

LOCAL
COMPUTATION

IN
HYPERTREES

by

Glenn Shafer and Prakash P. Shenoy

August 1988

Revised June 1991

School of Business
University of Kansas

Summerfield Hall
Lawrence, KS 66045-2003 USA

© 1988 Glenn Shafer and Prakash P. Shenoy

 ii

Table of Contents

Foreword... iv

Acknowledgments.. v

Introduction.. 1

Some Ideas from Graph Theory ... 5
2.1. Hypertrees ... 5
2.2. Hypertree Covers... 9
2.3. Trees ... 10
2.4. Markov Trees .. 14
2.5. Proofs .. 18

Probability Propagation.. 19
3.1. Arrays, Potentials, and Probability Distributions 20
3.2. Combination and Factorization of Arrays .. 21
3.3. Marginalizing Arrays .. 23
3.4. Marginalizing Factorizations ... 23
3.5. Computing Marginals in Markov Trees ... 25
3.6. Simultaneous Propagation in Markov Trees .. 33
3.7 An Example ... 38
3.7. Proofs .. 41

An Axiomatic Framework for Local Computation of Marginals 43
4.1. The Axiomatic Framework.. 43
4.2. The Propagation Scheme ... 45
4.3. Proofs .. 46

 iii

Belief-Function Propagation .. 47
5.1. Basic Definitions ... 48
5.2. Projection and Vacuous Extension of Subsets 50
5.3. Dempster's Rule of Combination ... 51
5.4. Marginalization for Belief Functions ... 54
5.5. Local Computation for Belief Functions.. 55
5.6. Implementation Issues ... 55
5.7. Proofs .. 56

Conditional Probability .. 57
6.1. The Theory of Conditional Probability .. 58
6.2. Conditioning Factorizations... 66
6.3. Conditional Independence in Modeling ... 67
6.4. Local Computation in Probability Trees. ... 70
6.5. Lauritzen and Spiegelhalter's Algorithm.. 79
6.6. Proofs .. 87

An Axiomatic Framework for Discrete Optimization ... 93
7.1. The Axiomatic Framework.. 94
7.2 The Axioms.. 97
7.3. Solving a VBS Using Local Computation ... 98

7.3.1. Phase One: Finding a Rooted Markov Tree Arrangement............ 98
7.3.2. Phase Two: Finding the Marginal of the Joint Valuation 102
7.3.3. Phase Three: Finding a Solution .. 105

7.4. Mitten’s Axioms for Dynamic Programming..................................... 106
7.5 Other Applications of the Axiomatic Framework 107

7.5.1. Most Probable Configuration... 107
7.5.2. Most Plausible Configuration .. 108

7.6. Conclusions... 109
7.7. Proofs .. 110

Constraint Satisfaction Problems.. 113
8.1. Constraint Satisfaction Problems... 113
8.2. An Example... 115

References.. 119

 iv

Acknowledgments

Research for this monograph has been supported by NSF grants IST–8610293,
IRI–8902444, and grants from the Peat Marwick Foundation's Research
Opportunities in Auditing program. The authors have profited from conversations
and correspondence with Chien-Chung Chan, Arthur P. Dempster, Yen-Teh Hsia,
Augustine Kong, Khaled Mellouli, Judea Pearl, Debra Zarley and Lianwen Zhang.

CHAPTER ONE

Some Ideas from Graph Theory

Most of the ideas reviewed here have been studied extensively in the literature of
graph theory (see Berge [1973], Golumbic [1980], and Maier [1983]). A number of
the terms we use are new, however - among them, hypertree, branch, twig, bud,
and Markov tree. As we have already explained in the introduction, a hypertree is
what other authors have called an acyclic or decomposable hypergraph. A Markov
tree is what authors in database theory have called a join tree (see Beeri et al.
[1983] or Maier [1983]). We have borrowed the term Markov tree from probability
theory, where it means a tree of variables in which separation implies probabilistic
conditional independence given the separating variables. We first used the term in
a non-probabilistic context in Shenoy and Shafer [1986], where we justified it in
terms of a concept of qualitative independence analogous to probabilistic
independence.
 As we shall see, hypertrees are closely related to Markov trees. The vertices
of a Markov tree are always hyperedges of a hypertree, and the hyperedges of a
hypertree can always be arranged in a Markov tree. The main novelty of our
exposition is its reliance on this close relationship. By exploiting it, we derive the
most important properties of hypertrees from geometrically obvious properties of
trees.
 We limit our study of hypertrees to an investigation of the properties that we
need for this monograph. For a more thorough study of hypertrees, using only
slightly different definitions, see Lauritzen, Speed, and Vijayan [1984].
 Section 2.1 consists mostly of definitions. We define hypergraphs, twigs and
branches in hypergraphs, hypertrees, hypertree construction sequences, branchings,
skeletons, and hypertree covers. Section 2.2 reviews the more familiar topic of

 6

trees, with an emphasis on tree construction sequences rather than on the fact that a
tree is connected and acyclic. Section 2.3 finally introduces Markov trees, explains
how they are related to hypertrees, and exploits the relation. Section 2.4 spells out
proofs for some of the displayed propositions.

2.1. Hypergraphs and Hypertrees

We call a finite nonempty set H of nonempty subsets of a finite set X a hypergraph
on X. We call the elements of H hyperedges. We call the elements of X vertices.

Twig and Branch. Suppose t and b are distinct hyperedges in a hypergraph H. We
say that b is a branch for t if the following conditions are satisfied:

 (i) The hyperedges t and b overlap. In symbols, t∩b≠∅.
 (ii) Every vertex in t that is also contained in another hyperedge
of H is also contained in b. In other words, if X∈t and X∈h, where
h∈H and h≠t, then X∈b.

If a hyperedge t in a hypergraph H has a branch in H, we say that t is a twig in H.
 In a hypergraph consisting of a single hyperedge, that hyperedge is not a
twig, because there is no other hyperedge that intersects it. In a hypergraph
consisting of two intersecting hyperedges, both are twigs. Figure 2.1 shows some
examples of twigs in a larger hypergraph. As this figure illustrates, a twig may
have more than one branch.

 7

Figure 2.1. Of the five hyperedges in this hypergraph, only two are
twigs: {S, T, V} and {W, Y, Z}. The twig {S, T, V} has only one
branch, {T, V, W, X}. The twig {W, Y, Z} has two branches, {T, V,
W, X} and {U, V, W}.

S

T

V

U

W
X

Y Z

Hypertrees. We are interested in hypergraphs that can be constructed step-by-step
by adding twigs. We call such hypergraphs hypertrees. More precisely, we call a
hypergraph a hypertree if there is an ordering of its hyperedges, say h1h2...hn, such
that hk is a twig in the hypergraph {h1, h2, ..., hk} whenever 2≤k≤n. We call any
such ordering of the hyperedges a hypertree construction sequence for the
hypertree. We call the first hyperedge in a hypertree construction sequence the root
of the hypertree construction sequence.
 Notice that when we construct a hypertree following a hypertree
construction sequence, we have a hypertree at every step along the way; if h1h2...hn
is a hypertree construction sequence for H, and 1≤k<n, then the subset {h1, h2, ...,
hk} of H is also a hypertree, and h1h2...hk is a hypertree construction sequence for
it.
 A hypergraph consisting of a single hyperedge, say H={h}, qualifies as a
hypertree; in this case there is only one hypertree construction sequence, the
“sequence” consisting only of h. A hypergraph consisting of two hyperedges, say
H={h, h’}, is a hypertree if and only if h∩h'≠∅; in this case, there are two
hypertree construction sequences, hh' and h'h. A hypergraph consisting of three
hyperedges is a hypertree if and only if one of the hyperedges has a nonempty
intersection with both the others and contains their intersection, if any. Figure 2.2

 8

illustrates some of the possibilities in the case of three hyperedges. Figure 2.3
shows a larger hypertree.

Figure 2.2. Some hypergraphs on {W, X, Y, Z}. All these
hypergraphs have exactly three hyperedges. The hypergraph H1 is a
hypertree, and all six orderings of its three hyperedges are hypertree
construction sequences. The hypergraph H2 is a hypertree, but it has
only four hypertree construction sequences: {W, X}{X, Y}{Y, Z},
{X, Y}{W, X}{Y, Z}, {X, Y}{Y, Z}{W, X}, and {Y, Z}{X, Y}{W,
X}. The hypergraph H3 is not a hypertree.

H1
W X Y

Z

H2 W X ZY

H3
W X

Z

Y

 9

Figure 2.3. A hypertree on {A, T, S, L, B, E, D, X}. The sequence
{A, T}{T, L, E}{L, B, E}{S, L, B}{B, E, D}{E, X} and the sequence
{L, B, E}{T, L, E}{B, E, D}{S, L, B}{A, T}{E, X} are two of its
many hypertree construction sequences. This hypertree is related to an
example of local computation studied by Lauritzen and Spiegelhalter
[1988].

A

T

S

L
B

E

X
D

 One aspect of the potential complexity of hypertree construction sequences
is the possibility that when we add a twig, we may change whether or not a
hyperedge already present is a twig. Figure 2.4 shows an example. The hyperedge
h2 is a twig in {h1, h2}, but it is no longer a twig after the twig h3 is added. Adding
yet another twig, h4, makes h2 a twig again.

 10

Figure 2.4. The hypergraph {h1, h2, h3, h4} is a hypertree, and
h1h2h3h4 is a hypertree construction sequence for it. The hyperedge h2
is a twig in {h1, h2} and in {h1, h2, h3, h4} but not in {h1, h2, h3}.

U V
h1

U V

W

X

add h2

U V

W

YX

add h3

U V

Z

W

YX

add h4

Finding Hypertree Construction Sequences. Given a hypertree, how can we find
a hypertree construction sequence for it?
 The examples that we have considered so far may suggest that we can
always find a hypertree construction sequence simply by starting with an arbitrary
hyperedge and arbitrarily adding twigs. As Figure 2.5 illustrates, this does not
always work. If we add the wrong twig at one point, we may find that we cannot
continue the sequence at a later point.

 11

Figure 2.5. The hypergraph {h1, h2, h3, h4} is a hypertree; h1h2h4h3 is
one hypertree construction sequence for it.

U V

Z

W

YX
h1

h2

h3

h4

On the other hand, h1h2h3h4 is not a hypertree construction sequence.
We can get as far as h3; h1h2h3 is a hypertree construction sequence.
But we cannot continue by adding h4, because h4 is not a twig in {h1,
h2, h3, h4}.

U V
h1

add h2

U V

Z

X

add h3

U V

Z

W

YX

 12

 Fortunately, there is a simple algorithm, called maximum cardinality search,
which enables us to find hypertree construction sequences easily. Given a
hypertree, we select an arbitrary hyperedge to begin the sequence. Then we
repeatedly find and add a hyperedge that contains the largest possible number of
vertices that are in hyperedges we have already selected. Such a hyperedge, as it
turns out, will always be a twig when we add it. If we use maximum cardinality
search in the example of Figure 2.5, we might begin with h1 and then add h2, but
we would not then add h3, which contains only X from among the vertices {U, V,
X, Z} that are in hyperedges we have already selected. Instead, we would add h4,
which contains both X and V. Thus we would obtain the hypertree construction
sequence h1h2h4h3. In section 2.3, we prove that maximum cardinality search
always works (Proposition 2.9).
 Notice that maximum cardinality search also provides a way to check
whether a hypergraph is a hypertree. If we are not sure whether H is a hypertree
when we begin, then we check whether each hyperedge the algorithm selects is a
twig when we add it. If find one that is not, H is not a hypertree. Otherwise, H is a
hypertree. For more information on maximum cardinality search, see Tarjan and
Yannakakis [1984].

Deletion Sequences. If h1h2...hn is a hypertree construction sequence, then we call
the reversed ordering, hnhn–1...h1, a hypertree deletion sequence. An ordering of the
hyperedges of a hypertree is a hypertree deletion sequence if and only if when we
delete the hyperedges in that order, the hyperedge that we delete at each step
(except the last step, when we delete the only remaining hyperedge) is a twig in the
hypergraph remaining just before its deletion. This intermediate hypergraph is
itself a hypertree, of course. When we tear down a hypertree following a hypertree
deletion sequence, as when we construct it following a hypertree construction
sequence, the hypergraphs along the way are all hypertrees.
 Suppose we arbitrarily select a twig from a hypertree and delete it. Is the
hypergraph that is left a hypertree? As we show in section 2.3, the answer is yes
(Proposition 2.10). If H is a hypertree, and t is a twig in H, then H–{t} is a
hypertree. It follows from this that we can obtain a hypertree deletion sequence for
a hypertree by successively deleting twigs in an arbitrary manner. No matter which
twig we delete, there will be another twig to delete next. (Since what remains is a

 13

hypertree, it has some hypertree construction sequence, and the hyperedge that
comes last in this sequence will be a twig.)
 In a small example, it may be easy to identify twigs, and hence the idea of
arbitrarily deleting twigs may provide a practical way to find a hypertree deletion
sequence and hence a hypertree construction sequence. In a large hypergraph,
however, it may be computationally expensive to find a twig. Hence it is more
practical in general to find hypertree construction sequences using maximum
cardinality search.

Skeletons. We call a hyperedge in a hypergraph H superfluous if it is contained in
another hyperedge of H. A superfluous hyperedge is a twig, and any hyperedge
that contains it is a branch for it.
 Deletion of a superfluous hyperedge will not affect whether any other
hyperedge is superfluous. Indeed, no deletion of any hyperedge can make another
hyperedge superfluous if it was not superfluous already. And deleting a hyperedge
b that is superfluous itself cannot make a superfluous hyperedge non-superfluous.
(If the superfluous hyperedge t is contained in b, but b is superfluous itself, then t
will still be contained in b's branch after b is deleted.) So we can delete the
superfluous hyperedges from a hypergraph in any order; each one will still be
superfluous just before it is deleted, and the hypergraph that remains at the end will
have no superfluous hyperedges.
 We call a hypergraph that has no superfluous hyperedges skeletal. We call
the skeletal hypergraph that remains after we delete any superfluous hyperedges
from a hypergraph H the skeleton of H. It is easy to see that a hypergraph is a
hypertree if and only if its skeleton is a hypertree. (Adding twigs, superfluous or
not, to a hypertree produces another hypertree; it merely extends the hypertree
construction sequence. As have already mentioned, we will show in section 2.3
that removing twigs from a hypertree also produces another hypertree.)

Branchings. Since each hyperedge we add as we construct a hypertree is a twig
when it is added, it has at least one branch in the hypertree at that point. Suppose
we choose such a branch, say β(h), for each hyperedge h we add. By doing so, we
define a mapping β from H–{h1} to H, where h1 is the root of the hypertree

 14

construction sequence. We will call this function a branching for the hypertree
construction sequence.
 Since a twig may have more than one branch, a hypertree construction
sequence may have more than one branching. In Figure 2.2, for example, the
hypertree construction sequence {W, X}{X, Y}{X, Z} for H1 has two branchings,
β1 and β2, which agree on {X, Y} but disagree on {X, Z}; β1({X, Y}) = β2({X, Y})
= {W, X} but β1({X, Z}) = {W, X} and β2({X, Z}) = {X, Y}.
 This example also reveals that a given branching sometimes serves more
than one hypertree construction sequence. The branching β1 qualifies as a
branching for {W, X}{X, Z}{X, Y} as well as for {W, X}{X, Y}{X, Z}. These
construction sequences have, of course, the same root, {W, X}.
 Two hypertree construction sequences that have the same branching always
have the same root. The root is easily identifiable from the branching; it is the one
hyperedge not assigned to a branch by the branching. So in addition to talking
about roots of hypertree construction sequences, we may also talk about roots of
branchings. The root of a branching β is the root of the hypertree construction
sequences for which β qualifies as a branching.
 Since a branching can serve more than one hypertree construction sequence
for a given hypertree, we will sometimes speak of it as a branching for the
hypertree, without specifying a particular hypertree construction sequence.

Hypertree Covers. As we explained in chapter 1, local computation requires two
things. The joint probability distribution, belief function, or other object with
which we are working must factor into functions each involving a small set of
variables. And these sets of variables must form a hypertree.
 If the sets of variables form instead a hypergraph that is not a hypertree, then
we must enlarge it until it is a hypertree. We can talk about this enlargement in two
different ways. We can say we are adding larger hyperedges, keeping the
hyperedges already there. Or, alternatively, we can say we are replacing the
hyperedges already there with larger hyperedges. The choice between these two
ways of talking does not matter much, because the presence of superfluous twigs
(hyperedges contained in other hyperedges) does not affect whether a hypergraph
is a hypertree, and because the computational cost of the procedures we will be

 15

describing depends primarily on the size of the largest hyperedges, not on the
number of the smaller hyperedges [Kong 1986].
 We will say that a hypergraph H is covered by a hypergraph H* if for every
h in H there is an element h* of H* such that h⊆h*. A hypergraph is covered by
any hypergraph that contains it. On the other hand, if H is covered by H*, then it
is also covered by the skeleton of H*.
 We will say that H* is a hypertree cover for H if H* is a hypertree and
covers H. Figure 2.6 shows a hypergraph that is not a hypertree and a hypertree
cover for it.

Figure 2.6. Left: A hypergraph that is not a hypertree. Right: A
hypertree cover for it. This is the same hypertree we saw in Figure
2.3.

A

T

S

L
B

E

X
D

A

T

S

L
B

E

X
D

 Finding a hypertree cover is never difficult. The hypertree {X}, which
consists of the single hyperedge X, is a hypertree cover for any hypergraph on X.
Finding a hypertree cover without large hyperedges, or finding a hypertree cover
whose largest hyperedge is as small as possible, may be very difficult. In chapter 1,
we gave references to authors who have studied heuristics that often produce
reasonably good hypertree covers. Here we shall only add that these heuristics
generally produce as a by-product a hypertree construction sequence and a
branching for the hypertree cover.

 16

2.2. Trees

We now review a more familiar and visually transparent topic—the theory of trees.
Our understanding of trees, like our understanding of hypertrees, will be based on
the idea of step-by-step construction.
 The definitions of graph and tree we give here are conventional, because this
suits our purposes in the next section. After reading section 2.1, the reader might
expect something less conventional. In section 2.1, instead of defining a
hypergraph as a pair (X, H), where X consists of vertices and H consists of subsets
of X, we defined it simply as a nonempty set H of nonempty sets. The reader
might expect a similar emphasis on edges in our definition of a graph. We might
say that a graph is a set of two-element sets, or equivalently, that it is a hypergraph
in which each hyperedge has exactly two elements. But instead we will revert to
the more familiar idea that a graph is a pair, a set of vertices and a set of edges.
 The displayed propositions in this section are all visually obvious, and so it
should not be necessary for the reader to stop to review formal proofs for them. For
those readers who would like to do so, however, such proofs are provided in
Section 2.4.

Graphs. Formally, then, a graph is a pair (V, E), where V is a finite nonempty set
and E is a set of two-element subsets of V. We call the elements of V vertices, and
we call the elements of E edges.
 This definition allows a vertex to be isolated—i.e., not contained in any
edge. If E is empty, then all the vertices are isolated.
 Suppose (V, E) is a graph. If {v, v’} is an element of E, then we say that v
and v' are neighbors, or that they are connected by an edge. If v1v2...vn is a
sequence of distinct vertices, where n>1, and {vk, vk+1}∈E for k=1,2, ..., n–1, then
we call v1v2...vn a path. If v and v' are distinct elements of V, and there is a path
v1v2...vn such that v=v1 and v'=vn, then we say that v and v' are connected by the
path. If every two distinct elements of V are connected by at least one path, then
we say that (V, E) is connected. If v1v2...vn is a path, n>2, and {vn, v1}∈E, then we
call v1v2...vn a cycle.

 17

 We call a vertex of a graph a leaf if it is contained in one and only one edge,
and we call the other vertex in that edge the bud for the leaf.

Trees. We emphasize the step-by-step construction of trees, just as we emphasized
the step-by-step construction of hypertrees. But we think of this construction in
terms of vertices, not edges. To construct a hypertree, we added at each step a
hyperedge that qualified as a twig. To construct a tree, we will add at each step a
vertex that qualifies as a leaf. The following proposition describes this step-by-step
construction in several different ways.

Proposition 2.1. Suppose (V, E) is a graph and v1v2...vn is an ordering
of its vertices. Then the following conditions are equivalent.
(i) Each vertex after the first in the sequence v1v2...vn is connected by
an edge to exactly one preceding vertex. (It may be connected by an
edge to one or more or none of the following vertices.)
(ii) Suppose we draw the graph (V, E) following the sequence
v1v2...vn. (This means we start with a dot for v1, then add a dot for v2,
then add a dot for v3, and so on; when we add a dot for v, we draw an
edge between v and any v' already in the picture such that {v, v’}∈E.)
Then we will draw exactly one new edge for each new dot. In other
words, each dot we draw after the first will be a leaf in the graph just
after it is added.
(iii) Suppose we start with (V, E) and successively delete vn, vn–1, and
so on, until only v1 remains. (Deleting vk means that we remove vk
from the set of vertices and remove all edges containing vk from the
set of edges.) Then at each step the vertex we are deleting is a leaf in
the graph just before it is deleted.
(iv) For k=2,3, ..., n, the vertex vk is a leaf in the graph ({v1, v2, ...,
vk}, Ek), where Ek is the subset of E consisting of those edges that
contain only vertices in {v1, v2, ..., vk}.

 We call an ordering v1v2...vn of the elements of V a tree construction
sequence for the graph (V, E) if it satisfies one (and hence all) of the conditions of

 18

Proposition 2.1. We call a graph (V, E) a tree if it satisfies one (and hence all) of
the conditions of the following proposition.

Proposition 2.2. Suppose (V, E) is a graph. Then the following
conditions are equivalent.
(i) The elements of V can be ordered in a tree construction sequence.
(ii) The graph (V, E) is connected and has no cycles.
(iii) Whenever v and v' are distinct vertices in (V, E), there is a unique
path from v to v'.

 If v1v2...vn is a tree construction sequence for (V, E), then we call the reverse
ordering, vnvn–1...v1, a tree deletion sequence for (V, E).
 Notice that a graph with a single vertex, say v, qualifies as a tree; the
sequence consisting only of v is both a tree construction sequence and a tree
deletion sequence for the tree ({v},∅). As we build a tree up following a tree
construction sequence, or tear it down following a tree deletion sequence, the
graph we have at each step in the process is itself a tree.
 We call the first vertex in a tree construction sequence the root of the tree
construction sequence.

Proposition 2.3. For every vertex v in a tree, there is at least one tree
construction sequence with v as its root.

This proposition is geometrically obvious; we simply add edges outwards from v.

Buddings. Since each vertex we add as we construct a tree is a leaf when it is
added, it has a bud in the tree at that point. Given a tree construction sequence and
a vertex v that is not the root, let β(v) denote the bud for v as it is added. This
defines a mapping β from V–{v1} to V, where v1 is the root. We will call this
mapping the budding for the tree construction sequence.
 The budding for a tree construction sequence is analogous to the branching
for a hypertree construction sequence, but there are significant differences.
Whereas there may be many branchings for a given hypertree construction

 19

sequence, there is only one budding for a given tree construction sequence. In fact,
there is only one budding with a given root:

Proposition 2.4. Two tree construction sequences for a given tree have
the same budding if and only if they have the same root.

Figure 2.7. If t is the root, then
 —t is the bud for u,
 —u is the bud for v, w, and x,
 —and w is the bud for y.

t

u
v

w
x

y

 To see geometrically that this proposition is true, we imagine identifying the
budding by moving outwards from the root. Of the two vertices in each edge, the
one closer to the root is the bud for the one farther from the root. (See Figure 2.7.)
 Suppose we are given the vertices of a tree, but we have not yet decided on
the edges. If we begin by selecting one of the vertices to serve as a root, then
choosing the edges becomes equivalent to choosing a budding. The preceding
proposition said that the edges determine the budding. The following proposition
says that the budding determines the edges.

Proposition 2.5. If (V, E) is a tree, β is a budding for (V, E), and v1 is
the root for the budding, then E={{v, β(v)}|v∈(V–{v1})}.

 20

Once we have chosen a root, the edges and the budding are merely two different
forms of the same information.

Leaves in Trees. If a tree construction sequence consists of more than one vertex,
then the final vertex in the sequence will be a leaf in the final tree. This establishes
a geometrically obvious fact: a tree with more than one vertex has at least one leaf.
 It is equally obvious that a tree with more than one vertex has at least two
leaves. To prove this formally, consider how the number of leaves can change as
we follow a tree construction sequence. When we have only two vertices, both are
leaves. At each step after that, the number of leaves is unchanged (this happens if
we attach the new leaf to a vertex v that was a leaf, because v will no longer be a
leaf) or increases by one (this happens if we attach a new leaf to a vertex that
already is not a leaf).
 With a little more effort, we can also prove another geometrically obvious
fact: when we delete a leaf from a tree, what remains is a tree.

Proposition 2.6. If (V, E) is a tree, v is a leaf in (V, E), and v' is the
bud for v, then (V–{v}, E–{{v, v’}}) is also a tree.

 We can form a tree deletion sequence for a tree by deleting leaves in an
arbitrary way. When we delete a leaf from a tree, a smaller tree will remain, and
hence there will be yet another leaf we can delete, until only one vertex remains in
the tree. So we can start by deleting any leaf in the initial tree, and at any point in
the sequence, we can continue by deleting any leaf in the remaining tree. We need
not fear that by choosing the wrong leaf to delete at some point we will land
ourselves in a situation where the deletion sequence cannot be continued.

2.3. Markov Trees

As we explained in the introduction, important information about a hypertree can
often be presented most clearly by means of a Markov tree. In this section, we will
define Markov trees, show how they are related to hypertrees, and use the relation

 21

to prove some of the assertions about hypertrees that we made in section 2.1. In the
following chapters, we will use Markov trees to explain visually ideas about local
computation in hypertrees.

Definition. We call a tree (H, E) a Markov tree if the following conditions are
satisfied:

(i) H is a hypergraph.
(ii) If {h, h’}∈E, then h∩h'≠∅.
(iii) If h and h' are distinct vertices, and X is in both h and h', then X is
in every vertex on the path from h to h'.

Condition (iii) can also be expressed by saying that the vertices that contain any
particular element X are connected in the tree (H, E). Figure 2.8 shows two
Markov trees.

Figure 2.8. Two Markov trees.

WX XY YZ
STU

VXZ

TVX

TY

T

Markov Trees and Hypertrees. Our formal definition of a Markov tree does not
state that the vertex set H is a hypertree, but it implies that it is. This is part of the
following proposition.

 22

Proposition 2.7. Suppose (H, E) is a Markov tree. Then H is a
hypertree. Any tree construction sequence for (H, E) is a hypertree
construction sequence for H. The budding for the tree construction
sequence is a branching for the hypertree construction sequence. Any
leaf in (H, E) is a twig in H.

The last statement in this proposition brings out the fact that as we delete leaves
from a Markov tree (a visually transparent operation), we are deleting twigs from
the hypertree.
 If (H, E) is a Markov tree, then we call it a Markov tree representative for
the hypertree H. It follows from the following proposition that every hypertree H
has at least one Markov tree representative.

Proposition 2.8. Suppose H is a hypertree, β is a branching for H, and
h1 is the root of β. Then (H, E) is a Markov tree, where
 E={{h, β(h)}|h∈(H–{h1})}. (2.1)
If h1h2...hn is a hypertree construction sequence for H, with β as its
branching, then it is a tree construction sequence for (H, E), with β is
its budding.

 Propositions 2.7 and 2.8 describe the close relationship between hypertrees
(with their hypertree construction sequences and branchings) and Markov trees
(with their tree construction sequences and buddings). Since the relationship is
somewhat complex, it may be useful to describe it in more detail. One way of
doing this is to spell out what given information about a hypertree does to
determine a Markov tree. We can do this by repeating Proposition 2.8 in various
ways:

 When we specify a hypertree, we have specified the vertices for
a Markov tree.

 When we specify a hypertree and a hypertree construction
sequence for it, we have specified the vertices and a tree construction
sequence for a Markov tree.

 23

 When we specify a hypertree and a branching for it, we have
specified a Markov tree and a budding for it (or a Markov tree and a
root for it).

 When we specify a hypertree, a hypertree construction
sequence for it, and a branching for the hypertree construction
sequence, we have specified a Markov tree and a tree construction
sequence for it.

Another way is to say what given information about a Markov tree tells us about
the hypertree formed by its vertices. This is done by the following statements,
which follow from Proposition 2.7 together with what we learned about trees in the
preceding section.

 When we specify a Markov tree, we have specified a hypertree
and a branching for each possible root.

 When we specify a Markov tree and a root for it, we have
specified a hypertree and a branching.

 When we specify a Markov tree and tree construction sequence
for it, we have specified a hypertree, a tree construction sequence, and
a branching.

Notice also that if H is a hypertree and h1 is a hyperedge in H, then equation (2.1)
represents a one-to-one correspondence between the branchings for H that have h1
as their root and the Markov tree representatives for H. (Proposition 2.8 tells us
that if β is a branching that has h1 as its root, then (H, {{h, β(h)}|h∈(H–{h1})}) is
a Markov tree. On the other hand, Proposition 2.5 implies that if
(H, {{h, β(h)}|h∈(H–{h1})}) is a tree, then β is a budding for it, and hence, by
Proposition 2.7, a branching for H.)

 Given a hypertree, we can choose any hyperedge as root, and then we get all
the Markov tree representatives by looking at the different branchings with that

 24

root. Figure 2.9 shows the three Markov tree representatives of the hypertree in
Figure 2.3.

Figure 2.9. If we choose {L, E, B} as the root for the hypertree in
Figure 2.3, then {L, E, B} must serve as the branch for {T, L, E}, {E,
B, D}, and {S, L, B}, and {T, L, E} must serve as the branch for {A,
T}. This leaves only {E, X}, which can use {L, E, B}, {T, L, E}, or
{E, B, D} as its branch. It follows that the hypertree has exactly three
Markov tree representations, which differ only in where the leaf {E,
X} is attached.

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

Which Representation is More Useful? We have developed two different
representations for the same information. On the one hand, we have hypertrees,
with hypertree construction sequences and branchings. On the other hand, we have
Markov trees, with tree construction sequences and buddings. What are the roles of
these two representations? When should we use one, and when should we use the
other?

 25

 As we will see in the following chapters, the methods of local computation
that we study in this book involve moving step-by-step backwards and then
sometimes forward in a hypertree construction sequence. At each step, we perform
computations that involve a hyperedge and its branch. This means that we need to
specify the hypertree, a construction sequence, and a branching for it. When all
these things are specified, it is really a matter of taste which representation we say
we are working with. We can equally well say that we are working with a
hypertree construction sequence and a branching or that we are working with a tree
construction sequence and a budding for a Markov tree. We can say that we are
working step-by-step backwards and then forward in a hypertree construction
sequence. Or we can say that we are working inward and then outward in a
Markov tree, dealing with the vertices in the order specified by a particular tree
deletion sequence as we move inward, and then reversing the order as we move
outward.
 Strictly speaking, however, it is only if we are using a serial computer that
we must completely specify a construction or deletion sequence. If we are working
with a parallel computer, in which different processors are made to correspond to
the different vertices of the Markov tree, and in which communication links are
provided between the vertices that are directly connected by edges in the Markov
tree, then we can program the computer to work inwards and then outwards in the
tree without specifying completely a sequence in which successive hyperedges are
dealt with. In this context, the Markov tree representation will be more appropriate
than the hypertree representation.
 Our own work has been limited to serial computers, but we find the Markov
tree representation very useful for pedagogical purposes. Trees are very accessible
to the visual imagination, and we can see many things more clearly if we do not
clutter the picture by specifying the particular tree construction sequence. Hence
we rely heavily on the Markov tree representation in our explanations of local
computation in the following chapters.
 Even for the theoretical purposes of this chapter, the Markov tree
representation is very useful. As we will see shortly, we can use this representation
to give transparent proofs of statements we made about hypertrees in section 2.1.
The main pedagogical limitation of hypertrees is the danger that they will be over-
interpreted. It must always be kept in mind that the edges that join the vertices in a

 26

Markov tree have only a computational significance. They do not always have a
meaning in terms of the practical problem that led to the computational problem.
Typically, that the practical problem determines only a hypertree (or perhaps a
hypergraph for which we find a hypertree cover). This hypertree may have many
Markov tree representations, and a particular pair of vertices may be linked by an
edge in some of these representations and not in others.

Using Markov Trees to Learn about Hypertrees. Here we will use the Markov
tree representation to prove two statements about hypertrees that we made without
proof in section 2.1.
 First consider our assertion that maximum cardinality search always works.
If we start with an arbitrary hyperedge h1 in a hypertree, then find a hyperedge h2
that has as many elements in common with h1 as possible, then find a hyperedge h3
that has as many elements in common with h1∪h2 as possible, and so on, then the
resulting sequence h1h2...hn will be a hypertree construction sequence. The
following proposition states this more formally.

Proposition 2.9. Suppose H is a hypertree, and h1h2...hn is an ordering
of its elements such that

|hi∩(h1∪h2∪...∪hi-1)| = maxi≤j≤n |hj∩(h1∪h2∪...∪hi-1)|
for i=2, ..., n. Then h1h2...hn is a hypertree construction sequence.

Proof. It suffices to show that there is a Markov tree representative with h1h2...hn
as a tree construction sequence. We can prove this by induction. We know that any
Markov tree representative has a tree construction sequence that begins with h1. So
we only need to show that if there is a Markov tree representative with a tree
construction sequence that begins with h1h2...hi-1, then there is one with a tree
construction sequence that begins with h1h2...hi.
 Figure 2.10 shows by example how we can go from a Markov tree with h1h2,
..., hi-1 as the beginning of a tree construction sequence to one with h1h2...hi as the
beginning of a tree construction sequence. We simply replace the first edge on the
path from hj to hi with an edge between hj and hi, where hj is the vertex in {h1, h2,
..., hi-1} that is nearest hi. By the Markov property, every vertex along this path
from hj to hi contains everything that hi has in common with h1∪h2∪...∪hi-1. And

 27

this is all they can have in common with h1∪h2∪...∪hi-1, since hi has a maximal
intersection with h1∪h2∪...∪hi-1. It follows that any element X that hj has in
common with the vertex to which it was connected by the edge now removed will
also be in all the vertices along the new path to that vertex. Hence the new tree still
has the Markov property. End of Proof.

 28

Figure 2.10. This Markov tree has a tree construction sequence
beginning with h1h2h3h4.

h
2

h
1

h
4

h
3

h
7

h
6

h
9

h
8

h
11

h
5

h
10

h
12

h
13

Suppose h5 has a maximum intersection with h1∪h2∪h3∪h4—i.e., h5
has at least as many elements in common with h1∪h2∪h3∪h4 as any of
the remaining hyperedges do. By the Markov property, all the
elements that h5 has in common with h1∪h2∪h3∪h4 must be in every
vertex on the path from h4 to h5. Moreover, h7 cannot have anything
else common with h4; otherwise it would have more in common with
h1∪h2∪h3∪h4 than h5 does. This means that we can replace the link
between h4 and h7 with a link between h4 and h5, without destroying
the Markov property:

h
2

h
1

h
4

h
3

h
7

h
6

h
9

h
8

h
11

h
5

h
10

h
12

h
13

If h4 and h7 contains a particular element X, then X will also be in h5,
h9 and h10, and hence the set of vertices containing it will remain
connected.

 29

 The preceding proposition says in particular that we can begin a hypertree
construction sequence with an arbitrary hyperedge. It is also true, as we stated but
did not prove in section 2.1, that we can end a hypertree construction sequence
with an arbitrary twig.

Proposition 2.10. If H is a hypertree, and t is a twig in H, then there is
a hypertree construction sequence for H that ends with t.

Proof. It suffices to show that there is a Markov tree representative for H that has t
as a leaf. To do this, we consider an arbitrary Markov tree representative for H.
Suppose t is not a twig in this Markov tree. Then we construct a new tree by
deleting the edge between t and each of its neighbors, putting a new edge from t to
b, and putting a new edge from each former neighbor of t to b, except for the single
former neighbor that is still connected to b by a path (see Figure 2.11). This new
tree has t as a leaf, and it is a Markov tree. To see that it is a Markov tree, consider
any two vertices h1 and h2 in the tree that have an element X in common. We must
show that X is also in any vertex h on the path between h1 and h2. This will
certainly be true if this path is the same as the path between h1 and h2 in the old
tree, because the old tree was a Markov tree. Suppose, then, that the path between
h1 and h2 is different in the new tree, and that h is on the new path but not on the
old path. The fact that the new path is different means that the old path went
through t, and the fact that h is on the new path but not the old path means that h is
either on the old path from h1 to b or on the old path from h2 to b. Since the old
path went through t, X is in t and hence also in b, which is a branch for t. So X is
also in the any vertex on the old path from h1 to b or on the old path from h2 to b.
End of Proof.

 30

Figure 2.11. The vertex t is not a leaf in this Markov tree, but we
assume that it is a twig, with branch b, in the hypertree formed by the
vertices of the Markov tree.

t b

h

h

1

2

We remove all the edges between t and other vertices. Then we make
the graph a tree again by putting an edge between b and t and an edge
between b and each of t's former neighbors, except the one that was
originally connected to b by a path that did not go through t.

t b

h

h

1

2

The new tree has t as a leaf, and it is a Markov tree. To see that it is a
Markov tree, suppose that the vertices h1 and h2 have an element X in
common. They were originally connected by a path that went through
t, and every vertex on this path contained X. Now they are connected
by a new path. Does every vertex in the new path contain X? Yes.
Since X is in t, it is in the branch b. Hence it is in the other vertex in
the path from h1 to b, and this is the only vertex in the new path that
was not in the old path.

 31

2.4. Additional Proofs

Proof of Proposition 2.1. The equivalence of the four conditions is obvious; they
say the same thing in slightly different words. It is easiest to see first that (i) and
(ii) are equivalent, then that (i) and (iii) are equivalent, and then that (iii) and (iv)
are equivalent.

Proof of Proposition 2.2. First let us show that (i) implies (ii). Let v1v2...vn be a tree
construction sequence for (V, E). Every vertex after v1 in this sequence is
connected by an edge to an earlier vertex, its bud. The bud, if it is not already v1, is
connected in turn to its own bud. Since there are only a finite number of vertices,
this path must end eventually at v1. Thus every vertex is connected by a path to v1.
It follows that any two vertices are connected by a path to each other. Thus (V, E)
is connected. It is easy to see also that (V, E) has no cycles. Suppose C is a subset
of V. In order for C to be a cycle in (V, E), every vertex in C would have to be
connected to two other vertices in C. But since a vertex can only be connected to
one earlier vertex in the tree construction sequence v1v2...vn, the vertex in C that
appears last in this sequence can be connected to only other vertex in C.
 It is easy to see that (ii) implies (iii), for being connected means that there is
path between any two vertices, and a cycle can be constructed from two distinct
paths and vice versa.
 We can complete the proof by showing that (iii) implies (i). Suppose there is
a unique path connecting any two vertices. Start with an arbitrary vertex and call it
v1. If there is at least one more vertex, then choose one, say v1', let v2 be the first
vertex after v1 on the unique path from v1 to v1'. The sequence v1v2 is a tree
construction sequence, and we can extend this sequence step-by-step until it
includes all the vertices in V. Indeed, if v1v2...vk is a tree construction sequence,
and there is still at least one vertex not in this sequence, then we can choose one

 32

such vertex, say vk', and let vk+1 be the first vertex not already in the sequence that
we encounter on the unique path from v1 to vk'. It is connected by an edge to just
one of the vertices already in the sequence, the one just before it on the path. (Were
it also connected by an edge to another, there would be more than one path from it
to v1.) So v1v2...vkvk+1 is still a tree construction sequence.

Proof of Proposition 2.3. This is proven in the last paragraph of the proof of the
preceding proposition.

Proof of Proposition 2.4. The budding explicitly identifies the root; it is the one
vertex that is not assigned a bud by the budding. To see that the root determines the
budding, note that for any budding β with root v1 and any vertex v distinct from v1,
the sequence v, β(v), β(β(v)), β(β(β(v))), and so on, is a path from v to v1. Since
the path from v to v1 is unique, β(v) is unique.

Proof of Proposition 2.5. This is obvious if we consider the tree construction
sequence for which β is the budding and recall condition (ii) of Proposition 2.1.

Proof of Proposition 2.6. By Proposition 2.3, we can choose a tree construction
sequence v1v2...vn for (V, E) with v≠v1. Say v=vk. By the definition of tree
construction sequence, v is connected by an edge to a vertex earlier in the
sequence, say vj. Since v is a leaf and v' is its bud, we have vj=v'. Moreover, v is
not connected by an edge to any vertex later in the sequence. In other words, vk
does not serve as a bud for any vertex later in the sequence. Hence the sequence
with vk removed is still a tree construction sequence—a tree construction sequence
for (V–{v}, E–{{v, v’}}).

Proof of Proposition 2.7. Let h1h2...hn be a tree construction sequence for the
Markov tree (H, E), and let β be its budding. In order to show that h1h2...hn is a
hypertree construction sequence, with β as a branching, it suffices to show that
hi∩β(hi) ≠ ∅ and (h1∪h2∪...∪hi-1)∩hi = β(hi)∩hi for i = 2, ..., n. The condition
hi∩β(hi) ≠ ∅ follows from condition (i) of the definition of Markov tree. To show
that i = β(hi)∩hi, suppose that X is contained in both hi and hj, where j < i. It
suffices to show that X is in β(hi). By condition (iii) of the definition of Markov
tree, X is also in every node on the path between hi and hj. Is β(hi) on this path?

 33

Yes it is. The path hi, β(hi), β(β(hi)), β(β(β(hi))), and so on leads sooner or later
back to h1, as does the path hj, β(hj), β(β(hj)), β(β(β(hj))), and so on; so the path
from hi to hj follows the first of these paths until it comes to an element in the
second path (either h1 or an earlier common element) and then follows the other
path back out to hj. So β(hi) is on the path between hi and hj, and hence X is in
β(hi).
 Suppose h is a leaf in (H, E). As we noted in the comments following
Proposition 2.6, this implies that we can choose a tree construction sequence for
(H, E) that ends with h. Since this tree construction sequence is a hypertree
construction sequence for H, h is a twig in H.

Proof of Proposition 2.8. Since {h2, β(h2)}, {h3, β(h3)}, ..., {hn, β(hn)} are the edges
of the graph (H, E), and β(hi) is in {h1, h2, ..., hi-1} for i=2, ...,n, the sequence
h1h2...hn is a tree construction sequence for (H, E), and hence (H, E), is a tree.
Condition (ii) in the definition of Markov tree is satisfied because a twig and its
branch always have nonempty intersection. To see that condition (iii) is satisfied,
consider two hyperedges hi and hj that contain X. We may assume without loss of
generality that i<j. By the definition of branch, X must be contained in hβ(j), which
is just before hj on the path from hi to hj. If β(hj)=hi, we are done; otherwise we
may apply the same argument to show that X is also contained in the vertex just
before hi or β(hj), whichever comes later in the construction sequence. We may
conclude by induction that X is contained in every vertex hk along the path
between hi and hj.

CHAPTER THREE

Probability Propagation

In this chapter, we explain local computation for probability distributions. More
precisely, we show how computation of marginal probabilities can be facilitated
when a joint probability distribution is given in factored form, and the sets of
variables involved in the factors form a hypertree.
 We postpone for the moment consideration of how probability distributions
in factored form might arise. We will return to this question in chapter 6, after we
discuss conditional probability.
 We begin this chapter by introducing basic definitions and notation for
probability distributions, marginalization, and combination. In section 3.1, we
introduce a notation for probability distributions and for the more general functions
that we call potentials and arrays. In section 3.2, we study the combination of
arrays, and in section 3.3, we define marginalization for arrays.
 In section 3.4, we show how local computation can be used to marginalize a
factorization on a hypergraph to the smaller hypergraph resulting from the deletion
of a twig. Though brief and simple, this section is the heart of this chapter. Once
we know how to delete a twig, we can reduce a hypertree to a single hyperedge by
successively deleting twigs. When we have reduced a factorization on a hypertree
to a factorization on a single hyperedge, it is no longer a factorization; it is simply
the marginal for the hyperedge.
 In section 3.5, we shift our attention from a hypertree to the Markov tree
determined by a branching for the hypertree. Using this Markov tree, we describe

 36

more graphically the process of marginalizing to a single hyperedge. Our
description is based on the idea that each vertex in the tree is a processor, which
can operate on arrays for the variables it represents and then send the result to a
neighboring processor. In section 3.6, we generalize this idea to a scheme of
simultaneous computation and message passing that produces marginals for all the
vertices in the Markov tree. In section 3.7, we give an example of probability
propagation. In section 3.8, we give proofs of the displayed propositions.
 Our treatment of local computation in this chapter applies to arrays in
general, not just to probability distributions. We take this approach not because the
greater generality is of practical importance, but rather because it distances us from
probabilistic interpretations and allows us to concentrate on purely computational
aspects of our problem. In particular, it frees us from the temptation to seek a
probabilistic interpretation for every step in the computation.
 When considered as schemes for the computation of probabilities, the
schemes presented in this chapter are similar to earlier work by Pearl [1986],
Shenoy and Shafer [1986] and Lauritzen and Spiegelhalter [1988]. They represent
a simplification of all this earlier work, however, for they avoid the need for
divisions. In chapter 6, we will delve into the details of the probability case, and
we will show how the general schemes presented here relate to the schemes studied
by Pearl and by Lauritzen and Spiegelhalter.

3.1. Arrays, Potentials, and Probability Distributions

We use the symbol WX for the set of possible values of a variable X, and we call
WX the frame for X. We will be concerned with a finite set X of variables, and we
will assume that all the variables in X have finite frames.
 Given a finite nonempty set h of variables, we let Wh denote the Cartesian
product of WX for X in h; Wh = ×{WX | X∈h}. We call Wh the frame for h. We call
elements of Wh configurations of h. We use lower-case, bold-faced letters such as
x, y, etc. to denote configurations. If x is a configuration of g, y is a configuration
of h, and g∩h=∅, then (x, y) is a configuration of g∪h.

 37

 We call any real-valued function on Wh an array on h. We call the array a
potential if the values it assigns to the configurations are non-negative and not all
zero. We call a potential a probability distribution if the values it assigns to the
configurations add to one. Given a potential that is not a probability distribution,
we can construct a probability distribution by dividing all the potential's values by
their sum.
 It is convenient to extend this terminology to the case where the set of
variables h is empty. We adopt the convention that the frame for the empty set ∅
consists of a single configuration, and we will use the symbol ♦ to name that
configuration; W∅={♦}. To be consistent with our notation above, we will adopt
the convention that if x is a configuration for g, then (x, ♦) = x. Also note that to
specify an array A on ∅, we need to specify only a single real number, the value of
A(♦). If this real number is positive, the array A is a potential; if it is equal to one,
the array A is a probability distribution.
 When A is an array on a set of variables h, we will call h the domain of A,
and we will write domain(A)=h.
 Two arrays A and B on h are proportional if there is a positive number c
such that A(x) = cB(x) for all x in Wh. We will write A ∝ B to indicate that A and
B are proportional.

3.2. Combination and Factorization of Arrays

In this section, we learn how to combine arrays, and we learn what it means for an
array to factor on a hypergraph.
 In order to develop a notation for the combination of arrays, we first need a
notation for the projection of configurations from one frame to a smaller frame.
Here projection simply means dropping extra coordinates; if (w, x, y, z) is a
configuration of {W, X, Y, Z}, for example, then the projection of (w, x, y, z) to
{W, X} is simply (w, x), which is a configuration of {W, X}. If g and h are sets of
variables, h⊆g, and x is a configuration of g, then we will let x↓h denote the

 38

projection of x to h. The projection x↓h is always a configuration of h. If h=∅, then
of course x↓h=♦.

Combination. We combine arrays by pointwise multiplication; if G and H are
arrays on g and h respectively, then their combination GH is the array on g∪h
given by
 (GH)(x) = G(x↓g)H(x↓h) (3.1)
for all x∈Wg∪h.
 Formula (3.1) is merely a careful way of saying that we multiply the two
arrays together. It may clarify this to consider a more concrete example. Suppose
g={W, X, Y} and h={Y, Z}. Then (3.1) reduces to the statement that (GH)(w, x, y,
z) = G(w, x, y)H(y, z).
 If G and H are potentials, their combination GH need not be a potential; it is
possible that the array GH is such that (GH)(x) = 0 for all x. When we are
propagating probabilities, we avoid situations where this happens, because we
want to be able to normalize to get a probability distribution. If G and H are
potentials on g and h, respectively, and there exists a configuration x of g∪h such
that
 G(x↓g)H(x↓h) > 0,

then we will say that G and H are combinable and that GH is the combination of G
and H. If G(x↓g)H(x↓h) = 0 for all x∈Wg∪h, then we will say that potentials G and H
are not combinable.

Vacuous Extension. Suppose h⊆g, and suppose A is an array on h. Then we let
A↑g denote the array on g given by
 A↑g(x) = A(x↓h)
for all x∈Wg. We call A↑g the vacuous extension of A to g. The idea of vacuous
extension does not add anything essential to the ideas of this chapter, but it is
useful in the exposition. We can explain formula (3.1), for example, by saying that
we get GH by vacuously extending both G and H to g∪h and then multiplying
them.
 Suppose h⊆g, and B is an array on g. We say that B is carried by h if there is
some array A on h such that B = A↑g. This idea will be of use to us in chapter 6.

 39

Factorization. Suppose A is an array on a finite set of variables X, and suppose H
is a hypergraph on X. If A is equal to a combination of arrays on the hyperedges of
H, say
 A = Π{Ah | h∈H}, (3.2)

where Ah is an array on h, then we say that A factors on H into the arrays Ah.
 If A is an array on X, and A factors on a hypergraph H on X, then ∪H = X.
This is implicit in the definition, because the right-hand side of (3.2) is an array on
∪H.
 When A does factor on H, the arrays Ah are not unique. We can multiply
one of them by a non-zero constant if we compensate by dividing another by the
same constant. More generally, if g and h overlap, then we can multiply Ag and
divide Ah by any array on g∩h that has no zero values.
 It is important, in applications, to recognize that if an array A factors on the
hypergraph H, and the hypergraph H* covers H, then A also factors on H*.
Actually, this statement is precisely correct under our definitions only if
∪H=∪H*. If ∪H is a proper subset of ∪H*, then it is really only the vacuous
extension A↑∪H* that factors on H*. To obtain a factorization of A↑∪H* on H*, it is
necessary, in general, to assign each hyperedge h in H to a particular hyperedge in
H* that contains it. After we have done this, a particular hyperedge g in H* may
or may not have hyperedges from H assigned to it. If it has none assigned to it, we
let Bg be the array Ig given by Ig(x) = 1 for all x∈Wg. If it has one or more h from
H assigned to it, we let Bg be Ig combined with the Ah for all the h assigned to it.
Then we will have A↑∪H* = [Π{Bg | g∈H*}].
 It is sufficient, in order for A to factor on H, that A be proportional to a
product of arrays on the hyperedges. Indeed, if
 A ∝ Π{Ah | h∈H}, (3.3)

where Ah is an array on h, then a representation of the form (3.2) can be obtained
simply by incorporating the constant of proportionality into one of the Ah.
 Though the theory in this chapter applies to arrays in general, we are mainly
interested in factorizations of probability distributions. This means that we are
concerned primarily with arrays that are potentials, for when a probability
distribution P factors on a hypergraph, the arrays Ah in the factorization can be
assumed to be potentials. Indeed, since P is not identically zero, none of the Ah can

 40

be identically zero. And we can assume that Ah(x)≥0 for all h and all x. Since P
does not take any negative values, the factorization would remain valid if we
replaced all negative Ah(x) by their absolute values.
 In practice, relations of proportionality such as (3.3) are common when we
are working with probability distributions. We will give a fuller account of the
reasons for this in chapter 6; here let us say simply that factorizations of
probability distributions are often reduced to proportionalities when we condition
on observations.
 If we are given potentials Ah and are told that the product Π{Ah | h∈H} is
proportional to a probability distribution, then in principle we can find the constant
of proportionality using the fact that the values of the probability distribution must
add to one. In practice, this may be infeasible, since it requires a summation over
the elements of the frame WX. As we shall see in the next section, however, this is
not a serious problem when the hypergraph is a hypertree with hyperedges small
enough to make local computation feasible. In that case, we can postpone finding
the constant of proportionality until we have marginalized to a hyperedge using
local computations.

3.3. Marginalizing Arrays

In this section, we introduce the idea of marginalizing an array from one set of
variables to a smaller set of variables.
 Suppose g and h are sets of variables, h⊆g, and G is an array on g. The
marginal of G on h, denoted by G↓h, is an array on h. It is defined by
 G↓h(x) = Σ{G(x, y) | y∈Wg–h}

for all x∈Wh. For example, if G is an array on the variables {W, X, Y, Z}, then the
marginal G↓{W,X} is given by G↓{W,X}(w, x) = Σy,zG (w, x, y, z), where the
summation is over all possible values of Y and Z.

 41

Proposition 3.1. If h1⊆h2⊆g and G is an array on g, then (G↓h2)↓h1 =
G↓h1.

 The distributive law of arithmetic says that c(a+b) = ca+cb. It follows from
the distributive law that marginalization preserves proportionality; if A is an array,
and c is a real number, then (cA)↓h = cA↓h. Here is a more general statement:

Proposition 3.2. If G and H are arrays on g and h, respectively, then
(GH)↓g = G(H↓g∩h).

 When h⊆g and the array P is a probability distribution on g, the marginal P↓h
is P's marginal on h in the usual probabilistic sense; P↓h(x) is the probability that
the variables in h take the values in x.

3.4. Marginalizing Factorizations

In this section, we learn how to adjust a factorization on a hypergraph to account
for the deletion of a twig. This can be accomplished by local computations,
computations involving only the arrays on the twig and a branch for the twig. This
elimination of a twig by local computation is the key to the computation of
marginals from a factorization on a hypertree, for by successively deleting twigs,
we can reduce the hypertree to a single hyperedge.
 Suppose H is a hypergraph on X, t is a twig in H, and b is a branch for t.
The twig t may contain some vertices that are not contained in any other hyperedge
in H. These are the vertices in the set t–b. Deleting t from H means reducing H to
the hypergraph H–{t}, none of whose hyperedges contain any of the vertices in t-
b.
 Suppose A is an array on X, suppose A factors on H, and suppose we have
stored A in factored form. In other words, we have stored an array Ah for each h in
H, and we know that A = Π{Ah | h∈H}. Adjusting this factorization of A on H to
account for the deletion of the twig t means reducing it to a factorization of A↓X' on

 42

H-{t}, where X'=X–(t–b)=∪(H–{t}). Can we do this? Yes. The following
proposition tells us that if A factors on H, then A↓X' factors on H–{t}, and the
second factorization can be obtained from the first by a local computation that
involves only t and a branch.

Proposition 3.3. Under the assumptions of the preceding paragraph,
 A↓X' = (AbAt

↓t∩b) Π{Ah | h∈H–{t, b}}. (3.4)

Formula (3.4) says that A↓X' factors on the hypergraph H–{t}. The potential on b is
multiplied by At

↓t∩b, and the potentials on the other elements of H–{t} are
unchanged.
 This result is especially interesting in the case of hypertrees, because in this
case repeated application of (3.4) allows us to obtain A's marginal on any
particular hyperedge of H. If we want the marginal on a hyperedge h1, we choose a
construction sequence beginning with h1, say h1h2...hn, and we choose a branching
for this construction sequence. Let Xk denote h1∪...∪hk, and let Hk denote {h1, h2,
..., hk} for k=1, ..., n–1. We use (3.4) to delete the twig hn, so that we have a
factorization of A↓Xn–1 on the hypertree Hn–1. Then we use (3.4) again to delete the
twig hn–1, so that we have a factorization of A↓Xn–2 on the hypertree Hn–2. And so
on, until we have deleted all the hyperedges except h1, so that we have a
factorization of A↓X1 on the hypertree H1—i.e., we have the marginal A↓h1. At each
step, the computation is local, in the sense that it involves only a twig and a branch.
 We are most interested, of course, in the case where A is a probability
distribution. In this case, as we mentioned in the preceding section, the
factorization we wish to marginalize may be a proportionality rather than an
equality. In other words, we may begin with a factorization of a potential that is
only proportional to the probability distribution that interests us. Eventually, we
will need to find the constant of proportionality, but since marginalization
preserves proportionality, we may postpone the normalization until the final step,
where we have reduced the potential to its marginal on the single hyperedge with
which we are concerned, and hence normalization requires summation only over
the frame for this hyperedge.

 43

3.5. Computing Marginals in Markov Trees

As we learned in chapter 2, the choice of a branching for a hypertree determines a
Markov tree for the hypertree. We now look at our scheme for computing a
marginal from the viewpoint of this Markov tree. This change in viewpoint does
not necessarily affect the implementation of the computation, but it gives us a
richer understanding. It gives us a picture in which message passing, instead of
deletion, is the dominant metaphor, and in which we have great flexibility in how
the message passing is controlled.
 Why did we talk about deleting the hyperedge hk as we projected hk's array
to the branch β(hk)? The point was simply to remove hk from our attention. The
"deletion" had no computational significance, but it helped make clear that hk and
the array on it were of no further use. What was of further use was the smaller
hypertree that would remain were hk deleted.
 When we turn from the hypertree to the Markov tree, deletion of twigs
translates into deletion of leaves. But a tree is easier to visualize than a hypertree.
We can remove a leaf or a whole branch of a tree from our attention without
leaning so heavily on metaphorical deletion. And a Markov tree also allows
another, more useful, metaphor. We can imagine that each vertex of the tree is a
processor, and we can imagine that the marginal is a message that one processor
passes to another. Within this metaphor, vertices no longer relevant are kept out of
our way by the rules guiding the message passing, not by deletion.
 We cover a number of topics in this section. We begin by reviewing our
marginalization scheme in the hypertree setting and seeing how its details translate
into the Markov tree setting. We formulate precise descriptions of the operations
that are carried out by each vertex and precise definitions of the messages that are
passed from one vertex to another. Then we turn to questions of timing—whether a
vertex uses a message as soon as it is received or waits for all its messages before it
acts, how the order in which the vertices act is constrained, and whether the
vertices act in serial or in parallel. We explain how the Markov tree can be
expanded into an architecture for the parallel computation, with provisions for
storing messages as well as directing them. We explain how this architecture
handles updating when inputs are changed. And finally, we explain how our
computation can be directed by a simple forward-chaining production system.

 44

Translating to the Markov Tree. We now translate our marginalization scheme
from the hypertree to the Markov tree.
 Recall the details in the hypertree setting. We have an array A on X, in the
form of a factorization on a hypertree H. We want the marginal for the hyperedge
h1. We choose a hypertree construction sequence with h1 as its root, say h1h2...hn,
and we choose a branching β for h1h2...hn. On each hyperedge hi, we have an array
Ahi. We repeatedly apply the following operation:

Operation H. Marginalize the array now on hk to β(hk). Change the
array now on β(hk) by combining it with this marginal.

 We apply Operation H first for k=n, then for k=n–1, and so on, down to k=2.
The array assigned to h1 at the end of this process is the marginal on h1.
We want now to re-describe Operation H, and the process of its repeated
application, in terms of the actions of processors located at the vertices of the
Markov tree (H, E) determined by the branching β.
 The vertices of (H, E) are the hyperedges h1, h2, ..., hn. We imagine that a
processor is attached to each of the hi. The processor attached to hi can store an
array defined on hi, can compute the marginal of this array on hi∩hj, where hj is a
neighboring vertex, can send the marginal to hj as a message, can accept an array
on hi (or any smaller set of variables) as a message from a neighbor, and can
change the array it has stored by combining it with such an incoming message.
 The edges of (H, E) are
 {hn, β(hn)}, {hn–1, β(hn–1)}, ..., {h3, β(h3)}, {h2, h1}.

When we move from hn to β(hn), then from hn–1 to β(hn–1), and so on, we are
moving inwards in this Markov tree, from the outer leaves to the root h1. The
repeated application of Operation H by the processors located at the vertices
follows this path.
 In order to recast Operation H in terms of these processors, we need some
more notation. Let Curh denote the array currently stored by the processor at vertex
h of (H, E). In terms of the local processors and the Curh, Operation H becomes
the following:

 45

Operation M1. Vertex h computes Curh
↓h∩β(h), the marginal of Curh to

β(h). It sends Curh
↓h∩β(h) as a message to vertex β(h). Vertex β(h)

accepts the message Curh
↓h∩β(h) and changes Curβ(h) by multiplying it

by Curh
↓h∩β(h).

 At the outset, Curh = Ah for every vertex h. Operation M1 is executed first
for h=hn, then for h=hn–1, and so on, down to h=h2. At the end of this propagation
process, the array Curh1, the array stored at h1, is the marginal of A on h1.

An Alternative Operation. Operation M1 prescribes actions by two processors, h
and β(h). We now give an alternative, Operation M2, which is executed by a single
processor. Since it is executed by a single processor, Operation M2 will be easier
for us to think about when we discuss alternative control regimes for the process of
propagation.
 Operation M2 differs from Operation M1 only in that it requires a processor
to combine the messages it receives all at once, rather than incorporating them into
the combination one by one as they arrive. Each time Operation M1 is executed for
an h such that β(h)=g, the processor g must change the array it stores by combining
it with the incoming message. But if processor g can store all its incoming
messages, then it can delay the combination until it is its turn to marginalize. If we
take this approach, then we can replace Operation M1 with the following:

Operation M2a. Vertex h combines the array Ah with all the messages
it has received, and it calls the result Curh. Then it computes
Curh

↓h∩β(h), the marginal of Curh to h∩β(h). It sends Curh
↓h∩β(h) as a

message to β(h).

 Operation M2a involves action by only one processor, the processor h. When
Operation M2a is executed by hn, there is no combination, because hn, being a leaf
in the Markov tree, has received no messages. The same is true for the other leaves
in the Markov tree. But for vertices that are not leaves in the Markov tree, the
operation will involve both combination and marginalization.
 After Operation M2a has been executed by hn, hn–1, and so on down to h2, the
root h1 will have received a number of messages but will not yet have acted. To

 46

complete the process, h1 must combine all its messages and its original array Ah1,
thus obtaining the marginal A↓h1. We may call this Operation M2b:

Operation M2b. Vertex h combines the array Ah with all the messages
it has received, and it reports the result to the user of the system.

 So Operation M2 actually consists of two operations. Operation M2a is
executed successively by hn, hn–1, and so on down to h2. Then Operation M2b is
executed by h1.
 Operation M2 simplifies our thinking about control, or the flow of
computation, because it allows us to think of control as moving with the
computation in the Markov tree. In our marginalization scheme, control moves
from one vertex to another, from the outer leaves inward towards the root. If we
use Operation M2, then a vertex is computing only when it has control.

Formulas for the Messages. We have described verbally how each vertex
computes the message it sends to its branch. Now we will translate this verbal
description into a formula that constitutes a recursive definition of the messages.
The formula will not make much immediate contribution to our understanding, but
it will serve as a useful reference in the next section, when we discuss how to
extend our scheme for computing a single marginal to a scheme for computing all
marginals.
 Let Mh→β(h) denote the message sent by vertex h to its bud. Our description
of Operation M2a tells us that
 Mh→β(h) = Curh

↓h∩β(h),

where
 Curh = Ah Π{Mg→β(g) | g∈H and β(g)=h}.

Putting these two formulas together, we have
 Mh→β(h) = (Ah Π{Mg→β(g) | g∈H and β(g)=h})↓h∩β(h). (3.5)

If h is a leaf, then there is no g∈H such that h=β(g), and so (3.5) reduces to
 Mh→β(h) = Ah

↓h∩β(h), (3.6)

by the convention that an empty combination is equal to one.

 47

 Formula (3.5) constitutes a recursive definition of Mh→β(h) for all h,
excepting only the root h1 of the budding β. The special case (3.6) defines Mh→β(h)
for the leaves; a further application of (3.5) defines Mh→β(h) for vertices one step in
towards the root from the leaves; a third application defines Mh→β(h) for vertices
two steps in towards the root from the leaves; and so on.
 We can also represent Operation M2b by a formula:
 A↓h = Ah Π{Mg→β(g) | g∈H and β(g)=h}. (3.7)

Storing the Messages. If we want to think in terms of Operation M2, then we must
imagine that our processors have a way to store incoming messages.
 Figure 3.1 depicts an architecture that provides for such storage. The figure
shows a storage register at vertex g for each of g's neighbors. The registers for
neighbors on the side of g away from the goal vertex are used to store incoming
messages. The register for the neighbor in the direction of the goal vertex is used to
store the vertex's outgoing message. The registers serve as communication links
between neighbors; the outgoing register for one vertex being the incoming register
for its neighbor in the direction of the goal vertex.

Figure 3.1. A typical vertex processor g, with incoming messages
from vertices f and e and outgoing message to h; here g=β(f)=β(e) and
h=β(g).

f

g eh g (g)!"
M

f (f)!"
M

e (e)!"M

 48

 The message Mg→β(g), which vertex g stores in the register linking g to its
bud, is an array on g∩β(g). It is the marginal for the bud of an array on g.

Flexibility of Control. Whether we use operation M1 or M2, it is not necessary to
follow exactly the order hn, hn–1, and so on. The final result will be the same
provided only that a processor never sends a message until after it has received and
absorbed all the messages it is supposed to receive.
 This point is obvious when we look at a picture of the Markov tree.
Consider, for example a Markov tree with 15 vertices, as in Figure 3.2. The
vertices are numbered from 1 to 15 in this picture, indicating a construction
sequence h1h2...h15. Since we want to find the marginal for vertex 1, all our
messages will be sent towards vertex 1, in the directions indicated by the arrows.
Our scheme calls for a message from vertex 15 to vertex 3, then a message from
vertex 14 to vertex 6, and so on. But we could just as well begin with messages
from 10 and 11 to 5, follow with a message from 5 to 2, then messages from 12,
13, and 14 to 6, from 6 and 15 to 3, and so on.

Figure 3.2. A tree with 15 vertices.

01 02

04

15

12

11

10
09

08

07 03 1306

05

14

 Returning to the metaphor of deletion, where each vertex is deleted when it
sends its message, we can say that the only constraint on the order in which the
vertices act is that each vertex must be a leaf when it acts; all the vertices that used
it as a branch must have sent their messages to it and then been deleted, leaving it a
leaf.

 49

 The different orders of marginalization that obey this constraint correspond,
of course, to the different tree construction sequences for (H, E) that use the
branching β.
 So far, we have been thinking about different sequences in which the
vertices might act. This is most appropriate if we are really implementing the
scheme on a serial computer. But if the different vertices really did have
independent processors that could operate in parallel, then some of the vertices
could act simultaneously. Figure 3.3 illustrates one way this might go for the
Markov tree of Figure 3.2. In step 1, all the leaf processors project to their
branches. In step 2, vertices 4, 5, and 6 (which would be leaves were the original
leaves deleted) project. And so on.

Figure 3.3. An example of the message-passing scheme for
computation of the marginal of vertex 1.

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 2

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 3

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 5

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 4

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 1

 50

 If the different processors take different amounts of time to perform
Operation M2 on their inputs, then the lock-step timing of Figure 3.3 may not
provide the quickest way to find the marginal for h1. It may be quicker to allow a
processor to act as soon as it receives messages from its leaves, whether or not all
the other processors that started along with these leaves have finished.
 In general, the only constraint, in the parallel as in the serial case, is that
action move inwards towards h1. Each vertex must receive and absorb all its
messages from vertices farther away from h1 before sending its own message on
towards h1. (In terms of Figure 3.1, each processor must wait until all its incoming
registers are filled before it can compute a message to put in its outgoing register.)
If we want to get the job done as quickly as possible, we will demand that each
processor go to work as quickly as possible subject to this constraint. But the job
will get done eventually provided only that all the processors act eventually. It will
get done, for example, if each processor checks on its inputs periodically or at
random times and acts if it has those inputs [Pearl 1986].
 If we tell each processor who its neighbors are and which one of these
neighbors lies on the path towards the goal, then no further global control or
synchronization is needed. Each processor knows that it should send its outgoing
message as soon as it can after receiving all its incoming messages. The leaf
processors, which have no incoming messages, can act immediately. The others
must wait their turn.

Updating Messages. Suppose we have completed the computation of A↓h1, the
marginal for our goal vertex. And suppose we now find reason to change A by
changing one or more of our inputs, the Ah. If we have implemented the
architecture just described, with storage registers between each of the vertices, then
we may be able to update the marginal A↓h1 without discarding all the work we
have already done. If we leave some of the inputs unchanged, then some of the
computations may not need to be repeated.
 Unnecessary computation can be avoided without global control. We simply
need a way of marking arrays, to indicate that they have received any needed
updating. Suppose the processor at each vertex h can recognize the mark on any of
its inputs (on Ah, our direct input, or on any message Mg→β(g) from a vertex g that
has h as its bud), and can write the mark on its own output, the message Mh→β(h).
When we wish to update the computation of A↓h1, we put in the new values for

 51

those Ah we wish to change, and we mark all the Ah, both the ones we have
changed, and the others, which we do not want to change. Then we run the system
as before, except that a processor, instead of waiting for its incoming registers to
be full before it acts, waits until all its inputs are marked. The processor can
recognize when an input is marked without being changed, and in this case it
simply marks its output instead of re-computing it.
 Of course, updating can also be achieved with much less control. As Pearl
[1986] has emphasized, hardly any control at all is needed if we are indifferent to
the possibility of wasted effort. If we do not care whether a processor repeats the
same computations, we can forget about marking arrays and simply allow each
processor to re-compute its output from its inputs periodically or at random times.
Under these circumstances, any change in one of the Ag will eventually be
propagated through the system to change A↓h1.
 The idea of updating is theoretically important in probability theory because
of the example of conditioning. We often want to condition a probability
distribution on the observed values of one or more variables. Conditioning on a
variable X can be achieved by multiplying a factorization of the probability
distribution by a potential on X. Since this new potential on X can be incorporated
in the potential on any hyperedge containing X, conditioning on X can be achieved
by changing the input potential in just one of the hyperedges in the hypertree. We
will give an example of this in section 3.7, in this chapter. We will develop the
general theory in chapter 6.

A Simple Production System. In reality, we will never have a parallel computer
organized precisely to fit our problem. Our story about passing messages between
independent processors should be thought of as metaphor, not as a guide to
implementation. Implementations can take advantage, however, of the modularity
the metaphor reveals.
 One way to take advantage of this modularity, even on a serial computer, is
to implement the computational scheme in a simple forward-chaining production
system. A forward-chaining production system consists of a working memory and
a rule-base, a set of rules for changing the contents of the memory. (See Brownston
et al. [1985] or Davis and King [1984].)

 52

 A very simple production system is adequate for our problem. We need a
working memory that initially contains Ah for each vertex h of (H, E), and a rule-
base consisting of just two rules, corresponding to Operations M2a and M2b.

Rule 1: If Ah is in working memory and Mg→β(g) is in working
memory for every g such that β(g)=h, then use (3.6) to compute
Mh→β(h), and place it in working memory.

Rule 2: If Ah1 is in working memory and Mg→β(g) is in working
memory for every g such that β(g)=h1, then use (3.7) to compute A↓h1,
and print the result.

 Initially, there will be no Mg→β(g) at all in working memory, so Rule 1 can
fire only for h such that there is no g with β(g)=h—i.e., only for h that are leaves.
But eventually Rule 1 will fire for every vertex except the root h1. Then Rule 2 will
fire, completing the computation. Altogether, there will be n firings, one for each
vertex in the Markov tree.
 Production systems are usually implemented so that a rule will fire only
once for a given instantiation of its antecedent; this is called refraction [Brownston
et al. 1985, pp. 62–63]. If our simple production system is implemented with
refraction, there will be no unnecessary firings of rules; only the n firings that are
needed will occur. Even without refraction, however, the computation will
eventually be completed.
Since refraction allows a rule to fire again for a given instantiation when the inputs
for that instantiation are changed, this simple production system will also handle
updating efficiently, performing only those re-computations that are necessary.

3.6. Simultaneous Propagation in Markov Trees

In the preceding section, we were concerned with the computation of the marginal
on a single vertex of the Markov tree. In this section, we will be concerned with

 53

how to compute the marginals on all vertices simultaneously. As we will see, this
can be done efficiently with only slight changes in architecture or rules.

Computing all the Marginals. If we can compute the marginal of A on one
hyperedge in H, then we can compute the marginals on all the hyperedges in H.
We simply compute them one after the other. It is obvious, however, that this will
involve much duplication of effort. How can we avoid the duplication?
 The first point to notice in answering this question is that we only need one
Markov tree. Though there may be many Markov tree representatives for H, any
one of them can serve for the computation of all the marginals. Once we have
chosen a Markov tree representative (H, E), then no matter which element h of H
interests us, we can choose a tree construction sequence for (H, E) that begins with
h, and since this sequence is also a hypertree construction sequence for H, we can
apply the method of section 3.4 to it to compute A↓h.
 The second point to notice is that the message passed from one vertex to
another, say from f to g, will be the same no matter what marginal we are
computing. If β is the budding that we use to compute A↓h, the marginal on h, and
β' is the budding we use to compute A↓h', and if β(f)=β'(f)=g, then the message
Mf→β(f) that we send from f to g when computing A↓h is the same as the message
Mf→β'(f) that we send from f to g when computing A↓h'. To see that this is true, think
about Figure 3.4. Since g is the branch for f in both computations, h and h' are both
on the g side of the edge {f, g}. All the computation leading up to the message
passed from f to g takes place on the other side, the f side, and is not influenced by
whether the ultimate goal, after the passage through f and g, is h or h'.

 54

Figure 3.4.

h

h'

g f

 Since the value of Mf→β(f) does not depend on the budding β, we may write
Mf→g instead of Mf→β(f) when β(f)=g.
 If we compute marginals for all the vertices, then we will eventually
compute both Mf→g and Mg→f for every edge {f, g}. We will compute Mf→g when
we compute the marginal on g or on any other vertex on the g side of the edge, and
we will compute Mg→f when we compute the marginal on g or on any other vertex
on the g side of the edge.
 We can easily generalize the recursive definition of Mg→β(g) that we gave in
section 3.5 to a recursive definition of Mg→h for all neighbors g and h. To do so, we
merely restate (3.5) in a way that replaces references to the budding β by
references to neighbors and the direction of the message. We obtain
 Mg→h = (Ag Π{Mf→g | f∈(Ng–{h})})↓g∩h, (3.8)

where Ng is the set of all g's neighbors in (H, E). If g is a leaf vertex, then (3.8)
reduces to Mg→h = Ag

↓g∩h.
 After we carry out the recursion to compute Mg→h for all pairs of neighbors g
and h, we can compute the marginal of A on each h by
 A↓h = Ah Π{Mg→h | g∈Nh}. (3.9)

The General Architecture. A slight modification of the architecture shown in
Figure 3.1 will allow us to implement the simultaneous computation of the
marginals on all the hyperedges. We simply put both two storage registers between

 55

every pair of neighbors f and g, as in Figure 3.5. One register stores the message
from f to g; the other stores the message from g to f.
 Figure 3.6 shows a more elaborate architecture for the simultaneous
computation. In addition to the storage registers that communicate between
vertices, this figure shows registers where the original arrays, the Ah, are put into
the system and the marginals, the A↓h, are read out.

Figure 3.5. The two storage registers between f and g.

f g!
M

g f!
M

gf

 56

Figure 3.6. Several vertices, with storage registers for communication
between themselves and with the user.

f

g

e

h

g f!

M

f g!
M

e g!
M

!
M

g e

" hA

g" A

" fA

" eA

Ag

Af

Ae

Ah
h g!

M

!
M

g h

 In the architecture of Figure 3.1, computation is controlled by the simple
requirement that a vertex g must have messages in all its incoming registers before
it can compute a message to place in its outgoing register. In the architecture of
Figure 3.6, computation is controlled by the requirement that a vertex g must have
messages in all its incoming registers except the one from h before it can compute
a message to send to h.
 This basic requirement leaves room for a variety of control regimes. Most of
the comments we made about the flexibility of control for Figure 3.1 carry over to
Figure 3.6.
 In particular, updating can be handled efficiently if a method is provided for
marking updated inputs and messages. If we change just one of the input, then
efficient updating will save about half the work involved in simply re-performing
the entire computation. To see that this is so, consider the effect of changing the
input Ah in Figure 3.4. This will change the message Mg→f, but not the message

 57

Mf→g. The same will be true for every edge; one of the two messages will have to
be recomputed, but not the other.
 It may be enlightening to look at how the lock-step control we illustrated
with Figure 3.3 might generalize to simultaneous computation of the marginals for
all vertices. Consider a lock-step regime where at each step, each vertex looks and
sees what messages it has the information to compute, computes these messages,
and sends them. After all the vertices working are done, they look again, see what
other messages they now have the information to compute, compute these
messages, and send them. And so on. Figure 3.7 gives an example. At the first step,
the only messages that can be computed are the messages from the leaves to their
branches. At the second step, the computation moves inward. Finally, at step 3, it
reaches vertex 2, which then has the information needed to compute its own
marginal and messages for all its neighbors. Then the messages move back out
towards the leaves, with each vertex along the way being able to compute its own
marginal and messages for all its other neighbors as soon as it receives the message
from its neighbor nearest vertex 2.
 In the first phase, the inward phase, a vertex sends a message to only one of
its neighbors, the neighbor towards the center. In the second phase, the outward
phase, a vertex sends k–1 messages, where k is the number of its neighbors. Yet
the number of messages sent in the two phases is roughly the same, because the
leaf vertices participate in the first phase and not in the second.
 There are seven vertices in the longest path in the tree of Figure 3.7.
Whenever the number of vertices in the longest path is odd, the lock-step control
regime will result in computation proceeding inwards to a central vertex and then
proceeding back outwards to the leaves. Whenever this number is even, there will
instead be two central vertices that send each other messages simultaneously, after
which they both send messages back outwards towards the leaves.
 If we really do have independent processors for each vertex, then we do not
have to wait for all the computations that start together to finish before taking
advantage of the ones that are finished to start new ones. We can allow a new
computation to start whenever a processor is free and it has the information
needed. On the other hand, we need not require that the work be done so promptly.
We can assume that processors look for work to do only at random times. But no
matter how we handle these issues, the computation will converge to some

 58

particular vertex or pair of neighboring vertices and then move back out from that
vertex or pair of vertices.
 There is exactly twice as much message passing in our scheme for
simultaneous computation as there was in our scheme for computing a single
marginal. Here every pair of neighbors exchange messages; there only one
message was sent between every pair of neighbors. Notice also that we can make
the computation of any given marginal the beginning of the simultaneous
computation. We can single out any hyperedge h (even a leaf), and forbid it to send
a message to any neighbor until it has received messages from all its neighbors. If
we then let the system of Figure 3.7 run, it will behave just like the system of
Figure 3.3 with h as the root, until h has received messages from all its neighbors.
At that point, h can compute its marginal and can also send messages to all its
neighbors; the second half of the message passing then proceeds, with messages
moving back in the other direction.

The Corresponding Production System. Implementing simultaneous
computation in a production system requires only slight changes in our two rules.
The following will work:

Rule 1': If Ag is in working memory, and Mf→g is in working memory
for every f in Ng–{h}, then use (3.8) to compute Mg→h, and place it in
working memory.

Rule 2': If Ah is in working memory, and Mg→h is in working memory
for every g in Nh, then use (3.9) to compute A↓h, and print the result.

 Initially, there will be no Mf→g at all in working memory, so Rule 1' can fire
only for g and h such that Ng–{h} is empty—i.e., only when g is a leaf and h is its
bud. But eventually Rule 1' will fire in both directions for every edge {g, h}. Once
Rule 1' has fired for all the neighbors g of h, in the direction of h, Rule 2' will fire
for h. Altogether, there will be 3n–2 firings, two firings of Rule 1' for each of the
n–1 edges, and one firing of Rule 2' for each of the n vertices.
 As the count of firings indicates, our scheme for simultaneous computation
finds marginals for all the vertices with roughly the same effort that would be

 59

required to find marginals for three vertices if this were done by running the
scheme of section 3.5 three times.

Figure 3.7. An example of the message-passing scheme for
simultaneous computation of all marginals.

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 1

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 2

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 3

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 4

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 5

01 02

04

15

12

11

1009

08

07 03 1306

05

14

Step 6

3.7 An Example

This example is adapted from Shachter and Heckerman [1987]. Consider three
variables D, B and G representing diabetes, blue toe, and glucose in urine,

 60

respectively. The frame for each variable has two configurations. D=d will
represent the proposition diabetes is present (in some patient) and D=~d will
represent the proposition diabetes is not present. Similarly for B and G. Let P
denote the joint probability distribution for {D, B, G}. We will assume that B and
G are conditionally independent (with respect to P) given D. As we will explain in
chapter 6, this means that we can factor P as follows.

 P = PD PB|D PG|D (3.10)
where PD is the marginal on {D} (PD=P↓{D}), PB|D is a potential on {D, B} called
the conditional of B given D, and PG|D is a potential on {D, G} called the
conditional of G given D. (This means that PD(d) is the probability that D=d,
PB|D(d, b) is the conditional probability that B=b given that D=d, and so on.)
 Suppose the potentials PD, PB|D, and PG|D have the values shown in Figure
3.8.

Figure 3.8. The potentials PD, PB|D, and PG|D.

!!!!!

 d!!!.1
~d!! .9

P
D

 d,b!!!!!.014
 d,~b!!!.986
~d,b!!!! .006
~d,~b!! .994

P
B|D

 d,g!!!!!.9
 d,~g!!!.1
~d,g!!!! .01
~d,~g!! .99

P
G|D

 Formula (3.10) tells us that P factors on the hypertree {{D}, {D, B}, {D,
G}}. Since we would like to compute the marginals for B and G, we will expand
the hypertree to include the hyperedges {B} and {G}. This does not take us outside
of our theory, because we can replace (3.10) with the equivalent formula
 P = PD PB|D PG|D I{B} I{G},

where I{B}(x) = 1 for all x∈W{B}, and I{G}(x) = 1 for all x∈W{G}. Figure 3.9 show
the expanded hypertree and a Markov tree representative.

 61

Figure 3.9. The hypertree and a Markov tree representative.

D

B G

{D,B} {D,G}

{G}{B}

{D}

 Figure 3.10 shows the results of propagating the potentials following the
scheme described in section 2. For each vertex h, the input potentials are shown as
Ih and the output potentials are shown as Oh. All the messages are also shown.

Figure 3.10. The initial propagation of potentials.

{D,B} {D,G}

{G}{B}

{D}

M
{B}!{D,B}

M
{D}!{D,G}

M
{D,B}!{B}

M
{D,G}!{G}

M
{G}!{D,G}

I
{B,D}

 = P
B|D

 d,b!!!!!.0140
 d,~b!!!.9860
~d,b!!!! .0060
~d,~b!! .9940

 d,g!!!!!.9000
 d,~g!!!.1000
~d,g!!!! .0100
~d,~g!! .9900

I
{D,G}

 = P
G|D

!!d!!!.1000
~d!! .9000

I
{D}

 = P
D

O
{D}

I
{B}

O
{B}

I
{G}

O
{G}

!!d!!!.1000
~d!! .9000

M
{D,B}!{D}

!!d!!1.0000
~d!!1.0000

M
{D,G}!{D}

!!d!!1.0000
~d!!1.0000

M
{D}!{D,B}

!!d!!!.1000
~d!! .9000

!!b!!1.0000
~b!!1.0000

!!b!!1.0000
~b!!1.0000

!!b!! .0068
~b!! .9932

!!b!! .0068
~b!! .9932

!!g!!1.0000
~g!!1.0000

!!g!!1.0000
~g!!1.0000

!!d!!!.1000
~d!! .9000

!!g!! .0990
~g!! .9010

!!g!! .0990
~g!! .9010

 Now suppose we observe that the patient has blue toe. As we will explain in
chapter 6, this can be taken into account by changing the input for variable B to the

 62

array that assigns the value 1 to b and the value 0 to ~b. If we change this one input
and leave the other inputs unchanged, the product of the inputs will be proportional
to the posterior probability distribution given the observation. Thus we can find the
posterior marginal probabilities by propagating and then normalizing the output
potentials. This is done in Figure 3.11.

Figure 3.11. The results of propagation after the presence of blue toe
is observed.

{D,B} {D,G}

{G}{B}

{D}

M
{B}!{D,B}

M
{D}!{D,G}

M
{D,B}!{B}

M
{D,G}!{G}

M
{G}!{D,G}

I
{B,D}

 = P
B|D

 d,b!!!!!.0140
 d,~b!!!.9860
~d,b!!!! .0060
~d,~b!! .9940

 d,g!!!!!.9000
 d,~g!!!.1000
~d,g!!!! .0100
~d,~g!! .9900

I
{D,G}

 = P
G|D

!!d!!!.1000
~d!! .9000

I
{D}

 = P
D

O
{D}

I
{B}

O
{B}

I
{G}

O
{G}

!!d!!!.2059
~d!! .7941

M
{D,B}!{D}

!!d!! .0140
~d!! .0060

M
{D,G}!{D}

!!d!! 1.000
~d!! 1.000

M
{D}!{D,B}

!!d!!!.1000
~d!! .9000

!!b!! 1.000
~b!! 0.000

!!b!! 1.000
~b!! 0.000

!!b!! .0068
~b!! .9932

!!b!! 1.000
~b!! 0.000

!!g!! 1.000
~g!! 1.000

!!g!! 1.000
~g!! 1.000

!!d!!!.0014
~d!! .0054

!!g!! .0013
~g!! .0055

!!g!! .1932
~g!! .8068

 The probability for diabetes has increased from .1 to .2059 and consequently
the probability for glucose in urine has also increased from .0990 to .1932. Now
suppose the patient is tested for glucose in urine, the results indicate that there is
none. This information is represented by a potential that assigns the value 0 to g
and the value 0 to ~g. The other potentials remain the same as before. Figure 3.12
shows the results of propagating now. The probability of diabetes has decreased
from .2059 to .0255.

 63

Figure 3.12. The results of propagation after absence of glucose in
urine is observed.

{D,B} {D,G}

{G}{B}

{D}

M
{B}!{D,B}

M
{D}!{D,G}

M
{D,B}!{B}

M
{D,G}!{G}

M
{G}!{D,G}

I
{B,D}

 = P
B|D

 d,b!!!!!.0140
 d,~b!!!.9860
~d,b!!!! .0060
~d,~b!! .9940

 d,g!!!!!.9000
 d,~g!!!.1000
~d,g!!!! .0100
~d,~g!! .9900

I
{D,G}

 = P
G|D

!!d!!!.1000
~d!! .9000

I
{D}

 = P
D

O
{D}

I
{B}

O
{B}

I
{G}

O
{G}

!!d!!!.0255
~d!! .9745

M
{D,B}!{D}

!!d!! .0140
~d!! .0060

M
{D,G}!{D}

!!d!! .1000
~d!! .9900

M
{D}!{D,B}

!!d!!!.0100
~d!! .8910

!!b!! 1.000
~b!! 0.000

!!b!! 1.000
~b!! 0.000

!!b!! .0055
~b!! .8955

!!b!! 1.000
~b!! 0.000

!!g!! 0.000
~g!! 1.000

!!g!! 0.000
~g!! 1.000

!!d!!!.0014
~d!! .0054

!!g!! .0013
~g!! .0055

!!g!! 0.000
~g!! 1.000

3.8. Proofs

Proof of Proposition 3.1. If h1⊆h2⊆g and G is an array on g, then (G↓h2)↓h1 = G↓h1.
 (G↓h2)↓h1(x) = Σ{(G↓h2)(x, y) | y∈Wh2–h1}
 = Σ{Σ{G(x, y, z) | z∈Wg–h2} | y∈Wh2–h1}
 = Σ{G(x, y, z) | z∈Wg–h2, y∈Wh2–h1}
 = Σ{G(x, w) | w∈Wg–h1}
 = G↓h1(x).

Proof of Proposition 3.2. Suppose G and H are arrays on g and h respectively.
Then
 (GH)↓g(x) = Σ{(GH)(x, y) | y∈Wh–g}

 64

 = Σ{G(x)H(x↓g∩h, y) | y∈Wh–g}
 = G(x) Σ{H(x↓g∩h, y) | y∈Wh–g}
 = G(x)H↓g∩h(x↓g∩h)
 = (GH↓g∩h)(x).

Proof of Proposition 3.3. We have
 A = At Π{Ah | h∈(H–{t})},

and Π{Ah | h∈(H–{t})} is an array on X'. So by Proposition 3.2,
 A↓X' = At

↓t∩X' Π{Ah | h∈H–{t}}.

This can also be written
 A↓X' = At

↓t∩b Π{Ah | h∈H–{t}}. (3.11)

Finally, we can rewrite (3.11) as (3.4).

CHAPTER FOUR

Axioms for Local Computation of Marginals

In the preceding chapter, we learned how to find marginal probabilities using local
computations for joint probability distributions that factor on hypertrees. Now we
will distill the essential features that make this local computation possible into a
small set of axioms.
 The present chapter is short because the work was really all done in the
preceding chapter. The theory we developed there was based on Propositions 3.1
and 3.2, together with the associativity and commutativity of multiplication. So we
can simply think of combination and marginalization as primitive operations and
adopt Propositions 3.1 and 3.2, along with the associativity and commutativity of
combination, as axioms.
 The important point is that these axioms are satisfied in many other
computational problems in addition to the problem of marginalizing probabilities.
After stating the axioms and sketching how they imply the computational theory of
the preceding chapter, we list some of these other problems. We will examine
some of them in detail in later chapters.

 66

4.1. The Axiomatic Framework

Variables and Valuations. We begin with a finite nonempty set X and a
nonempty set Vh for each subset h of X. We call elements of X variables, and we
call subsets of X domains. We call elements of Vh valuations on h. We write V for
∪{Vh|h⊆X}, the set of all valuations.

Combination. We assume that ⊗ is a binary operation on the set of valuations. In
other words, we assume that for any two valuations G and H there is a third
valuation, denoted by G⊗H. We call G⊗H the combination of G and H. If G and H
are valuations on g and h respectively, then G⊗H is a valuation on g∪h.

Marginalization. We assume also that for every pair h and g of domains such that
h⊆g, there is a mapping that maps every valuation on g to a valuation on h. We
write G↓h for the valuation to which the valuation G on g is mapped. We call G↓h
the marginal of G on h.

Axioms. We assume that combination and marginalization satisfy these three
axioms.

Axiom A1 (Commutativity and associativity of combination): If G, H,
and K are valuations, then G⊗H = H⊗G and G⊗(H⊗K) = (G⊗H)⊗K.

Axiom A2 (Consonance of marginalization): If h1⊆h2⊆g and G is a
valuation on g, then (G↓h2)↓h1 = G↓h1.

Axiom A3 (Modularity): If G and H are valuations on g and h,
respectively, then (G⊗H)↓g = G⊗(H↓g∩h).

 Axiom A1 can also be expressed by saying that the binary operation ⊗ is
commutative and associative, or by saying that the pair (V,⊗) form a commutative
semigroup. It follows from Axiom A1 that the result of combining two or more
valuations does not depend on the order of combination. So instead of writing an

 67

expression such as (...((Ah1⊗Ah2)⊗Ah3)⊗...⊗Ahn), which indicates the order of
combination, we can write simply Ah1⊗Ah2⊗Ah3⊗

...⊗Ah or ⊗{Ahi | i=1, ..., n}.
 Axioms A2 and A3 are essentially identical to Propositions 3.1 and 3.2,
respectively, of the preceding chapter.

Factorization. Suppose H is a hypergraph on X, and suppose
A = ⊗{Ah|h∈H},

where for each domain h in H, Ah is a valuation on h. Then we say that A, which is
a valuation on ∪H, factors on H.

4.2. Computational Theory

Now we formulate and prove two propositions that reproduce the basic
computational theory of Chapter 3.
 The first proposition is essentially identical to Proposition 3.3 of the
preceding chapter. It concerns a hypergraph H on X, a twig t in H, and a branch b
for t. We write H' for H–{t} and X' for ∪H' = X–(t–b).

Proposition 4.1. Suppose the valuation A factors on the hypergraph
H;

A = ⊗{Ah|h∈H},
where Ah is a valuation on h. Then
 A↓X' = Ab⊗At↓t∩b⊗(⊗{Ah | h∈H–{t, b}}). (4.1)

Formula (4.1) says that the marginal A↓X' factors on H'. On b we have the factor
Ab⊗At↓t∩b, and on each other h in H', we have the original factor Ah.
 The computational significance of Proposition 4.1 is the same as the
computational significance of Proposition 3.3. Whenever a hypergraph as a twig,
we can reduce a factorization on that hypergraph to the smaller hypergraph without

 68

the twig, using only computations involving the twig and its branch. We do not
need to work with all the variables in the hypergraph.
 The proof of Proposition 4.1 is the same as the proof of Proposition 3.3,
except that this time the steps are justified by our axioms. Notice that we use only
Axioms A1 and A3.

Proof of Proposition 4.1. By Axiom A1, we can write
 A = (⊗{Ah | h∈H') ⊗ At.
Applying Axiom A3 to this expression, we obtain
 A↓X' = (⊗{Ah | h∈H') ⊗ At↓t∩X'.
Since b is a branch for t, t∩X' = t∩b. So
 A↓X' = (⊗{Ah | h∈H') ⊗ At↓t∩b.
By Axiom A1, we can rearrange the order of the factors in this
expression to obtain (4.1). End of Proof.

 Axiom A2 becomes relevant when H is a hypertree, and we want to apply
Proposition (4.1) repeatedly in order to find A's marginal on a hyperedge. We dealt
with this case informally in Chapter 3. This time around, we will state the result
more formally. This requires considerable notation.
 First, suppose H is a hypertree, suppose h1h2...hn is a hypertree construction
sequence for H, and suppose β is a branching for h1h2...hn. Let Xk denote
h1∪...∪hk, and let Hk denote {h1, h2, ..., hk}, for k=1, ..., n.
 Next, suppose {Ah|h∈H} is a collection of valuations; Ah is a valuation on h
for each h. For each k between 1 and n, inclusive, we define a collection of
valuations {Ah,k|h∈Hk}, where Ah,k is a valuation on h. We do so recursively,
working backwards from n. We set Ah,n = Ah, so that {Ah,n|h∈Hn} is the same as
{Ah|h∈H}. We then define {Ah,n-1|h∈Hn-1} by setting

Ab(hn),n-1 = Ab(hn),n⊗Ahn,n↓hn∩b(hn)
and Ah,n-1 = Ah,n for all other h in Hn-1. And for k from n-1 down to 2, we similarly
and successively define {Ah,k-1|h∈Hk-1} in terms of {Ah,k|h∈Hk} by setting

Ab(hk),k-1 = Ab(hk),k⊗Ahk,k↓hk∩b(hk)

 69

and Ah,k-1 = Ah,k for all other h in Hk-1.
 Notice that we can compute the collections {Ah,k|h∈Hk} step by step, using
only computations involving the twigs and their branches. The step from
{Ah,k|h∈Hk} to {Ah,k-1|h∈Hk-1} involves only a marginalization from hk to
hk∩b(hk) and then a combination on b(hk).
 Now we can state our conclusion formally:

Proposition 4.2. If A = ⊗{Ah|h∈H}, then
 A↓Xk = ⊗{Ah,k|h∈Hk} (4.2)
for k=1, ...,n-1.

Since Hk={h1}, X1=h1, and {Ah1,1}, (4.2) reduces to
 A↓h1 = Ah1,1 (4.3)

when k=1. Thus the step-by-step computations on the twigs and their branches
enable us to find A's marginal on h1. Since we can find a hypertree construction
sequence beginning with an arbitrary hyperedge, this means we can find the
marginal on an arbitrary hyperedge using local computations.

Proof of Proposition 4.2. By Proposition 4.1,
 ⊗{Ah,r|h∈Hr} = (⊗{Ah,r+1|h∈Hr+1})↓Xr
for r=k, ...,n-1. So
 ⊗{Ah,k|h∈Hk} = (⊗{Ah,k+1|h∈Hk+1})↓Xk
 = ((⊗{Ah,k+2|h∈Hk+2})↓Xk+1)↓Xk
 . . .
 = ((...((⊗{Ah,n|h∈Hn})↓Xn–1)↓Xn–

2...)↓Xk+1)↓Xk.
 = ((...(A↓Xn–1)↓Xn–2...)↓Xk+1)↓Xk.
By Axiom A2, the last expression is equal to A↓Xk. End of Proof.

 70

 Propositions 4.1 and 4.2 simply repeat, in the general setting of our axioms,
what we learned about probability in section 3.4 of the preceding chapter.
Everything that we said about computation in Markov trees in sections 3.5 and 3.6
also carries over to this general setting.

4.3. Instances of the Axioms

In chapter 3, we satisfied Axioms A1, A2, and A3 by assigning a finite frame to
each variable, taking valuations to be real-valued functions on the frames of for
sets of variables, taking combination to be multiplication, and taking
marginalization to be marginalization in the usual probability sense. Here is list of
other examples. We will study some of these examples in greater detail in later
chapters.
 Finding marginals is of some interest in all these examples, but in most of
the examples the main goal is to find what we call, in general, solution
configurations. They, too, can be found by local computation when a valuation
factors on a hypertree. In chapter 7, we will show how the axiomatic framework of
this chapter can be extended to an axiomatic framework that accounts for such
local computation of solution configurations.

Belief Functions. In the next chapter, we will show Axioms A1, A2, and A3 are
satisfied if we take valuations to be belief functions, combine them by Dempster's
rule of combination, and marginalize them in the standard way.
 We would like to remark here that we first understood local computation,
and first isolated the axioms, in our study of the belief function case. This work is
reported in Shenoy and Shafer [1986], Shenoy, Shafer and Mellouli [1986], and
Shafer, Shenoy and Mellouli [1987]. We have presented the probability case first
in this book only because we expect it to be more familiar and transparent to most
of our readers.

Constraint Satisfaction.

 71

Discrete Optimization.

Sparse Linear Equations.

CHAPTER FIVE

Belief-Function Propagation

In this chapter, we study the problem of propagating belief functions using local
computations. This problem has been examined previously by Shafer and Logan
[1987], Shenoy and Shafer [1986], Shenoy, Shafer and Mellouli [1986], Kong
[1986], Dempster and Kong [1986], Shafer, Shenoy and Mellouli [1987], and
Mellouli [1987].
 In the case of belief functions, the idea of factoring a single probability
distribution into potentials is replaced by the idea of decomposing evidence into
independent items of evidence—items that involve independent uncertainties. Each
item of evidence is represented by a belief function that bears on a few variables,
and the belief functions are combined by Dempster's rule. The result is a belief
function representing the total evidence on all the variables.
 We begin by defining belief functions, basic probability assignment
functions, plausibility functions, and commonality functions. All of these functions
contain the same information and they can all be defined mathematically in terms
of a random non-empty subset.
 Next, we introduce the ideas of projecting a subset from one frame to a
subset of a smaller frame and vacuously extending a subset from one frame to a
subset of a larger frame.
 Using projection of subsets, we define marginals of belief functions.
 The combination operator for belief functions, the operator that plays the
role of multiplication for potentials, is Dempster's rule of combination.

 74

Mathematically, the rule corresponds to finding the distribution of the intersection
of independent random non-empty subsets, conditional on this intersection being
non-empty. Intuitively, combination of belief functions by this rule corresponds to
pooling the evidence on which the belief functions is based. The combination
results in a belief function that is supposed to represent the pooled evidence. We
give two descriptions of Dempster's rule, one in terms of basic probability
assignments, and one in terms of commonality functions.
 We use the axiomatic framework of chapter 4 to demonstrate that if the
belief functions being combined by Dempster's rule bear on separate hyperedges of
a hypertree of variables, marginals of the belief function resulting from the
combination can be obtained using local computation.
 We conclude by discussing implementation of the belief-function
propagation algorithm.

5.1. Basic Definitions

The definitions we give here are purely mathematical; we define belief functions in
terms of random non-empty subsets. We should caution the reader, however, that
the idea of a random subset does not provide an appropriate intuitive basis for the
interpretation of belief functions as assessments of evidence. For information on
the interpretation of belief functions, see Shafer [1976, 1987].

Random Non-Empty Subset. Suppose WX is the frame for a variable X, its set of
possible values. A random subset S of WX is defined by giving a probability
measure on the set of all subsets of WX. In other words, we assign to the subsets of
WX non-negative numbers adding to one. We write Pr[S=A] for the non-negative
number assigned to the subset A of WX, and we call Pr[S=A] the probability that S
is equal to A. If Pr[S=∅] = 0, then we say that the random subset S is non-empty.

 75

Belief Function. A function Bel that assigns a degree of belief Bel(A) to every
subset A of WX is called a belief function on X if there exists a random non-empty
subset S of WX such that Bel is given by
 Bel(A) = Pr[S⊆A]

for every subset A of WX. Intuitively, the number Bel(A) is the degree to which we
judge given evidence to support the proposition that the true value of X is in A, or
the degree to which we think it reasonable to believe this proposition on the basis
of that evidence alone.
 A subset A of WX is called a focal element of Bel if Pr[S=A] is positive.
 The simplest belief function on X is the one corresponding to the random
subset that is equal to the whole set WX with probability one. We call this belief
function the vacuous belief function on X. The set WX itself is its only focal
element. The vacuous belief function on X is appropriate for representing the
opinion that given evidence is irrelevant to X.

Basic Probability Assignment Function. The information contained in a belief
function can be expressed in several different ways. One way is in terms of the
basic probability assignment function m, defined by
 m(A) = Pr[S=A]

for every subset A of WX. Since S is non-empty, m(∅)=0, and since WX is finite,
 ∑{m(A) | A⊆WX} = 1.

Intuitively, m(A) measures the belief that is committed exactly to A (and to nothing
smaller or larger). We can express Bel in terms of m as follows:
 Bel(A) = Pr[S⊆A]
 = ∑{Pr[S=B] | B⊆A}
 = ∑{m(B) | B⊆A}.
It is shown in Shafer [1976, Ch. 2] that we can also obtain m from Bel:

 m(A) = ∑{(–1)|A–B| Bel(B) | B⊆A},

where |A–B| denotes the number of elements in the set A–B.

Plausibility Function. Another way of expressing the information contained in a
belief function Bel is in terms of the plausibility function Pl, which is given by

 76

 Pl(A) = 1 – Bel(WX–A) = Pr[S∩A≠∅]

for every subset A of WX. Intuitively, Pl(A) measures the extent to which given
evidence fails to refute A. To recover Bel from Pl, we use the relation
 Bel(A) = 1 – Pl(WX–A).

Notice that Bel(A) ≤ Pl(A) for every subset A of WX. Both Bel and Pl are
monotone: Bel(A) ≤ Bel(B) and Pl(A) ≤ Pl(B) whenever A⊆B.

Commonality Function. Finally, the information in Bel or m or Pl is also
contained in the commonality function Q, defined by
 Q(A) = Pr[S⊇A] = ∑{m(B) | B⊇A}

for every subset A of WX. The following proposition tells us that we can recover S
or m from Q and also states another property of commonality functions.

Proposition 5.1. Let Q and m be commonality function and basic
probability assignment function corresponding to S . Then
 m(A) = Pr[S=A] = Σ{(–1)|B–A| Q(B) | B⊇A}
for all subsets A of WX, and
 Σ{(–1)|A|+1 Q(A) | ∅≠A⊆WX} = 1. (5.1)

 It is shown in Shafer [1976, Ch.2] that
 Q(A) = ∑{(–1)|B|+1 Pl(B) | ∅≠B⊆A}, (5.2)

and

 Pl(A) = ∑{(–1)|B|+1Q(B) | ∅≠B⊆A}

for every non-empty subset A of WX. We do not need formulas for the empty set,
since Q(∅) = 1 and Pl(∅) = 0 for any belief function. Notice also that if the set A
contains only a single element, then (5.2) reduces to Q(A) = Pl(A).
 Our definitions generalize straightforwardly to sets of variables. A random
subset S of Wh, where h is a finite set of variables, is defined by giving a
probability measure on the set of all subsets of Wh. We call Bel a belief function on
h if there exists a random non-empty subset S of Wh such that Bel(A) = Pr[S⊆A]

 77

for every subset A of Wh. We call m a basic probability assignment function for h
if there exists a random non-empty subset S of Wh such that m(A) = Pr[S=A] for
every subset A of Wh. We call Pl a plausibility function for h if there exists a
random non-empty subset S of Wh such that Pl(A) = Pr[S∩A≠∅] for every subset
A of Wh. And finally, we call Q a commonality function for h if there exists a
random non-empty subset S of Wh such that Q(A) = Pr[S⊇A] for every subset A of
Wh.
 In chapter 3, we established the convention that W∅, the frame for the empty
set ∅, consists of a single element, ♦; W∅={♦}. This implies that there is only one
random non-empty subset of W∅; it is equal to the whole frame W∅ with
probability one. And hence there is only one belief function on ∅; it has the values
Bel(∅)=0, and Bel(W∅)=1. The corresponding values for m, Pl, and Q are m(∅)=0
and m(W∅)=1, Pl(∅)=0 and Pl(W∅)=1, and Q(∅)=1 and Q(W∅)=1.

5.2. Projection and Vacuous Extension of Subsets

In this section, we define projection of a subset of one frame to a subset of a
smaller frame and vacuous extension of a subset of a frame to a subset of a larger
frame.

Projection. If A is subset of W{W,X,Y,Z}, for example, then the marginal of A to a
subset of W{W,X} consists of the elements of W{W,X} which can be obtained by
projecting elements of A to W{W,X}.
 If g and h are sets of variables, h⊆g, and Ag is a non-empty subset of Wg,
then the projection of Ag to Wh, denoted by Ag

↓h, is given by
 Ag

↓h = {x↓h | x ∈ Ag}

We will adopt the convention that the projection of the empty subset is the empty
subset.
 The projection of a non-empty subset is always non-empty. If h=∅ and
Ag≠∅, then Ag

↓h = {♦}. Note that the definition implies that Ag
↓g = Ag.

 78

Vacuous Extension. By vacuous extension of a subset of a frame to a subset of a
larger frame, we mean a cylinder set extension. If A is a subset of W{W,X}, for
example, then the vacuous extension of A to W{W,X,Y,Z} is A×W{Y,Z}.
 If g and h are sets of variables, g⊆h, g≠h, and Ag is a subset of Wg, then the
vacuous extension of Ag to Wh is Ag×Wh–g. If Ag is a subset of Wg, then the vacuous
extension of Ag to Wg is defined to be Ag. We will let Ag

↑h denote the vacuous
extension of Ag to Wh.
 We shall now state some results regarding this operation on subsets.

Lemma 5.1. Suppose Ag is a subset of Wg and suppose h1⊆h2⊆g. Then
 Ag

↓h1 = (Ag
↓h2)↓h1.

Lemma 5.2. Suppose Ag and Bh are subsets of Wg and Wh respectively.
Then
 (Ag

↑g∪h∩Bh
↑g∪h)↓g = Ag∩(Bh

↓h∩g).

5.3. Dempster's Rule of Combination

Dempster's rule of combination is a rule for forming a new belief function from
two or more belief functions. Consider two random non-empty subsets Sg and Sh
of Wg and Wh respectively. Suppose Sg and Sh are probabilistically independent,
i.e.,
 Pr[Sg=Ag and Sh=Ah] = Pr[Sg=Ag] Pr[Sh=Ah]

for all subsets Ag of Wg and Ah of Wh. Suppose also that Pr[Sg
↑(g∪h)∩Sh

↑(g∪h)≠∅] >
0. Let S be the random non-empty subset that has the probability distribution of
Sg

↑(g∪h)∩Sh
↑(g∪h) conditional on Sg

↑(g∪h)∩Sh
↑(g∪h)≠∅, i.e.,

 Pr[S=A] = Pr[Sg
↑(g∪h)∩Sh

↑(g∪h)=A] / Pr[Sg
↑(g∪h)∩Sh

↑(g∪h)≠∅]

for every non-empty subset A of Wg∪h. If Bel1 and Bel2 are belief functions for g
and h corresponding to Sg and Sh respectively, then we call the belief function for

 79

g∪h corresponding to S the orthogonal sum of Bel1 and Bel2. The orthogonal sum
of Bel1 and Bel2 is denoted by Bel1⊕Bel2. The rule for forming Bel1⊕Bel2 is called
Dempster's rule of combination. If the bodies of evidence on which Bel1 and Bel2

are based are independent, then Bel1⊕Bel2 is supposed to represent the result of
pooling these two bodies of evidence.
 It is obvious from the definitions that the operation ⊕ has the following
properties:

Existence: Bel1⊕Bel2 exists unless there is a subset A of Wh such that
Bel1(A)=1 and Bel2(Wh–A)=1.

Commutativity: Bel1⊕Bel2=Bel2⊕Bel1.

Associativity: (Bel1⊕Bel2)⊕Bel3=Bel1⊕(Bel2⊕Bel3).

In general, Bel⊕Bel≠Bel. The belief function Bel⊕Bel will favor the
same subsets as Bel, but it will do so with twice the weight of
evidence, as it were.

Vacuousness: If Bel1 is vacuous, then Bel1⊕Bel2=Bel2.

 Note that Dempster's rule of combination as defined above involves
vacuously extending the random non-empty subsets Sg and Sh to subsets of a
common frame (Wg∪h) and then intersecting the two random non-empty subsets.
 Dempster's rule can be expressed in terms of the probability mass
assignment function. We will do so in two stages. First we will describe the
vacuous extension of a basic probability assignment function. Next we will define
the combination of two basic probability assignment functions on a common set of
variables.

Proposition 5.2. Suppose that m is a basic probability assignment
function for g. Suppose that h⊇g. Then the vacuous extension of m to
h is given as follows:

 80

 m(B) if A = B↑h for some B⊆Wg
 m↑h(A) = (5.3)
 0 otherwise

 Suppose that Bel1 and Bel2 are two belief functions on g corresponding to
random non-empty subsets S1 and S2 respectively. Let the basic probability
assignment functions for Bel1, Bel2 and Bel1⊕Bel2 be denoted by m1, m2 and m,
respectively. Then for any non-empty subset A of Wg, we have

 m(A) = Pr[S=A] = Pr[S1∩S2=A] / Pr[S1∩S2≠∅]
 = ∑{m1(B) m2(C) | B∩C = A} / ∑{m1(B)m2(C) | B∩C ≠ ∅}
 = K–1 ∑{m1(B1) m2(B2) | B1∩B2 = A} (5.4)
where K–1 is a normalizing constant given by

 K = ∑{m1(B1)m2(B2) | B1∩B2 ≠ ∅}
 = ∑{∑{m1(B1)m2(B2) | B1∩B2 = A} | ∅≠A⊆Wh}
 = ∑{m(A) | ∅≠A⊆Wh} (5.5)
where K does not depend on A.
 Dempster's rule can also be described in terms of commonality functions.
First let us describe vacuous extension of commonality functions.

Proposition 5.4. Suppose Q is a commonality function for g. Suppose
that h⊇g. Then the vacuous extension of Q to h is given as follows:
 Q↑h(A) = Q(A↓g) (5.6)
for all subsets A of Wh.

 Suppose that Bel1 and Bel2 are two belief functions on g corresponding to
random non-empty subsets S1 and S2 respectively. If the commonality functions
for Bel1, Bel2, and Bel1⊕Bel2 are denoted by Q1, Q2, and Q, respectively, then

 81

 Q(A) = Pr[S⊇A]
 = K–1 Pr[S1∩S2⊇A]
 = K–1 Pr[S1⊇A and S2⊇A]
 = K–1 Pr[S1⊇A] Pr[S2⊇A]
 = K–1 Q1(A) Q2(A), (5.7)
where K = Pr[S1∩S2≠∅] does not depend on A.
 Substituting (5.5) in (5.1) results in an expression for K:

 K = ∑{(–1)|A|+1 Q1(A) Q2(A) | ∅≠A⊆Wh}. (5.8)

 Implementing Dempster's rule for belief functions on h is computationally
expensive when Wh is large. Whether the rule is implemented using basic
probability assignment functions or commonality functions, the number of terms in
(5.5) or (5.8) involves a term for every non-empty subset A of Wh, and the number
of these subsets increases exponentially with the size of Wh. This means that we
face a computation of exponential complexity even if we are trying to find the
value of the orthogonal sum Bel1⊕Bel2 only for a single subset A of Wh.
 This computational complexity seems to be intrinsic to Dempster's rule. It is
possible in some cases to exploit special structure in the belief functions being
combined in order to reduce the complexity [Barnett, 1981]. But there does not
seem to be any general way of implementing the rule that will always involve
fewer computations than are involved in (5.4) and (5.5), or (5.7) and (5.8).

5.4. Marginalization for Belief Functions

In this section, we first introduce the idea of marginalizing a belief function from
one set of variables to a smaller set of variables.
 Suppose that Bel is a belief function for g corresponding to random non-
empty subset Sg of Wg and suppose h⊆g. The marginal of Bel to h, denoted by
Bel↓h, is the belief function corresponding to the random non-empty subset Sg

↓h.
 We are using standard probability notation here. The random non-empty
subset Sg

↓h is a "function" of the random non-empty subset Sg in the sense that

 82

whenever Sg=A, Sg
↓h=A↓h. Thus Sg

↓h is a well-defined random non-empty subset
of Wh. The following proposition gives an explicit description of Sg

↓h in terms of
Sg.

Lemma 5.1. Suppose that Sg is a random non-empty subset of Wg.
Then Sg

↓h is the random non-empty subset of Wh given by
 Pr[Sg

↓h=A] = Σ{Pr[Sg=B] | B⊆Wg such that B↓h=A}
for all subsets A of Wh.

 The marginalization of basic probability assignment function, plausibility
function and commonality function are defined likewise. Suppose that m, Pl and Q
represent basic probability assignment function, plausibility function and
commonality function, respectively, for g with random non-empty subset Sg. The
marginal of m, Pl, and Q to h, denoted by m↓h, Pl↓h, and Q↓h, respectively, is the
basic probability assignment function, plausibility function and commonality
function, respectively, corresponding to random non-empty subset Sg

↓h.

Proposition 5.2. Suppose that m and Q are basic probability
assignment function and commonality function, respectively, for g.
Suppose that h⊆g. Then the marginal of m and Q for h are given as
follows:
 m↓h(A) = Σ{m(B) | B⊆Wg such that B↓h=A} (5.9)
and
 Q↓h(A) = Σ{(–1)|B|–|A| Q(B) | B⊆Wg such that B↓h=A} (5.10)
for all subsets A of Wh.

5.5. Local Computation for Belief Functions

In chapter 4 we saw that in order to compute the marginal of a valuation (that
factors on a hypertree) using local computations, it is necessary for the projection

 83

and combination operation to satisfy certain axioms. In this chapter, valuations on
h correspond to belief functions on h, and combination and marginalization
operators correspond to Dempster's rule of combination and marginalization of
belief functions. We have already shown that Dempster's rule of combination
satisfies Axiom A1. The following two theorems assert that Axioms A2 and A3 are
also satisfied by these two operations.

Theorem 5.1. Suppose Belg is a belief function for g and suppose
h1⊆h2⊆g. Then
 Belg

↓h1 = (Belg
↓h2)↓h1

Theorem 5.2. Suppose Belg and Belh are belief function for g and h
respectively. Then
 (Belg

↑g∪h ⊕ Belh
↑g∪h)↓g = Belg ⊕ (Belh

↓h∩g)

5.6. Implementation Issues

Since the combination and marginalization operations for belief functions satisfy
Axioms A1 to A3, we can compute the marginals using a scheme similar to that
presented chapter 3 in great detail for probabilities and repeated in chapter 4. Here
we will not repeat the scheme for belief functions. Instead we will make a few
observations regarding implementation of the scheme.
 The most natural implementation of the belief function propagation scheme
is using basic probability assignment functions. Belief functions are most easily
assessed in terms of basic probability assignment functions. The vacuous extension
of basic probability assignment functions, given in (5.3), is a simple operation
involving only a change of the focal elements to their cylinder extension. The
marginalization of basic probability assignment functions, given in (5.5), while
involving more computations than vacuous extension, is also fairly inexpensive.
Combining basic probability assignment functions using Dempster's rule, given in
(5.4) and (5.5), involves the most computational expense of the three operations. It

 84

should be noted here that similar to potentials, we can avoid the renormalization of
basic probability assignment functions until the very end.
 Another implementation of the belief function propagation scheme is using
commonality functions. Commonality functions have no intuitive interpretations.
Hence, we may have to translate assessed belief functions from basic probability
assignment functions to commonality functions. The vacuous extension of
commonality functions, given in (5.4), involves a little more than changing the
names of the focal elements. Marginalization of commonality functions, given in
(5.6), is computationally expensive. However, this is offset by the fact that
combining commonality functions using Dempster's rule is simply pointwise
multiplication (where the points correspond to subsets). Again, we can avoid
renormalization, given in (5.10), until the very end. However, to report the results,
we will have to translate the commonality functions back to basic probability
assignment functions.

5.7. Proofs

Proof of Theorem 5.2
Suppose Qg and Qh are commonality functions (CFs) for g and h correspond-
ing to Belg and Belh, respectively, and let Q denote the CF Qg ⊕Qh for g∪h.
Then, for all subsets A of Wg∪h,

Q(A) = K · Qg(A↓g) · Qh(A↓h),

where the constant K does not depend on subset A (see Eq. (5.7)). Thus,
for all subsets B of Wg, it follows from Eq. (5.10) that:

Q↓g(B) =
∑

{(−1)|A|−|B|Q(A)|A ⊆ Wg∪h such that A↓g = B}
= K ·

∑
{(−1)|A|−|B|Qg(A↓g) · Qh(A↓h)|A ⊆ Wg∪h such that A↓g = B}

= K · Qg(B)
∑

{(−1)|A|−|B|Qh(A↓h)|A ⊆ Wg∪h such that (A↓h)↓g∩h = B↓g∩h}
= K · Qg(B) · Q↓g∩h

h (B↓g∩h)

Note: Proof of Theorem 5.2 was added in May 2025. In [Shenoy and Shafer,
1990], we stated that a proof of the corresponding theorem in that paper
could be found in this working paper, and it wasn’t there.

84a

CHAPTER SIX

Conditional Probability

One of the themes of this book is that conditionals need not be the primitives of a
language for the assessment of evidence. In chapters 2 and 3, we showed that the
language of conditionals is not necessary to the local computation of probabilities.
In chapter 4, we presented belief functions as one mode of evidential assessment
that does not rely on conditionals. Having made these negative points, we now
need to round out the picture by looking at conditional probability and exploring
the roles it can play.
 As we mentioned in the introduction, conditional probability plays an
important role in probabilistic modeling, especially when causal ideas are
involved. We will not explore this point in detail here, but we will discuss how
conditional independence is involved in probabilistic modeling, and how such
modeling yields factorizations that can be exploited by the methods of chapter 3.
 Conditional probability also plays a role in the algorithmsss for local
computation studied by Kelly and Barclay [1973], Pearl [1986], and Lauritzen and
Spiegelhalter [1988]. Here we will explain how conditional probability is involved
in the motivation for these authors' algorithms, and how their algorithms are related
to the algorithms we learned in chapter 3. As we will see, Pearl's algorithm is
essentially the algorithm of section 3.6 applied to a factorization of a special form,
while Lauritzen and Spiegelhalter's algorithm differs only slightly from the
algorithm of section 3.6.
 We begin, in section 6.1, with a theoretical study of conditional probability.
Here we translate standard ideas about conditional probability into a terminology

 86

and a notation compatible with the terminology and notation introduced in chapter
3. In section 6.2, we apply what we have learned to the problem of conditioning a
factored probability distribution on new evidence. In section 6.3, we take up the
role of conditional independence in causal modeling, and we define probability
trees. In section 6.4, we review the computational role of Bayes's theorem in
statistical inference, and we show that the algorithm of section 3.6, applied to
probability trees, results in the generalization of Bayes's theorem developed by
Kelly and Barclay and Pearl. In section 6.5, we take up the algorithm for local
computation studied by Lauritzen and Spiegelhalter. Finally, in section 6.6, we
give proofs of the displayed propositions.

6.1. The Theory of Conditional Probability

In this section, we study conditional probability, conditional independence, and
Markov probability distributions. We develop for these topics a notation and
terminology consistent with the notation and terminology we have already
developed for unconditional probability distributions on sets of variables.
 A conditional probability is a ratio of probabilities, and it may be considered
ill-defined if the probability in its denominator is zero. Hence the possibility of
zero probabilities can make discussions of conditional probability awkward. We
will seek to minimize this awkwardness.
 We do want to allow zero probabilities. At first glance, it might seem
reasonable to prohibit them in a theoretical discussion. Perhaps every event should
be allowed at least some tiny probability, on the grounds of our own fallibility
[Pearl 1986]. But relationships among variables often make certain combinations
of values impossible, and clarity of thought requires that we be able to represent
this impossibility by giving the combinations probability zero [Lauritzen and
Spiegelhalter 1988].
 We do two things to deal with the problem of zero probabilities. First, we
adopt the convention that division by zero yields zero. Second, we emphasize
ratios of entire probability distributions (or, more generally, potentials) rather than

 87

individual probabilities. It turns out that the probability distributions in whose
ratios we are interested are usually of a special type; the denominator is a marginal
of the numerator. This, as we will see, implies that the ratios can be handled, in
many respects, as if the denominators were never zero.
 Zero probabilities also complicate the idea of probabilistic independence.
When zero probabilities are not allowed, independence and conditional
independence can be defined simply in terms of factorization. But when zero
probabilities are allowed, factorization is not enough to imply conditional
independence. As it turns out, this is not a problem for us; the conditional
independence relations with which we are concerned are relations among
hyperedges in a hypertree, and factorization on the hypertree is enough to
guarantee these particular conditional independence relations. But for the sake of
completeness, we investigate what conditional independence adds, in general, to
factorization.
 We base our formal definition of conditional probability on two general
ideas, the idea of a ratio potential and the idea of an indicator potential. A ratio
potential is the ratio of a potential to one of its marginals. An indicator potential is
a potential that takes only the values zero and one.
 We begin with some general comments about division for potentials. Then
we introduce ratio potentials and indicator potentials, and we define conditional
probability. Then we study independence and the implications for probability
distributions of factorization on hypertrees.
 Mathematically, we are working in the framework established in chapter 3.
Our potentials are real-valued functions on the Cartesian products of the finite
frames of a finite set of variables X.

The Division of Potentials. Division, like multiplication, will be pointwise; if A
and B are potentials on h, then the quotient A/B is the array on h given by
(A/B)(x)=A(x)/B(x). By our convention that division by zero yields zero,
(A/B)(x)=0 whenever B(x)=0. If there is a configuration x of h such that both A(x)
and B(x) are non-zero, then A/B will be a potential. Otherwise it will be an array
identically equal to zero.
 If G is a potential on g, and H is a potential on h, then G/H is a potential on
g∪h defined by (G/H)(x) = G(x↓g)/H(x↓h).

 88

 The following proposition sets out what we need to know about the division
of potentials when the denominator is a marginal of the numerator.

Proposition 6.1. If G is a potential on g, and h⊆g, then the following
statements are all true.
(i) G(x) ≤ G↓h(x↓h) for all x∈Wg.
(ii) If x∈Wg and G↓h(x↓h)=0, then G(x)=0.
(iii) (G/G↓h)(x)=0 if and only if G(x)=0.
(iv) The array G/G↓h is a potential.
(v) If G/G↓h = B, then G = BG↓h.
(vi) If GG↓h = B, then G = B/G↓h.

 Because of the consonance of marginalization, the fact that A↓h1=(A↓h2)↓h1 if
h1⊆h2, all the statements in Proposition 6.1 generalize to the case where G↓h is
compared not to G but to some lesser marginalization of G. Statement (ii), for
example, generalizes to “If G↓h(x↓h)=0 and h⊆f, then G↓f(x↓f)=0.”
 The point of statement (iv) is that G/G↓h cannot be identically zero; since G
is a potential, G(x)>0 for at least one x, and by (iii), (G/G↓h)(x) > 0 for this x.
 The last two statements, (v) and (vi), are the ones of most direct importance.
They tell us that if G↓h is multiplying or dividing G on one side of an equation, we
can eliminate it from that side of the equation without regard to the fact that it
might take the value zero.

Ratio Potentials. Suppose A is a potential, and g and h are contained in A's
domain. We set
 Ah|g = A↓g∪h/A↓g, (6.1)
and we refer to Ah|g as A's ratio potential for h given g.
 When A is a potential on X, we will sometimes abbreviate AX|g to A|g. We
will also simplify the notation when we are dealing with single variables; when X
and Y are variables in the domain of A, we will write AY|g instead of A{Y}|g, Ah|X
instead of Ah|{X}, and AY|X instead of A{Y}|{X}.

 89

 Notice that A|∅ = A/A↓∅, which is simply A divided by the sum of all A's
values. In other words, A|∅ is the probability distribution proportional to A.
 Applying part (v) of Proposition 6.1 to (6.1), we see that

 A↓g∪h = A↓gAh|g (6.2)
always holds.
 The potentials Ah|g and A↓g∪h have the same domain, g∪h, and by
Proposition 6.1, they are non-zero on the same elements of Wg∪h. If g∪h=g∪f,
then Ah|g =Af|g.
 If B is proportional to A, then Bh|g=Ah|g. In particular, Ph|g=Ah|g, where P is
the probability distribution proportional to A.
 Our next two propositions explore factorization implies for marginals and
ratio potentials. Proposition 6.3 lays the groundwork for our study of probabilistic
independence. Proposition 6.2 is a simple extension of Proposition 3.2; its main
use is in the proof of Proposition 6.3.

Proposition 6.2. If G is an array on g and H is an array on h, then
(GH)↓g∩h = G↓g∩hH↓g∩h.

Proposition 6.3. Suppose A is a potential on g∪h. Then the following
statements are all equivalent.
(i) A A↓g∩h = A↓g A↓h.
(ii) A = A↓h Ag|g∩h.
(iii) A = A↓g Ah|g∩h.
(iv) Ag∪h|g∩h = Ag|g∩h Ah|g∩h.
(v) A factors on {g,h}.

????
(vi) (Ag|h)↓g = Ag|g∩h.
(vii) (Ah|g)↓h = Ah|g∩h.
(viii) Ag|h is carried by g.

 90

(ix) Ah|g is carried by h.

Indicator Potentials. A potential I on a set of variables h is called an indicator
potential if I(x) is equal to zero or one for all x∈Wh. For each y∈Wh, we define an
indicator potential Ih=y on h by

 0 if z ≠ y
 Ih=y(z) =
 1 if z = y,
and we call Ih=y the indicator potential for h=y.
 This definition specializes, of course, to the case of a single variable. If Y is
a variable and y∈WY, then the indicator potential IY=y on Y given by

 0 if z ≠ y
 IY=y(z) =
 1 if z = y
is called the indicator potential for Y=y.
 Notice that if h={Y1, ..., Yn} and y=(y1, ..., yn), then

 Ih=y = IY1=y1 ... IYn=yn. (6.3)

Conditional Probability Distributions. Suppose P is probability distribution on
X, suppose h is a subset of X, and suppose y∈Wh. Then we let P|h=y denote the
array on X given by
 P|h=y = P|h Ih=y. (6.4)
If P↓h(y)=0, then P|h=y is identically equal to zero. We are more interested in the
case P↓h(y) > 0.

Proposition 6.4. If P↓h(y) > 0, then P|h=y is a probability distribution.

 When P↓h(y) > 0, we call P|h=y the conditional distribution given h=y.
 The values of P|h=y are indeed conditional probabilities, as this term is
usually understood. To see that this is so, we rewrite (6.4) as

 91

 P|h=y(x) = Ih=y(x↓h) P|h(x) = Ih=y(x↓h) P(x) / P↓h(x↓h)

 0 if x↓h ≠ y,
 =
 P(x)/P↓h(y) if x↓h = y,
or, in a more colloquial notation,

 0 if x and y disagree,
 P|h=y(x) =
 Pr(X=x)/Pr(h=y) if x and y agree,
or
 P|h=y(x) = Pr(X=x & h=y)/Pr(h=y),

and this is “the conditional probability that X=x given that h=y,” as it is usually
defined.
 Formula (6.4) defines the conditional distributions given h in terms of the
ratio potential P|h. We can also go the other way: P|h(x) = P|h=x↓h(x) for all x∈WX.

Independence. The independence of events or variables with respect to a
probability distribution is usually defined in terms of the multiplication of their
probabilities. Two events are independent if the probability of both happening is
the product of their separate probabilities. The variables are independent if the
probability of their jointly taking a pair of values is always equal to the product of
the probabilities of their separately taking these values.
 This approach to independence is perfectly adequate, and it generalizes
readily from a pair of variables to disjoint sets of variables. The formulations that
work for disjoint sets of variables also work for overlapping sets of variables if the
probability distribution is strictly positive. But some complications arise if zero
probabilities are allowed.
 Fortunately, in the context of a hypertree, the complications that arise from
zero probabilities can be dealt with straightforwardly. In order to deal with them,
we need the concept of a variable or a set of variables being determined by a
probability distribution.

 92

Proposition 6.5. Suppose P is a probability distribution on X, and
suppose f is a subset of X. Then the following statements are all
equivalent.
(i) There exists x∈Wf such that P↓f(x)=1.
(ii) P = P|f.
(iii) P = P P↓f.

 If the statements in Proposition 6.5 are satisfied, then we say that f is
determined by P, or that the marginal P↓f is categorical. Notice that the empty set
is determined by any probability distribution; we always have P↓∅(♦)=1.
 Now we state general conditions for g and h to be independent with respect
to a probability distribution P, conditions that apply whether or not g and h are
disjoint.

Proposition 6.6. Suppose P is a probability distribution on g∪h. Then
the following statements are all equivalent.
(i) P = P↓g P↓h.
(ii) P factors on {g, h}, and P↓g∩h is categorical.
(iii) (Pg|h)↓g = P↓g.
(iv) (Ph|g)↓g = P↓h.
(v) Pg|h is carried by g.
(vi) Ph|g is carried by h.

 If the statements in Proposition 6.6 are satisfied, then we say that g and h are
independent with respect to P. If P is a probability distribution on a set of variables
larger than g∪h, then we say g and h are independent with respect to P if they are
independent with respect to P↓g∪h.
 We will write ⊥P[g, h] to indicate that g and h are independent with respect
to P.

 93

 If g∩h=∅, then P↓g∩h is necessarily categorical. So disjoint sets of variables
g and h are independent with respect to a probability distribution P if and only if P
factors on {g, h}.

Conditional Independence. Suppose P is a probability distribution, and suppose f,
g, and h are contained in P's domain. We say that g and h are conditionally
independent given f with respect to P if g and h are independent with respect to
P|f=z for every z∈Wf such that P↓f(z) > 0.
 We will write f→⊥P[g, h] to indicate that g and h are conditionally
independent given f with respect to P.
 Notice that independence given the empty set is the same as unconditional
independence; ∅→⊥P[g, h] means ⊥P[g, h].
 Before stating equivalent conditions for conditional independence, we must
extend further our vocabulary for dealing with zero probabilities. Suppose P is a
probability distribution, and suppose g and h are contained in P's domain. We say
that h is determined by P and g if h is determined by P|g=x for every x∈Wg such that
P↓g(x) > 0.

Proposition 6.7. Suppose P is probability distribution, and suppose g
and h are contained in P's domain. Then the following conditions are
equivalent.
(i) h is determined by P and g.
(ii) There exists a mapping δ:Wg→Wg∪h such that δ(x)↓g=x and
Pg∪h|g=x(δ(x)) = 1 whenever x∈Wg and P↓g(x)>0.
(iii) There exists a mapping δ:Wg→Wg∪h such that δ(x)↓g=x and
P↓g∪h(δ(x)) = P↓g(x) whenever x∈Wg and P↓g(x)>0.
(iv) For every x∈Wg such that P↓g(x)>0, there is only one z∈Wg∪h
such z↓g=x and P↓g∪h(z)>0.
(v) For every z∈Wg∪h, either P↓g∪h(z)=0 or P↓g∪h(z)=P↓g(z).

 94

 Condition (ii) of Proposition 6.7 can be paraphrased by saying that if g=x,
then with probability one h=δ(x). The variables in h are a function of the variables
in g with probability one, and δ is the function.
 If h⊆g, then P and g determine h no matter what P looks like. If P is strictly
positive, then P and g determine h if and only if h⊆g. If P and one set of variables
determine h, then P and any larger set also determine h. A probability distribution
P and the empty set determine a set of variables h if and only P↓h is categorical.

Proposition 6.8. Suppose P is probability distribution, and suppose f,
g, and h are contained in P's domain. If P and g determine f, then Ph∪f|g
= Ph|g∪f.

Proposition 6.9. Suppose P is a probability distribution, and suppose f,
g, and h are contained in P's domain. Then the following conditions
are all equivalent:
(i) f→⊥P[g, h].
(ii) P↓f∪g∪h factors on {f∪g, f∪h}, and P and f determine g∩h.
(iii) P↓f∪g∪h P↓f = P↓f∪g P↓f∪h.
(iv) P↓f∪g∪h = P↓f∪g Ph|f.
(v) P↓f∪g∪h = P↓f∪h Pg|f.
(vi) Pg∪h|f = Pg|f Ph|f.
(vii) (Pg|f∪h)↓g∪f = Pg|f.
(viii) (Ph|f∪g)↓h∪f = Ph|f.

 In the case where P is strictly positive (i.e., P(x) > 0 for every x∈WX), the
condition that P and f determine g∩h simplifies to the condition that g∩h⊆f. In
any case, g∩h⊆f is always a sufficient condition for P and f to determine g∩h.
 The following proposition shows us how to generalize the concept of
independence from two sets of variables to more than two.

 95

Proposition 6.10. Suppose P is a probability distribution, and f and h1,
..., hn are in P's domain. Then the following conditions are all
equivalent.
(i) Ph1∪...∪hn|f = Ph1|f Ph2|f ... Phn|f.
(ii) P↓f∪h1∪...∪hn factors on {f∪h1, ..., f∪hn}, and P and f determine
hi∩hj for all i and j, 1≤i<j≤n.
(iii) f→⊥P[h1∪...∪hk–1, hk] for k=2, ..., n.
(iv) f→⊥P[g1,g2] whenever g1 is the union of one subset of the h1, ...,
hn and g2 is the union of another subset, disjoint from the first.

 When the conditions of Proposition 6.10 are met, we say that h1, ...,hn are
conditionally independent given f with respect to P, and we write f→⊥P[h1, ...,hn].

Markov Probability Distributions. Suppose P is a probability distribution on X,
and suppose H is a hypertree on X. If P factors on H, then we say that P is Markov
with respect to H.

Proposition 6.11. Suppose P is a joint probability distribution for
variables in X, and suppose H is a hypertree on X. Then the following
statements are all equivalent.
(i) P factors on H.
(ii) There is a hypertree construction sequence h1...hn for H and a
branching β for h1...hn such that β(hk)→⊥P[h1∪...∪hk–1, hk] for k=2, ...,
n.
(iii) There is a hypertree construction sequence h1...hn for H and a
branching β for h1...hn such that P = P↓h1 Ph2|β(h2) ... Phn|β(hn).
(iv) For any hypertree construction sequence h1...hn for H and any
branching β for h1...hn, β(hk)→⊥P[h1∪...∪hk–1, hk] for k=2, ..., n.
(v) For any hypertree construction sequence h1...hn for H and any
branching β for h1...hn, P = P↓h1 Ph2|β(h2) ... Phn|β(hn).
(vi) Suppose β is a branching for H, and suppose (H, E) is the
Markov tree determined by β. Suppose H is a vertex of this tree. Then

 96

the trees in the forest resulting from the removal of H are independent
given H with respect to P.

 The conditional independence relations mentioned in parts (ii), (iv), and (vi)
of this proposition are all represented graphically by separation. This is what is
signaled in general by the name Markov. The Markov property is that separation
implies independence given the separator.
 The main point of Proposition 6.11 is that factorization is equivalent the
Markov property in a hypertree, even when zero probabilities are allowed. This
equivalence can be generalized to hypergraphs that are not hypertrees if zero
probabilities are prohibited; this is known as the Gibbs-Markov equivalence
[Speed 1979]. The hypergraph case is more complicated, however, if zero
probabilities are allowed; see Moussouris [1974].

6.2. Conditioning Factorizations

Conditioning plays an important role in the assessment of evidence. If the
probability distribution P represents our assessment of a given body of evidence,
and we add to that evidence the observation that f=y, then we may want to change
our assessment to P|f=y. (See Shafer [1985] for a discussion of when this is
appropriate.)
 Suppose the probability distribution P represents our assessment of a given
body of evidence, and we have been computing marginals for P from the
factorization
 P = Π{Rh | h∈H}, (6.5)

where H is a hypertree on X. Suppose we observe the values of some of the
variables in X; say we observe Y1=y1, Y2=y2, and so on, up to Yn=yn. We change
our assessment from P to P|f=y, where f={Y1, ..., Yn} and y=(y1, ..., yn). We now
want to compute marginals for P|f=y, and this would be facilitated by a factorization
of P|f=y. Can we adapt (6.5) to a factorization of P|f=y?

 97

 Yes, we can. More precisely, we can adapt (6.5) to a factorization of a
potential proportional to P|f=y, and this, as we noted in sections 3.3 and 3.4, is good
enough.
 The adaptation is simple. We know from (6.3) and (6.4) that

 P|f=y = Ih=y P|f
 = IY1=y1 ... IYn=yn P / P↓f(y)
 = IY1=y1 ... IYn=yn Π{Rh | h∈H} / P↓f(y),
or

 P|f=y ∝ IY1=y1 ... IYn=yn Π{Rh | h∈H}, (6.6)

where the constant of proportionality is 1/P↓h(y). And we can make the right-hand
side of (6.6) into a factorization on H by absorbing each of the IYi=yi into one of the
Rh. Indeed, each Yi is contained in at least one hyperedge in H. Choose one and
call it h(i). Set Sh = Rh Π{IYi=yi | h=h(i)}. Then (6.6) becomes
 P|f=y ∝ Π{Sh | h∈H}, (6.7)

where the constant of proportionality is still 1/P↓h(y).
 Aside from its usefulness for computing P|f=y, the possibility of adapting
(6.5) to (6.7) is also sometimes useful as a way of computing P↓f(y) for an
individual y in Wf. We run the algorithm of section 3.5, say, with a factorization
(6.5), obtaining P's marginal for a particular hyperedge h1. Then we run the
algorithm again, with the factorization (6.7). The result will be a potential on h1
differing from the first by the factor 1/P↓f(y). We can find P↓f(y) by comparing the
two results.
 This device for computing P↓f(y) will not be needed if f is one of the
hyperedges in the hypertree H. For then one run of the algorithm of section 3.5
will give us the whole marginal P↓f. But we may sometimes want to compute a
probability P↓f(y) for an f that is not in H and cannot be added without forcing us
to a hypertree cover with hyperedges too large for the algorithm to be practical.

 98

6.3. Conditional Independence in Modeling

In this section, we point to two related sources of factored probability distributions:
causal reasoning and log-linear statistical modeling. When causal reasoning is put
into a probabilistic setting, restrictions on paths of causation can be used to justify
assumptions of conditional independence that lead to factorized probabilities
(Blalock [1971], Pearl [1986], Wold [1954], Wright [1934]). When log-linear
models are fit to discrete statistical data, the simplest models are those in which
interactions are of low order, and hence Occam's razor leads to factorized
probabilities (Besag [1972, 1974], Darroch, Lauritzen and Speed [1980], Edwards
and Kreiner [1983], Lauritzen [1982], Wermuth and Lauritzen [1983]).

Causal Models. In this monograph, we are primarily concerned with probabilities
that result from deliberate assessment of evidence and that represent a judgment
about the degree to which the evidence supports a proposition. Such probabilities
are called judgmental or subjective, and they are often contrasted with objective
probabilities, which are supposed to be properties of the world. The objective
probability of an event is the propensity of this event to occur, and this propensity
is manifested by the frequency with which the event does occur in repeated trials.
This objective interpretation, though it is not overtly concerned with the
assessment of evidence, often underlies practical probability assessments. We often
assess the probability of an event by thinking about how often the event would
occur under the circumstances.
 If an event has different probabilities under different circumstances, then it
is natural to say that the circumstances are helping cause the event. Thus a set of
probability assessments based on the objective interpretation can be thought of as a
causal model.
 Too simple-minded an identification of statistical frequency with causation
is dangerous. We are often warned that correlation does not imply causation. It is
sometimes reasonable, however, to suppose that causation implies correlation. If
two situations differ only in the presence of one cause, then the probability in the
situation where the cause is present should be higher.
 The probabilistic interpretation of causation for one cause involves the
assumption of a probability distribution for other causes. If a given cause A

 99

influences an event B, but does not completely determine whether B will happen,
then there must be other causes of B, and these causes must vary from case to case
in their presence or strength. If we say that B has a definite objective probability or
frequency when A is present, then we must be assuming some stability for these
other causes, some stability in their distribution. In other words, we must be
assuming an objective, frequentist, probability distribution for these causes.
 If we identify "probabilities in different situations" with conditional
probabilities, then lack of causal influence should mean probabilistic
independence. Since causal influence can be indirect, it is difficult to formulate this
thought precisely. Reasonable formulations are possible, however, when we can
appeal to a temporal ordering or some other device that restricts the directions of
possible influence.
 Pearl [1986] has emphasized the simple case where variables X1, X2, ..., Xn
are ordered so that Xi can influence Xj only if i<j. In this case, we can say precisely
how lack of direct causal influence should imply independence or conditional
independence. Since X2 follows X1, it may be partially caused, or influenced, by
X1. If we believe it is not, then we should expect X1 and X2 to be independent; the
probability of a given value of X2 should be the same no matter what the value of
X1. Since X3 follows both X1 and Xn, it can be influenced by neither or one or both.
If it is influenced by neither, then it should be independent of both. If it is
influenced by X1 but not by X2, say, then it should be independent of X2 given X1;
 X1→⊥P[X2, X3].

We can continue this way through the Xk; for each Xk after the first, we choose a
subset gk of {X1, X2, ..., Xk–1} such that Xk is influenced directly by gk but not by
{X1, X2, ..., Xk–1}–gk;
 gk→⊥P[{X1, X2, ..., Xk–1}–gk, Xk]. (6.8)

These conditional independence relations constitute the foundation for a causal
model.
 Completing the causal model means constructing a probability distribution P
on {X1, X2, ..., Xn} that satisfies (6.8) for k=2, ..., n. To do this, we need to supply
the conditional probabilities. We need to specify P↓X1, and we need to specify PXk|gk
for k=2, ..., n. Doing so gives us a probability distribution P in factored form;

 P = P↓X1 PX2|g2 ... PXn|gn. (6.9)

 100

This is a factorization of P on the hypergraph H, where
 H = {{X1}, {X2}∪g2, ..., {Xn}∪gn}. (6.10)

If this is hypergraph has a hypertree cover with reasonably small hyperedges, then
we can apply the methods of chapter 3 to (6.9) to obtain marginal probabilities for
P.
 We would like, of course, for the hypergraph H in (6.10) to be a hypertree
itself, so we would not have to search for a hypertree cover. One interesting case in
which it is hypertree is the case where each gk has exactly one element. In this
case, if we write b(Xk) for the unique element of gk, then (6.9) becomes

 P = P↓X1 PX2|b(X2) ... PXn|b(Xn), (6.11)
and (6.10) becomes
 H = {{X1}, {X2, b(X2)}, ..., {Xn, b(Xn)}}. (6.12)

 In the next section, we will apply the algorithm of section 3.6 to the
factorization (6.11). We will find it convenient, when we do this, to enlarge the
hypertree given by (6.12) by adding all the singletons {X2}, {X3}, ..., {Xn}. This
gives the hypertree
 H' = {{X1}, {X2, b(X2)}, {X2}, {X3, b(X3)}, {X3}, ..., {Xn, b(Xn)}, {Xn}}.(6.13)
It is also convenient to use the order in which the hyperedges appear in (6.13) as
the construction sequence for H', and to use for this construction sequence the
branching β given by
 β({Xi, b(Xi)}) = {b(Xi)} and β({Xi}) = {Xi, b(Xi)}, (6.14)

for i=2, ..., n.
 Figure 6.1 shows the Markov tree determined by (6.13) and (6.14) for a
simple example with n=6.

 101

Figure 6.1. The Markov tree determined by (6.13) and (6.14) when
n=6, b(X2)=X1, b(X3)=X2, b(X4)=X3, b(X5)=X2, and b(X6)=X3. We use
circles and rounded rectangles to distinguish graphically between
individual and joint variables.

X2X3 X2X5

X1X2

X2

X3 X5

X3X6

X6

X
1

 As Figure 6.1 illustrates, the Markov tree determined by (6.13) and (6.14)
actually has a very simple structure. It can be obtained by taking the tree T=(V, E),
where
 V={X1, X2, ..., Xn} and E={{X2, b(X2)}, ...,{Xn, b(Xn)}}, (6.15)

and turning each edge e in E into a vertex connected by edges to the vertices in e.
 Formally, let us call a pair (T, P) a probability tree if T is a tree of the form
(6.15), P is a probability distribution on the vertices, and P factors as in (6.11). (By
Proposition 6.11, P factors as in (6.11) if and only if P factors on the hypertree E.)
We will refer to the Markov tree determined by (6.13) and (6.14) as the Markov
tree obtained by interpolating vertices on the edges of the probability tree (T, P).

 102

Log-Linear Statistical Models. Explain briefly the idea of low and high order
interactions.

6.4. Local Computation in Probability Trees.

In this section, we review the basic ideas of Bayesian statistical inference, and we
see how Bayes's theorem generalizes to the case of probability trees.
 The generalization of Bayes's theorem that we study here falls out when we
apply the algorithm of section 3.6 to the factorization (6.11). Our way of
explaining the generalization is inspired by Pearl [1986], but the details of our
approach differ significantly from the details of Pearl's approach. We first
explained our approach in Shenoy and Shafer [1986].

Bayesian Statistical Inference. Suppose we are concerned with two variables, X
and Y, and we believe that X causes Y. We construct a probability distribution P
on {X, Y} by assessing the marginal P↓X, assessing the conditional PY|X, and
writing
 P = P↓X PY|X. (6.16)
This formula, usually called the rule of total probability, is a special case of (6.2).
 Now we observe that Y=y, and we want to compute new probabilities for X
taking this observation into account. In other words, we want to compute the
conditional distribution PX|Y=y. By (6.6),
 P|Y=y ∝ IY=y P↓X PY|X.

So
 PX|Y=y ∝ (IY=y P↓X PY|X)↓X = P↓X (IY=y PY|X)↓X.

Since (IY=y PY|X)↓X(x) = PY|X(y,x), this can be written
 PX|Y=y ∝ P↓X LX|Y=y, (6.17)

where LX|Y=y is the potential on X given by

 LX|Y=y(x) = PY|X(y,x). (6.18)

 103

Formula (6.17) is often called Bayes's theorem.
 In the terminology of Bayesian statistics, the probability distribution PX|Y=y is
the posterior distribution for X, the probability distribution P↓X is the prior
distribution for X, and the potential LX|Y=y is the likelihood. Thus Bayes's theorem
can be written more verbally as
 posterior(x) ∝ prior(x) likelihood(x). (6.19)

 The utility of Bayes's theorem depends, of course, on whether we have in
hand the factorization (6.16). If our joint probability distribution P has been
constructed following (6.16), then the likelihood is easily found by (6.18), and
Bayes's theorem provides an efficient way of computing the conditional
distribution PX|Y=y. If, on the other hand, P has not been constructed in this way,
then we will likely find PX|Y=y in some other way, and Bayes's theorem will have no
role to play.
 Bayes's theorem is particularly interesting when the ratio potential PY|X can
be given a relatively objective or frequentist interpretation. As we argued in the
preceding section, this requires a certain stability in the distribution in the other
causes of Y. If we are to talk about the probability that Y=y when X=x, without
reference to which situation with X=x we have in mind, there must be some
stability in how the other causes of Y operate whenever X=x. But an objective
interpretation of PY|X does not imply an objective interpretation of the marginal
P↓X. The distribution of X may still be unstable, so that any probabilities for X
must have a more subjective character. So even if the likelihood in Bayes's
theorem has an objective interpretation, and we hold PY|X constant as we consider
the evidence about the variables X and Y for different individuals, the prior can
have a subjective interpretation, and we may to assess it differently for each
individual.
 Since the time of Laplace, mathematical statistics has been particularly
concerned with the situation just described, and controversy has persisted between
those who, like Laplace, are willing to make the subjective judgments required to
construct the prior distribution P↓X and those who are not willing to do so. Those
willing to construct P↓X are now often called Bayesians, since they are able to carry
through the use of Bayes's theorem, while those not willing to construct P↓X are
often called objectivists, since they want to find modes of judgment that use only

 104

objective probabilities. Both Bayesians and objectivists have tended to take it for
granted that the ratio potential PY|X is objective, stable, and known.
 Unfortunately, the stylized nature of the this hoary controversy gives undue
weight to Bayes's theorem. As we have already argued, if P is not constructed
following (6.16), and we want to compute PX|Y=y after observing Y=y, we are likely
to do so in some way other than Bayes's theorem. Bayes's theorem should be seen
as a computational device for computing conditional probabilities in certain
circumstances, not as a philosophical foundation for probability judgment in
general, as the term Bayesian suggests.
 Moreover, the situation where we have an objective likelihood and a
subjective prior is characteristic merely of a set of problems that have historically
been of interest to statisticians. We cannot assume that is characteristic of all
problems. It may be uncharacteristic, for example, of problems dealt with by
modern expert systems.
 For further discussion of the distinction between foundational and
computation concerns in the construction of probability arguments, see Shafer and
Tversky [1985].

Inference in Probability Trees. The ideas underlying Bayes's theorem can be
generalized from the simple case of two variables to the case of a probability tree
of variables. This generalization has been studied by Kelly and Barclay [1973] and
Pearl [1986]. As we will now see, it can be seen as a special case of the algorithm
we studied in section 3.6 above.
 Recall that (T, P) is a probability tree when T=(V, E), V={X1, X2, ..., Xn},
E={{X2, b(X2)}, ...,{Xn, b(Xn)}}, and P is a probability distribution on V satisfying

 P = P↓X1 PX2|b(X2) ... PXn|b(Xn). (6.11)
Given the probability tree (T,P), we form the hypertree
 H' = {{X1}, {X2, b(X2)}, {X2}, {X3, b(X3)}, {X3}, ..., {Xn, b(Xn)}, {Xn}}, (6.13)

with the branching β given by
 β({Xi, b(Xi)}) = {b(Xi)} and β({Xi}) = {Xi, b(Xi)} (6.14)

for i=2, ..., n.

 105

 Consider how we can implement the algorithm of section 3.6 for the
factorization (6.11) in the Markov tree determined by (6.13) and (6.14).
 We must first assign a potential to each vertex of the Markov tree. The
natural way of doing this is to assign P↓X1 to {X1} and to assign PXi|b(Xi) to
{Xi, b(Xi)}. This leaves the {Xi}, i≠1, without potentials; we assign each of them a
vector of ones.
 Figure 6.2 shows this assignment of potentials for the example of Figure 6.1.
Here we let 1X denote the vector of ones on the variable X; 1X(x)=1 for every
x∈WX.

Figure 6.2. The assignment of potentials to Markov tree of Figure 6.1.
In this example, P = P↓X1 PX2|X1 PX3|X2 PX4|X3 PX5|X2 PX6|X3.

P!X1

P
X2|X1

1
X2

P
X3|X2 P

X5|X2

1
X3 1

X5

P
X

6|X3

1
X6

 Figure 6.3 shows the messages that will be passed if we run the algorithm of
section 3.6 with this assignment of potentials. To verify that the messages given in
this figure are correct, begin at the leaves of the Markov tree and work inward.
Initially, the three leaves, {X1}, {X5}, and {X6} send inward their own potentials,
P↓X1, 1X5, and 1X6. This allows the vertices {X1, X2}, {X2, X5}, and {X3, X6} to act.

 106

The vertex {X2, X1} multiplies the message P↓X1 and its own potential, PX2|X1, and
sends to {X2, X3} the projection (P↓X1 PX2|X1)↓X2 = (P↓{X1,X2})↓X2 = P↓X2. And so on.

Figure 6.3. The messages passed when the potentials shown in Figure
6.2 are used.

1X6

1
X2

1
X5

 P !X1 1
X1

P
X2|X1

 P
!X2 1

X2

P!
X1

 P
!X

2 1
X

2

 P
!X2 1

X
2

P
X5|X2

 P !X5 1X5

P
X3|X2

 P!X3 1
X3

P
X6|X3

 P!
X6 1

X6

 P!X3 1
X3

1
X3

 If we observe the value of a variable, we will replace the vector of ones on
that variable with an indicator vector, and then we will allow the algorithm to
update. Figure 6.4 shows the result when we observe that X5=x5. The messages

 107

shown in this figure can also be verified by working inwards. For example, vertex
{X2, X5} multiplies its potential PX5|X2 by the message IX5=x5 before projecting to
{X2}. The result is (IX5=x5PX5|X2)↓X2 = LX2|X5=x5. Vertex {X2} will send to {X2, X3}
the product LX2|X5=x5 PX2, which is proportional to PX2|X5=x5. At each step, the
messages from the direction of X1 are probability distributions, either prior
distributions or distributions posterior to those observations that lie in the direction
from which the message is being sent, while the messages towards X1 are either
vectors of ones or likelihoods.

 108

Figure 6.4. The messages passed when the potential on {X5} is
changed to indicate the observation X5=x5.

I
X5=x5

 P!
X2 L

X2|X5=x5

 P!X5 I
X5=x5

P
X5|X2

1
X3

K P
X3|X5=x5 1

X3

P
X6|X3

K P
X6|X5=x5 1

X6

1X6

K PX2|X5=x5 1X2

P
X3|X2

K P
X3|X5=x5 1

X3

 P!X1 L
X1|X5=x5

P!
X1

P
X2|X1

 P!
X2 L

X2|X5=x5

1
X2

 The computations in Figures 6.3 and 6.4 can be described quite simply in the
language of matrices. If we think of the potential PXi|Xj as a matrix with PXi|Xj(xi, xj)
in row xi and column xj, then the operation of {Xi, b(Xi)} can be described as
matrix multiplication; probability vectors on Xj transform to probability vectors on
Xi by post-multiplying the matrix as column vectors, and likelihood vectors on Xi

 109

transform to likelihood vectors on Xj by pre-multiplying the matrix as row vectors.
The vertices representing individual variables simply multiply the vectors they
receive pointwise. For more details, see Shenoy and Shafer [1986].
 Though our algorithm, as presented in Figures 6.3 and 6.4, was inspired by
Pearl [1986], it differs in detail from the algorithm Pearl himself presents. Pearl
bases his algorithm on the probability tree rather than the Markov tree. In the
probability tree, we have vertices only for variables, no vertices for the pairs {Xi,
b(Xi)}. So Pearl draws a picture in which all computation and all storage is
performed by individual variables.
 Pearl's algorithm also differs from ours in other ways. Each individual
variable X has access to less storage. Rather than storing all the messages it
receives and multiplying only those required when it sends a message, X multiplies
all its messages and sends the projection of this overall product as its message to a
neighbor Y. The neighbor Y, when it receives this message, re-computes any
message it had sent X earlier and divides this message out of the message just
received from X. We will not delve further into details here, but we will study the
strategy of substituting division for storage in the next section.
 The following proposition describes what happens in general when we apply
the algorithm of section 3.6 to a probability tree. In stating the proposition, we
have assumed that the Markov tree is drawn downward from the root X1, as in
Figures 6.1–6.4, so that we can talk about downward messages and upward
messages.

Proposition 6.12. Suppose we apply the algorithm of section 3.6 to the
factorization (6.11), in the Markov tree determined by (6.13) and
(6.14). We assign P↓X1 to {X1} and PXi|b(Xi) to {Xi, b(Xi)}. Consider
two cases for the assignment to the other vertices.
 (i) We assign 1Xi to {Xi}, i>1. In this case, each downward
message is a prior marginal probability distribution, and each upward
message is a vector of ones. More precisely,
 M{b(Xi)}→{Xi,b(Xi)} = P↓b(Xi),
 M{Xi,b(Xi)}→{b(Xi)} = 1b(Xi),
 M{Xi,b(Xi)}→{Xi} = P↓Xi,

 110

and
 M{Xi}→{Xi,b(Xi)} = 1Xi.
See Figure 6.5.
 (ii) We choose a subset g={Y1, ..., Yk} of {X2, ..., Xn}, and we
choose an element y=(y1, y2, ..., yk) of Wg. We assign IYi=yi to {Yi},
and we assign 1Xi to {Xi} for Xi in {X2, ..., Xn}–g. In this case, each
downward message is proportional to the probability distribution
posterior to all the observations except those below it, and each
upward message is the likelihood potential given the observations
below it.

 In order to say this more precisely, we need more notation. For each variable
X in {X1, ..., Xn}, we let •X denote the subset of {X1, ..., Xn} consisting X together
with all the variables that lie below X in the Markov tree, and we let °X denote the
others; °X={X1, ..., Xn}–(•X). We let g•X denote the intersection g∩(•X), and we
let y•X denote the projection y↓g•X. Similarly for g°X and y°X.

 With this notation, we can write
 M{b(Xi)}→{Xi,b(Xi)} = Pb(Xi)|g°Xi=y°Xi,
 M{Xi,b(Xi)}→{b(Xi)} = Lb(Xi)|g•Xi=y•Xi,
 M{Xi,b(Xi)}→{Xi} = PXi|g°Xi=y°Xi,
and
 M{Xi}→{Xi,b(Xi)} = LXi|g•Xi=y•Xi.
See Figure 6.6.

 111

Figure 6.5. Probabilities down; vectors of ones up.

 P!Xi 1Xi

 P!Xj 1Xj

PXj|Xi

1Xi

1Xj

Figure 6.6. Probabilities down, posterior to any observations that do
not lie below. Likelihoods up, given any observations that do lie
below. If g°X is empty, the corresponding conditional distribution
reduces to the unconditional distribution. If g•X is empty, the
corresponding likelihood reduces to a vector of ones.

1Xi or IXi=xi (if Xi is observed)
or P!Xi (if Xi is the root)

K PXj|g°Xj=y °Xj LXj|g•Xj=y •Xj

K PXi|g°Xi=y°Xi LXi|g•Xj=y •Xj

PXj|Xi

1Xj or IXj=xj

 112

 The statement of Proposition 6.12 is so lengthy that we can lose sight of the
fact that it is a generalization of Bayes's theorem. As an antidote to this, let us
glance at a simple special case that is generally regarded as a version of Bayes's
theorem. This is the case where we observe variables Y1, ..., Yk, which were
initially independent given X. The Markov tree is shown in Figure 6.7. As this
figure indicates, the vertex {X} computes a potential that is proportional to its
posterior distribution by multiplying its original potential, P↓X, by the n messages it
receives:

 PX|Y1=y1, ...,Yn=yn ∝ P↓X LX|Y1=y1...LX|Yn=yn.

This is Bayes's theorem for n independent observations. When n=1, it reduces to
the version of Bayes's theorem given in (6.17).

Figure 6.7. Bayes's theorem for independent observations.

 P!Y1 IY1=y1

 P !X LX|Yn=yn

 P !Yn IYn=yn

. . .

IY1=y1

P!X

 P !X LX|Y1=y1

PY1|X
PYn|X

IYn=yn

 Figures 6.1–6.7 and Proposition 6.12 have an alluring elegance. They are
elegant because they unify modeling and computation; they show a computational
procedure in which every step can be related to the conditional independence
assumptions that underlie the probability model. As in the case of Bayes's theorem,
we can imagine that the conditional probabilities are a permanent and stable

 113

feature of our system, which is applied to different individual cases by using
different observations and different prior distributions for the root.
 We need to recognize, however, that this allure can be dangerous. It can
cause confusion. It can even cause willful misunderstanding of the strength and
nature of our evidence. If we do not have the evidence needed to complete a causal
probability model to match our observations in the way Proposition 6.12 requires,
then we should not allow elegance to force us into pretence.
 In general, we must distinguish between the needs of modeling and the
needs of computation. When we are modeling, we must pay attention to evidence.
When we are computing, we have no need for interpretations in terms of modeling.
Bayes's theorem, and its generalization, Proposition 6.12, are computational
devices that are sometimes applicable, not propositions with foundational or
philosophical significance.

6.5. Lauritzen and Spiegelhalter's Algorithm

In this section, we describe Lauritzen and Spiegelhalter's algorithm for computing
the marginals of a factored potential for all the vertices of a Markov tree.
 Lauritzen and Spiegelhalter's algorithm is best understood in relation to the
algorithm of section 3.6, especially the version of that algorithm that sweeps
inward to a predetermined vertex and then back outward again.
 The main difference between the two algorithms lies in the way they avoid
the double counting that can occur if assessments originating in an outer vertex is
both kept at that vertex and sent inward on the inward sweep. (If the information
sent inward is incorporated into the message coming back on the outward sweep,
then it may be misperceived, when it comes back, as independent confirmation.)
 The algorithm of section 3.6 avoids double counting by keeping track of the
origin (from a local perspective) of all information. During the inward sweep, each
vertex stores all messages in registers identifying their source, and during the
outward sweep, when g combines the messages it has received to find a message to
send back to f, it deliberately omits the message it had received from f.

 114

 Lauritzen and Spiegelhalter's algorithm, on the other hand, uses division to
avoid double counting. When a vertex sends a message inward, it divides the
potential it has stored for itself by that message. In effect, it does not keep the
message sent. Thus there is no double counting when it gets the message back.
 Lauritzen and Spiegelhalter's algorithm requires much less storage than the
algorithm of section 3.6. It requires no storage of messages not currently in use;
throughout the computation there is just one potential stored at each vertex. Their
algorithm also requires less multiplication on the outward sweep. In the algorithm
of section 3.6, the computation of the array that a vertex projects to an outward
neighbor involves a different multiplication for each neighbor. In Lauritzen and
Spiegelhalter's algorithm, on the other hand, a vertex projects the same potential to
all its outward neighbors.
 The savings in multiplication that Lauritzen and Spiegelhalter's algorithm
achieves on the outward sweep must be balanced against the cost of the divisions
that it introduces on the inward sweep. It is difficult to assess this balance in
general, but since division is more expensive than multiplication, it is doubtful that
Lauritzen and Spiegelhalter's algorithm will achieve great computational savings
over the algorithm of section 3.6. As we will see, the attractiveness of their
algorithm derives from its interpretation rather than from its efficiency. The
divisions that the algorithm introduces produce conditional probabilities, and many
of the algorithm's intermediate steps can therefore be interpreted in terms of
conditional probability.
 We should reiterate that Lauritzen and Spiegelhalter's algorithm is an
algorithm for potentials, not an algorithm for arrays in general. The divisions that
the algorithm uses will not work, in general, if the arrays are not potentials. Thus
we assume that we are working with a potential, and that the factorization is a
factorization into potentials.
 We begin by discussing Lauritzen and Spiegelhalter's algorithm from a
purely computational point of view, without reference to the probabilistic
interpretation. We turn then to the issue of updating, and then to the probabilistic
interpretation.

The Inward Sweep. The inward sweep of Lauritzen and Spiegelhalter's algorithm
is similar to the algorithm of section 3.5, our algorithm for computing the marginal

 115

on a single vertex of a Markov tree. The only difference is that in Lauritzen and
Spiegelhalter's algorithm, each vertex does more than send a message inward; it
also divides its own potential by the message that it sends inward.
 The division does not affect the computation of the marginal for the vertex
on which the inward sweep converges, because this computation involves only the
messages sent, not the potentials kept. But the division does obviously affect the
set of potentials that remain on the vertices when the inward sweep is completed.
As we shall see, it means that these potentials constitute a new factorization of the
potential whose marginal we are computing.
 We can gain some insight into each step of the inward sweep by looking
again at Proposition 3.3, where we studied projection from an arbitrary twig in a
hypergraph. That proposition tells us that if H is a hypergraph on X, t is a twig in
H, b is a branch for t, and A is an array on X that factors on H, say
 A = Π{Ah | h∈H}, (6.20)

then

 A↓X' = (AbAt
↓t∩b) Π{Ah | h∈H–{t, b}}, (6.21)

where X'=X–(t–b). (Formula (6.21) differs from (3.3) in that we have replaced
At

→b by At
↓t∩b. The replacement makes no difference, since At

→b is the vacuous
extension of At

↓t∩b to b, and this vacuous extension is implicit in the multiplication
by Ab.) We can rewrite (6.20) as
 A = At Ab

 Π{Ah | h∈H–{t, b}}. (6.22)

If (6.20) is a factorization of a potential into potentials, then part (v) of Proposition
6.1 allows us to divide and multiply the right-hand side of (6.22) by At

↓t∩b,
obtaining
 A = (At/At

↓t∩b) (AbAt
↓t∩b) Π{Ah | h∈H–{t, b}}. (6.23)

Formula (6.23) tells us that when At
↓t∩b is divided out of t's potential and

multiplied into b's potential, the result is a new factorization of A on H.
 We can say even more. Comparing (6.23) with (6.21), we see that

 A = (At/At
↓t∩b) A↓X'; (6.24)

the part of the new factorization that remains when t is removed is a factorization
of A↓X'. This is the key to the conclusion that repeated application of (6.23) on a

 116

hypertree results in a new factorization. If H is a hypertree, then removal of the
twig t leaves us with a factorization of A↓X' on the hypertree H–{t}, and hence we
can repeat the operation.

Figure 6.8. Revising a factorization on a hypergraph. The new
factorization differs from the old only in that At

↓t∩b has been divided
out of t's potential and multiplied into b's potential. The potentials on
all the other hyperedges have been left the same. The new
factorization has the property that if the twig t were removed, the
potentials on the remaining hyperedges in the factorization would
constitute a factorization of the marginal on the union of these
hyperedges.

Af
As

Ah

At

Ab

AbAt
!t"b

Af
A

s

Ah

At /At
!t"b

 The initial factorization. The new factorization.

 In order to formalize our understanding of the inward sweep, we formulate a
new basic operation, analogous to Operation H of section 3.5. The setting of the
new operation is the same: a hypertree H on a set of variables X, and an potential
A on X, factored into potentials on the hyperedges, as in (6.20). We have chosen a
root h1 and a branching β with this root. Thus the operation can be thought of as an

 117

operation in the hypertree H with branching β, or, equivalently, as an operation in
the Markov tree determined by H and β.

Operation L&S1. Compute the marginal on h∩β(h) of the potential
now on h. Change the potential now on h by dividing it by this
marginal. Change the potential now on β(h) by multiplying it by this
marginal.

 The inward sweep consists of a series of applications of Operation L&S1,
converging on the root h1. We choose any hypertree construction sequence that has
β as its branching, say h1h2...hn. We apply Operation L&S1 first for h=hn, then for
h=hn–1, and so on, down to h=h2.
 At the end of the inward sweep, the potential assigned to h1 is the marginal
of A on h1. This is because the messages sent inward toward h1 are exactly the
same as in the scheme described in section 3.5. Operation L&S1 and Operation H
send the same message to β(h); they differ only in what they do to the array that
remains at h.
 Since the messages sent in our inward sweep are exactly the same as the
messages sent in section 3.5, we have the same flexibility of control that we
observed there. In terms of the hypertree, we can choose any construction sequence
with the branching β. In terms of the Markov tree determined by H and β, we can
choose any construction sequence with the budding β. In other words, the only
restriction on the order in which the vertices act is that all the vertices that use a
given vertex as a bud must act before it acts.
 We can allow the vertices to delay their multiplications until they have
received all their messages, as we did when formulating Operation M2 in section
3.5. One motivation for the division in Lauritzen and Spiegelhalter's algorithm,
however, is to avoid the storage requirements that such delay entails. In our further
discussion, therefore, we will assume that messages are absorbed as they are sent.

The Outward Sweep. Suppose we have completed the inward sweep. We now
have new potentials on all the vertices, and the new potential on h1 is A↓h1. How do
we compute the marginals for the other vertices?

 118

 The answer is that we proceed from h1 back outward in the Markov tree,
projecting from bud to leaf, and multiplying the potential on the leaf by the
projection. At each step, as we shall see, this product is the marginal for the leaf.
 In this outward sweep, we do not perform any divisions. Thus our basic
operation is simply the following:

Operation L&S2. Compute the marginal on β(h)∩h of the array now
on β(h). Change the potential now on h by multiplying it by this
marginal.

 The budding β is, of course, the same budding we used on the inward sweep.
Its root is h1, the vertex on which the inner sweep converged.
 We can apply Operation L&S2 following the same construction sequence
h1h2...hn that we used in the inward sweep. We apply the operation first for h=h2,
then for h=h3, and so on, up to h=hn. (Since β(h2)=h1, the first projection will be
from h1 to h2.) Alternatively, we can follow some other tree construction sequence
that uses the budding β. In other words, we move outward in the Markov tree
however we like, provided only that we never execute Operation L&S2 for a vertex
before having executed it for the vertex's bud.
 We can now summarize how Lauritzen and Spiegelhalter's algorithm
compares with the algorithm of section 3.6. Both algorithms involve an inward and
an outward sweep. The only difference in the flow of the computation is that in
Lauritzen and Spiegelhalter's algorithm, we must single out a vertex h1 in the
Markov tree and force the inward sweep to converge on that vertex. In the
algorithm of section 3.6, making such an a priori choice of a central vertex is
optional, and it is permissible to have two central vertices that send their messages
to each other simultaneously. On the inward sweep, the message sent by each
vertex is the same under the two algorithms, but Lauritzen and Spiegelhalter's
algorithm has each vertex divide its own potential by that message. On the outward
sweep, Lauritzen and Spiegelhalter's algorithm has each vertex multiply its original
potential by all its messages received and project this to all its outward neighbors,
whereas the algorithm of 3.6 omits from the projection to each neighbor the
message received from that neighbor.

 119

 Here is a formal statement of our claim that the outward sweep will produce
all the marginals.

Proposition 6.13. At the end of the outward sweep, the potential on
each vertex is the marginal of A for that vertex.

 The formal proof given at the end of the chapter is based, of course, on the
comparison with the algorithm of section 3.6. We already know that the two
algorithms give the same answer for h1. We complete the proof by induction on the
outward sweep.

Updating. In section 3.6, we noted that the algorithm presented there offered
opportunities for modest computational savings in updating. If just one potential in
the original factorization were changed, the marginals could be updated with only
about half the amount of message passing required in the initial computation. This
opportunity for savings in updating is not so manifest in Lauritzen and
Spiegelhalter's algorithm.
 In order for updating to be possible at all, of course, we must retain a
factorization. The way we have described Lauritzen and Spiegelhalter's algorithm,
the factorization is not retained. At the end of the inward sweep, the factorization
has been replaced by a new factorization. At the end of the outward sweep, this
new factorization has been replaced by the marginals, which are not a
factorization. But we can store the original factorization if we want, and we can
update by repeating the algorithm with whatever changes in that factorization we
want.
 Another approach would be to store the new factorization that has been
obtained at the end of the inward sweep, and to use it for updating. As we will see
in a moment, this approach does provide some opportunity for computational
savings.

Interpretation. We now turn to the probabilistic interpretation of the operations in
Lauritzen and Spiegelhalter's algorithm.

 120

 Let us return to equations (6.20)–(6.24), where we analyzed the removal of a
twig t from a factorization of a potential A on a hypergraph H. Equation (6.24)
says that

 A = (At/At
↓t∩b) A↓X'. (6.24)

We can justify dividing both sides of this equation by A↓X', thus obtaining

 A/A↓X' = (At
t|t∩b)↑X.

Since A/A↓X' = At|X', we have the following proposition.

Proposition 6.14. Suppose H is a hypergraph on X, t is a twig in H, b
is a branch for t, X'=X–(t–b), A is a potential on X, and A =
Π{Ah|h∈H}, where Ah is a potential on h. Then
 At|X' = (At

t|t∩b)↑X. (6.25)
So if we divide the potential on t by its projection to b and multiply
the potential on b by this same projection, the result is a new
factorization, such that the potential on t is At|X', and the potentials on
the other hyperedges form a factorization of A↓X'.

 We can express (6.25) in words if A is a probability distribution. It says that
when we divide the potential on the twig by its projection to its branch, we obtain
the conditional probabilities for the twig given the variables that remain when the
twig is removed.
 In Lauritzen and Spiegelhalter's inward sweep, we perform the computation
(6.25) first for the twig hn in H, then for the twig hn–1 in H–{hn}, and so on. The
first step leaves Ahn|h1∪...∪hn–1 on hn, and a factorization of A↓h1∪...∪hn–1 on {h1, ...,
hn-1}. The second step leaves Ahn–1|h1∪...∪hn–2 on hn–1, and a factorization of
A↓h1∪...∪hn–2 on {h1, ..., hn–2}. And so on. So at the end of the inward sweep, we
have the factorization

 A = A↓h1 Ah2|h1∪h2 ... Ahn–1|h1∪...∪hn–2 Ahn|h1∪...∪hn–1. (6.26)
Writing the factorization in this form makes it look more complex than it really is,
of course; (6.25) tells us that Ahi|h1∪...∪hi–1 is carried by hi, and we will have it stored
at hi, as a potential on hi.

 121

 In the case where we are working with a probability distribution P, the
language of conditional probability provides us with many different ways of
describing the potential stored at hi at the end of the inward sweep. Indeed, since
β(hi)→⊥P[hi, h1∪...∪hi–1], part (vii) of Proposition 6.9 tells us that Phi|h1∪...∪hi–1 is
the vacuous extension of Phi|β(hi). And

 Phi|β(hi)= Phi|hi∩β(hi) = Phi–β(hi)|hi∩β(hi).
The first equality follows from hi∩β(hi)→⊥P[hi, β(hi)], the second from the fact
that Af|g= Af–g|g for any f and g.
 As we see here, the very richness of the conditional probability language can
be a source of some confusion. It is easy enough to say that the potentials on the
vertices at the end of the inward sweep are conditional probabilities. But then we
have to decide whether to call them conditional probabilities for the twig given the
variables that remain when the twig is removed, conditional probabilities for the
twig given the branch, conditional probabilities for the twig given the variables in
both the twig and the branch, or conditional probabilities for the variables only in
the twig given the variables in both the twig and the branch. All these descriptions
are correct.
 This confusing richness of the conditional probability language is one reason
why we have avoided this language altogether in our initial description of
Lauritzen and Spiegelhalter's algorithm.
 If we write (6.26) as

 P = P↓h1 Ph2|h2∩β(h2) ... Phn|hn∩β(hn), (6.27)
it becomes clear that the outward sweep consists simply of repeated applications of
the rule of total probability. Before the vertex hi acts, its branch β(hi) has already
computed P↓β(hi), marginalized this to P↓hi∩β(hi), and sent this marginal to hi. Vertex
hi simply multiplies this message by its own potential, Phi|hi∩β(hi), obtaining

 P↓hi∩β(hi) Phi|hi∩β(hi) = P↓β(hi). (6.27)
 The action (6.27) on the outward sweep is obviously analogous to the action
that we described in the probability tree in Figure 6.3 above. The hi here are
analogous to the {Xi, b(Xi)} there, and the intersections hi∩β(hi) here are
analogous to the single variables {Xi} there.

 122

 To push this analogy further, consider the hypertree obtained by adding the
intersections hi∩β(hi) and the differences hi–β(hi) to H. The sequence
 h1, h2∩β(h2), h2, h2–β(h2), ..., hn∩β(hn), hn, hn–β(hn),

with any duplications omitted, is a construction sequence for this hypertree. We
can use β(hi) as the branch for hi∩β(hi), hi∩β(hi) as the branch for hi, and hi as the
branch for hi–β(hi). Figure 6.9 shows a fragment of the resulting Markov tree. If
we put the potential P↓h1 on h1, the potentials Phi|hi∩β(hi) on the other hi, and
potentials identically equal to one on the other vertices, then running the algorithm
of section 3.6 will reproduce Lauritzen and Spiegelhalter's outward sweep. If we
replace the potentials on some of the hi–β(hi) by indicator potentials, representing
observations of some of the variables, then running the algorithm again will
produce messages that are all likelihoods or probabilities, as in the case of the
probability tree. If we have only one observation, say, then only about half the
messages will need to be changed, so we can achieve our usual modest savings in
updating.

 123

Figure 6.9. Fragment of a Markov tree.

1hi!"(hi)

hi!"(hi)

hi
Phi|hi!"(hi)

P"(hi)|"(hi)!"(("(hi))

"(hi)

1hi- "(hi)=y hi-"(hi)

The potentialsThe vertices

 Though we have drawn an analogy to the probability tree of section 6.4, we
do not have here the alluring unification of modeling and computation that we saw
there. There the conditional probabilities we were using for the computation were
assessed directly in the modeling and seemed to be permanent or stable features of
the system. Here these conditional probabilities, since they are the result of the
inward sweep, are more distant from the original modeling more likely to
incorporate aspects of the evidence unique to the particular case.

 124

6.6. Proofs

Proof of Proposition 6.1. To prove (i), we simply recognize that G↓h(x↓h) is the
sum of G(x) together with G(y) for all other y such that y↓h=x↓h; since G is a
potential, all the terms in the sum are non–negative.
 Statement (ii) follows immediately from statement (i).
 Statement (iii) follows from (ii) together with our convention that a ratio
with zero denominator is zero. It follows from this convention that a ratio will be
zero if and only if its numerator, its denominator, or both are zero. Statement (ii)
eliminates the possibility that the denominator of G/G↓h can be zero without the
numerator being zero, so this ratio is zero if and only if its numerator is zero.
 Statement (iv) follows from (iii) and the fact that G is a potential. To see that
(v) is true, first translate its hypothesis into the statement that G(x)/G↓h(x↓h) = B(x)
for all x∈Wg. For x such that G↓h(x↓h) > 0, it follows directly that G(x) =
B(x)G↓h(x↓h). For x such that G↓h(x↓h) = 0, we see from (ii) that G(x) =
B(x)G↓h(x↓h) because both sides are zero. The proof of (vi) is analogous.

Proof of Proposition 6.2. The proof uses Proposition 3.1 once and Proposition 3.2
twice: (GH)↓g∩h = ((GH)↓h)↓g∩h = (G↓g∩hH)↓g∩h = G↓g∩hH↓g∩h.

Proof of Proposition 6.3. When we write the ratio potentials in (ii), (iii), and (iv) in
explicit form (i.e., write A↓h/A↓g∩h for Ah|g∩h, etc.), we see each of these equations
can be reduced to (i) by multiplying both sides by A↓g∩h. So the equivalence of (i),
(ii), (iii) and (iv) follows from parts (v) and (vi) of Proposition 6.1.
 Statements (ii) and (iii) are factorizations of A on {g, h}. So in order to
prove that statement (v) is equivalent to the first four statements, we need only
derive one of the four from (v). We will derive (i). Assuming (v), we write A=GH,
where G is an array on g, and H is an array on h. By Proposition 3.2, A↓g = GH↓g∩h
and A↓h = G↓g∩hH. By Proposition 6.2, A↓g∩h = G↓g∩hH↓g∩h. So AA↓g∩h =
GHG↓g∩hH↓g∩h = (GH↓g∩h)(G↓g∩hH) = A↓gA↓h.

???

 125

 If we write (vi) as (A/A↓h)↓g = Ag|g∩h, then we see its equivalence to (ii) by
(iv) and (v) of Proposition 6.1. Similarly, (vii) is equivalent to (iii).
 Finally, we prove the equivalence of (viii) and (vi); the equivalence of (ix)
and (vii) is analogous. Suppose (viii) holds. Then we can write Ag|h = B↑g∪h, or
A/A↓h = B↑g∪h, where B is a potential on g. By Proposition 6.1, this implies that A
= BA↓h. Applying Proposition 3.1 to this equation, we obtain A↓g = BA↓g∩h. Using
Proposition 6.1 again, this time to divide both sides by A↓g∩h, we obtain (vi).

Proof of Proposition 6.4. The sum of the values of P|h=y is
 Σ{P|h=y(x) | x∈WX } = Σ{P(x)I↓h(x↓h)/P↓h(x↓h) | x∈WX }
 = Σ{P(x)/P↓h(y) | x∈WX and x↓h=y}
 = Σ{P(x) | x∈WX and x↓h=y} /P↓h(y)
 = P↓h(y) / P↓h(y) = 1.

Proof of Proposition 6.5. To see that (ii) and (iii) are equivalent, notice that (ii)
says that P=P/P↓f, and by (v) and (vi) of Proposition 6.1, this is equivalent to (iii).
 To see that (iii) and (i) are equivalent, notice that the relation
P(y)=P(y)P↓f(y↓f) can hold for all y if and only if P↓f(y↓f) is equal to one whenever
P(y)>0. Since a probability distribution can assign the value one to at most one
configuration, this is equivalent to (i).

Proof of Proposition 6.7. The equivalence of (i) and (ii) is obvious.
 The equivalence of (ii) and (iii) follows from the definition of conditional
probability; if δ(x)↓g=x and P↓g(x)>0, then Pg∪h|g=x(δ(x)) = P↓g∪h(δ(x)) / P↓g(x), so
Pg∪h|g=x(δ(x)) = 1 is equivalent to P↓g∪h(δ(x)) = P↓g(x).
 The equivalence of (iii) and (iv) follows from the definition of marginal
probability. This definition says that
 P↓g(x) = Σ{P↓g∪h(y) | y∈Wg∪h and y↓g=x}.

Since all the terms in the sum are non-negative, only one of these terms being
positive is equivalent to the existence of one that is equal to the sum.
 We leave to the reader the proof that (v) is also equivalent to the preceding
statements.

 126

Proof of Proposition 6.8. Both Ph∪f|g and Ph|g∪f have the domain f∪g∪h, and both
take positive values only for those z∈Wf∪g∪h such that P↓f∪g∪h(z)>0. By part (v) of
Proposition 6.7, P↓g∪f(z) = P↓g(z) and hence
 Ph∪f|g(z) = P↓f∪g∪h(z) / P↓g(z) = P↓f∪g∪h(z) / P↓g∪f(z) = Ph|g∪f(z)
for any such z.

Proof of Proposition 6.13. The proof is based on a comparison between Lauritzen
and Spiegelhalter's algorithm (algorithm L&S) and the algorithm for simultaneous
computation given in section 3.6 (algorithm SM, for Simultaneous computation of
Marginals). We assume that both algorithms use the construction sequence h1h2...hn
for both the inward and outward sweep.
 The two algorithms send the same messages inward, and they both
incorporate messages received by multiplication, so as the propagation proceeds
they will agree on the potential stored at any vertex that has received but not yet
sent messages. At the end of the inward sweep, the root h1 has not yet sent a
message; this is how we know its potential under L&S is the same as its potential
under SM, A↓h1.
 Let us step back a moment, to the point just before the end of the inward
sweep, just before h2 sends a message to h1. At that point, neither h1 nor h2 has sent
a message, and the same potentials have arrived at the two vertices under L&S as
under SM. The vertex h1 has its original potential and messages from all its
neighbors except h2. Under SM, these potentials are all stored; under L&S, their
product
 B1 = Ah1 Π{Mg→h1 | g∈(Nh1–{h2})}.

is stored. Similarly, h2 has its original potential and messages from all its neighbors
except h1. Under SM, these are all stored; under L&S their product
 B2 = Ah2 Π{Mg→h2 | g∈(Nh2–{h1})}.

is stored.
 Figure 6.10 shows what happens next under SM. First, the inward sweep is
completed as h2 marginalizes B2 to h2∩h1. This is the end of the inward sweep, and
h1 is now able to multiply all its messages together, obtaining its marginal,
B1B2

↓h1∩h2. Then, as the first step of the outward sweep, h1 multiplies everything

 127

except the message from h1, obtaining B1, and sends the message B1
↓h1∩h2 to h2.

Now h2 has also received all its messages; it multiplies them all together, obtaining
its marginal, B2B1

↓h1∩h2.
 Figure 6.11 shows what happens next under L&S. Initially we have the
product B1 at h1 and the product B2 at h2. The inward sweep is completed as h2
marginalizes B2 to h1∩h2. The message, B2

↓h1∩h2 multiplies the potential at h1 and
divides the potential at h2, leaving B1B2

↓h1∩h2 at h1 and B2/B2
↓h1∩h2 at h1. Then, as

the first step of the outward sweep, h1 marginalizes its current potential, B1B2
↓h1∩h2,

to h2. The marginal multiplies the potential already at h2, yielding, by Propositions
3.2 and 6.1,

 (B1B2
↓h1∩h2)↓h1∩h2 B2/B2

↓h1∩h2 = B1
↓h1∩h2 B2

↓h1∩h2 B2/B2
↓h1∩h2

 = B1
↓h1∩h2B2,

the marginal on h2.

Figure 6.10. Algorithm SM.

h1 h2

 Product of the potentials stored-

 -at hi: -at h2:
Just before the last
step of inward sweep.

At end of inward
sweep.

Just before h1 projects
back outward to h2.

B1

B1B2
→h1

B1B2
→h1

 B2

B2

B2B1
→h2

 128

Figure 6.11. Algorithm L&S.

h1 h2

 Product of the potentials stored-

 -at hi: -at h2:
Just before the last
step of inward sweep.

At end of inward sweep.

Just before h1 projects
back outward to h2.

B1

B1B2
→h1

B1B2
→h1

B2

B2/B2
→h1

(B2/B2
→h2)(B1B2

→h1)→h2

 We have established that L&S produces the marginal on the first vertex to
which it projects in its outward sweep. But the same argument also works for any
other vertex. The situation just before g projects to h on the outward sweep will be
the same no matter whether this is the first projection on the outward sweep or a
later one. In either case, the situation will be described by the middle lines in
Figures 6.10 and 6.11. The vertex g will have all its messages (under SM) or their
product (under L&S). The vertex h will have all its messages except the message
from g or their product divided by the message h sent to g (under L&S).

CHAPTER SEVEN

An Axiomatic Framework for Discrete Optimization

The main objective of this chapter is to describe an axiomatic paper for
representing and solving discrete optimization problems. There are several reasons
why this is useful.
 First, in chapter 4, we described an axiomatic framework for computing the
marginals of the joint valuation in a valuation-based system (VBS). In this chapter,
I show that these systems also have the expressive power to represent and solve
optimization problems.
 Second, problems in Bayesian decision analysis involve managing
probabilities and optimization. That these problems can be solved in a common
framework suggests that Bayesian decision problems also can be represented and
solved in the framework of VBS. Indeed, Shenoy [1990a,b, 1991] shows that this
is true. In fact, the solution procedure of VBSs when applied to symmetric
Bayesian decision problems results in a method that is computationally more
efficient than decision trees and influence diagrams.
 Third, the solution procedure of VBS when applied to optimization problems
results in a method called non-serial dynamic programming [Bertele and Brioschi,
1972]. Thus in an abstract sense, the local computation algorithms that have been
described by, for example, Pearl [1986], Shenoy and Shafer [1986], Dempster and
Kong [1988], Lauritzen and Spiegelhalter [1988], and Shafer and Shenoy [1990]
are just dynamic programming.

 130

 Fourth, we provide an answer to the question: What is dynamic
programming? Dynamic programming is commonly viewed as an optimization
technique. This is how Bellman [1957] described it. However, it is also recognized
that dynamic programming is more than an optimization technique. For example,
Aho, Hopcroft and Ullman [1974] refer to dynamic programming as a “divide-and-
conquer” methodology. In this paper, we give a formal definition of a problem and
a formal method solving the problem. The formal method for solving the problem
can be thought of as an abstract definition of dynamic programming solution
methodology.
 Fifth, we provide an answer to the question: When does dynamic
programming work? We describe some simple axioms for combination and
marginalization that enable the use of dynamic programming for solving
optimization problems. We believe these axioms are new. They are weaker than
those proposed by Mitten [1964].
 Sixth, the VBS described here can be easily adapted to represent
propositional logic [Shenoy 1990c,d] and constraint satisfaction problems [Shenoy
and Shafer, 1988]. Constraint satisfaction problems is dealt with in chapter 8 of
this book.
 An outline of this chapter is as follows. In section 7.1, we show how to
represent an optimization problem as a VBS. In section 7.2, we state some simple
axioms that justify the use of local computation in solving VBSs. In section 7.3, we
show how to solve a VBS. Throughout the paper, we use one example to illustrate
all definitions and the solution method. In section 7.4, we compare our axioms to
those proposed by Mitten [1964] for serial dynamic programming. In section 7.5,
we describe two different applications of the axiomatic framework. In section 7.6,
we make some concluding remarks. Finally, in section 7.7 we provide proofs for
all results in the paper.
 Most of the material in this chapter previously appeared in [Shenoy, 1991].

 131

7.1. The Axiomatic Framework

A valuation-based system representation of an optimization problem uses
variables, frames, and valuations. We will discuss each of these in detail. We will
illustrate all definitions using an optimization problem from Bertele and Brioschi
[1972].
 An Optimization Problem. There are five variables labeled as A, B, C, D,
and E. Each variable has two possible values. Let a and ~a denote the possible
values of A, etc. The joint objective function F for variables A, B, C, D, and E
factors additively as follows: F(v, w, x, y, z) = F1(v, x, z) + F2(v, w) + F3(w, y, z),
where F1, F2, and F3, are as shown below in Figure 7.1. The problem is to find the
minimum value of F and a configuration (v, w, x, y, z) that minimizes F.

Figure 7.1. The factors of the objective function, F1, F2, and F3.

w!w {A,C,E} F1(w)

a c e 1

a c ~e 3

a ~c e 5

a ~c ~e 8

~a c e 2

~a c ~e 6

~a ~c e 2

~a ~c ~e 4

w!w {B,D,E} F3(w)

b d e 0

b d ~e 5

b ~d e 6

b ~d ~e 3

~b d e 5

~b d ~e 1

~b ~d e 4

~b ~d ~e 3

w!w {A,B} F2(w)

a b 4

a ~b 8

~a b 0

~a ~b 5

 Values and Valuations. We are concerned with a set V whose elements are
called values. V may be finite or infinite. Given a set h of variables, we call any
function H:Wh → V, a valuation for h. Note that to specify a valuation for ∅, we
need to specify only a single value, H(♦). If H is a valuation for h and X∈h, then
we say H bears on X.
 In our problem, the set V corresponds to the set of real numbers, and we
have three valuations F1, F2 and F3. F1 is a valuation for {A, C, E}, F2 is a valuation
for {A, B} and F3 is a valuation for {B, D, E}. Figure 7.2 shows a graphical

 132

depiction of the optimization problem. We call such a graph a valuation network.
In a valuation network, square nodes represent variables, and diamond-shaped
nodes represent valuations. Each valuation is linked to the variables it bears on.
 Let Vh denote the set of valuations for h, and let V denote the set of
valuations, i.e., V = ∪{Vh | h⊆X}.

Figure 7.2. The valuation network for the optimization problem.

A

E

C D

BF2

F1 F3

 Combination. We assume there is a mapping :V×V → V called
combination so that if u, v ∈ V, then uv is the value representing the combination
of u and v. We define a mapping ⊕:V×V → V in terms of , also called
combination, such that if G and H are valuations for g and h, respectively, then
G⊕H is the valuation for g∪h given by
 (G⊕H)(x) = G(x↓g)©H(x↓h) (7.1)

for all x∈Wg. We call G⊕H the combination of G and H.
 In our optimization problem, © is simply addition, i.e.
 (G⊕H)(x) = G(x↓g) + H(x↓h) (7.2)

Using (7.2), we can express the joint objective function F as follows F =
F1⊕F2⊕F3.

 133

 Marginalization. We assume that for each h⊆X, there is a mapping
↓h:∪{Vg | g⊇h} → Vh, called marginalization to h, such that if G is a valuation for
g and g⊇h, then G↓h is a valuation for h. We call G↓h the marginal of G for h.
 For our optimization problem, we define marginalization as follows:
 G↓h(x) = MIN{G(x, y) | y∈Wg–h} (7.3)

for all x∈Wh. Thus, if F is an objective function, then F↓∅(♦) represents the
minimum value of F.
 In an optimization problem, besides the minimum value, we are usually also
interested in finding a configuration where the minimum of the joint valuation is
achieved. This motivates the following definition.
 Solution for a Valuation. Suppose H is a valuation for h. We call x∈Wh a
solution for H if H(x) = H↓∅(♦).
 Solution for a Variable. As we will see, once we have computed the
minimum value of a valuation, computing a solution for the valuation is a matter of
bookkeeping. Each time we eliminate a variable from a valuation using
minimization, we store a table of configurations of the eliminated variable where
the minimums are achieved. We can think of this table as a function. We call this
function “a solution for the variable.” Formally, we define a solution for a variable
as follows. Suppose X is a variable, suppose g is a subset of variables containing
X, and suppose G is a valuation for g. We call a function ΨX: Wg–{X} → WX a
solution for X (with respect to G) if
 G↓(g–{X})(c) = G(c, ΨX(c)) (7.4)

for all c∈Wg–{X}.
 If X is a large set of variables, then a brute force computation of F and an
exhaustive search of the set of all configurations of X to determine a solution for F
is computationally infeasible. In the next section we will state axioms for
combination and marginalization that make it possible to use local computation to
compute the minimum value of F and a solution for F.

 134

7.2 The Axioms

We state three axioms. Axiom A1' is for combination. Axiom A2 is for
marginalization. And Axiom A3 is for combination and marginalization. Axioms
A2 and A3 are the same as those defined in Chapter 4.

A1'. (Commutativity and associativity of combination). Suppose u, v,
and w are values. Then uw = vu and u(vw) = (uv)w.

A2. (Consonance of marginalization). Suppose G is a valuation for g,
and k⊆h⊆g. Then (G↓h)↓k = G↓k.

A3. (Distributivity of marginalization over combination). Suppose G
and H are valuations for g and h, respectively. Then (G⊕H)↓g =
G⊕(H↓g∩h).

 Note that axiom A1' implies axiom A1 defined in Chapter 4, i.e., if axiom
A1' holds, then ⊕ is commutative and associative. Therefore, the combination of
several valuations can be written without using parentheses. For example,
(...((F1⊕F2)⊕F3)⊕...⊕Fk) can be simply written as F1⊕...⊕Fk without specifying
the order in which to do the combination.
 If we regard marginalization as a reduction of a valuation by deleting
variables, then axiom A2 can be interpreted as saying that the order in which we
delete the variables does not matter.
 Axiom A3 is the crucial axiom that makes local computation of marginals
and solution possible. Axiom A3 states that computation of (G⊕H)↓g can be done
without having to compute G⊕H.
 For our optimization problem, it is easy to see that the definitions of
combination in (7.2) and marginalization in (7.3) satisfy the three axioms.

 135

7.3. Solving a VBS Using Local Computation

Suppose we are given a VBS consisting of a collection of valuations {F1, ..., Fk}
where each valuation Fi is for subset hi of X. The problem is (i) to find the value of
F↓∅(♦) = (F1⊕...⊕Fk)↓∅(♦) and (ii) to find a solution for F. We assume that
combination and marginalization satisfy the three axioms.
 In the case of an optimization problem, F↓∅(♦) represents the minimum
value of the joint objective function, and a solution for F represents a configuration
of all variables where the minimum is achieved.
 Solving a VBS proceeds in three phases. In phase one, we arrange the
subsets of variables in H in a “rooted Markov tree.” In the phase two, we
“propagate” the valuations {F1, ..., Fk} in the rooted Markov tree using a local
message-passing scheme resulting in the computation of the marginal F↓∅. In the
phase three, we construct a solution for F again using a local message-passing
scheme.

7.3.1. Phase One: Finding a Rooted Markov Tree Arrangement

 A rooted Markov tree is a Markov tree with the empty subset ∅ as the root
and such that all edges in the tree are directed toward the root. Figure 7.3 shows a
rooted Markov tree arrangement of the subsets {A, C, E}, {A, B}, and {B, D, E}.
 The computational efficiency of phase two depends on the sizes of the
frames of the vertices of the Markov tree constructed in the phase one. Finding an
optimal rooted Markov tree (a rooted Markov tree whose largest frame is as small
as possible) has been shown to be a NP-complete problem [Arnborg et al., 1987].
Thus we have to balance the computational efforts in the two phases. We will
describe a heuristic called “one-step-look-ahead” due to Kong [1986] to find a
good rooted Markov tree.
 The method described below for arranging a hypergraph in a rooted Markov
tree is due to Kong [1986] and Mellouli [1987].

 136

Figure 7.3. A rooted Markov tree for the optimization problem.

{A,B,E}

{B,D,E}{A,C,E}

{B,E}{A,E}

{A,B}

A

!

 Suppose H is a hypergraph on X. To arrange the subsets in H in a Markov
tree, we first pick a sequence of variables in X. As we will see, each sequence of
the variables gives rise to a Markov tree arrangement. Mellouli [1987] has shown
that an optimal Markov tree arrangement can be found by picking some sequence.
Of course, since there are an exponential number of sequences, finding an optimal
sequence is, in general, a difficult problem.
 Suppose we have a sequence of variables. Consider the first variable, say X1,
in the sequence. We add two subsets g1= ∪{h | X1∈h} and f1 = g1–{X1} to H. We
form the rooted Markov tree (V, E) where V = {h∈H | Xi∈h}∪{fi}∪{gi} and E =
{(h, gi) | h∈(H−{gi, fi}), Xi∈h}∪{(gi, fi)}. We now consider X1 as marked and
subsets that contain X1 as arranged. We repeat this process for the unarranged
subsets until all variables are marked.

 137

 Consider the following set of instructions in pseudo-Pascal:
 u := X {Initialization}
 H0 := H {Initialization}
 V := ∅ {Initialization}
 E := ∅ {Initialization}
 for i = 1 to n do
 begin
 Pick a variable from set u and call it Xi

 u := u – {Xi}
 gi := ∪{h∈Hi–1 | Xi∈h}.
 fi := gi – {Xi}.
 V := V ∪ {h∈Hi–1 | Xi∈h} ∪ {fi} ∪ {gi}
 E := E ∪ {(h, gi) | h∈(Hi–1–{gi, fi}), Xi∈h} ∪ {(gi, fi)}
 Hi := {h∈Hi–1 | Xi∉h} ∪ {fi}
 end {for}

 After the execution of the above set of instructions, it is easily seen that the
pair (V, E) is a rooted Markov tree arrangement of H where V denotes the set of
vertices of the rooted Markov tree and E denotes the set of edges directed toward
the root.
 Kong [1986] has suggested a heuristic called one-step-look-ahead for
finding a good Markov tree. This heuristic tells us which variable to mark next. As
the name of the heuristic suggests, the variable that should be marked next is an
unmarked variable Xi such that the cardinality of Wfi is the smallest. Thus, the
heuristic attempts to keep the sizes of the frames of the added vertices as small as
possible by focusing only on the next subset added. In the optimization problem, a
marking sequence selected by the one-step-look-ahead heuristic is CDEBA. Figure
7.4 illustrates the construction of a rooted Markov tree using this marking
sequence. The resulting Markov tree is the same as that shown in Figure 7.3. See
Zhang [1988] for other heuristics for good Markov tree construction.

 138

Figure 7.4. The construction of the rooted Markov tree for the
optimization problem.

A

E

C D

B

A

E

C D

B

A

E

C D

B

A

E

C D

B

A

E

C D

B

1. The initial hypergraph. Variables
are shown as squares and subsets are
shown as black disks. The elements
of each subset are indicated by dotted
lines.

2. The Markov tree fragment after C
is marked. Subset {A,E} is added to
the hypergraph. Subset {A,C,E} is
now arranged.

3. The Markov tree fragment after D
is marked. Subset {B,E} is added to
the hypergraph. Subset {B,D,E} is
now arranged.

4. The Markov tree fragment after E
is marked. Subset {A,B,E} is added
to the hypergraph. Subsets {A,E},
{B.E} and {A,B,E} are now
arranged.

5. The Markov tree fragment after B
and then A are marked. Subsets {A}

and ! are added to the hypergraph.
All subsets are now arranged.

 139

7.3.2. Phase Two: Finding the Marginal of the Joint Valuation

Suppose we have arranged the hypergraph H in a rooted Markov tree. Let H'
denote the set of subsets in the Markov tree. Clearly H'⊇H. To simplify the
exposition, we assume there is exactly one valuation for each nonempty subset
h∈H'. If h is a subset that was added during the rooted Markov tree construction
process, then we can associate the vacuous valuation (the valuation whose values
are all 0) with it. On the other hand, if subset h had more than one valuation
defined for it, then we can combine these valuations to obtain one valuation.
 If we assume that the directed edges of a rooted Markov tree point from a
child to its parent, then the rooted Markov tree defines a parent-child relation
between adjacent vertices. If there is an edge (hi, hj) in the rooted Markov tree, we
refer to hj as hi’s parent and refer to hi as hj’s child. Let h0 = ∅ denote the root of
the Markov tree. Let Pa(h) denote h’s parent and let Ch(h) denote the set of h’s
children. Every non-root vertex has exactly one parent. Some vertices have no
children and we call such vertices leaves. Note that the root has exactly one child.
 In describing the process of finding the marginal of the joint valuation for
the empty set, we will pretend that there is a processor at each vertex of the rooted
Markov tree. Also, we assume these processors are connected using the same
architecture as the Markov tree. In other words, each processor can directly
communicate only with its parent and its children.
 In the propagation process, each subset (except the root h0) transmits a
valuation to its parent. We call the valuation transmitted by subset hi to its parent
Pa(hi) a valuation message and denote it by Vhi→Pa(hi). Suppose H' = {h0, h1, ..., hk}
and let Fi denote the valuation associated with nonempty subset hi. Then, the
valuation message transmitted by a subset hi to its parent Pa(hi) is given by

 Vhi→Pa(hi) = (⊕{Vh→hi | h∈Ch(hi)}⊕Fi)↓(hi∩Pa(hi)) (7.5)

In words, the valuation message transmitted by a subset to its parent consists of the
combination of the valuation messages it receives from its children plus its own
valuation suitably marginalized. Note that the combination operation in (7.5) is on
the frame Whi.
 Expression (7.5) is a recursive formula. We need to start the recursion
somewhere. Note that if subset hi has no children, then Ch(hi) = ∅ and the
expression in (7.5) reduces to

 140

 Vhi→Pa(hi) = (Fi)↓(hi∩Pa(hi)) (7.6)

Thus the leaves of the Markov tree (the subsets that have no children) can send
valuation messages to their parents right away. The others wait until they have
heard from all their children before they send a valuation message to their parent.
 The following theorem states that the valuation message from h0’s child to
h0 is indeed the desired marginal.

Theorem 7.1. The marginal of the joint valuation for the empty set is
equal to the message received by the root, i.e., (F1⊕...⊕Fk)↓∅ = Vh→h0.

 Theorem 7.1 is valid not only for optimization problems but for any VBS
where axioms A1', A2, A3 hold. We give a simple proof of Theorem 7.1 in section
7.6.
 The essence of the propagation method described above is to combine
valuations on smaller frames instead of combining all valuations on the global
frame associated with X. To ensure that this method gives us the correct answers,
the smaller frames have to be arranged in a rooted Markov tree.
 Figure 7.5 shows the propagation of valuations in the optimization problem.
Figure 7.6 shows the details of the valuation messages. As is clear from Figure 7.6,
the minimum value of the joint objective function F is 2.

 141

Figure 7.5. The propagation of valuations in the optimization
problem. The valuation messages are shown as rectangles overlapping
the corresponding edges. The valuations associated with the vertices
are shown as diamonds linked to the corresponding vertices by dotted
lines.

{A,B,E}

{B,D,E}{A,C,E}

{B,E}{A,E}

F1 F3

{A,B}

A

!

F2

F1
"{A,E}

F1
"{A,E}

F3
"{B,E}

F3
"{B,E}

(F1
"{A,E}

#F3
"{B,E}

)
"{A,B}

((F1
"{A,E}

#F3
"{B,E}

)
"{A,B}

#F2)
"{A}

(((F1
"{A,E}

#F3
"{B,E}

)
"{A,B}

#F2)
"{A})"!

 142

Figure 7.6. The details of the valuation messages for the optimization problem.

 143

w {A,B,E} F1
!{A,E}

F3
!{B,E}

F1
!{A,E}

"F3
!{B,E}

a b e 1 0 1

a b ~e 3 3 6

a ~b e 1 4 5

a ~b ~e 3 1 4

~a b e 2 0 2

~a b ~e 4 3 7

~a ~b e 2 4 6

~a ~b ~e 4 1 5

w {A,B} (F1
!{A,E}

"F3
!{B,E}

)
!{A,B}

#E

a b 1 e

a ~b 4 ~e

~a b 2 e

~a ~b 5 ~e

w {A,B} (F1
!{A,E}

"F3
!{B,E}

)
!{A,B}

F2 (F1
!{A,E}

"F3
!{B,E}

)
!{A,B}

"F2

a b 1 4 5

a ~b 4 8 12

~a b 2 0 2

~a ~b 5 5 10

w {A} ((F1
!{A,E}

"F3
!{B,E}

)
!{A,B}

"F2)!{A}
#B

a 5 b

~a 2 b

w $ (((F1
!{A,E}

"F3
!{B,E}

)
!{A,B}

"F2)!{A})!$ #A

% 2 ~a

w {A,C,E} F1

a c e 1

a c ~e 3

a ~c e 5

a ~c ~e 8

~a c e 2

~a c ~e 6

~a ~c e 2

~a ~c ~e 4

w {B,D,E} F3

b d e 0

b d ~e 5

b ~d e 6

b ~d ~e 3

~b d e 5

~b d ~e 1

~b ~d e 4

~b ~d ~e 3

w {A,E} F1
!{A,E}

#C

a e 1 c

a ~e 3 c

~a e 2 c or ~c

~a ~e 4 ~c

w {B,E} F3
!{B,E}

#D

b e 0 d

b ~e 3 ~d

~b e 4 ~d

~b ~e 1 d

 144

7.3.3. Phase Three: Finding a Solution

In phase two, each time we marginalize a variable, assume that we store the
corresponding solution for that variable at the vertex where we do the
marginalization. For example, in the optimization problem, we store a solution for
C at vertex {A, C, E}, we store a solution for D at vertex {B, D, E}, we store a
solution for E at vertex {A, B, E}, we store a solution for B at vertex {A, B}, and
we store a solution for A at vertex {A} (see Figures 4, 5, and 6).
 In this phase, each vertex of the rooted Markov tree sends a configuration to
each of its children. We call the configuration transmitted by vertex hi to its child
hj∈Ch(hi) as a configuration message and denote it by chi→hj. chi→hj will always be
an element of Whi∩hj. As in phase two, we give a recursive definition of
configuration messages.
 The messages start at the root and travel toward the leaves. The
configuration message from vertex ∅ to its child, say h1, is given by
 c∅→h1 = ♦. (7.7)

 In general, consider vertex hi. It receives a configuration message cPa(hi)→hi
from its parent Pa(hi). Let hj be a child of hi. The configuration message from hi to
hj depends on whether hi has a solution for a variable stored at its location.
(Remember that vertex hi has a solution for X stored with it if hi–Pa(hi) = {X}).
 If hi has a solution for a variable stored at its location, then
 chi→hj = (cPa(hi)→hi, ΨX(cPa(hi)→hi))↓(hi∩hj) (7.8)

where X is such that {X} = hi–Pa(hi).
 If hi has no solution for a variable stored at its location, then

 chi→hj = (cPa(hi)→hi)↓(hi∩hj). (7.9)
 We stop the message passing process when each vertex that has a solution
stored at its location has received a configuration message.

Theorem 7.2. Suppose hX denotes the vertex that has the solution for
X stored at its location. Then z∈WX given by

 145

 z↓{X} = ΨX(cPa(hX)→hX), for every X∈X (7.10)

 is a solution for F1⊕...⊕Fk.

 Figure 7.7 illustrates the message passing scheme for the optimization
problem. As per Theorem 7.2, a solution for F is given by (ΨA(c∅→{A}),
ΨB(c{A}→{A,B}), ΨC(c{A,E}→{A,C,E}), ΨD(c{B,E}→{B,D,E}), ΨE(c{A,B}→{A,B,E})). From
Figures 6 and 7, we see that configurations (~a, b, c, d, e) and (~a, b, ~c, d, e) are
both solutions for F.

 146

Figure 7.7. The propagation of configuration messages in the
optimization problem. The configuration messages are shown as
rectangles with rounded corners overlapping the corresponding edges.
Note that the direction of messages is opposite to the direction of the
edges. The solutions for the five variables are shown as inverted
triangles attached to the vertices (where they are stored) by dotted
lines.

{B,E}{A,E}

!

"A

{A,B,E}
"E

{A,C,E}"C {B,D,E} "D

{A,B} "B

#

~a

(~a,b)

(~a,e)

(b,e)

(b,e)

A

(~a,e)

 147

7.4. Mitten’s Axioms for Dynamic Programming

In optimization problems, the computational scheme described in section 4 is
essentially the same as the method of non-serial dynamic programming
(Nemhauser, 1966; Bertele and Brioschi, 1972). Bellman's dynamic programming
methodology appealed to a principle of optimality that translates into axiom A3
with combination interpreted as addition and marginalization interpreted as
maximization over the deleted variables (Bellman 1957). Mitten (1964) has
described a more general framework for discrete dynamic programming. In this
section, we describe Mitten's framework in terms of our notation.
 Values and Valuations. The value space is R, the set of real numbers. A
valuation for h is a real-valued function on Wh.
 Combination. There is a mapping : R×R → R that is commutative and
associative. Define a mapping ⊕:V×V → V such that whenever G and H are
valuations for g and h respectively, G⊕H is a valuation for g∪h given by
 (G⊕H)(x) = G(x↓g) H(x↓h)

for all x∈Wg∪h.
 Monotonicity of Combination. We say that is monotonic if uv1 ≥ uv2
whenever v1 ≥ v2. Suppose H1 and H2 are valuations for h. We say that H1 ≥ H2 if
H1(x) ≥ H2(x) for all x∈Wh. Note that if is monotonic, then G⊕H1 ≥ G⊕H2
whenever H1 ≥ H2.
 Marginalization. Define a mapping ↓h: ∪{Vg | g⊇h} → Vh such that
whenever G is a valuation for g, G↓h is a valuation for h given by
 G↓h(x) = MAX{G(x, y) | y∈Wg–h} (7.11)

for all x∈Wh.

Theorem 7.3. Suppose the value space is R and suppose
marginalization is defined as in (7.11). If is monotonic, and G and
H are valuations for g and h, respectively, then (G⊕H)↓g = G⊕(H↓g∩h).

 Thus monotonicity of implies axiom A3. The other condition that Mitten
requires is called separability and it amounts to a serial factorization of the joint

 148

objective function. In our framework, we do not require any particular structure for
the factorization of the joint valuation.

7.5 Other Applications of the Axiomatic Framework

7.5.1. Most Probable Configuration

In many applications such as medical diagnosis, pattern recognition, circuit
diagnosis, restoration of degraded images, etc, one is more interested in the values
of some or all variables that have the highest joint probability (conditioned on all
evidence) than in the marginal distributions of each of the variables (see for
example, Pearl [1988], Geman and Geman [1984]). We shall refer to a
configuration that has the maximum probability as a most probable configuration.
 If one is working with a large number of variables, it is computationally
infeasible to enumerate all configurations and compute the values of the joint
distribution for each of these configurations. However, if the joint probability
distribution factorizes on a hypertree with small hyperedges, then we can find a
most probable configuration using the scheme described in section 7.3.
 Valuations. In this section proper valuations will correspond to potentials as
defined in chapter 3.
 Combination. As in the case of probability propagation, when we refer to
combination of potentials, we mean pointwise multiplication.
 Suppose G and H are potentials on g and h, respectively, such that there
exists an x∈Wg∪h such that G(x↓g)H(x↓h) > 0. Then their combination RS is the
potential on g given by

 (RS)(x) = R(x)S(x). (7.12)
If G(x↓g)H(x↓h) = 0 for all x∈Wg∪h, then we say that G and H are not combinable.
 Marginalization. The marginalization operation for the computation of a
most probable configuration differs from the marginalization operation defined for
probability propagation.

 149

 Suppose G is a potential for g and suppose h⊆g, h≠g. We will define the
marginal of G to h, denoted by G↓h, to be a potential on h such that
 G↓h(y) = MAX{G(y, z) | z∈Wg–h} (7.13)

for all y∈Wh.

Proposition 7.1. The definitions of combination, and marginalization
in (7.12) and (7.13) respectively, satisfy axioms A1', A2, and A3.

 Thus we can compute a most probable configuration using the scheme
described in section 7.3.

7.5.2. Most Plausible Configuration

Suppose that we have several independent pieces of evidence represented by belief
functions. We would like to find a configuration that has the maximum plausibility
function value where the plausibility function corresponds to the belief function
that has been obtained by combining all independent pieces of evidence. We will
refer to this problem as finding the most plausible configuration.
 Our strategy is to reduce the problem to finding a most probable
configuration. To do so, we need to identify the potentials corresponding to the
various belief functions.
 First let us state the problem more formally. Suppose X is a finite set of
variables and suppose H is a hypertree on X. Suppose Bel = ⊕{Belh | h∈H} where
Belh is a belief function on Wh. The belief functions Belh correspond to
independent pieces of evidence and Bel is the joint belief function representing all
evidence. Suppose Pl is the plausibility function corresponding to Bel and Plh is the
plausibility function corresponding to Belh for each h∈H. The problem is to find a
x*∈WX such that
 Pl({x*}) = MAX{Pl({x}) | x∈WX}

 Define potential R for X by R(x) = Pl({x}) for each x∈WX. Also for each
h∈H, define potential Rh for h by Rh(x) = Plh({x}) for each x∈Wh. The next
proposition states that the potential R factorizes on H with factors Rh, h∈H.

Proposition 7.2. Under the assumptions of the preceding paragraph,

 150

 R ∝ Π{Rh | h∈H}
 In terms of the potential R, the problem of finding a most plausible
configuration for Pl is equivalent to finding an optimal configuration for R.
Proposition 7.2 tells us that we have a factorization of R on a hypertree. Thus we
can use the method described in the previous section and our problem is solved.

7.6. Conclusions

In the introduction, we raised two questions: What is dynamic programming? And,
when does dynamic programming work? The main contribution of this chapter is
the abstract framework of valuation-based systems consisting of variables, frames
of variables, values, valuations, and two operations—combination and
marginalization. Assuming that combination and marginalization satisfy three
simple axioms, we have described a method for computing a solution for the joint
valuation using only local computation. We can think of the framework and its
solution method as the answer to the first question. The three axioms constitute one
answer to the second question.

7.7. Proofs

In this section, we provide proofs for the Theorems 1 and 2 stated in section 5 and
Theorem 7.3 stated in section 6. We prove Theorems 1 and 2 only using axioms
A1', A2 and A3. In other words, we do not assume that combination is addition and
marginalization is minimization.

 151

Lemma 7.1. Suppose h1, ..., hk are the vertices of a rooted Markov
tree. Suppose for i = 1, ..., k, vertex hi has the valuation Fi associated
with it, where Fi is a valuation for hi. Suppose hk is a leaf in the rooted
Markov tree with parent hk-1. Suppose X denotes h1∪...∪hk and X'
denotes h1∪...∪hk–1. Then

 (F1⊗...⊗Fk)↓X' = F1⊗...⊗Fk–2⊗(Fk–1⊗Fk
↓(hk∩hk–1)) (7.14)

Proof of Lemma 7.1. Note that axiom A1' allows us to write the LHS of (7.14) as is
written above. The result in (7.14) follows directly from axiom A3 by substituting
X' for g, hk for h, F1⊗...⊗Fk–1 for G, and Fk for H. Since hk is a leaf in the rooted
Markov tree with parent hk-1, hk∩hk–1 ⊆ hk–1. Thus Fk–1⊗Fk

↓(hk∩hk–1) is a valuation
for hk–1. ■

Proof of Theorem 7.1. By axiom A2, (F1⊗...⊗Fk)↓∅ is obtained by sequentially
marginalizing all variables in any sequence. A proof of this theorem is obtained by
repeatedly applying the result of Lemma 7.1. At each step, a leaf of the rooted
Markov tree sends a message to its parent, the parent combines this message with
its own valuation, and the leaf is deleted from the tree. When the tree is reduced to
only one vertex, the root, we have the result. ■

 Next, we state a lemma that is needed to prove Theorem 7.2.

Lemma 7.2. Suppose h1, ..., hk are the vertices of a rooted Markov
tree. Suppose for i = 1, ..., k, vertex hi has the valuation Fi associated
with it, where Fi is a valuation for hi. Suppose hk is a leaf in the rooted
Markov tree with parent hk-1 and suppose hk–(hk∩hk–1) = {Xj} If ΨXj is
a solution for Xj (with respect to Fk), and c is a solution for
F1⊗...⊗Fk-2⊗Fk-1⊗Fk

↓(hk∩hk–1), then (c, ΨXj(c
↓(hk∩hk-1))) is a solution for

F1⊗...⊗Fk.

Proof of Lemma 7.2. We need to prove that (F1⊗...⊗Fk)(c, ΨXj(c

↓(hk∩hk-1))) =
(F1⊗...⊗Fk)↓∅(♦). We have (F1⊗...⊗Fk)(c, ΨXj(c

↓(hk∩hk-1)))
= (F1⊗...⊗Fk–1)(c) Fk(c↓(hk∩hk-1), ΨXj(c

↓(hk∩hk-1))) (by definition of combination)

 152

= (F1⊗...⊗Fk–1)(c) Fk
↓(hk∩hk-1)(c↓(hk∩hk-1))

 (since ΨXj is a solution for Xj with respect to Fk)

= (F1⊗...⊗Fk–2⊗Fk–1⊗Fk
↓(hk∩hk–1))(c) (by definition of combination)

= (F1⊗...⊗Fk–2⊗Fk–1⊗Fk
↓(hk∩hk–1))↓∅(♦)

 (since c is a solution for (F1⊗...⊗Fk–2⊗Fk–1⊗Fk
↓(hk∩hk–1)))

= ((F1⊗...⊗Fk)↓(h1∪...∪hk)–{Xj})↓∅(♦) (using Lemma 7.1)

= (F1⊗...⊗Fk)↓∅(♦) (using axiom A2)

 ■

Proof of Theorem 7.2. A proof of this theorem is obtained by repeated application
of Lemma 7.2. First we apply Lemma 7.2 for the entire rooted Markov tree. In our
rooted Markov tree construction algorithm, if hk–1 is a parent of hk, then either
hk−(hk∩hk−1) = {Xj} for some j∈X, or hk⊆hk–1. The first case corresponds to the
statement of Lemma 7.2. In the second case, when hk sends a valuation message to
hk–1, there is no marginalization. Hence, there is no solution function stored at hk.
But in this case, F1⊗...⊗Fk–2⊗Fk–1⊗Fk

↓(hk∩hk–1) = F1⊕...⊕Fk. Next, we apply
Lemma 7.2 to the rooted Markov tree with vertex hk and edge (hk, hk–1) deleted.
And so on, until the only vertex left is ∅. But ♦ is the solution for (F1⊗...⊗Fk)↓∅.
Thus the configuration messages as defined in (7.7), (7.8) and (7.9) give us the
solution for F1⊗...⊗Fk as stated in Theorem 7.2. ■

Proof of Theorem 7.3. Suppose x∈Wg–h and y∈Wg∩h. Then
 (G⊕H)↓g(x, y) = MAX{(G⊕H)(x, y, z) | z∈Wh–g}
 = MAX{G(x, y)H(y, z) | z∈Wh–g}
 ≥ G(x, y)(MAX{H(y, z) | z∈Wh–g})
In other words, (G⊕H)↓g ≥ G⊕(H↓g∩h). But since is monotonic and
MAX{H(y, z) | z∈Wh−g} ≥ H(y, z) for all z∈Wh–g,we have

G(x, y)(MAX{H(y, z) | z∈Wh–g}) ≥ G(x, y)H(y, z)
for all z∈Wh–g. In particular, this inequality must hold for the maximum of the
RHS with respect to z, i.e., G(x, y)(MAX{H(y, z) | z∈Wh–g})

 153

≥ MAX{G(x, y)H(y, z) | z∈Wh–g}, i.e., G⊕(H↓g∩h) ≥ (G⊕H)↓g. Since we have
already shown that (G⊕H)↓g ≥ G⊕(H↓g∩h), we have the result. ■

Proof of Proposition 7.1. ■
Proof of Proposition 7.2. Suppose Q is the commonality function corresponding to
Bel and Qh is the commonality function corresponding to Belh for each h∈H. Then

 R(x) = Pl({x}) = Q({x}) ∝ Π{Qh
↑X({x}) | h∈H}

 = Π{Qh({x↓h}) | h∈H}
 = Π{Plh({x↓h}) | h∈H}
 = Π{Rh(x↓h) | h∈H}.
 ■

CHAPTER EIGHT

Constraint Satisfaction Problems

In this chapter we consider constraint satisfaction problems. We show how this
problem fits in the axiomatic framework described in chapter seven. We conclude
this section by solving a small constraint satisfaction problem in detail.
 A constraint satisfaction problem consists of finding a configuration of all
variables that satisfies all constraints. Since the number of configurations is an
exponential function of the number of variables, it is not possible to enumerate all
configurations and check each one to see if it satisfies all constraints. However, if
each constraint only involves a small subset of variables and these subsets form a
hypertree, then it is possible to find a feasible configuration by local propagation
using the method described in Chapter 7. Such solution procedures to constraint
satisfaction problems have been proposed by Freuder [1982, 1985] and are known
in the artificial intelligence literature as backtrack-free methods. Other solution
procedures to constraint satisfaction problems involving backtracking have been
proposed by Montanari [1974], Mackworth [1977], and Dechter and Pearl [1987].

8.1. Constraint Satisfaction Problems

A constraint for h, denoted by Ch, is a non-empty subset of the frame Wh for h.
Intuitively, Ch represents the set of configurations of h that are feasible. Suppose

 156

we are given a constraint Ch for each hyperedge h of a hypergraph H. The
constraint satisfaction problem (CSP) can be stated as follows:

(CSP P1): Find a x∈WX such that x↓h∈Ch for each h∈H.
We will refer to a configuration satisfying the above condition a feasible
configuration for the CSP P1.
Valuations. Given a constraint Ch for h, we will construct a valuation Ch:Wh → {f,
i} as follows (f means feasible, and i means infeasible):

 f if x∈Ch
 Ch(x) = (8.1)
 i if x∉Ch
for all x∈Wh.
 Suppose Ch is a valuation on h. We shall say that Ch is a proper valuation if
there exists an x∈Wh such that Ch(x) = f. Thus, a proper valuation cannot be
identically equal to i for all configurations. Note that since each constraint Ch is a
non-empty subset of Wh, each of the valuations constructed using (8.1) are proper
valuations.
Combination. Suppose that Cg and Ch are valuations on g and h respectively. We
will define Cg⊗Ch to be the valuation on g∪h given by

 f if Cg(x↓g) = f and Ch(x↓h) = f
 (Cg⊗Ch)(x) = (8.2)
 i otherwise
for all x∈Wg∪h.
 It is clear from the definition of combination above that it satisfies axiom
A1' (commutativity and associativity of combination).
Marginalization. Suppose Cg is a proper valuation on g and suppose h⊆g. Then
the marginal of Cg for h, Cg↓h, is defined as follows:

 f if there is a y∈Wg such that Cg(y)=f and y↓h=x
 Cg↓h(x) = (8.3)
 i otherwise
for all x∈Wh.

 157

 It is clear from the definition of marginalization that it satisfies axiom A2a:
If Cg is a proper valuation on g and h1⊆h2⊆g, then (Cg↓h2)↓h1 = Cg↓h1.
 Note that in terms of the definitions of the framework, we can restate CSP P1
as follows: Find a solution configuration x∈WX for the joint constraint ⊗{Ch |
h∈H}.

Proposition 8.1. The definitions of combination in (8.2), and
marginalization in (8.3) satisfy axioms A1’, A2, and A3.

 Thus all axioms are satisfied making local computation of a feasible
configuration of CSP P1 possible.

8.2. An Example

This example is adapted from de Kleer [1986]. There are six variables A, B, C, X,
Y, and Z. The frame for each variable has 2 configurations: 0 and 1. Thus we have
26 = 64 configurations of all variables. There are 5 constraints specified as follows:
A = X, B = Y, C = Z, A ≠ B, and B ≠ C. The hypergraph corresponding to these
five constraints is H = {{A, X}, {B, Y}, {C, Z}, {A, B}, {B, C}}. Note that H is a
hypertree (see Figure 8.1). A hypertree construction sequence for H is
{A, B},{A, X},{B, Y},{B, C},{C, Z}. A branching β for this construction
sequence is as follows: β({A, X}) = {A, B}, β({B, Y}) = {A, B}, β({B, C}) =
{A, B}, β({C, Z}) = {B, C}. A Markov tree representative for H corresponding to
branching β is also shown in Figure 8.1.

 158

Figure 8.1. The hypertree and a Markov tree representative for it.

A

B

C

X

Y

Z

{A,B}

{B,C}

{A,X}

{B,Y}

{C,Z}

The five valuations corresponding to the five constraints are shown in Table 8.1.

Table 8.1. The valuations corresponding to the constraints.

a x C
{A,X}

0 0 f
0 1 i
1 0 i
1 1 f

b y C
{B,Y}

0 0 f
0 1 i
1 0 i
1 1 f

c z C
{C,Z}

0 0 f
0 1 i
1 0 i
1 1 f

a b C
{A,B}

0 0 i
0 1 f
1 0 f
1 1 i

b c C
{B,C}

0 0 i
0 1 f
1 0 f
1 1 i

 Suppose we fix vertex {A, B} as the root. The scheme for computation of a
feasible configuration as described in chapter 7 is as follows. First the vertices {A,
X}, {B, Y} and {C, Z} marginalize the valuations at those vertices to the vertices
contained in the intersection with their neighbors and send these valuations to their

 159

neighbors. Table 8.2 shows the messages (C{A,X})↓{A}, (C{B,Y})↓{B}, and (C{C,Z})↓{C}
and corresponding solution extensions ψ{A,X}, ψ{B,Y}, and ψ{C,Z}.

Table 8.2. The marginals (C{A,X})↓{A}, (C{B,Y})↓{B}, and (C{C,Z})↓{C} and
corresponding solution extensions.

a (C
{A,X}

)
!{A}

 a x

0 f 0 0
1 f 1 1

"
{A,X}

(a) =

b (C
{B,Y}

)
!{B}

 b y

0 f 0 0
1 f 1 1

"
{B,Y}

(b) =

c (C
{C,Z}

)
!{C}

 c z

0 f 0 0
1 f 1 1

"
{C,Z}

(c) =

 Next, vertex {B, C} combines the incoming message (C{C,Z})↓{C} with its
valuation, marginalizes the combination to {B}, and transmits the resulting
valuation to {A, B}. Table 8.3 shows the combination (C{C,Z})↓{C}⊗C{B,C}, the
marginal ((C{C,Z})↓{C}⊗C{B,C})↓{B}, and a solution extension ψ{B,C}.

Table 8.3. The combination (C{C,Z})↓{C}⊗C{B,C}, the marginal
((C{C,Z})↓{C}⊗C{B,C})↓{B}, and a solution extension ψ{B,C}.

b c (C
{C,Z}

)
!{C}

 " C
{B,C}

0 0 i
0 1 f
1 0 f
1 1 i

b ((C
{C,Z}

)
!{C}

 " C
{B,C}

)
!{B}

 b c

0 f 0 1
1 f 1 0

#
{B,C}

(b) =

 Next, root vertex {A,B} combines its valuation with all three incoming
messages (C{A,X})↓{A}, (C{B,Y})↓{B}, and ((C{C,Z})↓{C}⊗C{B,C})↓{B}, computes a

 160

feasible configuration of its variables which in this case can be observed from
Table 8.4 to be (a, b) = (0,1), and transmits to its neighbors the projection of this
configuration to its intersection with its neighbors. Note that since the combination
(C{A, X})↓{A}⊗(C{B, Y})↓{B}⊗((C{C, Z})↓{C}⊗C{B, C})↓{B}⊗C{A, B} is a proper valuation,
the constraint satisfaction problem is feasible.

Table 8.4. The combination
(C{A, X})↓{A}⊗(C{B, Y})↓{B}⊗((C{C, Z})↓{C}⊗ C{B, C})↓{B}⊗C{A, B}.

a b (C
{A,X}

)
!{A}

 " (C
{B,Y}

)
!{B}

 " ((C
{C,Z}

)
!{C}

 " C
{B,C}

)
!{B}

 " C
{A,B}

0 0 i
0 1 f
1 0 f
1 1 i

 Next each of the vertices {A, X}, {B, Y} and {B, C} computes a feasible
configuration of its variables using the solution extension function and the
incoming configuration message. From Tables 8.2 and 8.3, we can see that the
feasible configurations of the variables at these three vertices are (a, x) = (0,0), (b,
y) = (1,1) and (b, c) = (1,0). Vertex {B, C} transmits to its neighbor {C, Z} the
projection of its feasible configuration to {C}.
 Finally, vertex {C, Z} computes a feasible configuration of its variable using
the incoming configuration (c) = (0) and the solution extension ψ{C,Z}. From Table
8.2, we can see that a feasible configuration is (c, z) = (0,0). Thus (a, b, c, x, y, z) =
(0,1,0,0,1,0) is a feasible configuration for the constraint satisfaction problem.

 161

References

Arnborg, S., Corneil, D. G. and Proskurowski, A. (1987), Complexity of finding
embeddings in a k-tree, SIAM Journal of Algebraic and Discrete Methods, 8,
277–284.

Barnett, J. A. (1981), Computational methods for a mathematical theory of
evidence, in Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, Vancouver, BC, 868–875.

Beeri, C., Fagin, R., Maier, D. and Yannakakis, M. (1983), “On the desirability of
acyclic database schemes,” Journal of the Association for Computing
Machinery, 30(3), 479-513.

Bellman, R. E. (1957), Dynamic Programming, Princeton University Press,
Princeton, NJ.

Berge, C. (1973), Graphs and Hypergraphs, translated from French by E. Minieka,
North-Holland, Amsterdam.

 162

Bertele, U. and Brioschi, F. (1972), Nonserial Dynamic Programming, Academic
Press, Orlando, FL.

Besag, J. (1972), Nearest neighbor systems and the auto-logistic model for binary
data, Journal of the Royal Statistical Society, series B, 34, 75–83.

Besag, J. (1974), Spatial interaction and the statistical analysis of lattice systems
(with discussion), Journal of the Royal Statistical Society, series B, 36, 192–
326.

Blalock, H. M. (1971), Causal Models in the Social Sciences, Macmillan, New
York, NY.

Brownston, L. S., Farrell, R. G., Kant, E. and Martin, N. (1985), Programming
Expert Systems in OPS5: An Introduction to Rule-Based Programming,
Addison-Wesley, Reading, MA.

Buchanan, B. G. and Shortliffe, E. H., eds. (1984), Rule-Based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Programming Project,
Addison-Wesley, Reading, MA.

Cannings, C., Thompson, E. A. and Skolnick, M. H. (1978), Probability functions
on complex pedigrees, Advances in Applied Probability, 10, 26–61.

Chin, H. L. and Cooper, G. F. (1987), Stochastic simulation of Bayesian belief
networks, in Proceedings of the Third AAAI Workshop on Uncertainty in
Artificial Intelligence, Seattle, WA, 106–113.

Cohen, P., Shafer, G. and Shenoy, P. P. (1987), Modifiable combining functions,
Artificial Intelligence for Engineering Design, Analysis, and Manufacturing,
1, 47–57.

 163

Darroch, J. N., Lauritzen, S. L. and Speed, T. P. (1980), Markov fields and log-
linear models for contingency tables, Annals of Statistics, 8, 522–539.

Davis, R. and King, J. J. (1984), The origin of rule-based systems in AI, in
Buchanan and Shortliffe [1984], 20–52.

Dawid, A. P. (1979), Conditional independence in statistical theory (with
discussion), Journal of the Royal Statistical Society, Series B, 41(1), 1-31.

Dawid, A. P. and Lauritzen, S. L. (1989), Markov distributions, hyper Markov
laws and meta Markov models on decomposable graphs with applications to
Bayesian learning in expert systems, Research Report No. R-89-31, Institute
for Electronic Systems, University of Aalborg, Aalborg, Denmark.

Dechter, R. and Pearl, J. (1988), “Tree-clustering schemes for constraint
processing,” Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI-88), St. Paul, MN, 1, 150-154.

Dechter, R., Dechter A., and Pearl J. (1990), “Optimization in constraint
networks,” in Oliver, R. M. and Smith, J. Q. (eds.), Influence Diagrams,
Belief Nets, and Decision Analysis, 411-425, John Wiley & Sons, New
York, NY.

Dechter, R. and Pearl, J. (1987), Network-based heuristics for constraint-
satisfaction problems, Artificial Intelligence, 34, 1–38.

Dempster, A. P. (1966), “New methods for reasoning toward posterior
distributions based on sample data,” Annals of Mathematical Statistics, 37,
355-374.

Dempster, A. P. (1967), Upper and lower probabilities induced by a multivalued
mapping, Annals of Mathematical Statistics, 38, 325-339.

 164

Dempster, A. P. (1968), A generalization of Bayesian inference (with discussion),
Journal of the Royal Statistical Society, Series B, 30, 205-247.

Dempster, A. P. (1990), Construction and local computation aspects of network
belief functions, in Oliver, R. M. and Smith, J. Q. (eds.), Influence
Diagrams, Belief Nets, and Decision Analysis, 121-142, John Wiley & Sons,
New York, NY.

Dempster, A. P. and A. Kong (1988), Uncertain evidence and artificial analysis,
Journal of Statistical Planning and Inference, 20, 355-368. Reprinted on pp.
522-528 of Shafer and Pearl (1990).

Dobruschin, P. L. (1968), The description of a random field by means of
conditional probabilities and conditions of its regularity, Theory of
Probability and Its Applications, 13(2), 197-224.

de Kleer, J. (1986), An assumption-based TMS, Artificial Intelligence, 28, 127–
162.

Dubois, D. and H. Prade (1990), Inference in possibilistic hypergraphs,
Proceedings of the Third International Conference on Information
Processing and Management of Uncertainty in Knowledge-based Systems
(IPMU-90), Paris, France, 228-230.

Duda, R., P. Hart and N. Nilsson (1981), Subjective Bayesian methods for rule-
based inference systems, in Webber, B. L. and Nilsson, N. J. (eds.),
Readings in Artificial Intelligence, 192-200, Tioga, Palo Alto, CA.

Edwards, D. and Kreiner, S. (1983), The analysis of contingency tables by
graphical models, Biometrika, 70, 553–565.

Freuder, E. C. (1982), A sufficient condition for backtrack-free search, Journal of
the Association of Computing Machinery, 21(1), 24–32.

 165

Freuder, E. C. (1985), A sufficient condition for backtrack-bounded search,
Journal of the Association of Computing Machinery, 32(4), 755–761.

Frydenberg, M. (1989), The chain graph Markov property, Research Report No.
186, Department of Theoretical Statistics, University of Aarhus, Denmark.

Frydenberg, M. and S. L. Lauritzen (1989), Decomposition of maximum likelihood
in mixed graphical interaction models, Biometrika, 76(3), 539-555.

Geiger, D. (1990), Graphoids: A qualitative framework for probabilistic inference,
Ph.D. dissertation, Department of Computer Science, University of
California at Los Angeles, CA.

Geman, S. and Geman, D. (1984), Stochastic relaxation, Gibbs distribution, and
the Bayesian restoration of images, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6, 721–741.

Goldman, S. A. and Rivest, R. L. (1988), A non-iterative maximum entropy
algorithm, in Lemmer, J. F. and Kanal, L. N. (eds.), Uncertainty in Artificial
Intelligence, 2, 133–148, North-Holland, Amsterdam.

Golumbic, M. C. (1980), Algorithmic Graph Theory and Perfect Graphs,
Academic Press, Orlando, FL.

Henrion, M. (1988), Propagating uncertainty in Bayesian networks by probabilistic
logic sampling, in Lemmer, J. F. and Kanal, L. N. (eds.), Uncertainty in
Artificial Intelligence, 2, 149–164, North-Holland, Amsterdam.

Hsia, Y-T. and Shenoy, P. P. (1989), MacEvidence: A visual environment for
constructing and evaluating evidential systems, Proceedings of the World
Conference on Information Processing and Communication (WOCON-
INFOR 89), Seoul, South Korea, 20-25.

 166

Hsia, Y-T. and Shenoy, P. P. (1989), An evidential language for expert systems, in
Ras, Z. W., ed., Methodologies for Intelligent Systems, 4, 9–16, North-
Holland, Amsterdam.

Kelly, C. W. III and Barclay, S. (1973), A general Bayesian model for hierarchical
inference, Organizational Behavior and Human Performance, 10, 388–403.

Kiiveri, H., Speed, T. P. and Carlin, J. B. (1984), Recursive causal models, Journal
of the Australian Mathematics Society, Series A, 36, 30-52.

Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983), Optimization by
simulated annealing, Science, 220, 671–680.

Kong, A. (1986), Multivariate belief functions and graphical models, doctoral
dissertation, Department of Statistics, Harvard University.

Lauritzen, S. L. (1989), Lectures on Contingency Tables, third edition. Research
Report No. R-89-24, Institute for Electronic Systems, University of Aalborg,
Aalborg, Denmark.

Lauritzen, S. L. (1989), Mixed graphical association models, Scandinavian Journal
of Statistics, 16(4), 273-306.

Lauritzen, S. L. (1990), Propagation of probabilities, means and variances in mixed
graphical association models, Research Report No. R-90-18, Institute for
Electronic Systems, University of Aalborg, Aalborg, Denmark.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H. G. (1988),
Independence properties of directed Markov fields, Research Report No. R-
88-32, Institute for Electronic Systems, University of Aalborg, Aalborg,
Denmark. To appear in Networks.

 167

Lauritzen, S. L. and Frydenberg, M. (1988), Decomposition of maximum
likelihood in mixed graphical interaction models, Research Report No. R-
88-17, Institute for Electronic Systems, University of Aalborg, Aalborg,
Denmark. To appear in Biometrika.

Lauritzen, S. L., Speed, T. P. and Vijayan, K. (1984), Decomposable graphs and
hypergraphs, Journal of the Australian Mathematical Society, series A, 36,
12–29.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988), Local computations with
probabilities on graphical structures and their application to expert systems
(with discussion), Journal of the Royal Statistical Society, series B, 50, to
appear.

Lauritzen, S. L. and Wermuth, N. (1989), Graphical models for associations
between variables, some of which are qualitative and some quantitative, The
Annals of Statistics, 17(1), 31-57.

Leimer, H. G. (1989), Triangulated graphs with marked vertices, Annals of
Discrete Mathematics, 41, 311-324.

Lemmer, J. F. and Kanal, L. N., eds. (1988), Uncertainty in Artificial Intelligence
2, North-Holland, Amsterdam.

Mackworth, A. K. (1977), Consistency in networks of relations, Artificial
Intelligence, 8(1), 99–118.

Maier, D. (1983), The Theory of Relational Databases, Computer Science Press.

Mellouli, K. (1987), On the propagation of beliefs in networks using the Dempster-
Shafer theory of evidence, doctoral dissertation, School of Business,
University of Kansas.

 168

Mellouli, K., Shafer, G. and Shenoy, P. P. (1987), Qualitative Markov Networks,
in Bouchon, B. and Yager, R. R. (eds.), Uncertainty in Knowledge-Based
Systems, Lecture Notes in Computer Science Series, 286, 69–74, Springer-
Verlag, Berlin, Germany.

Montanari, U. (1974), Networks of constraints: Fundamental properties and
applications to picture processing, Information Science, 7, 95–132.

Moussouris, J. (1974), Gibbs and Markov random systems with constraints,
Journal of Statistical Physics, 10(1), 11–33.

Ndilikilikesha, P. (in progress), A study of influence diagrams and their
generalizations, doctoral dissertation, School of Business, University of
Kansas.

Pearl, J. (1986), Fusion, propagation and structuring in belief networks, Artificial
Intelligence, 29, 241–288.

Pearl, J. (1987), “Distributed revision of composite beliefs,” Artificial Intelligence,
33(2), 173-215.

Pearl, J. (1987b), Evidential reasoning using stochastic simulation of causal
models, Artificial Intelligence, 32, 245–257.

Pearl, J. (1987c), “Addendum: Evidential Reasoning using stochastic simulation of
causal models,” Artificial Intelligence, 33, 131.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, San Mateo, CA.

Pearl, J. and Paz, A. (1987), Graphoids: A graph based logic for reasoning about
relevance relations, in Boulay, B. D. et al (eds.), Advances in Artificial
Intelligence, 2, 357-363, North-Holland, Amsterdam.

 169

Rose, D. J. (1970), Symmetric elimination on sparse positive definite systems and
the potential flow network problem, Ph.D. dissertation, Harvard University.

Rose, D. J. (1970b), Triangulated graphs and the elimination process, Journal of
Mathematical Analysis and Applications, 32, 597–609.

Rose, D. J. (1973), A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations, in Read, R. C. (ed.), Graph
Theory and Computing, 183-217, Academic Press, Orlando, FL.

Rose, D. J., Tarjan, R. E. and Leuker, G. S. (1976), Algorithmic aspects of vertex
elimination on graphs, SIAM Journal of Computing, 5(2), 266-283.

Shachter, R. D. and Heckerman, D. (1987), A backwards view for assessment, AI
Magazine, 8(3), 55-61.

Shafer, G. (1976), A Mathematical Theory of Evidence. Princeton University Press,
Princeton, NJ.

Shafer, G. (1982), Belief functions and parametric models (with discussion),
Journal of the Royal Statistical Society, series B, 44, 322–352.

Shafer, G. (1985), Conditional Probability, International Statistical Review, 53,
261–277.

Shafer, G. (1987), Belief functions and possibility measures, in Bezdek, J., ed., The
Analysis of Fuzzy Information, 1, 51–84, CRC Press, Boca Raton, FL.

Shafer, G. (1990), Perspectives on the theory and practice of belief functions,
International Journal of Approximate Reasoning, 4, 323-362.

 170

Shafer, G. and Logan, R. (1987), Implementing Dempster's rule for hierarchical
evidence, Artificial Intelligence, 33, 271–298.

Shafer, G. and Pearl, J., eds. (1990), Readings in Uncertain Reasoning, Morgan
Kauffman, San Mateo, CA.

Shafer, G. and Shenoy, P. P. (1988), Bayesian and belief-function propagation,
School of Business Working Paper No. 192, University of Kansas,
Lawrence, Kansas.

Shafer, G. and Shenoy, P. P. (1988), Local computation in hypertrees, School of
Business Working Paper No. 201, University of Kansas.

Shafer, G. and Shenoy, P. P. (1990), Probability propagation, Annals of
Mathematics and Artificial Intelligence, 2(1–4), 327–352.

Shafer, G., Shenoy, P. P. and Mellouli, K. (1987), Propagating belief functions in
qualitative Markov trees, International Journal of Approximate Reasoning,
1(4), 349–400.

Shafer, G., Shenoy, P. P. and Srivastava, R. P. (1988), AUDITOR'S ASSISTANT:
A knowledge engineering tool for audit decisions, Auditing Symposium IX:
Proceedings of the 1988 Touche Ross/University of Kansas Symposium on
Auditing Problems, Lawrence, KS, 61–84.

Shafer, G. and Tversky, A. (1985), Languages and designs for probability
judgment, Cognitive Science, 9, 309–339.

Shenoy, P. P. (1989a), A valuation-based language for expert systems,
International Journal of Approximate Reasoning, 3(5), 383–411.

 171

Shenoy, P. P. (1989b), On Spohn’s rule for revisions of beliefs, School of Business
Working Paper No. 213, University of Kansas. To appear in International
Journal of Approximate Reasoning in 1991.

Shenoy, P. P. (1990a), Consistency in valuation-based systems, School of Business
Working Paper No. 216, University of Kansas.

Shenoy, P. P. (1990b), Valuation-based systems for Bayesian decision analysis,
School of Business Working Paper No. 220, University of Kansas.

Shenoy, P. P. (1990c), On Spohn’s theory of epistemic beliefs, Proceedings of the
Third International Conference on Information Processing and Management
of Uncertainty in Knowledge-based Systems (IPMU-90), Paris, France, 455–
457.

Shenoy, P. P. (1990d), Valuation-based systems: A framework for representing
and reasoning with knowledge, Proceedings of the FAW Workshop on
Uncertainty in Knowledge-based Systems, Ulm, Germany, 329–336.

Shenoy, P. P. (1990e), Valuation-based systems for discrete optimization,
Proceedings of the Sixth Conference on Uncertainty in Artificial
Intelligence, Boston, MA, 334–343.

Shenoy, P. P. (1990f), Valuation-based systems for propositional logic, in Ras, Z.
W., Zemankova, M., and Emrich, M. L., eds., Methodologies for Intelligent
Systems, 5, 305–312, North-Holland, Amsterdam.

Shenoy, P. P. (1990g), A new method for representing and solving Bayesian
decision problems, School of Business Working Paper No. 223, University
of Kansas.

Shenoy, P. P. and Shafer, G. (1986), Propagating belief functions using local
computations, IEEE Expert, 1(3), 43–52.

 172

Shenoy, P. P. and Shafer, G. (1988), An axiomatic framework for Bayesian and
belief-function propagation, in Proceedings of the Fourth Workshop on
Uncertainty in Artificial Intelligence, Minneapolis, MN, 307–314.

Shenoy, P. P. and Shafer, G. (1988), Constraint Propagation, School of Business
Working Paper No. 208, University of Kansas.

Shenoy, P. P. and Shafer, G. (1990), Axioms for probability and belief-function
propagation, in Shachter, R. D., Levitt, T. S., Lemmer, J. F., and Kanal, L.
N., eds., Uncertainty in Artificial Intelligence, 4, 169–198, North-Holland,
Amsterdam. Reprinted in Shafer and Pearl [1990], pp. 575–610.

Shenoy, P. P., Shafer, G. and Mellouli, K. (1986), Propagation of belief functions:
A distributed approach, in Proceedings of the Second Workshop on
Uncertainty in Artificial Intelligence, Philadelphia, PA, 249–260. Also in
Lemmer and Kanal [1988], 325–336.

Speed, T. P. (1979), A note on nearest-neighbor Gibbs and Markov probabilities,
Sankhya: The Indian Journal of Statistics, 41, series A, 184–197.

Tarjan, R. E. and Yannakakis, M. (1984), Simple linear time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs, SIAM Journal of Computing, 13, 566–579.

Wermuth, N. and Lauritzen, S. L. (1983), Graphical and recursive models for
contingency tables, Biometrika, 70, 537–552.

Wold, H. D. A. (1954), Causality and econometrics, Econometrica, 28, 443–463.

Wright, S. (1934), The method of path coefficients, Annals of Mathematical
Statistics, 5, 161–215.

 173

Yannakakis, M. (1981), Computing the minimum fill-in is NP-complete, SIAM
Journal of Algebraic Discrete Methods, 2, 77–79.

Zarley, D. K. (1988), An evidential reasoning system, School of Business Working
Paper No. 206, University of Kansas.

Zarley, D. K., Hsia, Y. and Shafer, G. (1988), Evidential reasoning using DELIEF,
in Proceedings of the Seventh National Conference on Artificial Intelligence
(AAAI–88), 1, 205–209.

Zhang, L. (1988), Studies on finding hypertree covers for hypergraphs, School of
Business Working Paper No. 198, University of Kansas.

