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Abstract
Valuation networks have been proposed as graph-
ical representations of valuation-based systems
(VBSs). The VBS framework is able to capture
many uncertainty calculi including probability
theory, Dempster-Shafer’s belief-function theory,
Spohn’s epistemic belief theory, and Zadeh’s
possibility theory. In this paper, we show how
valuation networks encode conditional indepen-
dence relations. For the probabilistic case, the
class of probability models encoded by valuation
networks includes undirected graph models, di-
rected acyclic graph models, directed balloon
graph models, and recursive causal graph models.

1 INTRODUCTION
Recently, we proposed valuation networks as a graphical
representation of valgation-based systems [Shenoy 1989,
1992a]. The axiomatic framework of valuation-based sys-
tems (VBS) is able to represent many different uncertainty
calculi such as probability theory [Shenoy 1992a],
Dempster-Shafer’s belief-function theory [Shenoy 1993],
Spohn’s epistemic belief theory [Shenoy 1991a, 1992a],
and Zadeh’s possibility theory [Shenoy 1992b]. In this
paper, we explore the use of valuation networks for repre-
senting conditional independence relations in probability
theory and in other uncertainty theories that fit in the VBS
framework.
Conditional independence has been widely studied in prob-
ability and statistics [see, for example, Dawid 1979,
Spohn 1980, Lauritzen 1989, Pearl 1988, and Smith
1989]. Pearl and Paz [1987] have stated some basic prop-
erties of the conditional independence relation. (These
properties are similar to those stated first by Dawid [1979]
for probabilistic conditional independence, those stated by
Spohn [1980] for causal independence, and those stated by
Smith [1989] for generalized conditional independence.)
Pearl and Paz call these properties ’graphoid axioms,’ and
they call any ternary relation that satisfies these properties
a ’graphoid.’ The graphoid axioms are satisfied not only
by conditional independence in probability theory, but
also by vertex separation in undirected graphs (hence the
term graphoids) [Pearl and Paz 1987], by d-separation in
directed acyclic graphs [Verma and Pearl 1990], by partial

correlation [Pearl and Paz 1987], by embedded multi-val-
ued dependency models in relational databases [Fagin
1977], by conditional independence in Spohn’s theory of
epistemic beliefs [Spohn 1988, Hunter 1991], and by
qualitative conditional independence [Sharer, Shenoy and
Mellouli 1987]. Shenoy [1991b, 1992c] has defined condi-
tional independence in VBSs and shown that it satisfies
the graphoid axioms. Thus the graphoid axioms are also
satisfied by the conditional independence relations in all
uncertainty theories that fit in the VBS framework includ-
ing Dempster-Shafer’s belief-function theory and Zadeh’s
possibility theory.

The use of undirected graphs and the use of directed acyclic
graphs to represent conditional independence relations in
probability theory have been extensively studied [see, for
example, Darroch, Lauritzen and Speed 1980, Lauritzen
1989a,b, Wermuth and Lanritzen 1983, Kiiveri, Speed and
Carlin 1984, Pearl and Paz 1987, Pearl, Geiger and Verma
1990, Lauritzen and Wermuth 1989, Frydenberg 1989, and
Wermuth and Lauritzen 1990]. The use of graphs to repre-
sent conditional independence relations is useful since an
exponential number of conditional independence state-
ments can be represented by a graph with a polynomial
number of vertices.

In undirected graphs (UGs), vertices represent variables,
and edges between variables represent dependencies in the
following sense. Suppose a, b, and c are disjoint subsets
of variables. The conditional independence statement ’a is
conditionally independent of b given c,’ denoted by
a .1_ b I c, is represented in an UG if every path from a vari-
able in a to a variable in b contains a variable in c, i.e., if
c is a cut-set separating a and b. One can also represent a
conditional independence relation by a set ofUGs [Paz
1987]. A conditional independence relation is represented
by a set of UGs if each independence statement in the rela-
tion is represented in one of the UGs in the set. In gen-
eral, one may not be able to represent a conditional inde-
pendence relation that holds in a probability distribution
by one UG. Some probability distributions may require an
exponential number of UGs to represent the conditional
independence relation that holds in it [Verma 1987].
In directed acyclic graphs (DAGs), vertices represent vari-
ables, and arcs represent dependencies in the following
sense. Pearl [1988] has defined d-separation of two sets of
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variables by a third. Suppose a, b, and c are disjoint sub-
sets of variables. We say c d-separates a and b iff there is
no path from a variable in a to a variable in b along which
(1) every vertex with an outgoing arc is not in c, and (2)
every vertex’with incoming arcs is either in c or has a de-
scendant in c. The definition of d-separation takes into ac-
count the direction of the arcs in ~ DAG. The conditional
independence statement a I b I c is represented in a DAG ff
c d-separates a and b. One can also represent conditional
independence relations by a set of DAGs [Geiger 1987]. A
conditional independence relation is represented by a set of
DAGs if it is represented in one of the DAGs in the set.
As in the case of UGs, one may not be able to represent a
conditional independence relation that holds in a probabil-
ity distribution by one DAG. Some probability distribu-
tions may require an exponential number of DAGs to rep-
resent the conditional independence relations that hold in it
[Verma 1987].
Sharer [1993a] has defined directed balloon graphs (DBGs)
that generalize DAGs. A DBG includes a partition of the
set of all variables. Each element of the partition is called
a balloon. Each balloon has a set of variables as its par-
ents. The parents of a balloon are shown by directed arcs
pointing to the balloon. A DBG is acyclic in the same
sense that DAGs are acyclic. A DBG implies a probability
model consisting of a conditional for each balloon given
its parents. A DAG may be considered as a DBG in which
each balloon is a singleton subset. Independence properties
of DBGs are studied in sharer [1993b].
UGs and DAGs represent conditional independence rela-
tions in fundamentally different ways. There are UGs such
that the conditional independence relation represented in an
UG cannot be represented by one DAG. And there are
DAGs such that the conditional independence relation rep-
resented in a DAG cannot be represented by one UG. In
fact, Ur and Paz [1991] have shown that there is an UG
such that to represent the conditional independence relation
in it requires an exponential number of DAGs. And there
is a DAG such that to represent the conditional indepen-
dence relation in it requires an exponential number of
UGs.
In valuation networks (VNs), there are two types of ver-
tices. One set of vertices represents variables, and the
other set represents valuations. Valuations are functions
defined on variables. In probability theory, for example, a
valuation is a factor of the joint probability distribution.
In VNs, there are edges only between variables and valua-
tions. There is an edge between a variable and a valuation
if and only if the variable is in the domain of the valua-
tion. If a valuation is a conditional for r given t, then we
represent this by making the edges between the condi-
tional and variables in r directed (pointed toward the vari-
ables). (Conditionals are defined in Section 2 and corre-
spond to conditional probability distributions in probabil-
ity theory.) Thus VNs explicitly depict a factorization of
the joint valuation. Since there is a one-to-one correspon-
dence between a factorization of the joint valuation and the
conditional independence relation that holds in it, VNs
also explicitly represent conditional independence rela-

tions.
The class of probability models included by VNs include
UG-s, DAGs and DBGs. Given a UG, there is a corre-
sponding VN such that all conditional independence
statements represented in the UG are represented in the
VN. Given aDAG, there is a corresponding VN such that
all conditional independence statements represented in the
DAG are represented in the corresponding VN. And given
a DBG, there is a corresponding VN such that all condi-
tional independence statements represented in the DBG are
represented in the corresponding VN.

Besides UGs, DAGs, and DBGs, there are other graphical
models of probability distributions. Kiiveri, Speed, and
Carlin [1984] have def’med recursive causal graphs (RCGs)
that generalize DAGs and UGs. Recursive causal graphs
have two components, an UG on one subset of variables
(exogenous), and a DAG on another subset of variables
(endogenous). Given a RCG, there is a corresponding VN
such that all conditional independence statements
represented in the RCG are represented in the VN.
Lauritzen and Wermuth [1989] and Wermuth and Lauritzen
[1990] have def’med chain graphs that generalize recursive
causal graphs. Conditional independence properties of
chain graphs have been studied by Frydenberg [1990]. It is
not clear to this author whether VNs include the class of
probability models captured by chain graphs.
Jirousek [ 1991] has defined decision tree models of proba-
bility distributions. These models are particularly expres-
sive for asymmetric conditional independence relations,
i.e., relations that only hold for some configurations of
the given variables, and not true for others. VNs, as de-
f’med here, do not include the class of models captured by
decision trees.
Heckerman [1990] has defined similarity networks as a
tool for knowledge acquisition. Like Jirousek’s decision
tree models, similarity networks allow representations of
asymmetric conditional independence relations. VNs, as
def’med here, do not include the class of models captured
by similarity networks.
An outline of this paper is as follows. Section 2 sketches
the VBS framework and the general definition of condi-
tional independence. The definition of conditional indepen-
dence in VBS is a generalization of the def’mition of condi-
tional independence in probability theory. Most of the rna-
terial in this section is a summary of [Shenoy 1991b,
1992c]. Section 3 describes the valuation network repre-
sentation and shows how conditional independence rela-
tions are encoded in valuation networks. Section 4 com-
pares VNs to UGs, DAGs, DBGs, and RCGs. Finally,
Section 5 contains some concluding remarks.

2 VBSs AND CONDITIONAL
INDEPENDENCE
In this section, we briefly sketch the axiomatic framework
of valuation-based systems (VBSs). Details of the ax-
iomatic framework can be found in [Shenoy 1991b,
1992c].
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In the VBS framework, we represent knowledge by enti-
ties called variables and valuations. We infer conditional
independence statements using three operations called
combination, marginalization, and removal. We use these
operations on valuations.
Variables. We assume there is a finite set % whose el-
ements are called variables. Variables are denoted by up-
per-case Latin alphabets, X, Y, Z, etc. Subsets of % are
denoted by lower-case Latin alphabets, r, s, t, etc.
Valuations. For each s ~_ %, there is a set ~ s. We call
the elements of ’U" s valuations for s. Let ’ff denote
L) { ~" s I s ~_ % }, the set of all valuations. If o a ~" s, then
we say s is the domain of o. Valuations are denoted by
lower-case Greek alphabets, p, o, % etc.

Valuations are primitives in our abstract framework and,
as such, require no definition. But as we shall see shortly,
they are objects that can be combined, marginalized, and
removed. Intuitively, a valuation for s represents some
knowledge about variables in s.
Zero Valuations. For each s ~_ %, there is at most one
valuation ~ ~ ’9" ~ called the zero valuation for s. Let Z,
denote { ~ I s ~_ % }, the set of all zero valuations. We call
valuations in ~-Z nonzero valuations.

Intuitively, a zero valuation represents knowledge that is
internally inconsistent, i.e., knowledge that is a contradic-
tion, or knowledge whose truth value is always false. The
concept of zero valuations is important in the theory of
consistent knowledge-based systems [Shenoy 1990b].

Proper Valuations. For each s ~_ %, there is a subset
~s of ’0" ~-{~}. We call the elements of ~ proper valua-
tions for s. Let ¯ denote u{ ¯ s I s ~_ % }, the set of all
proper valuations. Intuitively, a proper valuation repre-
sents knowledge that is partially coherent. By coherent
knowledge, we mean knowledge that has well-defmed se-
mantics.

Normal Valuations. For each s ~_ %, there is another
subset ~ s of qY ~{ ~}. We call the elements of ~ ~ nor-
mal valuations for s. Let $L denote L~{ $L~ I S _C % }, the
set of all normal valuations. Intuitively, a normal valua-
tion represents knowledge that is also partially coherent,
but in a sense that is different from proper valuations.
We call the elementsof Pc~gL proper normal valuations.
Intuitively, a proper normal valuation represents knowl-
edge that is completely coherent, i.e., knowledge that has
well-defined senmntics.
Combination. We assume there is a mapping
(t):qSx~" --> ~ L~2:, called combination, such that if
p ~ ’U’r and o ~ ~" s, then p~ ~ ’b" r~. Also we assume
that combination is associative and commutative. Finally,
suppose zero valuations exist, and suppose o ~ ’U" s. Then
we assume that ~r(])O = (.~.
Intuitively, Combination corresponds to aggregation of
knowledge. If p and o are valuations for r and s represent-
ing knowledge about variables in r and s, respectively,
then pot represents the aggregated knowledge about vari-

ables in r~s.
It follows from the def’mition of combination that the set
’lk,~{~} together with the combination operation ¯ is a
commutative semigroup.
Identity Valuations. We assume that for each s ~_ %,
the commutative semigroup % ~t~ { ~ } has an identity de-
noted by t,. In other words, there exists t~ ~ ~ ~L~{~} such
that for each o ~ ’lksu{~}, oOq = o. Notice that a com-
mutative semigroup may have at most one identity.
Intuitively, identity valuations represent knowledge that is
completely vacuous, i.e., they have no substantive con-
tent.
Marginalization. We assume that for each nonempty
s ~_ %, and for each X ~ s, there is a mapping
~,(s-{X}): qY~--> ’O’,_iXl, called marginalization to s-{X},
that satisfies certain conditions. We call o~O-[x}) the
marginal of ~r for s-{X}.

If we regard marginalization as a coarsening of a valuation
by deleting variables, then we assume that the order in
which the variables are deleted does not matter.

Also we assume that marginalization preserves the coher-
ence of knowledge.

Suppose p ~ ’ff r and o ~ ’V s. Suppose X ~ r, and X ~ s.
Then we assume that

(p(])o)~((,,-,~)-{x}) = pO(o~0-{x})).

Finally we assume that if r c_ s, then ts~r = ~r.

Intuitively, marginalization corresponds to coarsening of
knowledge. If o is a valuation for s representing some
knowledge about variables in s, and X ~ s, then o$(s-{x})

represents the knowledge about variables in s-{X} implied
by o if we disregard variable X.

The definitions of combination and marginalization make
local computation of marginals possible. Suppose {ol,
....Om} is a collection of valuations, and suppose
oi~ qS,.. Suppose % = S1L)...L3Sm, and suppose X~ %.
Suppo~ we wish to compute (Ol@...@Om)*{xl. We can
do so by successively deleting all variables but X from the
collection of valuation {ox ..... on}. Each time we delete
a variable, we do a fusion operation det’med as follows.
Consider a set of k valuations p~ ..... p~. Suppose
Pi ~ qYr’. Let Fusy{pl ..... Ok} denote the collection of val-
uauons after fusing the valuations in the set {pi ..... pk}
with respect to variable Y � ri~...L)rk. Then

FUSy{Pl ..... PI~} = {P~’(r-(Y})}LJ{Pi I Y~ ri}

where p = O{pi I Y ~ ri}, and r = u{ri I Y ~ ri}. After fu-
sion, the set of valuations is changed as follows. All val-
uations whose domains include Y are combined, and the
resulting valuation is marginalized such that Y is elimi-
nated from its domain. The valuations whose domains do
not include Y remain unchanged. The following lemma
describes an important consequence of the fusion opera-
tion.

Lemma 2.1 [Shenoy 1992a]. Suppose {Pl ..... Pk}
is a collection of valuations such that Pi ~ qY ri" Let %
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denote rlL3...k.)rk. Suppose Y e %. Then

(~Fusy{Pl ..... Pk} = (Pl(B-..~Pk)"l’(~-{Y}).

Next, we define another binary operation called removal.
The removal bperation is an inverse of the combination
operation.
Removal. We assume there is a mapping
(~ :’V x (% u2:) --~ (% u~ ), called removal, such that if
o~ ~s, and p ~ %rUZ, then o

We call o el3, read as o minus p, the valuation resulting
after rem_oving p from ~r. Intuitively, o @p can be inter-
preted as follows. If o and p represent some knowledge,
and if we remove the knowledge represented by p from o,
then ~ @ p describes the knowledge that remains.
We assume that the removal operation is an "inverse" of
the combination operation in the sense that arithmetic di-
vision is inverse of arithmetic multiplication, and in the
sense that arithmetic subtraction is inverse of arithmetic
multiplication.
Conditionals. Suppose o ~ % s, and suppose a and b are
disjoint subsets of s. The valuation o¢("~) (~o~’a for aub
plays an important role in the theory of conditional inde-
pendence. Borrowing terminology from probability the-
ory, we call o~’("~’) @oh the conditional for b given a
with respect to o’. Let oCola) denote O¢(’~’b)e 0~a. We call
b the head of the domain of oCola), and we cxtll a the tail of
the domain of oCola). Also, if a = 0, let o(b) denote
oCol0). The following theorem states some important
properties of conditionals.

Theorem 2.1 [Shenoy 1991b]. Suppose o~
and suppose a, b, and c are disjoint subsets of s.
(i). o(a) = oh.
(ii). o(a)~oCola) = o(aub).
(iii). o(bla)~(cla~b) = o(bt~cla).
(iv). Suppose b’ ~_b. Then o(bla)~(’Ub’) = o(b’la).
(v). (o001a)~(claub))~’(a~) = o(cla)
(vi). o(bla)~a = to(a), where to(a) is an identity for o(a).
(vii). o(bla) ~ ~

Conditional Independence. Suppose "c ~ % w, and
suppose r, s, and v are disjoint subsets of w. We say r and
s are conditionally independent given v with respect to ~,
written as r _L~ s I v, if and only if x(rLJsuv) =
a~v~0q~, where oq~ ~ ~" r~, and cq~ ~ ~ ~v.
When it is clear that all conditional independence state-
ments are with respect to x, we simply say ’r and s are
conditionally independent given v’ instead of ’r and s are
conditionally independent given v with respect to x,’ and
use the simpler notation r 3_ s I v instead of r ~ s I v.
Also, if v = O, we say ’r and s are independent’ instead of
’r and s are conditionally independent given O’ and use the
simpler notation r 3_ s instead of r 3_ s 1 O.

Shenoy [ 199 lb] shows that the conditional independence
relation generalizes the conditional independence relation
in probability theory. In particular, all characterizations of
it given by Dawid [1979] (including the graphoid axioms)

follow from the above definition.

3 VALUATION NETWORKS
In this section, we define a valuation network representa-
tion of a VBS and explain how a valuation network en-
codes conditional independence statements.
A valuation network (VN) consists of a four-tuple { %,
¯ ", ~, ~t } where ~ ~_~x%, and ~ ~_’ffx%. Wecall the
elements of % vertices and they represent variables. We
call the elements of ~" nodes and they represent valua-
tions. We call the elements of ~ edges, and they denote ei-
ther domains of valuations, or tails of domains of condi-
tionals. We call the elements of ~ arcs and they denote
the heads of domains of conditionals. In VNs, vertices are
denoted by circles, nodes by diamonds, edges by lines
joining the respective nodes and vertices, and arcs by a di-
rected edge pointing to the corresponding vertex. When a
VN contains conditionals, we will assume that all condi-
tionals are with respect to valuation x obtained by com-
bining all valuations in the network.
Example 1. Consider a VBS consisting of variables W,
X, Y, and Z, and valuations ot for {W, X}, 1~ for {X, Y},
yfor {Y, Z}, and 5 for {W, Z}. Figure 1 shows the VN
for this VBS. Vertices (variables) are depicted by circles,
nodes (valuations) are depicted by diamonds, and edges are
depicted by lines. The edges (a, W) and (~ X) incident to
node o~ indicate that {W, X} is the domain of a.
Example 2. Consider a VBS consisting of variables V,
W, X, Y, and Z, and conditionals a for {V}, ~ for {W}
given {V}, "{for {X} given {V}, 5 for {Y} given {W, X},
and ~ for [Z} given {Y}. Figure 2 shows the VN for this
VBS. The arc (~5, Y) incident to ~ indicates that Y is the
head of the domain of ~i, and the edges (~5, W) and (~5, X)
incident to ~ indicate that {W, X} is the tail of the domain
of ~. Further, if x denotes a~l~T~, then a = x(V),
13 --- x(WIV), ~/= x(XIV),/$ = x(YIW,X), e = x(ZIY). For
simplicity, we drop braces around subsets in conditional
valuations. Thus we write x(V) instead of x({V}),
x(Y IW, X) instead ofx({Y} I {W, X}), etc.
Example 3. Consider a VBS consisting of variables X~,
.... X~0, and conditionals cq for Xl given O, a2 for {X2,
X3} given X~, oh for X4 given X2, a4 for {Xs, X6, XT}
given X2, as for Xs given X3, % for X9 given Xs, and
a7 for X~0 given {X6, XT}. Figure 3 shows the VN for
this VBS. If x denotes cq~...~otT, then oq = x(X~), a2 =
x(X2, X31 Xl), 0t3 = ’~(X41 X2), a4 = "t(Xs, X6, X71 Xz),
a5 = x(Xs I X3), a6 = ’g(X91 Xs), a7 -- ’~(Xlo I X6, X7).
Example 4. Consider a VBS consisting of variables V,
W,X, Y andZ, valuations a for (V,W}, and [~ for {V,
X}, and conditionals Tfor Y given {W, X}, and 5 for Z
given X. Figure 4 shows the VN for this VBS. If x de-
notes a~l~, then ct~l~ = x(V, W, X), T =
x(YI W, X), and ~ = x(Z I X).
Fusion in Valuation Networks. Next, we will il-
lustrate fusion in VNs. Consider the VBS described in
Example 1. If we fuse the valuations in the set { o~, ~, ~,
5} with respect to X, we get Fusx{Ct, [~, % 5} =
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{(a~13)xcY~, 7, ~}.
Figure 5 illustrates this
fusion operation. Lemma
2.1 tells us that
(a~13)m’.z~ .~t~8 =

Next, we will illustrate
fusion in VNs when we
have conditionals. The
various statements of
Theorem 2.1 are useful
here. Consider a VBS
consisting of four vari-
ables W, X, Y, and Z,
and three conditionals, a
for W given 9, 13 for X
given W, and 7for {Y,
Z} given X. Figure 6 shows the corresponding VN.
Suppose x = a(B13~,. Then a = x(W), 13 = x(X I W), and
7 = x(Y, Z I X). After fusion with respec, t to X, we have
two conditionals 0t = x(W), and (13~/)~’{w, Y, z} =
x(Y, Z I W). This result is justified by statement (v) of
Theorem 2.1. After further fusion with respect to Z, we
only have two conditionals a = x(X), and (13~,)${w, Y} =
x(Y I W). This result is justified by statement (iv) of
Theorem 2.1. Finally after further fusion with respect to
Y, we have only one conditional a = x(W). This is be-
cause from statement (vi) of Theorem 2.1, x(Y I W)*{w} is
an identity for’t(W), and this identity can be
absorbed in any conditional that has W in
the head of its domain.

Fig. 1. The VN for the VBS of Example 1.

Conditional Independence in
Valuation Networks. How is conditional
independence encoded in VNs? Let us exam-
ine the def’mition of conditional independence
graphically. Suppose r, s, and v are disjoint
subsets of variables, and suppose x is a
normal valuation for rwsuv. Our definition
of conditional independence states that x =
0q~,(Boq~ iff r_L~ s Iv, where Otr~ ~ ~,~,
and ¢x~v ~ ~’~v. Suppose "c = O~v~a~v is
a normal valuation for rus~v, where
~ ~ ~’~.~,, and oq~,~ q5 ~.~. Figure 7
shows the VN representation of this situa-
tion. Notice that all paths from a variable in
r to a variable in s go through a variable in
v, i.e., v is a cut-set separating r from s.

Suppose r, s, and v are disjoint subsets of w. Suppose
x~ % w. Consider the VN representation of x(r~s~v) after
marginalizing all variables in w- (r~s~v) out of x.
Suppose v is a cut-set separating r and s. Then there is no
valuation that contains a variable in r and a variable in s.
Consider all valuations whose domain includes a variable
in r. Let p denote the combination of these valuations.
Notice that the domain of p does not contain a variable in
s. Now consider all valuations whose domain includes a
variable in s. Let ~ denote the combination of these valua-
tions. Notice that the domain of �~ does not include a vari-
able in r. Finally let 0 denote the combination of all valu-

Fig. 2. The VN for the VBS of Example 2.

Fig. 3. The VN for the VBS of Example 3.

Fig. 4. The VN for the VBS of Example 4.
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ations not included in either p or (~. Clearly, Fig. 5. Fusion in VNs.
the domain of 0 does not cont,~m variables in
either r or s. Since x(rusuv) = p~Bo~BO, it
follows from the definition of conditional in-
dependence that r_Lt s Iv.
To summarize, suppose we are ~iven a VN
representation of’re % ~,. Suppose v is a cut-
set separating r and s in the marginalized net-
work for variables in rus~v. Then r_L~s Iv.

4 COMPARISON
In this section, we briefly compare VNs with
UGs, DAGs, DBGs, and RCGs. We start
with UGs.
In UGs, the cliques of the

Before fusion ~ After fusion w.r.t. X

graph (maximal completely Fig. 6. Fusion in
connected vertices) denote the
factors of the joint valuation.
For example, consider the
UG shown in Figure 8. This
graph has 4 cliques, {W, X},
{X, Y}, {Y, Z}, and {Z, X}.
This undirected graph models
a joint probability distribu-
tion for’ {W, X, Y, Z} that
factors (multiplicatively)
into 4 components, ~x with
domain {W, X}, ~ with do-
main {X, Y}, y with domain
{Y, Z}, and ~ with domain
{Z, W}. The VN representa-
tion of this distribution is
also shown in Figure 8.
Notice that for this distribu-
tion, {X} _L {Z} I {Y,W}, and
{Y} _1_ {W} I {X, Z}.

Next, we consider DAGs. A
DAG model of a probability
distribution consists of an Initial VN After fusion w.r.t. X After fusion w.r.t. Z After fusion w.r.t. Y
ordering of the variables, and
a conditional for each vari-
able given a subset of the Fig. 7. The VN representation of r_Lx s I v, where x =
variables that precede it in the given ordering, r v sFigure 9 shows an example of a DAG with 5
variables. An ordering consistent with this DAG ~ m"’~-~ ¯
is VWXYZ. The DAG implies we have a condi-
tional for V given O, a conditional for W given
V, a conditional for X given V, a conditional for
Y given {W, X}, and a conditional for Z given
Y. The VN representation of the DAG model is
also shown in Figure 9. Suppose x denotes the
joint probability distribution. Then o~ = x(V), 13
= x(W I V), T = x(X I V), ~ = x(YI W, X), and e =
x(zl Y).
In the DAG of Figure 9, using Pearl’s defmition
of d-separation, we cannot conclude, for example, that
W.Lt X I {V, Z}. However, we can conclude that
W_Lt X I V. We can draw the same conclusion using sepa-

ration in VNs. If we fuse the VN with respect to Y, then
{V, Z} is not a cut-set separating W and X. Therefore we
cannot conclude that W_L~ X I {V, Z}. If we further fuse
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the VN with respect to Z, then V is a cut-set
separating W and X. Therefore, W_I~ X I V.

The technique we have proposed for checking
for conditional independence in VNs is an al-
ternative to the d-separation method proposed
by Pearl [1988] for DAGs. Whether we have
conditionals or not, checking a conditional in-
dependence statement in a VN is a matter of
first fusing the VN to remove variables not in
the conditional independence statement and
then checking for separation in the fused VN.
The information about conditionals is used in
the fusion operation.
Lauritzen et al. [1990] describes yet another
method for checking for conditional indepen-
dence in DAGs. Their method consists of con-
verting a DAG to an equivalent UG and then
checking for conditional independence in the
UG using separation. In short, their method
consists of examining a subgraph of the DAG
(after eliminating the variables that succeed all
variables in the conditional independence
statemem in an ordering consistent with the
DAG), moralizing the graph, dropping direc-
tions, and then checking for separation.

Next, let us compare VNs and DBGs. DBGs
are defined in [Shafer 1993a]. A DBG includes
a partition of the set of all variables. Each ele-
ment of the partition is called a balloon. Non-
singleton balloons are shown as ellipses encir-
cling the corresponding variables. Each balloon
has a set of variables as its parents. The par-
ents of a balloon are shown by directed arcs
pointing to the balloon. A DBG is acyclic in
the same sense that DAGs are acyclic. A DBG
implies a probability model consisting of a
conditional for each balloon given its parents.
A DAG may be considered as a DBG in which
each balloon is a singleton subset.

Figure 10 shows a DBG with 10 variables, X~,
.... Xl0. There are two non-singleton balloons, {X2, X3},
and {Xs, X6, XT}. All other balloons are singleton sub-
sets. The DBG of Figure 10 implies a conditional for X~
given O, a conditional for {X2, X3} given X~, a condi-
tional for X4 given X2, a conditional for {Xs, X6, XT}
given X2, a conditional for X8 given X3, a conditional for
X9 given Xs, and a conditional for X~o given {X6, XT}.
The corresponding VN is also shown in Figure 10.

The conditional independence theory of DBGs is described
in [Shafer 1993b], and is analogous to the conditional in-
dependence theory of DAGs. In the DBG and VN of
Figure 10, we have, for example, {Xs, X6,XT} 3_ {X~, X3,
x~}l {x~).
Finally, we compare VNs to RCGs. RCGs are defined in
[Kiiveri, Speed, and Carlin 1984]. A RCG consists of two
kinds of vertices (variables)~exogenous and endogenous,
and two kinds of edges~undirected and directed. An undi-

Fig. 8. An UG and a corresponding VN.

Fig. 9. A DAG and a corresponding VN.

rected edge always connects two exogenous variables, and
a directed edge always points to an endogenous variable.
RCGs generalize DAGs in the sense that a DAG is a
RCG with at most one exogenous variable.

Figure 11 shows a RCG with five variables, V, W, X, Y,
Z. Variables V, W, and X are exogenous, and variables Y
and Z are endogenous. The cliques {V, W} and {V, X}
imply valuations for {V, W} and {V, X} respectively. The
directed edges pointing to Y imply a conditional for Y
given {W, X}, and the directed edge pointing to Z implies
a conditional for Z given X. The corresponding VN is also
shown in Figure 11.
Conditional independence properties of RCG are given in
[Kiiveri, Speed and Carlin 1984]. Briefly, if we look at
the subgraph of a RCG restricted to the exogenous vari-
ables, the subgraph is an UG and its conditional indepen-
dence properties are the same as those given by the UG
models. On the other hand, the conditional independence
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relation in the complete RCG is given by the
d-separation relation of DAGs. Since the basis
of the conditional independence relations in
RCGs is the underlying factorization and the
additional information about conditionals, and
since this information is encoded in VNs, a
corresponding VN encodes the same condi-
tional independence relation as a RCG. For
example, in the RCG and VN of Figure 11,
we have {W} _1_ {X} I {V}, and {Z} _1_ {V, W,
Y}I {X}.

5 CONCLUSION
We have described valuation networks and
how they encode conditional independence.
Given a valuation network, r ~ s I v if v is a
cut-set separating r from s in the marginalized
valuation network for r~suv. We have com-
pared valuation networks to undirected graphs,
direcw.d acyclic graphs, directed balloon
graphs, and recursive causal graphs. All prob-
ability models encoded by one of these graphs
can be represented by corresponding valuation
networks.

Factorization is fundamental to conditional
independence. The power of the valuation
network representation arises from the fact
that it represents factorization explicitly. Also
notice that valuation networks encode condi-
tional independence not only in probabilistic
models, but also in all uncertainty theories
that fit in the VBS framework. This includes
Dempster-Shafer’s belief-function ~eory,
Spohn’s epistemic belief theory, and Zadeh’s possibility
theory [Shenoy 1991b].
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