplication, will be pointwise; if A 
and B are potentials on h, then the quotient A/B is the array on h given by 
(A/B)(x)=A(x)/B(x). By our convention that division by zero yields zero, 
(A/B)(x)=0 whenever B(x)=0. If there is a configuration x of h such that both A(x) 
and B(x) are non-zero, then A/B will be a potential. Otherwise it will be an array 
identically equal to zero. 
 If G is a potential on g, and H is a potential on h, then G/H is a potential on 
g∪h defined by (G/H)(x) = G(x↓g)/H(x↓h). 
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 The following proposition sets out what we need to know about the division 
of potentials when the denominator is a marginal of the numerator. 

Proposition 6.1. If G is a potential on g, and h⊆g, then the following 
statements are all true. 
(i) G(x) ≤ G↓h(x↓h) for all x∈Wg. 
(ii) If x∈Wg and G↓h(x↓h)=0, then G(x)=0. 
(iii) (G/G↓h)(x)=0 if and only if G(x)=0. 
(iv) The array G/G↓h is a potential. 
(v) If G/G↓h = B, then G = BG↓h. 
(vi) If GG↓h = B, then G = B/G↓h. 

 Because of the consonance of marginalization, the fact that A↓h1=(A↓h2)↓h1 if 
h1⊆h2, all the statements in Proposition 6.1 generalize to the case where G↓h is 
compared not to G but to some lesser marginalization of G. Statement (ii), for 
example, generalizes to “If G↓h(x↓h)=0 and h⊆f, then G↓f(x↓f)=0.” 
 The point of statement (iv) is that G/G↓h cannot be identically zero; since G 
is a potential, G(x)>0 for at least one x, and by (iii), (G/G↓h)(x) > 0 for this x. 
 The last two statements, (v) and (vi), are the ones of most direct importance. 
They tell us that if G↓h is multiplying or dividing G on one side of an equation, we 
can eliminate it from that side of the equation without regard to the fact that it 
might take the value zero. 

Ratio Potentials. Suppose A is a potential, and g and h are contained in A's 
domain. We set 
 Ah|g = A↓g∪h/A↓g, (6.1) 
and we refer to Ah|g as A's ratio potential for h given g. 
 When A is a potential on X, we will sometimes abbreviate AX|g to A|g. We 
will also simplify the notation when we are dealing with single variables; when X 
and Y are variables in the domain of A, we will write AY|g instead of A{Y}|g, Ah|X 
instead of Ah|{X}, and AY|X instead of A{Y}|{X}. 
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 Notice that A|∅ = A/A↓∅, which is simply A divided by the sum of all A's 
values. In other words, A|∅ is the probability distribution proportional to A. 
 Applying part (v) of Proposition 6.1 to (6.1), we see that  

 A↓g∪h = A↓gAh|g (6.2) 
always holds.  
 The potentials Ah|g and A↓g∪h have the same domain, g∪h, and by 
Proposition 6.1, they are non-zero on the same elements of Wg∪h. If g∪h=g∪f, 
then Ah|g =Af|g. 
 If B is proportional to A, then Bh|g=Ah|g. In particular, Ph|g=Ah|g, where P is 
the probability distribution proportional to A.  
 Our next two propositions explore factorization implies for marginals and 
ratio potentials. Proposition 6.3 lays the groundwork for our study of probabilistic 
independence. Proposition 6.2 is a simple extension of Proposition 3.2; its main 
use is in the proof of Proposition 6.3. 

Proposition 6.2. If G is an array on g and H is an array on h, then 
(GH)↓g∩h = G↓g∩hH↓g∩h. 

Proposition 6.3. Suppose A is a potential on g∪h. Then the following 
statements are all equivalent. 
(i) A A↓g∩h = A↓g A↓h. 
(ii) A = A↓h Ag|g∩h. 
(iii) A = A↓g Ah|g∩h. 
(iv) Ag∪h|g∩h = Ag|g∩h Ah|g∩h. 
(v) A factors on {g,h}. 
 
???? 
(vi) (Ag|h)↓g = Ag|g∩h. 
(vii) (Ah|g)↓h = Ah|g∩h. 
(viii) Ag|h is carried by g. 
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(ix) Ah|g is carried by h. 

Indicator Potentials. A potential I on a set of variables h is called an indicator 
potential if I(x) is equal to zero or one for all x∈Wh. For each y∈Wh, we define an 
indicator potential Ih=y on h by  

  0 if z ≠ y 
 Ih=y(z) =   
  1 if z = y, 
and we call Ih=y the indicator potential for h=y. 
 This definition specializes, of course, to the case of a single variable. If Y is 
a variable and y∈WY, then the indicator potential IY=y on Y given by  

  0 if z ≠ y 
 IY=y(z) =  
  1 if z = y 
is called the indicator potential for Y=y. 
 Notice that if h={Y1, ..., Yn} and y=(y1, ..., yn), then  

 Ih=y = IY1=y1 ... IYn=yn. (6.3) 

Conditional Probability Distributions. Suppose P is probability distribution on 
X, suppose h is a subset of X, and suppose y∈Wh. Then we let P|h=y denote the 
array on X given by 
 P|h=y = P|h Ih=y. (6.4) 
If P↓h(y)=0, then P|h=y is identically equal to zero. We are more interested in the 
case P↓h(y) > 0. 

Proposition 6.4. If P↓h(y) > 0, then P|h=y is a probability distribution. 

 When P↓h(y) > 0, we call P|h=y the conditional distribution given h=y. 
 The values of P|h=y are indeed conditional probabilities, as this term is 
usually understood. To see that this is so, we rewrite (6.4) as  
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 P|h=y(x) = Ih=y(x↓h) P|h(x) = Ih=y(x↓h) P(x) / P↓h(x↓h) 

  0 if x↓h ≠ y, 
 =  
  P(x)/P↓h(y) if x↓h = y, 
or, in a more colloquial notation, 

  0 if x and y disagree, 
 P|h=y(x) =  
  Pr(X=x)/Pr(h=y) if x and y agree, 
or 
 P|h=y(x) = Pr(X=x & h=y)/Pr(h=y), 

and this is “the conditional probability that X=x given that h=y,” as it is usually 
defined. 
 Formula (6.4) defines the conditional distributions given h in terms of the 
ratio potential P|h. We can also go the other way: P|h(x) = P|h=x↓h(x) for all x∈WX. 

Independence. The independence of events or variables with respect to a 
probability distribution is usually defined in terms of the multiplication of their 
probabilities. Two events are independent if the probability of both happening is 
the product of their separate probabilities. The variables are independent if the 
probability of their jointly taking a pair of values is always equal to the product of 
the probabilities of their separately taking these values. 
 This approach to independence is perfectly adequate, and it generalizes 
readily from a pair of variables to disjoint sets of variables. The formulations that 
work for disjoint sets of variables also work for overlapping sets of variables if the 
probability distribution is strictly positive. But some complications arise if zero 
probabilities are allowed. 
 Fortunately, in the context of a hypertree, the complications that arise from 
zero probabilities can be dealt with straightforwardly. In order to deal with them, 
we need the concept of a variable or a set of variables being determined by a 
probability distribution. 
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Proposition 6.5. Suppose P is a probability distribution on X, and 
suppose f is a subset of X. Then the following statements are all 
equivalent. 
(i) There exists x∈Wf such that P↓f(x)=1. 
(ii) P = P|f. 
(iii) P = P P↓f. 

 If the statements in Proposition 6.5 are satisfied, then we say that f is 
determined by P, or that the marginal P↓f is categorical. Notice that the empty set 
is determined by any probability distribution; we always have P↓∅(♦)=1. 
 Now we state general conditions for g and h to be independent with respect 
to a probability distribution P, conditions that apply whether or not g and h are 
disjoint. 

Proposition 6.6. Suppose P is a probability distribution on g∪h. Then 
the following statements are all equivalent. 
(i) P = P↓g P↓h. 
(ii) P factors on {g, h}, and P↓g∩h is categorical. 
(iii) (Pg|h)↓g = P↓g. 
(iv) (Ph|g)↓g = P↓h. 
(v) Pg|h is carried by g. 
(vi) Ph|g is carried by h. 

 If the statements in Proposition 6.6 are satisfied, then we say that g and h are 
independent with respect to P. If P is a probability distribution on a set of variables 
larger than g∪h, then we say g and h are independent with respect to P if they are 
independent with respect to P↓g∪h.  
 We will write ⊥P[g, h] to indicate that g and h are independent with respect 
to P. 
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 If g∩h=∅, then P↓g∩h is necessarily categorical. So disjoint sets of variables 
g and h are independent with respect to a probability distribution P if and only if P 
factors on {g, h}.  

Conditional Independence. Suppose P is a probability distribution, and suppose f, 
g, and h are contained in P's domain. We say that g and h are conditionally 
independent given f with respect to P if g and h are independent with respect to 
P|f=z for every z∈Wf such that P↓f(z) > 0. 
 We will write f→⊥P[g, h] to indicate that g and h are conditionally 
independent given f with respect to P. 
 Notice that independence given the empty set is the same as unconditional 
independence; ∅→⊥P[g, h] means ⊥P[g, h]. 
 Before stating equivalent conditions for conditional independence, we must 
extend further our vocabulary for dealing with zero probabilities. Suppose P is a 
probability distribution, and suppose g and h are contained in P's domain. We say 
that h is determined by P and g if h is determined by P|g=x for every x∈Wg such that 
P↓g(x) > 0. 

Proposition 6.7. Suppose P is probability distribution, and suppose g 
and h are contained in P's domain. Then the following conditions are 
equivalent. 
(i) h is determined by P and g. 
(ii) There exists a mapping δ:Wg→Wg∪h such that δ(x)↓g=x and 
Pg∪h|g=x(δ(x)) = 1 whenever x∈Wg and P↓g(x)>0. 
(iii) There exists a mapping δ:Wg→Wg∪h such that δ(x)↓g=x and 
P↓g∪h(δ(x)) = P↓g(x) whenever x∈Wg and P↓g(x)>0. 
(iv) For every x∈Wg such that P↓g(x)>0, there is only one z∈Wg∪h 
such z↓g=x and P↓g∪h(z)>0. 
(v) For every z∈Wg∪h, either P↓g∪h(z)=0 or P↓g∪h(z)=P↓g(z). 
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 Condition (ii) of Proposition 6.7 can be paraphrased by saying that if g=x, 
then with probability one h=δ(x). The variables in h are a function of the variables 
in g with probability one, and δ is the function. 
 If h⊆g, then P and g determine h no matter what P looks like. If P is strictly 
positive, then P and g determine h if and only if h⊆g. If P and one set of variables 
determine h, then P and any larger set also determine h. A probability distribution 
P and the empty set determine a set of variables h if and only P↓h is categorical. 

Proposition 6.8. Suppose P is probability distribution, and suppose f, 
g, and h are contained in P's domain. If P and g determine f, then Ph∪f|g 
= Ph|g∪f. 

Proposition 6.9. Suppose P is a probability distribution, and suppose f, 
g, and h are contained in P's domain. Then the following conditions 
are all equivalent: 
(i) f→⊥P[g, h]. 
(ii) P↓f∪g∪h factors on {f∪g, f∪h}, and P and f determine g∩h. 
(iii) P↓f∪g∪h P↓f = P↓f∪g P↓f∪h. 
(iv) P↓f∪g∪h = P↓f∪g Ph|f. 
(v) P↓f∪g∪h = P↓f∪h Pg|f. 
(vi) Pg∪h|f = Pg|f Ph|f. 
(vii) (Pg|f∪h)↓g∪f = Pg|f. 
(viii) (Ph|f∪g)↓h∪f = Ph|f. 

 In the case where P is strictly positive (i.e., P(x) > 0 for every x∈WX), the 
condition that P and f determine g∩h simplifies to the condition that g∩h⊆f. In 
any case, g∩h⊆f is always a sufficient condition for P and f to determine g∩h. 
 The following proposition shows us how to generalize the concept of 
independence from two sets of variables to more than two. 
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Proposition 6.10. Suppose P is a probability distribution, and f and h1, 
..., hn are in P's domain. Then the following conditions are all 
equivalent. 
(i) Ph1∪...∪hn|f = Ph1|f Ph2|f ... Phn|f. 
(ii) P↓f∪h1∪...∪hn factors on {f∪h1, ..., f∪hn}, and P and f determine 
hi∩hj for all i and j, 1≤i<j≤n. 
(iii) f→⊥P[h1∪...∪hk–1, hk] for k=2, ..., n. 
(iv) f→⊥P[g1,g2] whenever g1 is the union of one subset of the h1, ..., 
hn and g2 is the union of another subset, disjoint from the first. 

 When the conditions of Proposition 6.10 are met, we say that h1, ...,hn are 
conditionally independent given f with respect to P, and we write f→⊥P[h1, ...,hn]. 

Markov Probability Distributions. Suppose P is a probability distribution on X, 
and suppose H is a hypertree on X. If P factors on H, then we say that P is Markov 
with respect to H. 

Proposition 6.11. Suppose P is a joint probability distribution for 
variables in X, and suppose H is a hypertree on X. Then the following 
statements are all equivalent. 
(i) P factors on H. 
(ii) There is a hypertree construction sequence h1...hn for H and a 
branching β for h1...hn such that β(hk)→⊥P[h1∪...∪hk–1, hk] for k=2, ..., 
n. 
(iii) There is a hypertree construction sequence h1...hn for H and a 
branching β for h1...hn such that P = P↓h1 Ph2|β(h2) ... Phn|β(hn). 
(iv) For any hypertree construction sequence h1...hn for H and any 
branching β for h1...hn, β(hk)→⊥P[h1∪...∪hk–1, hk] for k=2, ..., n. 
(v) For any hypertree construction sequence h1...hn for H and any 
branching β for h1...hn, P = P↓h1 Ph2|β(h2) ... Phn|β(hn). 
(vi) Suppose β is a branching for H, and suppose (H, E) is the 
Markov tree determined by β. Suppose H is a vertex of this tree. Then 
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the trees in the forest resulting from the removal of H are independent 
given H with respect to P. 

 The conditional independence relations mentioned in parts (ii), (iv), and (vi) 
of this proposition are all represented graphically by separation. This is what is 
signaled in general by the name Markov. The Markov property is that separation 
implies independence given the separator. 
 The main point of Proposition 6.11 is that factorization is equivalent the 
Markov property in a hypertree, even when zero probabilities are allowed. This 
equivalence can be generalized to hypergraphs that are not hypertrees if zero 
probabilities are prohibited; this is known as the Gibbs-Markov equivalence 
[Speed 1979]. The hypergraph case is more complicated, however, if zero 
probabilities are allowed; see Moussouris [1974]. 

6.2. Conditioning Factorizations 

Conditioning plays an important role in the assessment of evidence. If the 
probability distribution P represents our assessment of a given body of evidence, 
and we add to that evidence the observation that f=y, then we may want to change 
our assessment to P|f=y. (See Shafer [1985] for a discussion of when this is 
appropriate.) 
 Suppose the probability distribution P represents our assessment of a given 
body of evidence, and we have been computing marginals for P from the 
factorization 
 P = Π{Rh | h∈H}, (6.5) 

where H is a hypertree on X. Suppose we observe the values of some of the 
variables in X; say we observe Y1=y1, Y2=y2, and so on, up to Yn=yn. We change 
our assessment from P to P|f=y, where f={Y1, ..., Yn} and y=(y1, ..., yn). We now 
want to compute marginals for P|f=y, and this would be facilitated by a factorization 
of P|f=y. Can we adapt (6.5) to a factorization of P|f=y? 
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 Yes, we can. More precisely, we can adapt (6.5) to a factorization of a 
potential proportional to P|f=y, and this, as we noted in sections 3.3 and 3.4, is good 
enough. 
 The adaptation is simple. We know from (6.3) and (6.4) that  

 P|f=y = Ih=y P|f  
  = IY1=y1 ... IYn=yn P / P↓f(y) 
  = IY1=y1 ... IYn=yn Π{Rh | h∈H} / P↓f(y), 
or  

 P|f=y ∝ IY1=y1 ... IYn=yn Π{Rh | h∈H}, (6.6) 

where the constant of proportionality is 1/P↓h(y). And we can make the right-hand 
side of (6.6) into a factorization on H by absorbing each of the IYi=yi into one of the 
Rh. Indeed, each Yi is contained in at least one hyperedge in H. Choose one and 
call it h(i). Set Sh = Rh Π{IYi=yi | h=h(i)}. Then (6.6) becomes 
 P|f=y ∝ Π{Sh | h∈H}, (6.7) 

where the constant of proportionality is still 1/P↓h(y). 
 Aside from its usefulness for computing P|f=y, the possibility of adapting 
(6.5) to (6.7) is also sometimes useful as a way of computing P↓f(y) for an 
individual y in Wf. We run the algorithm of section 3.5, say, with a factorization 
(6.5), obtaining P's marginal for a particular hyperedge h1. Then we run the 
algorithm again, with the factorization (6.7). The result will be a potential on h1 
differing from the first by the factor 1/P↓f(y). We can find P↓f(y) by comparing the 
two results. 
 This device for computing P↓f(y) will not be needed if f is one of the 
hyperedges in the hypertree H. For then one run of the algorithm of section 3.5 
will give us the whole marginal P↓f. But we may sometimes want to compute a 
probability P↓f(y) for an f that is not in H and cannot be added without forcing us 
to a hypertree cover with hyperedges too large for the algorithm to be practical. 
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6.3. Conditional Independence in Modeling 

In this section, we point to two related sources of factored probability distributions: 
causal reasoning and log-linear statistical modeling. When causal reasoning is put 
into a probabilistic setting, restrictions on paths of causation can be used to justify 
assumptions of conditional independence that lead to factorized probabilities 
(Blalock [1971], Pearl [1986], Wold [1954], Wright [1934]). When log-linear 
models are fit to discrete statistical data, the simplest models are those in which 
interactions are of low order, and hence Occam's razor leads to factorized 
probabilities (Besag [1972, 1974], Darroch, Lauritzen and Speed [1980], Edwards 
and Kreiner [1983], Lauritzen [1982], Wermuth and Lauritzen [1983]). 

Causal Models. In this monograph, we are primarily concerned with probabilities 
that result from deliberate assessment of evidence and that represent a judgment 
about the degree to which the evidence supports a proposition. Such probabilities 
are called judgmental or subjective, and they are often contrasted with objective 
probabilities, which are supposed to be properties of the world. The objective 
probability of an event is the propensity of this event to occur, and this propensity 
is manifested by the frequency with which the event does occur in repeated trials. 
This objective interpretation, though it is not overtly concerned with the 
assessment of evidence, often underlies practical probability assessments. We often 
assess the probability of an event by thinking about how often the event would 
occur under the circumstances. 
 If an event has different probabilities under different circumstances, then it 
is natural to say that the circumstances are helping cause the event. Thus a set of 
probability assessments based on the objective interpretation can be thought of as a 
causal model. 
 Too simple-minded an identification of statistical frequency with causation 
is dangerous. We are often warned that correlation does not imply causation. It is 
sometimes reasonable, however, to suppose that causation implies correlation. If 
two situations differ only in the presence of one cause, then the probability in the 
situation where the cause is present should be higher. 
 The probabilistic interpretation of causation for one cause involves the 
assumption of a probability distribution for other causes. If a given cause A 
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influences an event B, but does not completely determine whether B will happen, 
then there must be other causes of B, and these causes must vary from case to case 
in their presence or strength. If we say that B has a definite objective probability or 
frequency when A is present, then we must be assuming some stability for these 
other causes, some stability in their distribution. In other words, we must be 
assuming an objective, frequentist, probability distribution for these causes.  
 If we identify "probabilities in different situations" with conditional 
probabilities, then lack of causal influence should mean probabilistic 
independence. Since causal influence can be indirect, it is difficult to formulate this 
thought precisely. Reasonable formulations are possible, however, when we can 
appeal to a temporal ordering or some other device that restricts the directions of 
possible influence. 
 Pearl [1986] has emphasized the simple case where variables X1, X2, ..., Xn 
are ordered so that Xi can influence Xj only if i<j. In this case, we can say precisely 
how lack of direct causal influence should imply independence or conditional 
independence. Since X2 follows X1, it may be partially caused, or influenced, by 
X1. If we believe it is not, then we should expect X1 and X2 to be independent; the 
probability of a given value of X2 should be the same no matter what the value of 
X1. Since X3 follows both X1 and Xn, it can be influenced by neither or one or both. 
If it is influenced by neither, then it should be independent of both. If it is 
influenced by X1 but not by X2, say, then it should be independent of X2 given X1;  
 X1→⊥P[X2, X3]. 

We can continue this way through the Xk; for each Xk after the first, we choose a 
subset gk of {X1, X2, ..., Xk–1} such that Xk is influenced directly by gk but not by 
{X1, X2, ..., Xk–1}–gk; 
 gk→⊥P[{X1, X2, ..., Xk–1}–gk, Xk]. (6.8) 

These conditional independence relations constitute the foundation for a causal 
model. 
 Completing the causal model means constructing a probability distribution P 
on {X1, X2, ..., Xn} that satisfies (6.8) for k=2, ..., n. To do this, we need to supply 
the conditional probabilities. We need to specify P↓X1, and we need to specify PXk|gk 
for k=2, ..., n. Doing so gives us a probability distribution P in factored form; 

 P = P↓X1 PX2|g2 ... PXn|gn. (6.9) 
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This is a factorization of P on the hypergraph H, where  
 H = {{X1}, {X2}∪g2, ..., {Xn}∪gn}. (6.10) 

If this is hypergraph has a hypertree cover with reasonably small hyperedges, then 
we can apply the methods of chapter 3 to (6.9) to obtain marginal probabilities for 
P. 
 We would like, of course, for the hypergraph H in (6.10) to be a hypertree 
itself, so we would not have to search for a hypertree cover. One interesting case in 
which it is hypertree is the case where each gk has exactly one element. In this 
case, if we write b(Xk) for the unique element of gk, then (6.9) becomes 

 P = P↓X1 PX2|b(X2) ... PXn|b(Xn), (6.11) 
and (6.10) becomes 
 H = {{X1}, {X2, b(X2)}, ..., {Xn, b(Xn)}}. (6.12) 

 In the next section, we will apply the algorithm of section 3.6 to the 
factorization (6.11). We will find it convenient, when we do this, to enlarge the 
hypertree given by (6.12) by adding all the singletons {X2}, {X3}, ..., {Xn}. This 
gives the hypertree 
 H' = {{X1}, {X2, b(X2)}, {X2}, {X3, b(X3)}, {X3}, ..., {Xn, b(Xn)}, {Xn}}.(6.13) 
It is also convenient to use the order in which the hyperedges appear in (6.13) as 
the construction sequence for H', and to use for this construction sequence the 
branching β given by  
 β({Xi, b(Xi)}) = {b(Xi)} and β({Xi}) = {Xi, b(Xi)}, (6.14) 

for i=2, ..., n. 
 Figure 6.1 shows the Markov tree determined by (6.13) and (6.14) for a 
simple example with n=6.  



  101 

Figure 6.1. The Markov tree determined by (6.13) and (6.14) when 
n=6, b(X2)=X1, b(X3)=X2, b(X4)=X3, b(X5)=X2, and b(X6)=X3. We use 
circles and rounded rectangles to distinguish graphically between 
individual and joint variables. 
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 As Figure 6.1 illustrates, the Markov tree determined by (6.13) and (6.14) 
actually has a very simple structure. It can be obtained by taking the tree T=(V, E), 
where  
 V={X1, X2, ..., Xn} and E={{X2, b(X2)}, ...,{Xn, b(Xn)}}, (6.15) 

and turning each edge e in E into a vertex connected by edges to the vertices in e. 
 Formally, let us call a pair (T, P) a probability tree if T is a tree of the form 
(6.15), P is a probability distribution on the vertices, and P factors as in (6.11). (By 
Proposition 6.11, P factors as in (6.11) if and only if P factors on the hypertree E.) 
We will refer to the Markov tree determined by (6.13) and (6.14) as the Markov 
tree obtained by interpolating vertices on the edges of the probability tree (T, P). 
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Log-Linear Statistical Models. Explain briefly the idea of low and high order 
interactions. 

6.4. Local Computation in Probability Trees. 

In this section, we review the basic ideas of Bayesian statistical inference, and we 
see how Bayes's theorem generalizes to the case of probability trees. 
 The generalization of Bayes's theorem that we study here falls out when we 
apply the algorithm of section 3.6 to the factorization (6.11). Our way of 
explaining the generalization is inspired by Pearl [1986], but the details of our 
approach differ significantly from the details of Pearl's approach. We first 
explained our approach in Shenoy and Shafer [1986]. 

Bayesian Statistical Inference. Suppose we are concerned with two variables, X 
and Y, and we believe that X causes Y. We construct a probability distribution P 
on {X, Y} by assessing the marginal P↓X, assessing the conditional PY|X, and 
writing 
 P = P↓X PY|X. (6.16) 
This formula, usually called the rule of total probability, is a special case of (6.2). 
 Now we observe that Y=y, and we want to compute new probabilities for X 
taking this observation into account. In other words, we want to compute the 
conditional distribution PX|Y=y. By (6.6),  
 P|Y=y ∝ IY=y P↓X PY|X.  

So 
 PX|Y=y ∝ (IY=y P↓X PY|X)↓X = P↓X (IY=y PY|X)↓X. 

Since (IY=y PY|X)↓X(x) = PY|X(y,x), this can be written 
 PX|Y=y ∝ P↓X LX|Y=y, (6.17) 

where LX|Y=y is the potential on X given by  

 LX|Y=y(x) = PY|X(y,x). (6.18) 
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Formula (6.17) is often called Bayes's theorem. 
 In the terminology of Bayesian statistics, the probability distribution PX|Y=y is 
the posterior distribution for X, the probability distribution P↓X is the prior 
distribution for X, and the potential LX|Y=y is the likelihood. Thus Bayes's theorem 
can be written more verbally as 
 posterior(x) ∝ prior(x) likelihood(x). (6.19) 

 The utility of Bayes's theorem depends, of course, on whether we have in 
hand the factorization (6.16). If our joint probability distribution P has been 
constructed following (6.16), then the likelihood is easily found by (6.18), and 
Bayes's theorem provides an efficient way of computing the conditional 
distribution PX|Y=y. If, on the other hand, P has not been constructed in this way, 
then we will likely find PX|Y=y in some other way, and Bayes's theorem will have no 
role to play. 
 Bayes's theorem is particularly interesting when the ratio potential PY|X can 
be given a relatively objective or frequentist interpretation. As we argued in the 
preceding section, this requires a certain stability in the distribution in the other 
causes of Y. If we are to talk about the probability that Y=y when X=x, without 
reference to which situation with X=x we have in mind, there must be some 
stability in how the other causes of Y operate whenever X=x. But an objective 
interpretation of PY|X does not imply an objective interpretation of the marginal 
P↓X. The distribution of X may still be unstable, so that any probabilities for X 
must have a more subjective character. So even if the likelihood in Bayes's 
theorem has an objective interpretation, and we hold PY|X constant as we consider 
the evidence about the variables X and Y for different individuals, the prior can 
have a subjective interpretation, and we may to assess it differently for each 
individual. 
 Since the time of Laplace, mathematical statistics has been particularly 
concerned with the situation just described, and controversy has persisted between 
those who, like Laplace, are willing to make the subjective judgments required to 
construct the prior distribution P↓X and those who are not willing to do so. Those 
willing to construct P↓X are now often called Bayesians, since they are able to carry 
through the use of Bayes's theorem, while those not willing to construct P↓X are 
often called objectivists, since they want to find modes of judgment that use only 
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objective probabilities. Both Bayesians and objectivists have tended to take it for 
granted that the ratio potential PY|X is objective, stable, and known. 
 Unfortunately, the stylized nature of the this hoary controversy gives undue 
weight to Bayes's theorem. As we have already argued, if P is not constructed 
following (6.16), and we want to compute PX|Y=y after observing Y=y, we are likely 
to do so in some way other than Bayes's theorem. Bayes's theorem should be seen 
as a computational device for computing conditional probabilities in certain 
circumstances, not as a philosophical foundation for probability judgment in 
general, as the term Bayesian suggests. 
 Moreover, the situation where we have an objective likelihood and a 
subjective prior is characteristic merely of a set of problems that have historically 
been of interest to statisticians. We cannot assume that is characteristic of all 
problems. It may be uncharacteristic, for example, of problems dealt with by 
modern expert systems. 
 For further discussion of the distinction between foundational and 
computation concerns in the construction of probability arguments, see Shafer and 
Tversky [1985]. 

Inference in Probability Trees. The ideas underlying Bayes's theorem can be 
generalized from the simple case of two variables to the case of a probability tree 
of variables. This generalization has been studied by Kelly and Barclay [1973] and 
Pearl [1986]. As we will now see, it can be seen as a special case of the algorithm 
we studied in section 3.6 above. 
 Recall that (T, P) is a probability tree when T=(V, E), V={X1, X2, ..., Xn}, 
E={{X2, b(X2)}, ...,{Xn, b(Xn)}}, and P is a probability distribution on V satisfying 

 P = P↓X1 PX2|b(X2) ... PXn|b(Xn). (6.11) 
Given the probability tree (T,P), we form the hypertree 
 H' = {{X1}, {X2, b(X2)}, {X2}, {X3, b(X3)}, {X3}, ..., {Xn, b(Xn)}, {Xn}}, (6.13) 

with the branching β given by  
 β({Xi, b(Xi)}) = {b(Xi)} and β({Xi}) = {Xi, b(Xi)} (6.14) 

for i=2, ..., n. 
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 Consider how we can implement the algorithm of section 3.6 for the 
factorization (6.11) in the Markov tree determined by (6.13) and (6.14). 
 We must first assign a potential to each vertex of the Markov tree. The 
natural way of doing this is to assign P↓X1 to {X1} and to assign PXi|b(Xi) to 
{Xi, b(Xi)}. This leaves the {Xi}, i≠1, without potentials; we assign each of them a 
vector of ones.  
 Figure 6.2 shows this assignment of potentials for the example of Figure 6.1. 
Here we let 1X denote the vector of ones on the variable X; 1X(x)=1 for every 
x∈WX. 

Figure 6.2. The assignment of potentials to Markov tree of Figure 6.1. 
In this example, P = P↓X1 PX2|X1 PX3|X2 PX4|X3 PX5|X2 PX6|X3. 
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 Figure 6.3 shows the messages that will be passed if we run the algorithm of 
section 3.6 with this assignment of potentials. To verify that the messages given in 
this figure are correct, begin at the leaves of the Markov tree and work inward. 
Initially, the three leaves, {X1}, {X5}, and {X6} send inward their own potentials, 
P↓X1, 1X5, and 1X6. This allows the vertices {X1, X2}, {X2, X5}, and {X3, X6} to act. 
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The vertex {X2, X1} multiplies the message P↓X1 and its own potential, PX2|X1, and 
sends to {X2, X3} the projection (P↓X1 PX2|X1)↓X2 = (P↓{X1,X2})↓X2 = P↓X2. And so on. 

Figure 6.3. The messages passed when the potentials shown in Figure 
6.2 are used. 

1X6 

1
X2 

1
X5 

  P !X1     1
X1 

P
X2|X1 

  P
!X2     1

X2 

P!
X1 

  P
!X

2     1
X

2 

  P
!X2     1

X
2 

P
X5|X2 

  P !X5     1X5 

P
X3|X2 

  P!X3     1
X3 

P
X6|X3 

  P!
X6     1

X6  

  P!X3     1
X3 

1
X3 

 
 

 If we observe the value of a variable, we will replace the vector of ones on 
that variable with an indicator vector, and then we will allow the algorithm to 
update. Figure 6.4 shows the result when we observe that X5=x5. The messages 
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shown in this figure can also be verified by working inwards. For example, vertex 
{X2, X5} multiplies its potential PX5|X2 by the message IX5=x5 before projecting to 
{X2}. The result is (IX5=x5PX5|X2)↓X2 = LX2|X5=x5. Vertex {X2} will send to {X2, X3} 
the product LX2|X5=x5 PX2, which is proportional to PX2|X5=x5. At each step, the 
messages from the direction of X1 are probability distributions, either prior 
distributions or distributions posterior to those observations that lie in the direction 
from which the message is being sent, while the messages towards X1 are either 
vectors of ones or likelihoods. 



  108 

Figure 6.4. The messages passed when the potential on {X5} is 
changed to indicate the observation X5=x5. 
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 The computations in Figures 6.3 and 6.4 can be described quite simply in the 
language of matrices. If we think of the potential PXi|Xj as a matrix with PXi|Xj(xi, xj) 
in row xi and column xj, then the operation of {Xi, b(Xi)} can be described as 
matrix multiplication; probability vectors on Xj transform to probability vectors on 
Xi by post-multiplying the matrix as column vectors, and likelihood vectors on Xi 
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transform to likelihood vectors on Xj by pre-multiplying the matrix as row vectors.  
The vertices representing individual variables simply multiply the vectors they 
receive pointwise. For more details, see Shenoy and Shafer [1986]. 
 Though our algorithm, as presented in Figures 6.3 and 6.4, was inspired by 
Pearl [1986], it differs in detail from the algorithm Pearl himself presents. Pearl 
bases his algorithm on the probability tree rather than the Markov tree. In the 
probability tree, we have vertices only for variables, no vertices for the pairs {Xi, 
b(Xi)}. So Pearl draws a picture in which all computation and all storage is 
performed by individual variables. 
 Pearl's algorithm also differs from ours in other ways. Each individual 
variable X has access to less storage. Rather than storing all the messages it 
receives and multiplying only those required when it sends a message, X multiplies 
all its messages and sends the projection of this overall product as its message to a 
neighbor Y. The neighbor Y, when it receives this message, re-computes any 
message it had sent X earlier and divides this message out of the message just 
received from X. We will not delve further into details here, but we will study the 
strategy of substituting division for storage in the next section. 
 The following proposition describes what happens in general when we apply 
the algorithm of section 3.6 to a probability tree. In stating the proposition, we 
have assumed that the Markov tree is drawn downward from the root X1, as in 
Figures 6.1–6.4, so that we can talk about downward messages and upward 
messages.  

Proposition 6.12. Suppose we apply the algorithm of section 3.6 to the 
factorization (6.11), in the Markov tree determined by (6.13) and 
(6.14). We assign P↓X1 to {X1} and PXi|b(Xi) to {Xi, b(Xi)}. Consider 
two cases for the assignment to the other vertices. 
 (i) We assign 1Xi to {Xi}, i>1. In this case, each downward 
message is a prior marginal probability distribution, and each upward 
message is a vector of ones. More precisely, 
 M{b(Xi)}→{Xi,b(Xi)} = P↓b(Xi), 
 M{Xi,b(Xi)}→{b(Xi)} = 1b(Xi), 
 M{Xi,b(Xi)}→{Xi} = P↓Xi, 
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and  
 M{Xi}→{Xi,b(Xi)} = 1Xi. 
See Figure 6.5. 
 (ii) We choose a subset g={Y1, ..., Yk} of {X2, ..., Xn}, and we 
choose an element y=(y1, y2, ..., yk) of Wg. We assign IYi=yi to {Yi}, 
and we assign 1Xi to {Xi} for Xi in {X2, ..., Xn}–g. In this case, each 
downward message is proportional to the probability distribution 
posterior to all the observations except those below it, and each 
upward message is the likelihood potential given the observations 
below it.  

 In order to say this more precisely, we need more notation. For each variable 
X in {X1, ..., Xn}, we let •X denote the subset of {X1, ..., Xn} consisting X together 
with all the variables that lie below X in the Markov tree, and we let °X denote the 
others; °X={X1, ..., Xn}–(•X). We let g•X denote the intersection g∩(•X), and we 
let y•X denote the projection y↓g•X. Similarly for g°X and y°X. 

 With this notation, we can write 
 M{b(Xi)}→{Xi,b(Xi)} = Pb(Xi)|g°Xi=y°Xi, 
 M{Xi,b(Xi)}→{b(Xi)} = Lb(Xi)|g•Xi=y•Xi, 
 M{Xi,b(Xi)}→{Xi} = PXi|g°Xi=y°Xi, 
and 
 M{Xi}→{Xi,b(Xi)} = LXi|g•Xi=y•Xi. 
See Figure 6.6. 
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Figure 6.5. Probabilities down; vectors of ones up. 
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Figure 6.6. Probabilities down, posterior to any observations that do 
not lie below. Likelihoods up, given any observations that do lie 
below. If g°X is empty, the corresponding conditional distribution 
reduces to the unconditional distribution. If g•X is empty, the 
corresponding likelihood reduces to a vector of ones. 
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 The statement of Proposition 6.12 is so lengthy that we can lose sight of the 
fact that it is a generalization of Bayes's theorem. As an antidote to this, let us 
glance at a simple special case that is generally regarded as a version of Bayes's 
theorem. This is the case where we observe variables Y1, ..., Yk, which were 
initially independent given X. The Markov tree is shown in Figure 6.7. As this 
figure indicates, the vertex {X} computes a potential that is proportional to its 
posterior distribution by multiplying its original potential, P↓X, by the n messages it 
receives: 

 PX|Y1=y1, ...,Yn=yn ∝ P↓X LX|Y1=y1...LX|Yn=yn. 

This is Bayes's theorem for n independent observations. When n=1, it reduces to 
the version of Bayes's theorem given in (6.17). 

Figure 6.7. Bayes's theorem for independent observations. 
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 Figures 6.1–6.7 and Proposition 6.12 have an alluring elegance. They are 
elegant because they unify modeling and computation; they show a computational 
procedure in which every step can be related to the conditional independence 
assumptions that underlie the probability model. As in the case of Bayes's theorem, 
we can imagine that the conditional probabilities are a permanent and stable 
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feature of our system, which is applied to different individual cases by using 
different observations and different prior distributions for the root. 
  We need to recognize, however, that this allure can be dangerous. It can 
cause confusion. It can even cause willful misunderstanding of the strength and 
nature of our evidence. If we do not have the evidence needed to complete a causal 
probability model to match our observations in the way Proposition 6.12 requires, 
then we should not allow elegance to force us into pretence. 
 In general, we must distinguish between the needs of modeling and the 
needs of computation. When we are modeling, we must pay attention to evidence. 
When we are computing, we have no need for interpretations in terms of modeling. 
Bayes's theorem, and its generalization, Proposition 6.12, are computational 
devices that are sometimes applicable, not propositions with foundational or 
philosophical significance. 

6.5. Lauritzen and Spiegelhalter's Algorithm 

In this section, we describe Lauritzen and Spiegelhalter's algorithm for computing 
the marginals of a factored potential for all the vertices of a Markov tree.  
 Lauritzen and Spiegelhalter's algorithm is best understood in relation to the 
algorithm of section 3.6, especially the version of that algorithm that sweeps 
inward to a predetermined vertex and then back outward again. 
 The main difference between the two algorithms lies in the way they avoid 
the double counting that can occur if assessments originating in an outer vertex is 
both kept at that vertex and sent inward on the inward sweep. (If the information 
sent inward is incorporated into the message coming back on the outward sweep, 
then it may be misperceived, when it comes back, as independent confirmation.) 
 The algorithm of section 3.6 avoids double counting by keeping track of the 
origin (from a local perspective) of all information. During the inward sweep, each 
vertex stores all messages in registers identifying their source, and during the 
outward sweep, when g combines the messages it has received to find a message to 
send back to f, it deliberately omits the message it had received from f. 
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 Lauritzen and Spiegelhalter's algorithm, on the other hand, uses division to 
avoid double counting. When a vertex sends a message inward, it divides the 
potential it has stored for itself by that message. In effect, it does not keep the 
message sent. Thus there is no double counting when it gets the message back. 
 Lauritzen and Spiegelhalter's algorithm requires much less storage than the 
algorithm of section 3.6. It requires no storage of messages not currently in use; 
throughout the computation there is just one potential stored at each vertex. Their 
algorithm also requires less multiplication on the outward sweep. In the algorithm 
of section 3.6, the computation of the array that a vertex projects to an outward 
neighbor involves a different multiplication for each neighbor. In Lauritzen and 
Spiegelhalter's algorithm, on the other hand, a vertex projects the same potential to 
all its outward neighbors. 
 The savings in multiplication that Lauritzen and Spiegelhalter's algorithm 
achieves on the outward sweep must be balanced against the cost of the divisions 
that it introduces on the inward sweep. It is difficult to assess this balance in 
general, but since division is more expensive than multiplication, it is doubtful that 
Lauritzen and Spiegelhalter's algorithm will achieve great computational savings 
over the algorithm of section 3.6. As we will see, the attractiveness of their 
algorithm derives from its interpretation rather than from its efficiency. The 
divisions that the algorithm introduces produce conditional probabilities, and many 
of the algorithm's intermediate steps can therefore be interpreted in terms of 
conditional probability. 
 We should reiterate that Lauritzen and Spiegelhalter's algorithm is an 
algorithm for potentials, not an algorithm for arrays in general. The divisions that 
the algorithm uses will not work, in general, if the arrays are not potentials. Thus 
we assume that we are working with a potential, and that the factorization is a 
factorization into potentials. 
 We begin by discussing Lauritzen and Spiegelhalter's algorithm from a 
purely computational point of view, without reference to the probabilistic 
interpretation. We turn then to the issue of updating, and then to the probabilistic 
interpretation. 

The Inward Sweep. The inward sweep of Lauritzen and Spiegelhalter's algorithm 
is similar to the algorithm of section 3.5, our algorithm for computing the marginal 
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on a single vertex of a Markov tree. The only difference is that in Lauritzen and 
Spiegelhalter's algorithm, each vertex does more than send a message inward; it 
also divides its own potential by the message that it sends inward. 
 The division does not affect the computation of the marginal for the vertex 
on which the inward sweep converges, because this computation involves only the 
messages sent, not the potentials kept. But the division does obviously affect the 
set of potentials that remain on the vertices when the inward sweep is completed. 
As we shall see, it means that these potentials constitute a new factorization of the 
potential whose marginal we are computing. 
 We can gain some insight into each step of the inward sweep by looking 
again at Proposition 3.3, where we studied projection from an arbitrary twig in a 
hypergraph. That proposition tells us that if H is a hypergraph on X, t is a twig in 
H, b is a branch for t, and A is an array on X that factors on H, say  
 A = Π{Ah | h∈H}, (6.20) 

then  

 A↓X' = (AbAt
↓t∩b) Π{Ah | h∈H–{t, b}}, (6.21) 

where X'=X–(t–b). (Formula (6.21) differs from (3.3) in that we have replaced 
At

→b by At
↓t∩b. The replacement makes no difference, since At

→b is the vacuous 
extension of At

↓t∩b to b, and this vacuous extension is implicit in the multiplication 
by Ab.) We can rewrite (6.20) as  
 A = At Ab

 Π{Ah | h∈H–{t, b}}. (6.22) 

If (6.20) is a factorization of a potential into potentials, then part (v) of Proposition 
6.1 allows us to divide and multiply the right-hand side of (6.22) by At

↓t∩b, 
obtaining 
 A = (At/At

↓t∩b) (AbAt
↓t∩b) Π{Ah | h∈H–{t, b}}. (6.23) 

Formula (6.23) tells us that when At
↓t∩b is divided out of t's potential and 

multiplied into b's potential, the result is a new factorization of A on H. 
 We can say even more. Comparing (6.23) with (6.21), we see that  

 A = (At/At
↓t∩b) A↓X'; (6.24) 

the part of the new factorization that remains when t is removed is a factorization 
of A↓X'. This is the key to the conclusion that repeated application of (6.23) on a 
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hypertree results in a new factorization. If H is a hypertree, then removal of the 
twig t leaves us with a factorization of A↓X' on the hypertree H–{t}, and hence we 
can repeat the operation. 

Figure 6.8. Revising a factorization on a hypergraph. The new 
factorization differs from the old only in that At

↓t∩b has been divided 
out of t's potential and multiplied into b's potential. The potentials on 
all the other hyperedges have been left the same. The new 
factorization has the property that if the twig t were removed, the 
potentials on the remaining hyperedges in the factorization would 
constitute a factorization of the marginal on the union of these 
hyperedges. 
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 In order to formalize our understanding of the inward sweep, we formulate a 
new basic operation, analogous to Operation H of section 3.5. The setting of the 
new operation is the same: a hypertree H on a set of variables X, and an potential 
A on X, factored into potentials on the hyperedges, as in (6.20). We have chosen a 
root h1 and a branching β with this root. Thus the operation can be thought of as an 
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operation in the hypertree H with branching β, or, equivalently, as an operation in 
the Markov tree determined by H and β. 

Operation L&S1. Compute the marginal on h∩β(h) of the potential 
now on h. Change the potential now on h by dividing it by this 
marginal. Change the potential now on β(h) by multiplying it by this 
marginal. 

 The inward sweep consists of a series of applications of Operation L&S1, 
converging on the root h1. We choose any hypertree construction sequence that has 
β as its branching, say h1h2...hn. We apply Operation L&S1 first for h=hn, then for 
h=hn–1, and so on, down to h=h2. 
 At the end of the inward sweep, the potential assigned to h1 is the marginal 
of A on h1. This is because the messages sent inward toward h1 are exactly the 
same as in the scheme described in section 3.5. Operation L&S1 and Operation H 
send the same message to β(h); they differ only in what they do to the array that 
remains at h. 
 Since the messages sent in our inward sweep are exactly the same as the 
messages sent in section 3.5, we have the same flexibility of control that we 
observed there. In terms of the hypertree, we can choose any construction sequence 
with the branching β. In terms of the Markov tree determined by H and β, we can 
choose any construction sequence with the budding β. In other words, the only 
restriction on the order in which the vertices act is that all the vertices that use a 
given vertex as a bud must act before it acts. 
 We can allow the vertices to delay their multiplications until they have 
received all their messages, as we did when formulating Operation M2 in section 
3.5. One motivation for the division in Lauritzen and Spiegelhalter's algorithm, 
however, is to avoid the storage requirements that such delay entails. In our further 
discussion, therefore, we will assume that messages are absorbed as they are sent. 

The Outward Sweep. Suppose we have completed the inward sweep. We now 
have new potentials on all the vertices, and the new potential on h1 is A↓h1. How do 
we compute the marginals for the other vertices? 
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 The answer is that we proceed from h1 back outward in the Markov tree, 
projecting from bud to leaf, and multiplying the potential on the leaf by the 
projection. At each step, as we shall see, this product is the marginal for the leaf. 
 In this outward sweep, we do not perform any divisions. Thus our basic 
operation is simply the following: 

Operation L&S2. Compute the marginal on β(h)∩h of the array now 
on β(h). Change the potential now on h by multiplying it by this 
marginal. 

 The budding β is, of course, the same budding we used on the inward sweep. 
Its root is h1, the vertex on which the inner sweep converged. 
 We can apply Operation L&S2 following the same construction sequence 
h1h2...hn that we used in the inward sweep. We apply the operation first for h=h2, 
then for h=h3, and so on, up to h=hn. (Since β(h2)=h1, the first projection will be 
from h1 to h2.) Alternatively, we can follow some other tree construction sequence 
that uses the budding β. In other words, we move outward in the Markov tree 
however we like, provided only that we never execute Operation L&S2 for a vertex 
before having executed it for the vertex's bud.  
 We can now summarize how Lauritzen and Spiegelhalter's algorithm 
compares with the algorithm of section 3.6. Both algorithms involve an inward and 
an outward sweep. The only difference in the flow of the computation is that in 
Lauritzen and Spiegelhalter's algorithm, we must single out a vertex h1 in the 
Markov tree and force the inward sweep to converge on that vertex. In the 
algorithm of section 3.6, making such an a priori choice of a central vertex is 
optional, and it is permissible to have two central vertices that send their messages 
to each other simultaneously. On the inward sweep, the message sent by each 
vertex is the same under the two algorithms, but Lauritzen and Spiegelhalter's 
algorithm has each vertex divide its own potential by that message. On the outward 
sweep, Lauritzen and Spiegelhalter's algorithm has each vertex multiply its original 
potential by all its messages received and project this to all its outward neighbors, 
whereas the algorithm of 3.6 omits from the projection to each neighbor the 
message received from that neighbor. 
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 Here is a formal statement of our claim that the outward sweep will produce 
all the marginals. 

Proposition 6.13. At the end of the outward sweep, the potential on 
each vertex is the marginal of A for that vertex. 

 The formal proof given at the end of the chapter is based, of course, on the 
comparison with the algorithm of section 3.6. We already know that the two 
algorithms give the same answer for h1. We complete the proof by induction on the 
outward sweep.  

Updating. In section 3.6, we noted that the algorithm presented there offered 
opportunities for modest computational savings in updating. If just one potential in 
the original factorization were changed, the marginals could be updated with only 
about half the amount of message passing required in the initial computation. This 
opportunity for savings in updating is not so manifest in Lauritzen and 
Spiegelhalter's algorithm. 
 In order for updating to be possible at all, of course, we must retain a 
factorization. The way we have described Lauritzen and Spiegelhalter's algorithm, 
the factorization is not retained. At the end of the inward sweep, the factorization 
has been replaced by a new factorization. At the end of the outward sweep, this 
new factorization has been replaced by the marginals, which are not a 
factorization. But we can store the original factorization if we want, and we can 
update by repeating the algorithm with whatever changes in that factorization we 
want. 
 Another approach would be to store the new factorization that has been 
obtained at the end of the inward sweep, and to use it for updating. As we will see 
in a moment, this approach does provide some opportunity for computational 
savings. 

Interpretation. We now turn to the probabilistic interpretation of the operations in 
Lauritzen and Spiegelhalter's algorithm.  
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 Let us return to equations (6.20)–(6.24), where we analyzed the removal of a 
twig t from a factorization of a potential A on a hypergraph H. Equation (6.24) 
says that 

 A = (At/At
↓t∩b) A↓X'. (6.24) 

We can justify dividing both sides of this equation by A↓X', thus obtaining 

 A/A↓X' = (At
t|t∩b)↑X. 

Since A/A↓X' = At|X', we have the following proposition. 

Proposition 6.14. Suppose H is a hypergraph on X, t is a twig in H, b 
is a branch for t, X'=X–(t–b), A is a potential on X, and A = 
Π{Ah|h∈H}, where Ah is a potential on h. Then 
 At|X' = (At

t|t∩b)↑X. (6.25) 
So if we divide the potential on t by its projection to b and multiply 
the potential on b by this same projection, the result is a new 
factorization, such that the potential on t is At|X', and the potentials on 
the other hyperedges form a factorization of A↓X'. 

 We can express (6.25) in words if A is a probability distribution. It says that 
when we divide the potential on the twig by its projection to its branch, we obtain 
the conditional probabilities for the twig given the variables that remain when the 
twig is removed. 
 In Lauritzen and Spiegelhalter's inward sweep, we perform the computation 
(6.25) first for the twig hn in H, then for the twig hn–1 in H–{hn}, and so on. The 
first step leaves Ahn|h1∪...∪hn–1 on hn, and a factorization of A↓h1∪...∪hn–1 on {h1, ..., 
hn-1}. The second step leaves Ahn–1|h1∪...∪hn–2 on hn–1, and a factorization of 
A↓h1∪...∪hn–2 on {h1, ..., hn–2}. And so on. So at the end of the inward sweep, we 
have the factorization  

 A = A↓h1 Ah2|h1∪h2 ... Ahn–1|h1∪...∪hn–2 Ahn|h1∪...∪hn–1. (6.26) 
Writing the factorization in this form makes it look more complex than it really is, 
of course; (6.25) tells us that Ahi|h1∪...∪hi–1 is carried by hi, and we will have it stored 
at hi, as a potential on hi. 
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 In the case where we are working with a probability distribution P, the 
language of conditional probability provides us with many different ways of 
describing the potential stored at hi at the end of the inward sweep. Indeed, since 
β(hi)→⊥P[hi, h1∪...∪hi–1], part (vii) of Proposition 6.9 tells us that Phi|h1∪...∪hi–1 is 
the vacuous extension of Phi|β(hi). And 

 Phi|β(hi)= Phi|hi∩β(hi) = Phi–β(hi)|hi∩β(hi). 
The first equality follows from hi∩β(hi)→⊥P[hi, β(hi)], the second from the fact 
that Af|g= Af–g|g for any f and g. 
 As we see here, the very richness of the conditional probability language can 
be a source of some confusion. It is easy enough to say that the potentials on the 
vertices at the end of the inward sweep are conditional probabilities. But then we 
have to decide whether to call them conditional probabilities for the twig given the 
variables that remain when the twig is removed, conditional probabilities for the 
twig given the branch, conditional probabilities for the twig given the variables in 
both the twig and the branch, or conditional probabilities for the variables only in 
the twig given the variables in both the twig and the branch. All these descriptions 
are correct. 
 This confusing richness of the conditional probability language is one reason 
why we have avoided this language altogether in our initial description of 
Lauritzen and Spiegelhalter's algorithm. 
 If we write (6.26) as  

 P = P↓h1 Ph2|h2∩β(h2) ... Phn|hn∩β(hn), (6.27) 
it becomes clear that the outward sweep consists simply of repeated applications of 
the rule of total probability. Before the vertex hi acts, its branch β(hi) has already 
computed P↓β(hi), marginalized this to P↓hi∩β(hi), and sent this marginal to hi. Vertex 
hi simply multiplies this message by its own potential, Phi|hi∩β(hi), obtaining 

 P↓hi∩β(hi) Phi|hi∩β(hi) = P↓β(hi). (6.27) 
 The action (6.27) on the outward sweep is obviously analogous to the action 
that we described in the probability tree in Figure 6.3 above. The hi here are 
analogous to the {Xi, b(Xi)} there, and the intersections hi∩β(hi) here are 
analogous to the single variables {Xi} there. 
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 To push this analogy further, consider the hypertree obtained by adding the 
intersections hi∩β(hi) and the differences hi–β(hi) to H. The sequence  
 h1, h2∩β(h2), h2, h2–β(h2), ..., hn∩β(hn), hn, hn–β(hn), 

with any duplications omitted, is a construction sequence for this hypertree. We 
can use β(hi) as the branch for hi∩β(hi), hi∩β(hi) as the branch for hi, and hi as the 
branch for hi–β(hi). Figure 6.9 shows a fragment of the resulting Markov tree. If 
we put the potential P↓h1 on h1, the potentials Phi|hi∩β(hi) on the other hi, and 
potentials identically equal to one on the other vertices, then running the algorithm 
of section 3.6 will reproduce Lauritzen and Spiegelhalter's outward sweep. If we 
replace the potentials on some of the hi–β(hi) by indicator potentials, representing 
observations of some of the variables, then running the algorithm again will 
produce messages that are all likelihoods or probabilities, as in the case of the 
probability tree. If we have only one observation, say, then only about half the 
messages will need to be changed, so we can achieve our usual modest savings in 
updating. 
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Figure 6.9. Fragment of a Markov tree. 
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 Though we have drawn an analogy to the probability tree of section 6.4, we 
do not have here the alluring unification of modeling and computation that we saw 
there. There the conditional probabilities we were using for the computation were 
assessed directly in the modeling and seemed to be permanent or stable features of 
the system. Here these conditional probabilities, since they are the result of the 
inward sweep, are more distant from the original modeling more likely to 
incorporate aspects of the evidence unique to the particular case. 
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6.6. Proofs 

Proof of Proposition 6.1. To prove (i), we simply recognize that G↓h(x↓h) is the 
sum of G(x) together with G(y) for all other y such that y↓h=x↓h; since G is a 
potential, all the terms in the sum are non–negative.  
 Statement (ii) follows immediately from statement (i). 
 Statement (iii) follows from (ii) together with our convention that a ratio 
with zero denominator is zero. It follows from this convention that a ratio will be 
zero if and only if its numerator, its denominator, or both are zero. Statement (ii) 
eliminates the possibility that the denominator of G/G↓h can be zero without the 
numerator being zero, so this ratio is zero if and only if its numerator is zero.  
 Statement (iv) follows from (iii) and the fact that G is a potential. To see that 
(v) is true, first translate its hypothesis into the statement that G(x)/G↓h(x↓h) = B(x) 
for all x∈Wg. For x such that G↓h(x↓h) > 0, it follows directly that G(x) = 
B(x)G↓h(x↓h). For x such that G↓h(x↓h) = 0, we see from (ii) that G(x) = 
B(x)G↓h(x↓h) because both sides are zero. The proof of (vi) is analogous. 

Proof of Proposition 6.2. The proof uses Proposition 3.1 once and Proposition 3.2 
twice: (GH)↓g∩h = ((GH)↓h)↓g∩h = (G↓g∩hH)↓g∩h = G↓g∩hH↓g∩h. 

Proof of Proposition 6.3. When we write the ratio potentials in (ii), (iii), and (iv) in 
explicit form (i.e., write A↓h/A↓g∩h for Ah|g∩h, etc.), we see each of these equations 
can be reduced to (i) by multiplying both sides by A↓g∩h. So the equivalence of (i), 
(ii), (iii) and (iv) follows from parts (v) and (vi) of Proposition 6.1. 
 Statements (ii) and (iii) are factorizations of A on {g, h}. So in order to 
prove that statement (v) is equivalent to the first four statements, we need only 
derive one of the four from (v). We will derive (i). Assuming (v), we write A=GH, 
where G is an array on g, and H is an array on h. By Proposition 3.2, A↓g = GH↓g∩h 
and A↓h = G↓g∩hH. By Proposition 6.2, A↓g∩h = G↓g∩hH↓g∩h. So AA↓g∩h = 
GHG↓g∩hH↓g∩h = (GH↓g∩h)(G↓g∩hH) = A↓gA↓h. 
 
??? 
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 If we write (vi) as (A/A↓h)↓g = Ag|g∩h, then we see its equivalence to (ii) by 
(iv) and (v) of Proposition 6.1. Similarly, (vii) is equivalent to (iii). 
 Finally, we prove the equivalence of (viii) and (vi); the equivalence of (ix) 
and (vii) is analogous. Suppose (viii) holds. Then we can write Ag|h = B↑g∪h, or 
A/A↓h = B↑g∪h, where B is a potential on g. By Proposition 6.1, this implies that A 
= BA↓h. Applying Proposition 3.1 to this equation, we obtain A↓g = BA↓g∩h. Using 
Proposition 6.1 again, this time to divide both sides by A↓g∩h, we obtain (vi). 

Proof of Proposition 6.4. The sum of the values of P|h=y is  
 Σ{P|h=y(x) | x∈WX }  = Σ{P(x)I↓h(x↓h)/P↓h(x↓h) | x∈WX } 
  = Σ{P(x)/P↓h(y) | x∈WX and x↓h=y} 
  = Σ{P(x) | x∈WX and x↓h=y} /P↓h(y)  
  = P↓h(y) / P↓h(y) = 1. 

Proof of Proposition 6.5. To see that (ii) and (iii) are equivalent, notice that (ii) 
says that P=P/P↓f, and by (v) and (vi) of Proposition 6.1, this is equivalent to (iii). 
 To see that (iii) and (i) are equivalent, notice that the relation 
P(y)=P(y)P↓f(y↓f) can hold for all y if and only if P↓f(y↓f) is equal to one whenever 
P(y)>0. Since a probability distribution can assign the value one to at most one 
configuration, this is equivalent to (i). 

Proof of Proposition 6.7. The equivalence of (i) and (ii) is obvious. 
 The equivalence of (ii) and (iii) follows from the definition of conditional 
probability; if δ(x)↓g=x and P↓g(x)>0, then Pg∪h|g=x(δ(x)) = P↓g∪h(δ(x)) / P↓g(x), so 
Pg∪h|g=x(δ(x)) = 1 is equivalent to P↓g∪h(δ(x)) = P↓g(x). 
 The equivalence of (iii) and (iv) follows from the definition of marginal 
probability. This definition says that 
 P↓g(x) = Σ{P↓g∪h(y) | y∈Wg∪h and y↓g=x}. 

Since all the terms in the sum are non-negative, only one of these terms being 
positive is equivalent to the existence of one that is equal to the sum. 
 We leave to the reader the proof that (v) is also equivalent to the preceding 
statements. 
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Proof of Proposition 6.8. Both Ph∪f|g and Ph|g∪f have the domain f∪g∪h, and both 
take positive values only for those z∈Wf∪g∪h such that P↓f∪g∪h(z)>0. By part (v) of 
Proposition 6.7, P↓g∪f(z) = P↓g(z) and hence  
 Ph∪f|g(z) = P↓f∪g∪h(z) / P↓g(z) = P↓f∪g∪h(z) / P↓g∪f(z) = Ph|g∪f(z) 
for any such z. 

Proof of Proposition 6.13. The proof is based on a comparison between Lauritzen 
and Spiegelhalter's algorithm (algorithm L&S) and the algorithm for simultaneous 
computation given in section 3.6 (algorithm SM, for Simultaneous computation of 
Marginals). We assume that both algorithms use the construction sequence h1h2...hn 
for both the inward and outward sweep. 
 The two algorithms send the same messages inward, and they both 
incorporate messages received by multiplication, so as the propagation proceeds 
they will agree on the potential stored at any vertex that has received but not yet 
sent messages. At the end of the inward sweep, the root h1 has not yet sent a 
message; this is how we know its potential under L&S is the same as its potential 
under SM, A↓h1. 
 Let us step back a moment, to the point just before the end of the inward 
sweep, just before h2 sends a message to h1. At that point, neither h1 nor h2 has sent 
a message, and the same potentials have arrived at the two vertices under L&S as 
under SM. The vertex h1 has its original potential and messages from all its 
neighbors except h2. Under SM, these potentials are all stored; under L&S, their 
product 
 B1 = Ah1 Π{Mg→h1 | g∈(Nh1–{h2})}. 

is stored. Similarly, h2 has its original potential and messages from all its neighbors 
except h1. Under SM, these are all stored; under L&S their product 
 B2 = Ah2 Π{Mg→h2 | g∈(Nh2–{h1})}. 

is stored. 
 Figure 6.10 shows what happens next under SM. First, the inward sweep is 
completed as h2 marginalizes B2 to h2∩h1. This is the end of the inward sweep, and 
h1 is now able to multiply all its messages together, obtaining its marginal, 
B1B2

↓h1∩h2. Then, as the first step of the outward sweep, h1 multiplies everything 
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except the message from h1, obtaining B1, and sends the message B1
↓h1∩h2 to h2. 

Now h2 has also received all its messages; it multiplies them all together, obtaining 
its marginal, B2B1

↓h1∩h2. 
 Figure 6.11 shows what happens next under L&S. Initially we have the 
product B1 at h1 and the product B2 at h2. The inward sweep is completed as h2 
marginalizes B2 to h1∩h2. The message, B2

↓h1∩h2 multiplies the potential at h1 and 
divides the potential at h2, leaving B1B2

↓h1∩h2 at h1 and B2/B2
↓h1∩h2 at h1. Then, as 

the first step of the outward sweep, h1 marginalizes its current potential, B1B2
↓h1∩h2, 

to h2. The marginal multiplies the potential already at h2, yielding, by Propositions 
3.2 and 6.1, 

 (B1B2
↓h1∩h2)↓h1∩h2 B2/B2

↓h1∩h2 = B1
↓h1∩h2 B2

↓h1∩h2 B2/B2
↓h1∩h2  

  = B1
↓h1∩h2B2, 

the marginal on h2. 

Figure 6.10. Algorithm SM. 
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Figure 6.11. Algorithm L&S. 
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 We have established that L&S produces the marginal on the first vertex to 
which it projects in its outward sweep. But the same argument also works for any 
other vertex. The situation just before g projects to h on the outward sweep will be 
the same no matter whether this is the first projection on the outward sweep or a 
later one. In either case, the situation will be described by the middle lines in 
Figures 6.10 and 6.11. The vertex g will have all its messages (under SM) or their 
product (under L&S). The vertex h will have all its messages except the message 
from g or their product divided by the message h sent to g (under L&S). 
 



 
 
 
CHAPTER SEVEN 

 
An Axiomatic Framework for Discrete Optimization 

 

 
 
The main objective of this chapter is to describe an axiomatic paper for 
representing and solving discrete optimization problems. There are several reasons 
why this is useful. 
 First, in chapter 4, we described an axiomatic framework for computing the 
marginals of the joint valuation in a valuation-based system (VBS). In this chapter, 
I show that these systems also have the expressive power to represent and solve 
optimization problems. 
 Second, problems in Bayesian decision analysis involve managing 
probabilities and optimization. That these problems can be solved in a common 
framework suggests that Bayesian decision problems also can be represented and 
solved in the framework of VBS. Indeed, Shenoy [1990a,b, 1991] shows that this 
is true. In fact, the solution procedure of VBSs when applied to symmetric 
Bayesian decision problems results in a method that is computationally more 
efficient than decision trees and influence diagrams. 
 Third, the solution procedure of VBS when applied to optimization problems 
results in a method called non-serial dynamic programming [Bertele and Brioschi, 
1972]. Thus in an abstract sense, the local computation algorithms that have been 
described by, for example, Pearl [1986], Shenoy and Shafer [1986], Dempster and 
Kong [1988], Lauritzen and Spiegelhalter [1988], and Shafer and Shenoy [1990] 
are just dynamic programming. 
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 Fourth, we provide an answer to the question: What is dynamic 
programming? Dynamic programming is commonly viewed as an optimization 
technique. This is how Bellman [1957] described it. However, it is also recognized 
that dynamic programming is more than an optimization technique. For example, 
Aho, Hopcroft and Ullman [1974] refer to dynamic programming as a “divide-and-
conquer” methodology. In this paper, we give a formal definition of a problem and 
a formal method solving the problem. The formal method for solving the problem 
can be thought of as an abstract definition of dynamic programming solution 
methodology. 
 Fifth, we provide an answer to the question: When does dynamic 
programming work? We describe some simple axioms for combination and 
marginalization that enable the use of dynamic programming for solving 
optimization problems. We believe these axioms are new. They are weaker than 
those proposed by Mitten [1964]. 
 Sixth, the VBS described here can be easily adapted to represent 
propositional logic [Shenoy 1990c,d] and constraint satisfaction problems [Shenoy 
and Shafer, 1988]. Constraint satisfaction problems is dealt with in chapter 8 of 
this book. 
 An outline of this chapter is as follows. In section 7.1, we show how to 
represent an optimization problem as a VBS. In section 7.2, we state some simple 
axioms that justify the use of local computation in solving VBSs. In section 7.3, we 
show how to solve a VBS. Throughout the paper, we use one example to illustrate 
all definitions and the solution method. In section 7.4, we compare our axioms to 
those proposed by Mitten [1964] for serial dynamic programming. In section 7.5, 
we describe two different applications of the axiomatic framework. In section 7.6, 
we make some concluding remarks. Finally, in section 7.7 we provide proofs for 
all results in the paper. 
 Most of the material in this chapter previously appeared in [Shenoy, 1991]. 
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7.1. The Axiomatic Framework 

A valuation-based system representation of an optimization problem uses 
variables, frames, and valuations. We will discuss each of these in detail. We will 
illustrate all definitions using an optimization problem from Bertele and Brioschi 
[1972]. 
 An Optimization Problem. There are five variables labeled as A, B, C, D, 
and E. Each variable has two possible values. Let a and ~a denote the possible 
values of A, etc. The joint objective function F for variables A, B, C, D, and E 
factors additively as follows: F(v, w, x, y, z) = F1(v, x, z) + F2(v, w) + F3(w, y, z), 
where F1, F2, and F3, are as shown below in Figure 7.1. The problem is to find the 
minimum value of F and a configuration (v, w, x, y, z) that minimizes F. 

Figure 7.1. The factors of the objective function, F1, F2, and F3. 

w!w {A,C,E} F1(w)

a c e 1

a c ~e 3

a ~c e 5

a ~c ~e 8
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w!w {B,D,E} F3(w)
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b d ~e 5
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w!w {A,B} F2(w)

a b 4

a ~b 8

~a b 0

~a ~b 5

 
 

 Values and Valuations. We are concerned with a set V whose elements are 
called values. V may be finite or infinite. Given a set h of variables, we call any 
function H:Wh → V, a valuation for h. Note that to specify a valuation for ∅, we 
need to specify only a single value, H(♦). If H is a valuation for h and X∈h, then 
we say H bears on X. 
 In our problem, the set V corresponds to the set of real numbers, and we 
have three valuations F1, F2 and F3. F1 is a valuation for {A, C, E}, F2 is a valuation 
for {A, B} and F3 is a valuation for {B, D, E}. Figure 7.2 shows a graphical 
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depiction of the optimization problem. We call such a graph a valuation network. 
In a valuation network, square nodes represent variables, and diamond-shaped 
nodes represent valuations. Each valuation is linked to the variables it bears on. 
 Let Vh denote the set of valuations for h, and let V denote the set of 
valuations, i.e., V = ∪{Vh | h⊆X}. 

Figure 7.2. The valuation network for the optimization problem. 
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 Combination. We assume there is a mapping :V×V → V called 
combination so that if u, v ∈ V, then uv is the value representing the combination 
of u and v. We define a mapping ⊕:V×V → V in terms of , also called 
combination, such that if G and H are valuations for g and h, respectively, then 
G⊕H is the valuation for g∪h given by  
 (G⊕H)(x) = G(x↓g)©H(x↓h) (7.1) 

for all x∈Wg. We call G⊕H the combination of G and H. 
 In our optimization problem, © is simply addition, i.e. 
 (G⊕H)(x) = G(x↓g) + H(x↓h) (7.2) 

Using (7.2), we can express the joint objective function F as follows F = 
F1⊕F2⊕F3. 
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 Marginalization. We assume that for each h⊆X, there is a mapping 
↓h:∪{Vg | g⊇h} → Vh, called marginalization to h, such that if G is a valuation for 
g and g⊇h, then G↓h is a valuation for h. We call G↓h the marginal of G for h. 
 For our optimization problem, we define marginalization as follows: 
 G↓h(x) = MIN{G(x, y) | y∈Wg–h} (7.3) 

for all x∈Wh. Thus, if F is an objective function, then F↓∅(♦) represents the 
minimum value of F. 
 In an optimization problem, besides the minimum value, we are usually also 
interested in finding a configuration where the minimum of the joint valuation is 
achieved. This motivates the following definition. 
 Solution for a Valuation. Suppose H is a valuation for h. We call x∈Wh a 
solution for H if H(x) = H↓∅(♦). 
 Solution for a Variable. As we will see, once we have computed the 
minimum value of a valuation, computing a solution for the valuation is a matter of 
bookkeeping. Each time we eliminate a variable from a valuation using 
minimization, we store a table of configurations of the eliminated variable where 
the minimums are achieved. We can think of this table as a function. We call this 
function “a solution for the variable.” Formally, we define a solution for a variable 
as follows. Suppose X is a variable, suppose g is a subset of variables containing 
X, and suppose G is a valuation for g. We call a function ΨX: Wg–{X} → WX a 
solution for X (with respect to G) if 
 G↓(g–{X})(c) = G(c, ΨX(c)) (7.4) 

for all c∈Wg–{X}. 
 If X is a large set of variables, then a brute force computation of F and an 
exhaustive search of the set of all configurations of X to determine a solution for F 
is computationally infeasible. In the next section we will state axioms for 
combination and marginalization that make it possible to use local computation to 
compute the minimum value of F and a solution for F. 
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7.2 The Axioms 

We state three axioms. Axiom A1' is for combination. Axiom A2 is for 
marginalization. And Axiom A3 is for combination and marginalization. Axioms 
A2 and A3 are the same as those defined in Chapter 4. 

A1'. (Commutativity and associativity of combination). Suppose u, v, 
and w are values. Then uw = vu and u(vw) = (uv)w. 

A2. (Consonance of marginalization). Suppose G is a valuation for g, 
and k⊆h⊆g. Then (G↓h)↓k = G↓k. 

A3. (Distributivity of marginalization over combination). Suppose G 
and H are valuations for g and h, respectively. Then (G⊕H)↓g = 
G⊕(H↓g∩h). 

 
 Note that axiom A1' implies axiom A1 defined in Chapter 4, i.e., if axiom 
A1' holds, then ⊕ is commutative and associative. Therefore, the combination of 
several valuations can be written without using parentheses. For example, 
(...((F1⊕F2)⊕F3)⊕...⊕Fk) can be simply written as F1⊕...⊕Fk without specifying 
the order in which to do the combination. 
 If we regard marginalization as a reduction of a valuation by deleting 
variables, then axiom A2 can be interpreted as saying that the order in which we 
delete the variables does not matter. 
 Axiom A3 is the crucial axiom that makes local computation of marginals 
and solution possible. Axiom A3 states that computation of (G⊕H)↓g can be done 
without having to compute G⊕H. 
 For our optimization problem, it is easy to see that the definitions of 
combination in (7.2) and marginalization in (7.3) satisfy the three axioms. 
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7.3. Solving a VBS Using Local Computation 

Suppose we are given a VBS consisting of a collection of valuations {F1, ..., Fk} 
where each valuation Fi is for subset hi of X. The problem is (i) to find the value of 
F↓∅(♦) = (F1⊕...⊕Fk)↓∅(♦) and (ii) to find a solution for F. We assume that 
combination and marginalization satisfy the three axioms. 
 In the case of an optimization problem, F↓∅(♦) represents the minimum 
value of the joint objective function, and a solution for F represents a configuration 
of all variables where the minimum is achieved. 
 Solving a VBS proceeds in three phases. In phase one, we arrange the 
subsets of variables in H in a “rooted Markov tree.” In the phase two, we 
“propagate” the valuations {F1, ..., Fk} in the rooted Markov tree using a local 
message-passing scheme resulting in the computation of the marginal F↓∅. In the 
phase three, we construct a solution for F again using a local message-passing 
scheme. 

7.3.1. Phase One: Finding a Rooted Markov Tree Arrangement 

 A rooted Markov tree is a Markov tree with the empty subset ∅ as the root 
and such that all edges in the tree are directed toward the root. Figure 7.3 shows a 
rooted Markov tree arrangement of the subsets {A, C, E}, {A, B}, and {B, D, E}. 
 The computational efficiency of phase two depends on the sizes of the 
frames of the vertices of the Markov tree constructed in the phase one. Finding an 
optimal rooted Markov tree (a rooted Markov tree whose largest frame is as small 
as possible) has been shown to be a NP-complete problem [Arnborg et al., 1987]. 
Thus we have to balance the computational efforts in the two phases. We will 
describe a heuristic called “one-step-look-ahead” due to Kong [1986] to find a 
good rooted Markov tree. 
 The method described below for arranging a hypergraph in a rooted Markov 
tree is due to Kong [1986] and Mellouli [1987]. 
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Figure 7.3. A rooted Markov tree for the optimization problem. 
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 Suppose H is a hypergraph on X. To arrange the subsets in H in a Markov 
tree, we first pick a sequence of variables in X. As we will see, each sequence of 
the variables gives rise to a Markov tree arrangement. Mellouli [1987] has shown 
that an optimal Markov tree arrangement can be found by picking some sequence. 
Of course, since there are an exponential number of sequences, finding an optimal 
sequence is, in general, a difficult problem. 
 Suppose we have a sequence of variables. Consider the first variable, say X1, 
in the sequence. We add two subsets g1= ∪{h | X1∈h} and f1 = g1–{X1} to H. We 
form the rooted Markov tree (V, E) where V = {h∈H | Xi∈h}∪{fi}∪{gi} and E = 
{(h, gi) | h∈(H−{gi, fi}), Xi∈h}∪{(gi, fi)}. We now consider X1 as marked and 
subsets that contain X1 as arranged. We repeat this process for the unarranged 
subsets until all variables are marked. 
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 Consider the following set of instructions in pseudo-Pascal: 
 u := X {Initialization} 
 H0 := H {Initialization} 
 V := ∅ {Initialization} 
 E := ∅ {Initialization}  
 for i = 1 to n do 
  begin 
   Pick a variable from set u and call it Xi 

   u := u – {Xi} 
   gi := ∪{h∈Hi–1 | Xi∈h}. 
   fi := gi – {Xi}. 
   V := V ∪ {h∈Hi–1 | Xi∈h} ∪ {fi} ∪ {gi} 
   E := E ∪ {(h, gi) | h∈(Hi–1–{gi, fi}), Xi∈h} ∪ {(gi, fi)} 
   Hi := {h∈Hi–1 | Xi∉h} ∪ {fi} 
  end {for} 
 
 After the execution of the above set of instructions, it is easily seen that the 
pair (V, E) is a rooted Markov tree arrangement of H where V denotes the set of 
vertices of the rooted Markov tree and E denotes the set of edges directed toward 
the root. 
 Kong [1986] has suggested a heuristic called one-step-look-ahead for 
finding a good Markov tree. This heuristic tells us which variable to mark next. As 
the name of the heuristic suggests, the variable that should be marked next is an 
unmarked variable Xi such that the cardinality of Wfi is the smallest. Thus, the 
heuristic attempts to keep the sizes of the frames of the added vertices as small as 
possible by focusing only on the next subset added. In the optimization problem, a 
marking sequence selected by the one-step-look-ahead heuristic is CDEBA. Figure 
7.4 illustrates the construction of a rooted Markov tree using this marking 
sequence. The resulting Markov tree is the same as that shown in Figure 7.3. See 
Zhang [1988] for other heuristics for good Markov tree construction. 
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Figure 7.4. The construction of the rooted Markov tree for the 
optimization problem. 
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1.  The initial hypergraph.  Variables 
are shown as squares and subsets are 
shown as black disks.  The elements 
of each subset are indicated by dotted 
lines.

2.  The Markov tree fragment after C 
is marked.  Subset {A,E} is added to 
the hypergraph.  Subset {A,C,E} is 
now arranged.

3.  The Markov tree fragment after D 
is marked.  Subset {B,E} is added to 
the hypergraph.  Subset {B,D,E} is 
now arranged.

4.  The Markov tree fragment after E 
is marked.  Subset {A,B,E} is added 
to the hypergraph.  Subsets {A,E}, 
{B.E} and {A,B,E} are now 
arranged.

5.  The Markov tree fragment after B 
and then A are marked.  Subsets {A} 

and ! are added to the hypergraph.  
All subsets are now arranged.
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7.3.2. Phase Two: Finding the Marginal of the Joint Valuation 

Suppose we have arranged the hypergraph H in a rooted Markov tree. Let H' 
denote the set of subsets in the Markov tree. Clearly H'⊇H. To simplify the 
exposition, we assume there is exactly one valuation for each nonempty subset 
h∈H'. If h is a subset that was added during the rooted Markov tree construction 
process, then we can associate the vacuous valuation (the valuation whose values 
are all 0) with it. On the other hand, if subset h had more than one valuation 
defined for it, then we can combine these valuations to obtain one valuation. 
 If we assume that the directed edges of a rooted Markov tree point from a 
child to its parent, then the rooted Markov tree defines a parent-child relation 
between adjacent vertices. If there is an edge (hi, hj) in the rooted Markov tree, we 
refer to hj as hi’s parent and refer to hi as hj’s child. Let h0 = ∅ denote the root of 
the Markov tree. Let Pa(h) denote h’s parent and let Ch(h) denote the set of h’s 
children. Every non-root vertex has exactly one parent. Some vertices have no 
children and we call such vertices leaves. Note that the root has exactly one child. 
 In describing the process of finding the marginal of the joint valuation for 
the empty set, we will pretend that there is a processor at each vertex of the rooted 
Markov tree. Also, we assume these processors are connected using the same 
architecture as the Markov tree. In other words, each processor can directly 
communicate only with its parent and its children. 
 In the propagation process, each subset (except the root h0) transmits a 
valuation to its parent. We call the valuation transmitted by subset hi to its parent 
Pa(hi) a valuation message and denote it by Vhi→Pa(hi). Suppose H' = {h0, h1, ..., hk} 
and let Fi denote the valuation associated with nonempty subset hi. Then, the 
valuation message transmitted by a subset hi to its parent Pa(hi) is given by 

 Vhi→Pa(hi) = (⊕{Vh→hi | h∈Ch(hi)}⊕Fi)↓(hi∩Pa(hi)) (7.5) 

In words, the valuation message transmitted by a subset to its parent consists of the 
combination of the valuation messages it receives from its children plus its own 
valuation suitably marginalized. Note that the combination operation in (7.5) is on 
the frame Whi. 
 Expression (7.5) is a recursive formula. We need to start the recursion 
somewhere. Note that if subset hi has no children, then Ch(hi) = ∅ and the 
expression in (7.5) reduces to  
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 Vhi→Pa(hi) = (Fi)↓(hi∩Pa(hi)) (7.6) 

Thus the leaves of the Markov tree (the subsets that have no children) can send 
valuation messages to their parents right away. The others wait until they have 
heard from all their children before they send a valuation message to their parent. 
 The following theorem states that the valuation message from h0’s child to 
h0 is indeed the desired marginal. 

Theorem 7.1. The marginal of the joint valuation for the empty set is 
equal to the message received by the root, i.e., (F1⊕...⊕Fk)↓∅ = Vh→h0. 

 
 Theorem 7.1 is valid not only for optimization problems but for any VBS 
where axioms A1', A2, A3 hold. We give a simple proof of Theorem 7.1 in section 
7.6. 
 The essence of the propagation method described above is to combine 
valuations on smaller frames instead of combining all valuations on the global 
frame associated with X. To ensure that this method gives us the correct answers, 
the smaller frames have to be arranged in a rooted Markov tree. 
 Figure 7.5 shows the propagation of valuations in the optimization problem. 
Figure 7.6 shows the details of the valuation messages. As is clear from Figure 7.6, 
the minimum value of the joint objective function F is 2. 
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Figure 7.5. The propagation of valuations in the optimization 
problem. The valuation messages are shown as rectangles overlapping 
the corresponding edges. The valuations associated with the vertices 
are shown as diamonds linked to the corresponding vertices by dotted 
lines. 
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Figure 7.6. The details of the valuation messages for the optimization problem. 
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7.3.3. Phase Three: Finding a Solution 

In phase two, each time we marginalize a variable, assume that we store the 
corresponding solution for that variable at the vertex where we do the 
marginalization. For example, in the optimization problem, we store a solution for 
C at vertex {A, C, E}, we store a solution for D at vertex {B, D, E}, we store a 
solution for E at vertex {A, B, E}, we store a solution for B at vertex {A, B}, and 
we store a solution for A at vertex {A} (see Figures 4, 5, and 6). 
 In this phase, each vertex of the rooted Markov tree sends a configuration to 
each of its children. We call the configuration transmitted by vertex hi to its child 
hj∈Ch(hi) as a configuration message and denote it by chi→hj. chi→hj will always be 
an element of Whi∩hj. As in phase two, we give a recursive definition of 
configuration messages. 
 The messages start at the root and travel toward the leaves. The 
configuration message from vertex ∅ to its child, say h1, is given by 
 c∅→h1 = ♦. (7.7) 

 In general, consider vertex hi. It receives a configuration message cPa(hi)→hi 
from its parent Pa(hi). Let hj be a child of hi. The configuration message from hi to 
hj depends on whether hi has a solution for a variable stored at its location. 
(Remember that vertex hi has a solution for X stored with it if hi–Pa(hi) = {X}). 
 If hi has a solution for a variable stored at its location, then 
 chi→hj = (cPa(hi)→hi, ΨX(cPa(hi)→hi))↓(hi∩hj) (7.8) 

where X is such that {X} = hi–Pa(hi). 
 If hi has no solution for a variable stored at its location, then 

 chi→hj = (cPa(hi)→hi)↓(hi∩hj). (7.9) 
 We stop the message passing process when each vertex that has a solution 
stored at its location has received a configuration message. 

Theorem 7.2. Suppose hX denotes the vertex that has the solution for 
X stored at its location. Then z∈WX given by 
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 z↓{X} = ΨX(cPa(hX)→hX), for every X∈X (7.10) 

 is a solution for F1⊕...⊕Fk. 
 
 Figure 7.7 illustrates the message passing scheme for the optimization 
problem. As per Theorem 7.2, a solution for F is given by (ΨA(c∅→{A}), 
ΨB(c{A}→{A,B}), ΨC(c{A,E}→{A,C,E}), ΨD(c{B,E}→{B,D,E}), ΨE(c{A,B}→{A,B,E})). From 
Figures 6 and 7, we see that configurations (~a, b, c, d, e) and (~a, b, ~c, d, e) are 
both solutions for F. 
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Figure 7.7. The propagation of configuration messages in the 
optimization problem. The configuration messages are shown as 
rectangles with rounded corners overlapping the corresponding edges. 
Note that the direction of messages is opposite to the direction of the 
edges. The solutions for the five variables are shown as inverted 
triangles attached to the vertices (where they are stored) by dotted 
lines. 
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7.4. Mitten’s Axioms for Dynamic Programming 

In optimization problems, the computational scheme described in section 4 is 
essentially the same as the method of non-serial dynamic programming 
(Nemhauser, 1966; Bertele and Brioschi, 1972). Bellman's dynamic programming 
methodology appealed to a principle of optimality that translates into axiom A3 
with combination interpreted as addition and marginalization interpreted as 
maximization over the deleted variables (Bellman 1957). Mitten (1964) has 
described a more general framework for discrete dynamic programming. In this 
section, we describe Mitten's framework in terms of our notation. 
 Values and Valuations. The value space is R, the set of real numbers. A 
valuation for h is a real-valued function on Wh. 
 Combination. There is a mapping : R×R → R that is commutative and 
associative. Define a mapping ⊕:V×V → V such that whenever G and H are 
valuations for g and h respectively, G⊕H is a valuation for g∪h given by 
 (G⊕H)(x) = G(x↓g)  H(x↓h) 

for all x∈Wg∪h. 
 Monotonicity of Combination. We say that  is monotonic if uv1 ≥ uv2 
whenever v1 ≥ v2. Suppose H1 and H2 are valuations for h. We say that H1 ≥ H2 if 
H1(x) ≥ H2(x) for all x∈Wh. Note that if  is monotonic, then G⊕H1 ≥ G⊕H2 
whenever H1 ≥ H2. 
 Marginalization. Define a mapping ↓h: ∪{Vg | g⊇h} → Vh such that 
whenever G is a valuation for g, G↓h is a valuation for h given by 
 G↓h(x) = MAX{G(x, y) | y∈Wg–h} (7.11) 

for all x∈Wh. 

Theorem 7.3. Suppose the value space is R and suppose 
marginalization is defined as in (7.11). If  is monotonic, and G and 
H are valuations for g and h, respectively, then (G⊕H)↓g = G⊕(H↓g∩h). 

 Thus monotonicity of  implies axiom A3. The other condition that Mitten 
requires is called separability and it amounts to a serial factorization of the joint 
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objective function. In our framework, we do not require any particular structure for 
the factorization of the joint valuation. 

7.5 Other Applications of the Axiomatic Framework 

7.5.1. Most Probable Configuration 

In many applications such as medical diagnosis, pattern recognition, circuit 
diagnosis, restoration of degraded images, etc, one is more interested in the values 
of some or all variables that have the highest joint probability (conditioned on all 
evidence) than in the marginal distributions of each of the variables (see for 
example, Pearl [1988], Geman and Geman [1984]). We shall refer to a 
configuration that has the maximum probability as a most probable configuration. 
 If one is working with a large number of variables, it is computationally 
infeasible to enumerate all configurations and compute the values of the joint 
distribution for each of these configurations. However, if the joint probability 
distribution factorizes on a hypertree with small hyperedges, then we can find a 
most probable configuration using the scheme described in section 7.3. 
 Valuations. In this section proper valuations will correspond to potentials as 
defined in chapter 3. 
 Combination. As in the case of probability propagation, when we refer to 
combination of potentials, we mean pointwise multiplication.  
 Suppose G and H are potentials on g and h, respectively, such that there 
exists an x∈Wg∪h such that G(x↓g)H(x↓h) > 0. Then their combination RS is the 
potential on g given by 

 (RS)(x) = R(x)S(x). (7.12) 
If G(x↓g)H(x↓h) = 0 for all x∈Wg∪h, then we say that G and H are not combinable. 
 Marginalization. The marginalization operation for the computation of a 
most probable configuration differs from the marginalization operation defined for 
probability propagation. 
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 Suppose G is a potential for g and suppose h⊆g, h≠g. We will define the 
marginal of G to h, denoted by G↓h, to be a potential on h such that  
 G↓h(y) = MAX{G(y, z) | z∈Wg–h} (7.13) 

for all y∈Wh. 

Proposition 7.1. The definitions of combination, and marginalization 
in (7.12) and (7.13) respectively, satisfy axioms A1', A2, and A3. 

 Thus we can compute a most probable configuration using the scheme 
described in section 7.3. 

7.5.2. Most Plausible Configuration 

Suppose that we have several independent pieces of evidence represented by belief 
functions. We would like to find a configuration that has the maximum plausibility 
function value where the plausibility function corresponds to the belief function 
that has been obtained by combining all independent pieces of evidence. We will 
refer to this problem as finding the most plausible configuration. 
 Our strategy is to reduce the problem to finding a most probable 
configuration. To do so, we need to identify the potentials corresponding to the 
various belief functions. 
 First let us state the problem more formally. Suppose X is a finite set of 
variables and suppose H is a hypertree on X. Suppose Bel = ⊕{Belh | h∈H} where 
Belh is a belief function on Wh. The belief functions Belh correspond to 
independent pieces of evidence and Bel is the joint belief function representing all 
evidence. Suppose Pl is the plausibility function corresponding to Bel and Plh is the 
plausibility function corresponding to Belh for each h∈H. The problem is to find a 
x*∈WX such that 
 Pl({x*}) = MAX{Pl({x}) | x∈WX} 

 Define potential R for X by R(x) = Pl({x}) for each x∈WX. Also for each 
h∈H, define potential Rh for h by Rh(x) = Plh({x}) for each x∈Wh. The next 
proposition states that the potential R factorizes on H with factors Rh, h∈H. 

Proposition 7.2. Under the assumptions of the preceding paragraph, 
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 R ∝ Π{Rh | h∈H} 
 In terms of the potential R, the problem of finding a most plausible 
configuration for Pl is equivalent to finding an optimal configuration for R. 
Proposition 7.2 tells us that we have a factorization of R on a hypertree. Thus we 
can use the method described in the previous section and our problem is solved. 

7.6. Conclusions 

In the introduction, we raised two questions: What is dynamic programming? And, 
when does dynamic programming work? The main contribution of this chapter is 
the abstract framework of valuation-based systems consisting of variables, frames 
of variables, values, valuations, and two operations—combination and 
marginalization. Assuming that combination and marginalization satisfy three 
simple axioms, we have described a method for computing a solution for the joint 
valuation using only local computation. We can think of the framework and its 
solution method as the answer to the first question. The three axioms constitute one 
answer to the second question. 

7.7. Proofs 

In this section, we provide proofs for the Theorems 1 and 2 stated in section 5 and 
Theorem 7.3 stated in section 6. We prove Theorems 1 and 2 only using axioms 
A1', A2 and A3. In other words, we do not assume that combination is addition and 
marginalization is minimization. 
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Lemma 7.1. Suppose h1, ..., hk are the vertices of a rooted Markov 
tree. Suppose for i = 1, ..., k, vertex hi has the valuation Fi associated 
with it, where Fi is a valuation for hi. Suppose hk is a leaf in the rooted 
Markov tree with parent hk-1. Suppose X denotes h1∪...∪hk and X' 
denotes h1∪...∪hk–1. Then 

 (F1⊗...⊗Fk)↓X' = F1⊗...⊗Fk–2⊗(Fk–1⊗Fk
↓(hk∩hk–1)) (7.14) 

 

Proof of Lemma 7.1. Note that axiom A1' allows us to write the LHS of (7.14) as is 
written above. The result in (7.14) follows directly from axiom A3 by substituting 
X' for g, hk for h, F1⊗...⊗Fk–1 for G, and Fk for H. Since hk is a leaf in the rooted 
Markov tree with parent hk-1, hk∩hk–1 ⊆ hk–1. Thus Fk–1⊗Fk

↓(hk∩hk–1) is a valuation 
for hk–1. ■ 

Proof of Theorem 7.1. By axiom A2, (F1⊗...⊗Fk)↓∅ is obtained by sequentially 
marginalizing all variables in any sequence. A proof of this theorem is obtained by 
repeatedly applying the result of Lemma 7.1. At each step, a leaf of the rooted 
Markov tree sends a message to its parent, the parent combines this message with 
its own valuation, and the leaf is deleted from the tree. When the tree is reduced to 
only one vertex, the root, we have the result. ■ 

 Next, we state a lemma that is needed to prove Theorem 7.2. 

Lemma 7.2. Suppose h1, ..., hk are the vertices of a rooted Markov 
tree. Suppose for i = 1, ..., k, vertex hi has the valuation Fi associated 
with it, where Fi is a valuation for hi. Suppose hk is a leaf in the rooted 
Markov tree with parent hk-1 and suppose hk–(hk∩hk–1) = {Xj} If ΨXj is 
a solution for Xj (with respect to Fk), and c is a solution for 
F1⊗...⊗Fk-2⊗Fk-1⊗Fk

↓(hk∩hk–1), then (c, ΨXj(c
↓(hk∩hk-1))) is a solution for 

F1⊗...⊗Fk. 
 
Proof of Lemma 7.2. We need to prove that (F1⊗...⊗Fk)(c, ΨXj(c

↓(hk∩hk-1))) = 
(F1⊗...⊗Fk)↓∅(♦). We have (F1⊗...⊗Fk)(c, ΨXj(c

↓(hk∩hk-1)))  
= (F1⊗...⊗Fk–1)(c)  Fk(c↓(hk∩hk-1), ΨXj(c

↓(hk∩hk-1))) (by definition of combination) 
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= (F1⊗...⊗Fk–1)(c)  Fk
↓(hk∩hk-1)(c↓(hk∩hk-1)) 

  (since ΨXj is a solution for Xj with respect to Fk) 

= (F1⊗...⊗Fk–2⊗Fk–1⊗Fk
↓(hk∩hk–1))(c) (by definition of combination) 

= (F1⊗...⊗Fk–2⊗Fk–1⊗Fk
↓(hk∩hk–1))↓∅(♦)  

  (since c is a solution for (F1⊗...⊗Fk–2⊗Fk–1⊗Fk
↓(hk∩hk–1)) ) 

= ((F1⊗...⊗Fk)↓(h1∪...∪hk)–{Xj})↓∅(♦) (using Lemma 7.1) 

= (F1⊗...⊗Fk)↓∅(♦) (using axiom A2) 

 ■ 

Proof of Theorem 7.2. A proof of this theorem is obtained by repeated application 
of Lemma 7.2. First we apply Lemma 7.2 for the entire rooted Markov tree. In our 
rooted Markov tree construction algorithm, if hk–1 is a parent of hk, then either 
hk−(hk∩hk−1) = {Xj} for some j∈X, or hk⊆hk–1. The first case corresponds to the 
statement of Lemma 7.2. In the second case, when hk sends a valuation message to 
hk–1, there is no marginalization. Hence, there is no solution function stored at hk. 
But in this case, F1⊗...⊗Fk–2⊗Fk–1⊗Fk

↓(hk∩hk–1) = F1⊕...⊕Fk. Next, we apply 
Lemma 7.2 to the rooted Markov tree with vertex hk and edge (hk, hk–1) deleted. 
And so on, until the only vertex left is ∅. But ♦ is the solution for (F1⊗...⊗Fk)↓∅. 
Thus the configuration messages as defined in (7.7), (7.8) and (7.9) give us the 
solution for F1⊗...⊗Fk as stated in Theorem 7.2. ■ 

Proof of Theorem 7.3. Suppose x∈Wg–h and y∈Wg∩h. Then 
 (G⊕H)↓g(x, y)  = MAX{(G⊕H)(x, y, z) | z∈Wh–g} 
  = MAX{G(x, y)H(y, z) | z∈Wh–g} 
  ≥ G(x, y)(MAX{H(y, z) | z∈Wh–g}) 
In other words, (G⊕H)↓g ≥ G⊕(H↓g∩h). But since  is monotonic and 
MAX{H(y, z) | z∈Wh−g} ≥ H(y, z) for all z∈Wh–g,we have 

G(x, y)(MAX{H(y, z) | z∈Wh–g}) ≥ G(x, y)H(y, z) 
for all z∈Wh–g. In particular, this inequality must hold for the maximum of the 
RHS with respect to z, i.e., G(x, y)(MAX{H(y, z) | z∈Wh–g}) 
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≥ MAX{G(x, y)H(y, z) | z∈Wh–g}, i.e., G⊕(H↓g∩h) ≥ (G⊕H)↓g. Since we have 
already shown that (G⊕H)↓g ≥ G⊕(H↓g∩h), we have the result. ■  

Proof of Proposition 7.1.  ■  
Proof of Proposition 7.2. Suppose Q is the commonality function corresponding to 
Bel and Qh is the commonality function corresponding to Belh for each h∈H. Then 

 R(x) = Pl({x}) = Q({x}) ∝ Π{Qh
↑X({x}) | h∈H} 

  = Π{Qh({x↓h}) | h∈H} 
  = Π{Plh({x↓h}) | h∈H} 
  = Π{Rh(x↓h) | h∈H}. 
 ■  
 
 
 





 
 
 
CHAPTER EIGHT 

 
Constraint Satisfaction Problems 

 

 
 
In this chapter we consider constraint satisfaction problems. We show how this 
problem fits in the axiomatic framework described in chapter seven. We conclude 
this section by solving a small constraint satisfaction problem in detail. 
 A constraint satisfaction problem consists of finding a configuration of all 
variables that satisfies all constraints. Since the number of configurations is an 
exponential function of the number of variables, it is not possible to enumerate all 
configurations and check each one to see if it satisfies all constraints. However, if 
each constraint only involves a small subset of variables and these subsets form a 
hypertree, then it is possible to find a feasible configuration by local propagation 
using the method described in Chapter 7. Such solution procedures to constraint 
satisfaction problems have been proposed by Freuder [1982, 1985] and are known 
in the artificial intelligence literature as backtrack-free methods. Other solution 
procedures to constraint satisfaction problems involving backtracking have been 
proposed by Montanari [1974], Mackworth [1977], and Dechter and Pearl [1987]. 

8.1. Constraint Satisfaction Problems 

A constraint for h, denoted by Ch, is a non-empty subset of the frame Wh for h. 
Intuitively, Ch represents the set of configurations of h that are feasible. Suppose 
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we are given a constraint Ch for each hyperedge h of a hypergraph H. The 
constraint satisfaction problem (CSP) can be stated as follows: 

(CSP P1): Find a x∈WX such that x↓h∈Ch for each h∈H. 
We will refer to a configuration satisfying the above condition a feasible 
configuration for the CSP P1. 
Valuations. Given a constraint Ch for h, we will construct a valuation Ch:Wh → {f, 
i} as follows (f means feasible, and i means infeasible): 

  f if x∈Ch 
 Ch(x) =   (8.1) 
  i if x∉Ch 
for all x∈Wh. 
 Suppose Ch is a valuation on h. We shall say that Ch is a proper valuation if 
there exists an x∈Wh such that Ch(x) = f. Thus, a proper valuation cannot be 
identically equal to i for all configurations. Note that since each constraint Ch is a 
non-empty subset of Wh, each of the valuations constructed using (8.1) are proper 
valuations. 
Combination. Suppose that Cg and Ch are valuations on g and h respectively. We 
will define Cg⊗Ch to be the valuation on g∪h given by 

  f if Cg(x↓g) = f and Ch(x↓h) = f 
 (Cg⊗Ch)(x) =   (8.2) 
  i otherwise 
for all x∈Wg∪h. 
 It is clear from the definition of combination above that it satisfies axiom 
A1' (commutativity and associativity of combination). 
Marginalization. Suppose Cg is a proper valuation on g and suppose h⊆g. Then 
the marginal of Cg for h, Cg↓h, is defined as follows: 

  f if there is a y∈Wg such that Cg(y)=f and y↓h=x 
 Cg↓h(x) =   (8.3) 
  i otherwise 
for all x∈Wh. 
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 It is clear from the definition of marginalization that it satisfies axiom A2a: 
If Cg is a proper valuation on g and h1⊆h2⊆g, then (Cg↓h2)↓h1 = Cg↓h1. 
 Note that in terms of the definitions of the framework, we can restate CSP P1 
as follows: Find a solution configuration x∈WX for the joint constraint ⊗{Ch | 
h∈H}. 

Proposition 8.1. The definitions of combination in (8.2), and 
marginalization in (8.3) satisfy axioms A1’, A2, and A3. 

 Thus all axioms are satisfied making local computation of a feasible 
configuration of CSP P1 possible. 

8.2. An Example 

This example is adapted from de Kleer [1986]. There are six variables A, B, C, X, 
Y, and Z. The frame for each variable has 2 configurations: 0 and 1. Thus we have 
26 = 64 configurations of all variables. There are 5 constraints specified as follows: 
A = X, B = Y, C = Z, A ≠ B, and B ≠ C. The hypergraph corresponding to these 
five constraints is H = {{A, X}, {B, Y}, {C, Z}, {A, B}, {B, C}}. Note that H is a 
hypertree (see Figure 8.1). A hypertree construction sequence for H is 
{A, B},{A, X},{B, Y},{B, C},{C, Z}. A branching β for this construction 
sequence is as follows: β({A, X}) = {A, B}, β({B, Y}) = {A, B}, β({B, C}) = 
{A, B}, β({C, Z}) = {B, C}. A Markov tree representative for H corresponding to 
branching β is also shown in Figure 8.1. 
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Figure 8.1. The hypertree and a Markov tree representative for it. 
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{B,Y}

{C,Z}

 
 

The five valuations corresponding to the five constraints are shown in Table 8.1. 

Table 8.1. The valuations corresponding to the constraints. 

a      x      C
{A,X}

0      0          f
0      1          i
1      0          i
1      1          f

b      y      C
{B,Y}

0      0          f
0      1          i
1      0          i
1      1          f

c      z      C
{C,Z}

0      0          f
0      1          i
1      0          i
1      1          f

a      b      C
{A,B}

0      0          i
0      1          f
1      0          f
1      1          i

b      c      C
{B,C}

0      0          i
0      1          f
1      0          f
1      1          i  

 

 Suppose we fix vertex {A, B} as the root. The scheme for computation of a 
feasible configuration as described in chapter 7 is as follows. First the vertices {A, 
X}, {B, Y} and {C, Z} marginalize the valuations at those vertices to the vertices 
contained in the intersection with their neighbors and send these valuations to their 
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neighbors. Table 8.2 shows the messages (C{A,X})↓{A}, (C{B,Y})↓{B}, and (C{C,Z})↓{C} 
and corresponding solution extensions ψ{A,X}, ψ{B,Y}, and ψ{C,Z}. 

Table 8.2. The marginals (C{A,X})↓{A}, (C{B,Y})↓{B}, and (C{C,Z})↓{C} and 
corresponding solution extensions. 

a          (C
{A,X}

)
!{A}

     a      x

0               f                 0      0     
1               f                 1      1

"
{A,X}

(a) =

b          (C
{B,Y}

)
!{B}

     b      y

0               f                 0      0     
1               f                 1      1

"
{B,Y}

(b) =

c          (C
{C,Z}

)
!{C}

     c      z

0               f                 0      0     
1               f                 1      1

"
{C,Z}

(c) =

 
 

 Next, vertex {B, C} combines the incoming message (C{C,Z})↓{C} with its 
valuation, marginalizes the combination to {B}, and transmits the resulting 
valuation to {A, B}. Table 8.3 shows the combination (C{C,Z})↓{C}⊗C{B,C}, the 
marginal ((C{C,Z})↓{C}⊗C{B,C})↓{B}, and a solution extension ψ{B,C}. 

Table 8.3. The combination (C{C,Z})↓{C}⊗C{B,C}, the marginal 
((C{C,Z})↓{C}⊗C{B,C})↓{B}, and a solution extension ψ{B,C}. 

b      c        (C
{C,Z}

)
!{C}

 " C
{B,C}

0      0                      i         
0      1                      f        
1      0                      f          
1      1                      i           

b          ((C
{C,Z}

)
!{C}

 " C
{B,C}

)
!{B}

        b      c

0                               f                            0     1        
1                               f                            1     0

#
{B,C}

(b) =

 
 

 Next, root vertex {A,B} combines its valuation with all three incoming 
messages (C{A,X})↓{A}, (C{B,Y})↓{B}, and ((C{C,Z})↓{C}⊗C{B,C})↓{B}, computes a 
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feasible configuration of its variables which in this case can be observed from 
Table 8.4 to be (a, b) = (0,1), and transmits to its neighbors the projection of this 
configuration to its intersection with its neighbors. Note that since the combination 
(C{A, X})↓{A}⊗(C{B, Y})↓{B}⊗((C{C, Z})↓{C}⊗C{B, C})↓{B}⊗C{A, B} is a proper valuation, 
the constraint satisfaction problem is feasible. 

Table 8.4. The combination 
(C{A, X})↓{A}⊗(C{B, Y})↓{B}⊗((C{C, Z})↓{C}⊗ C{B, C})↓{B}⊗C{A, B}. 

a      b          (C
{A,X}

)
!{A}

 " (C
{B,Y}

)
!{B}

 " ((C
{C,Z}

)
!{C}

 " C
{B,C}

)
!{B}

 " C
{A,B}

0      0                                                  i                                                               
0      1                                                  f                       
1      0                                                  f
1      1                                                  i  

 

 Next each of the vertices {A, X}, {B, Y} and {B, C} computes a feasible 
configuration of its variables using the solution extension function and the 
incoming configuration message. From Tables 8.2 and 8.3, we can see that the 
feasible configurations of the variables at these three vertices are (a, x) = (0,0), (b, 
y) = (1,1) and (b, c) = (1,0). Vertex {B, C} transmits to its neighbor {C, Z} the 
projection of its feasible configuration to {C}. 
 Finally, vertex {C, Z} computes a feasible configuration of its variable using 
the incoming configuration (c) = (0) and the solution extension ψ{C,Z}. From Table 
8.2, we can see that a feasible configuration is (c, z) = (0,0). Thus (a, b, c, x, y, z) = 
(0,1,0,0,1,0) is a feasible configuration for the constraint satisfaction problem. 
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