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Abstract

This paper introduces the nolions of independence
and conditional independence in valuation-based
systems (VBS). VBS is an axiomatic framework
capable of representing many different uncertainty
calculi. We define independence and conditional
independence in terms of factorization of the joint
valuation. The definitions of independence and
conditional independence in VBS generalize the
corresponding def’mitions in probability theory.
Our definitions apply not only to probability
theory, but also to Dempster-Shafer’s belief-func-
tion theory, Spohn’s epistemic-belief theory, and
Zadeh’s possibility theory. In fact, they apply to
any uncertainty calculi that fit in the framework
of valuation-based systems.

1 INTRODUCTION
The concept of conditional independence between two sub-
sets of variables given a third has been extensively studied
in probability theory [Dawid 1979, Spohn 1980,
Lauritzen 1989, Pearl 1988, Smith 1989, Geiger 1990].
The concept of conditional independence in probability
theory has been interpreted in terms of relevance. If r, s
and t are disjoint subsets of variables, then to say that r
and s are conditionally independent given t, means that the
conditional distribution of r, given values of s and t, are
governed by the value of t alone~further information
about the value of s is irrelevant.
The concept of conditional independence for variables has
also been studied in Spohn’s theory of epistemic beliefs
[Spohn 1988, Hunter 1991]. However, the concept of in-
dependence for variables has not been studied in Dempster-
Shafer’s theory of belief functions [Dempster 1967, Sharer
1976] or in Zadeh’s possibility theory [Zadeh 1979,
Dubois and Prade 1988].1

1 Dempster [1967]. Sharer [1976, 1982, 1984, 1987, 1990].
and Smets [1986] have def’med independence for belief
functions, but not for variables on which belief functions are
defined. Shafer [ 1976] has def’med independence for frames of
discernment, a concept further studied by Shafer, Shenoy and
MellouIi [1987]. Belief functions in belief-function theory
are analogs of probability functions in probability theory.

An abstract framework that unifies various uncertainty
calculi is that of valuation-based systems [Shenoy 1989,
1991a]. In VBS, knowledge about a set of variables is rep-
resented by a valuation for that set of variables. There are
three operators in VBS that are used to make inferences.
These are called combination, marginalization, and re-
moval. Combination represents aggregation of knowledge.
Marginalization represents coarse~ng of knowledge. And
removal represents disaggregation of knowledge.

The framework of VBS is able to uniformly represent
probability theory, Dempster-Shafer’s belief-function the-
ory, Spohn’s epistemic-belief theory, and Zadeh’s possi-
bility theory. In this paper, we will develop the notion of
independence and conditional independence for variables in
the framework of VBS. One advantage of this generality is
that all results developed here will apply uniformly to all
uncertainty calcdi that fit in the framework of VBS. Thus
the results described in this paper apply to, for example,
probability theory, Dempster-Shafer’s belief-function the-
ory, Spohn’s epistemic-belief theory, and Zadeh’s possi-
bility theory.

What does it mean for two disjoint subsets of variables to
be independent? Intuitively, independence can be defined in
terms of factorization of the joint valuation. If ~ is a valu-
ation for r~s, then we say that r and s are independent
with respect to x iff x factors into two valuations, one
whose domain only involves r, and the other whose do-
main only involves s. One implication of this is that if
we are interested in constructing a valuation for ros, then
independence of r and s allows us to construct this valua-
tion by, first, constructing two valuations---one whose
domain involving only r and the other whose domain in-
volving only s--and second, by simply combining the
two valuations to get the result.
What does it mean for two disjoint subsets of variables to
be conditionally independent given a third disjoint subset?
Conditional independence can also be described in terms of
factorization of the joint valuation. Suppose x is a valua-
tion for ros~t. We say r and s are conditionally indepen-
dent given t with respect to x iff the valtmtion x factors
into two valuations, one whose domain involves variables
in r~t, and the other whose domain involves only vari-
ables in st~t.
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An outline of this paper is as follows. In section 2, we
describe the framework of valuation-based systems (VBS).
The VBS framework was described earlier in [Shenoy
1989, 1991a]. Here we extend the framework by defining
three new classes of valuations called normal, proper nor-
mal, and positive proper normal. Also, we introduce a
new operator called removal, and def’me some new axioms
for the removal operator. Shenoy [1991b] shows how
probability theory, Dempster-Shafer’s belief-function the-
ory, Spohn’s epistemic-belief theory, and Zadeh’s possi-
bility theory fit in the framework of VBS.
In section 3, we define independence and conditional inde-
pendence for sets of variables. We show that these defini-
tions satisfy some well known properties that have been
stated by Dawid [1979], Spohn [1980], Lauritzen [1989],
Pearl [1988], and Smith [1989] in the context of probabil-
ity theory. Using Pearl’s terminology, the conditional in-
dependence relation in VBS is a graphoid. Finally, in sec-
tion 4, we make some concluding remarks. Proofs of all
results can be found in [Shenoy 1991b].

2 VALUATION-BASED SYSTEMS
In this section, we describe the framework of valuation-
based systems (VBS). In a VBS, we represent knowledge
by entities called variables and valuations. We infer inde-
pendence relations using three operators called combina-
tion, marginalization, and removal. We use these opera-
tors on valuations.
The framework of VBS is described in [Shenoy 1989,
1991a]. The motivation there was to describe a local com-
putational method for computing marginals of the joint
valuation. In this paper, we embellish the VBS framework
by introducing t/tree new classes of valuations called nor-
mal, proper normal, and positive proper normal, and by
introducing a new operator called removal. Our motivation
here is to define independence and describe its properties.
Variables We assume there is a finite set ~ whose ele-
ments are called variables. Variables will be denoted by
upper-case letters, X, Y, Z, etc. Subsets of ~ will be de-
noted by lower-case letters, r, s, t, etc.

Valuations For each s~%, there is a set ’9" s. We call
the elements of ’ff s valuations for s. Let Lr denote
~ { ~5 s I s~_% }, the set of all valuations. If ff is a valua-
tion for s, then we say that s is the domain of ~.
Valuations will be denoted by lower-case Greek alphabets,
p, if, x, etc.
Valuations are primitives in our abstract framework and,
as such, require no definition. But as we shall see shortly,
they are objects which can be combined, marginalized, and
removed. A valuation for s represents some knowledge
about variables in s.

In probability theory, with each variable X, we associate a
set ~ X called the frame for X. Also for each s~, we as-
sociate the set ’~ff s = x { W X I X~ s} called the frame for s.
Elements of qff s are called configurations ors. In proba-

bility theory, for example, a valuation for s is a function
o:’lff solt, where 1~ is the set of all real numbers.

Zero Valuations For each s~%, there is at most one
valuation ~s~ ~ s called the zero valuation for s. Let Z
denote { ~s I s~% }, the set of all zero valuations. Note
that we are not assuming zero valuations always exist. If
zero valuations do not exist, Z = O. We call valuations in
’ff-Z nonzero valuations. Intuitively, a zero valuation
represents knowledge that is internally inconsistent. In
probability theory, for example, a zero valuation for s is
the valuation ~s such that ks(x) = 0 for all x~ ~ s-
Proper Valuations For each subset s of %, there is a
subset ~s of eft s-{~s}. We call the elements of ~s proper
valuations for s. Let P denote ~{ ~s I s~% }, the set of
all proper valuations. Intuitively, a proper valuation repre-
sents knowledge that is partially coherent. In probability
theory, for example, a proper valuation is a nonzero valua-
tion a such that o(x) >_ 0 for all x~ ’ttrs.

Normal Valuations For each s~%, there is another
subset % s of ~ s-{~s}- We call the elements of % s nor-
mal valuations for s. Let % denote u{’lL s I s~ }, the set
of all normal valuations. Intuitively, a normal valuation
represents knowledge that is partially coherent in a sense
different from proper valuations. In probability theory, for
example, a normal valuation is a nonzero valuation ~
such that X{~(x) I x~ ’ttr s] = 1.
Proper Normal Valuations For each s~_%, let Pt, s
denote ~so% s. We call the elements of IL s proper nor-
mal valuations for s. Let IL denote ~{l’Ls I s~Z}, the set
of all proper normal valuations. Intuitively, a proper nor-
mal valuation represents knowledge that is completely co-
herent.
Positive Proper Normal Valuations For each
s~, there is a subset l~s+ of IL s. We call the elements
of IL s+ positive proper normal valuations for s. Let E, +

denote u{ E, s+ I s~% }, the set of all positive proper nor-
real valuations. As we will see later, positive proper nor-
mal valuations are proper normal valuations that have
unique identities. In probability theory, for example, a
positive proper normal valuation for s is a proper normal
valuation cr such that ~(x) > 0 for all x~ ’~ff s-

Figure 1 shows the relations between the different types of
valuations. As per our definitions, Z~qf, ~(U-Z ),

Combination We assume there is a mapping
~9:’Lr x’V --> % ~Z, called combination, such that the
following axioms are satisfied:

(C1) (Domain) If p and c; are valuations for r and s, re-
spectively, then p<9o is a valuation for r~s.

(C2) (Associative) p~(a~gx) = (p~a)~x.

(C3) (Commutative) p~cr = ~p.
(C4) (Zero) Suppose zero valuations exist, suppose ~r is a
valuation for s, and suppose p is a valuation for r. Then
~r = ~s~P = ~r~s.
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Figure 1: The Relations Between Different Types of Valuations

that for each s_~, (E,s+, ~) is a commutative
subsemigroup.
Identity Valuations We will assume that
for each s~G, and for each o~ % s~ {~s], there
exists at least one identity for it, i.e., there ex-
ists ~ ~Ls~{~s} such that o’~o = o. A val-
uation may have more than one identity.
Axiom C4 states that every element of
~s~{~s} is an identity for ~s- Note that if
o~ ’II, s, then ~:~ ~ s (Proof: If 8o = ~s, then
o$~o = O~s = ~s ~ ~r, contradicting the fact
that 80 is an identity for o).
Also, we will assume that for each sK~, the
commutative subsemigroup ~L s~{~s} has an
identity, denoted by ts, which is positive
proper normal. In other words, there exists
ts~ IL s+ such that for each o~ ’lLs, O~ts = ~r.
Note that a commutative semigroup may have
at most one identity. Also, ts is an identity for
each element of % s~ { ~s}.

(C5) (Nonzero) If p and o are both nonzero valuations,
then p~o is either normal or zero.

(C6) (Proper) If p and o are both proper valuations, then
pOo is either proper normal or zero.
(C7) (Positive Proper Normal Valuations) If p and ~r are
both positive proper normal, then p~o is positive proper
normal.
If p~cr, read as p plus o, is a zero valuation, then we say
that p and o are inconsistent. If p~o is a normal valua-
tion, then we say that p and ~ are consistent.
Intuitively, combination corresponds to aggregation of
knowledge. If p and o are valuations for r and s represent-
ing knowledge about variables in r and s, respectively,
then p~:t represents the aggregated knowledge about vari-
ables in r~s. In probability theory, for example, combina-
tion is pointwise multiplication followed by normaliza-
tion (if normalization is possible).

An implication of Axiom C2 is that when we have mul-
tiple combinations of valuations, we can write it without
using parenthesis. For example, (...((o1~o2)(3~3)~...
~Om) can be written simply as Ol~...l~Om without
parenthesis. Further, by Axiom C3, we can write
Ol(3...(3(tm simply as ~{Ol ..... ore}, i.e., not only do
we not need parenthesis, we need not indicate the order in
which the valuations are combined. Mathematically,
Axioms C2 and C3 imply that the pair (~5, (9) is a com-
mutative semigroup [-Petrich 1973].

An implication of Axioms C1, C2, C3, C4 and C5 is
that the set ’IL s~[~s} together with the combination oper-
ation @ can be regarded as a commutative subsemigroup.
(If zero valuations do not exist, then ~ s~{~s} = ~ s). By
Axiom C4, if zero valuations exist, then the valuation ~s
is the zero of the subsemigroup ’IL s~{~s}. It follows from
Axiom C6 that for each sKg, (~L s~{~s}, ~) is a com-
mutative subsemigroup, and it follows from Axiom C7

We will assume that for each s~%, and for
each o~ ~s~{~s}, there exists at least one identity for it,
i.e., there exists ~5o� ~L s~ {~s} such that crY5o = o. Note
that if o~ ~ s, then 5o~ ;L s. Also, since ~ s is a subset
of % s, and ts~ ~’L s, ts is also the identity for the semi-
group ILs~[~s}.

We will assume that for each s~%, each element of E, s+
has a unique identity. Since E, s+~E, s, and ts~ % s+, this
implies that ts is the identity for each cr in E, s+, i.e. 8o =
ts if o� ~ +, and that ts is the identity for ~ s+.

In probability theory, for examp.le, the identity ts for
~l!,s~{~s} is given by ts(X) = 1/lett~ sl for all x~ ~ s.
Suppose o is a normal valuation for s. An identity ~5o for
~ is a proper normal valuation for s such that 8o(x) = 1/K
if o(x) ~ 0, and 8o(x) = either 0 or 1/K if <y(x) = 0. K is a
constant whose value is determined by the fact that ~ is a
normal valuation.
Valuations for the Empty Set We will assume that
the set % 0 consists of exacdy one element. This assump-
tion implies that ~LO+= ~’LO= ~!,O = {tO} wheretO is
the identity valuation for the empty seL Also, we will as-
sume that if ~ is nonzero valuation for s, and 130 is a
nonzero valuation for the empty set, then o~l~O is not
zero, i.e., o~130 is a normal valuation for s. This as-
sumpdon implies that if ~0 and ~ are nonzero valua-
tions for the empty set, then ~O@l~O = tO.

If o is a nonzero valuation that is not normal, then o~tO
~ o (since o~to is normal and o is no0. We can regard
cr~tO as the "normalized" form of o.

Marginalization We assume that for each s~%, and for
each X~ s, there is a mapping $(s-{X}): q5 s --> q5 s-{X},
called marginalization to s-{X}, such that it satisfies the
following axioms:
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(MI) (Oomain) Ifo is a valuation for s, then o~’(s-{X)) is
a valuation for s-{X}.
(M2) (Order of Deletion) Suppose o is a valuation for s,
and suppose Xl, X2 ~ s. Then (6$(s-Ixl 1))$(~-{xl’x2})

= ((~$(~-{X2 }))~’(s-{X1,X2}).

(M3) (Nonzero) 6$(s-lX}) is nonzero iff o is nonzero.
(M4) (Proper) If o is a proper valuation, then o$(s-{X})
is a proper valuation.
0V/5) (NormaO oA’(~-IX}) is nomud fifo is normal.
(M6) (Positive Proper Normal) If ~ is positive proper
normal, then o~(s-{X}) is positive proper normal.

We call ~$(s--{X}) the marginal of <r for s-{X}.
Intuitively, marginalization corresponds to coarsening of
knowledge. If o is a valuation for s representing some
knowledge about variables in s, and X~ s, then
represents the knowledge about variables in s-IX} implied
by ~ ff we disregard variable X. In probability theory, for
example, marginalization to s-{X} is addition over the
frame for X.
If we regard margina/ization as a coarsening of a valuation
by deleting variables, then Axiom M2 says that the order
in which the variables are deleted does not matter.2 One
implication of this axiom is that
(~’[(s-lX11))’[(s-{xl’X2}) can b¢ written simply as

ff$(s-{XI’X2}), i.e., we need not indicate the order in
which the variables are deleted.
Axiom M3 is vacuous if zero valuations do not exist, An
implication of M3 is that ~s~’(s-{X}) = ~s-{X}. An im-
plication of Axiom M5 is that a valuation o for s is nor-
mat iff o$0 = tO.
We will assume further that the marginalization and com-
bination operators satisfies the following two axioms.

Axiom CM1 (Combination and Marginalization 1)
Suppose o is a normal valuation for s, suppose r~s,
and suppose 8o,, is an identity for ~r. Then

Axiom CM2 (Combination and Marginalization 2)
Suppose p and ff are valuations for r and s, respec-
tively. Suppose X~ r, and suppose X¢ s. Then

(p~:r)L((rvs)-{X}) = p~9(o$(s-{X})).

2 Axiom M2 is equivalent to the "consonance of
marginalization" axiom in [Shenoy and Sharer 1990], wh2ch
is stated as follows: If o is a valuation for s, a~d q ~ r ~ s,

then (o’l’r)’l’q = o’Lq.

The following lemma states some easy implications of
Axiom CM1.3

Lemma 2,1 Suppose Axioms C1-C7, MI-M6,
and CM 1 hold. Then the following statements hold.

(i). If o is a normal valuation for s, and r~s, then
O~tr = ft.

(ii). Ifo and p are nonzero valuations, then o~pLO =

(iii). o is normal or zero iff o~ cr
(iv). If r~s, then ts~tr = ts.
(v). ts~tr = tr~s.

Axiom CM2 states that the computation of
(p~o)$((r~)-{X}) can be accomplished without having
to compute p@~. The combination p@~ is a valuation for
r~s whereas the combination p~(o~.(s-{X))) is a valua-
tion for (r~s)-{X}. The following lemma is an easy con-
sequence of Axiom CM2.4

Lemma 2.2 Suppose Axioms C1-C3, MI, M2,
and CM2 hold. Suppose p is a valuation for r and

suppose ~ is a valuation for s. Then (p~ff),[r =
p~o~r~s.

Axioms C1, C2, C3, M1, M2, and CM2 make local
computation of marginals possible. Suppose {Ol .....
ore} is a collection of valuations, and suppose oi is a val-
uation for si. Suppose g = sl~...~sm, and suppose
X~ ~. Suppose we wish to compute (Ol@...~rm)~’{X}.
We can do so by successively deleting all variables but X
from the collection of valuation {Ol ..... ore}. Each time
we delete a variable, we do a fusion operation defined as
follows. Consider a set of k valuations Pl .....Pk-
Suppose Pi is a valuation forri. Let Fusy{pl .....Pk} de-
note the collection of valuations after fusing the valua-
tions in the set {Pl .....Pk} with respect to variable
Y~ rl~ ...t~rk. Then

Fusy(Pl ..... Pk} = { P~’(r-(Y}) } k--Y{ Pi { Y~ rt }

where p = O{pi t Y~ri}, and r = ~{ri 1Y~ rt}. After fu-
sion, the set of valuations is changed as follows. All val-
uations whose domains include Y are combined, and the
resulting valuation is marginalized such that Y is elimi-
nated from its domain. The valuations whose domains do
not include Y remain unchanged. The following ~

3 In [Cano, Delgado, and Moral 1991, and Sharer 1991],
statement (iv) of Lemma 2.1 is stated as an axiom. [Shafer
1991] proves statement (v) of Lernma 2.1 assuming statement
(iv).
4 The statement of Lemma 2,2 was f~rst stated as an axiom in
[Shenoy and Sharer 1990]. Shenoy [I99Ia] stated axiom
CM2, which is stronger than the statement of Lemma 2.2.
The added sUength of axiom CM2 has advantages in the
computation of raarginals--see Theorem 2.1.
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describes the fusion algorithm, a method for computing
(Crl~...~Om)’[’{xl using only local computations.

Theorem 2.1 [Shenoy 1991a] Suppose (oi .....
Om} is a collection of valuations such that oi is a
valuation for si. Suppose Axioms C1, C2, C3, M1,
M2, and CM2 hold. Let ~ denote sl~,..t~Sm.
Suppose X~ ~, and suppose X1X2...Xn_I is a se-
quence of variables in ~-{X}. Then

(glO...OOm),~{X} = I~) { FusXn_l {...

FUSx2{FRsxI{Ol ..... Om}} } }.

Removal We assume there is a mapping
®:~’x~" -~ ’ILuZ, called removal, such that the follow-
ing axioms are satisfied:
(R1) (Domain) Suppose o is a valuation for s, and sup-
pose p is a valuation for r. Then o®p is a valuation for

(R2) (Zero) Suppose zero valuations exist, suppose o is a
valuation for s, and suppose p is a valuation for r. Then

(R3) (Nonzero) Suppose o and p are nonzero valuations
for s and r respectively. Then o®p is either normal or

(R4) (Normal) Suppose p is a normal valuation for r.
Then there exists an identity ~ip for p such that pop = 6p.
We call oOp, read as o minus p, the valuation resulting
after removing p from ~r.

Intaitively, oOp can be interpreted as follows. If o and p
represent some knowledge, and if we remove the knowl-
edge represented by p from ~r, then crop describes the
knowledge that remains. In probability theory, for exam-
ple, removal is pointwise division followed by normaliza-
tion (if normalization is possible).
We assume the following two axioms that relate the re-
moval operator to the combination and the marginaliza-
tion operators.

Axiom CR (Combination and Removal) Suppose
~ 0, p are valuations for p, q, and r, respectively.
Then

0t~0)Op = ~(0Oo),
~(0ep) : (n®0)®p, and

xo(0op) -- (x®O)~p
Axiom MR (Marginalization and Removal)
Suppose ~r is a valuation for s, suppose p is a valua-
tion for r, suppose X~ s, and suppose X~ r. Then

(o~p)$((vos)-(X}) = 6$(s-{X})®p.

It follows from Axioms C2, C3 and CR that (n~0)®p =
0tOp)~0. The following lemma states some easy conse-
quences of Axiom R4.

Lemma 2,3 Suppose o is a valuation for s, and
suppose p is a normal valuation for r. Then the fol-
lowing statements hold.
(i). ((o~p)Op)~s =

(ii). If o is normal, then ((oGp)®p)Ss =
(iii). ((o~p)®p)$S~p = oGp.

(iv). ((~p)@p)~p = ~p.

(v). If p is positive proper normal, then pop = tr.

(vi). if p is positive proper normal, then (o~p)®p =
O(3tr.
(vii). If ~ is normal, and p is positive proper normal,
then (o~p)Op =

(viii). If ¢r is normal, and r~s, then (o@~’r)~<~J’r =

(ix). If ff is normal, and r~s, then ffOoSr is normal.
(x). If

(xi). If o is normal, and r~_s, then there exists an
identity

Conditional Valuations. Suppose cr is a proper nor-
real valuation for s, and suppose r_cs. The normal valua-
tion O’~O"[’r for s plays an important role in the theory of
independence. Borrowing terminology from probability
theory, we call O®oSr the conditional for s-r given r.
Conditional valuations have two important properties:
(O®o~’r)ee5Sr = if, and (~rOoSr)Sr = 8o$r.

3 INDEPENDENCE AND
CONDITIONAL INDEPENDENCE
In this section, we define independence and conditional in-
dependence in terms of factorization of the joint valuation.
Also, we show that these definitions imply the well
known properties of independence and conditional indepen-
dence in probability theory [Dawid 1979, Spohn 1980,
Lauritzen 1989] and in other domains [Pearl 1988, Smith
1989].
The essence of independence is as follows. We say disjoint
subsets r and s are independent with respect to a proper
normal valuation x iff x$(rus) factors into two valuations
p and o, where p is a valuation for r, and ~r is a valuation
for s.

The definition of independence is either objective or sub-
jective depending on whether we have an objective or sub-
jective measure of knowledge represented by proper nor-
mal valuation ~. In probability theory, in some cases, we
start with an objective specification of a joint probability
distribution of all variables. This joint probability distri-
bution then serves as an objective measure of knowledge,
and all statements of independence are objective with re-
spect to this state of knowledge. In other cases, however,
we do not start always with a joint probability distribu-
tion. In such cases, the first task is to specify a joint
probability distribution. To make this specification task
simpler, we make assertions of independence that are nec-
essarily subjective. However, once we have a specification
of a joint probability distribution (obtained either objec-
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tively or subjectively), all further statements of indepen-
dence are necessarily objective with respect to the joint
probability distribution.

Let x Ix: a proper normal valuation for ~. We will hence-
forth assume that x represents the global knowledge re-
garding all variables in the VBS. For example, in proba-
bility theory, x would represent the joint probability dis-
tribution for all variables in %.

Definition 3,1 (Independence) Suppose x is a
proper normal valuation for %, and suppose r, s ~ %,
rt-~s = O. We say r and s are independent with respect
to z, written as r _Lx s, iffx~’(rVs) = p~o, where p
and o are valuations for r and s, respectively.

When it is clear that all independence statements are with
respect to z, we will simply say ’r and s arc independent"
instead of ’r and s ar~ independent with respect to z,’ and
use the simpler notation r 2_ s instead of r -brs.

Theorem 3.1 (Symmetry) Suppose x is a proper
normal valuation for %, and suppose r, s ~ ~, rr~s =
0. If r 2_ s, then s 2. r.

The following lemma gives alternative characterizations of
the independence relation.5

Lemma 3.1 Suppose x is a proper normal valuation
for %, and suppose r, s ~ %, r~s = O. The following
statements are equivalent.

(i). r 2. s.
(ii). z~’(r~s) = p@o, where p and a are valuations for
r and s, respectively.

(iii). x~’(rVs) = "t~r@xJ’s.

(iv). There exists an identity ~ix~r for xSr such that

~$(r~s)~t~’r = c~Sx~r, where ~ is a valuation for s.

(v). There exists an identity 5x~.r for "tSr such that

Def’mifion 3.2 generalizes Definition 3.1 for any number
of subsets of variables.

Definition 3.2 (Joint Independence) Suppose z is
a proper normal valuation for %, and suppose rI .....
rn are disjoint subsets of ~. We say rI ..... rn are
(jointly) independent with respect to z, written as

1.t{rl ..... rn}, iff’t~’(rlt:’’’t:rn) = pl~9...~pn, where

Pi is a valuation for ri, i = 1 .....n.

5 The statements of Lemma 3.1 are analogs of corresponding
statements in [Dawid 1979] in the context of probability
theory. Our contribution here is in showing that these
statements hold in our more general framework of VBS. Thus
they hold not only in probability theory (as shown by Dawid
[1979]) but also in other uncertainty calculi that fit in the
framework of VBS.

Definition 3.2 is a generalization of Definition 3.1. Note
thatr ± s iff 2.{r, s}. We know from probability theory
that functions of independent random variables are inde-
pendent. If XI and X2 are independent random variables,
then f(X 1) and g(X2) are also independent random vari-
ables. More generally, if X1 ..... Xn are independent, IN1,
.... Nk} is a partition of the set {X1 .....Xn}, and Yj is a
function of the Xi in Nj, then Y1 .....Yk are indepefident.
The following lemma makes an analogous statemenL6

Lemma 3.2 Suppose x is a proper normal valuation
for ~, and suppose rl .....rn are disjoint subsets of
%. Suppose 2.{r! .....rn}. Suppose {NI .....Nk} is
a partition of { 1 .....n}, i.e., Ni~Ni = ~ if i ~j, and
N1 ~...~Nk = { 1 .....n}. Suppose Sj-~ (L; {ri I i~ Nj}),
forj = 1 ..... k. Then 2.{sl ..... Sk}.

The statement in the following corollary to I.emma 3.2 is
called decomposition [Pearl 1988]. It is a special case of
Lemma 3.2.

Corollary (Decomposition) Suppose ~ is a proper
normal valuation for %, suppose r, s, t are disjoint
subsets of %, and suppose r _L (s~t). Then r ± s.

The following lemma gives four alternative characteriza-
tions of joint independence.7

Lemma 3.3 Suppose x is a proper normal valuation
for %, and suppose rl ..... rn are disjoint subsets of
%. Then the following statements are equivalent.

(i). ±[r! ..... r~}

(ii). "t~’(rl~’’’Vrn) = pl(~...(gpn, where Pi is a valua-
tion for ri, i = 1 ..... n.
(iii). ’~~’(rl~’’’~rn) = x’~rl~...~’~~’rn

(iv). 2.{rl ..... m-l} and (rl~...~rn-1) _1_ rn.

(v). ri2. ~{rj Ij = 1 ..... n,j ;ei} fori= 1 ..... n.
(vi). rj _1_ (rl~...~rj_l) forj = 2 ..... n.

Def’mition 3.3 def’mes conditional independence for two
subsets given a third.

Definition 3.3 (Conditional independence)
Suppose x is a proper normal valuation for %, and
suppose r, s, and t are disjoint subsets of %. We say r
and s are conditionally independent given t with re-
spect to *, written as r ±z s I t, iff x*<r ’uO =
(zrot(9o~s~t, where Ctr~t and cts~t are valuations for
rot and st~L respectively.

The following lemma gives six alternative charac~riza-
tions of conditional independence.

6 An analogous statement is stated and proved in [Sharer,
Shenoy, and Mellouli 1987] in the context of qualitative
independence.
7 The statements in I_emma 3.3 are analogs of corresponding
statements in Sharer, Shenoy and Mellouli [1987] in the
context of qualitative independence.
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Lemma 3.4 Suppose z is a proper normal valuation
for ~, and suppose r, s, and t are disjoint subsets of
~. The following statements are equivalent.

(i). r_L s [ t.
(ii)..~L(r~svt) = txrot~c%vt, where Ctr~t and cq~t
are valuations for rt.)t and sut, respectively.

(iii). X~’(r~s~t)®x’Lt = ~r~t~13svt, where [~v,.~t and
~s~t are valuations for rot and svt, respectively.

(iv).

(v). 1;~’(e°sut)®’~’[t =

(viii). There exists an identity 5x~.(,~t) for xJ’(s~t)

such that "[~’(r~st’~t)®xJ’(s~t) = ~tvOt~ixL(,,~).

Theorem 3.2 state, s another property of independence. This
property is called weak union [Pearl 1988].

Theorem 3.2 (Weak Union) Suppose x is a proper
normal valuation for ~, and suppose r, s, and t are
disjoint subsets of %. If r ± s~t, then r ± s [ t.

Theorem 3.3 states another property of conditional inde-
pendence. This property is called contraction [Pearl 1988].

Theorem 3.3 (Contraction) Suppose x is a proper
normal valuation for %, and suppose r, s~ and t are
disjoint subsets of ~. Ifr _L s, and r £ tl s, then r _L
s~t.

The next theorem states a property of conditional indepen-
dence that holds only if the joint valuation x is positive
proper normal.

Theorem 3.4 (Intersection) Suppose, is a positive
proper normal valuation for %, and suppose r, s, and
t are disjoint subset of %. If r / s I t, and r I t[ s,
then r_L s~t.

Definition 3A generalizes Definition 3.3 from two sub-
sets to any number of subsets.

Definition 3.4 (Joint Conditional Independence)
Suppose ~ is a proper normal valuation for %, and
suppose rl ..... rn, t are disjoint subsets of %. We
say r l ..... rn are conditionally independent given t
with respect to z, written as 1x {rl ..... rk} [ t, iff

’1’i’(rlt°’’’~rn~t) = ~trltot~...~(Xrn~t, where aritdt is
a valuation for rivt, i = 1 ..... n.

Pearl and Paz [1987] call a conditional independence rela-
tion that satisfies symmetry, decomposition, weak union,

contraction, and intersection a graphoid. From Theorems
3.1-3.4 and the corollary to Lemma 3.2, it follows that
the definition of conditional independence in Definition
3.3 is a graphoid.

4 CONCLUSION
The main objective of this paper is to define independence
and conditional independence in the framework of
valuation-based systems. Although these concepts have
been deemed and extensively studied in probability theory,
they have not been extensively studied in non-probabilis-
tic uncertainty theories.

Drawing upon the literature on independence in probabil-
ity theory [Dawid 1979, Spohn 1980, Lauritzen 1989,
Pearl 1988, Smith 1989], we define independence and con-
ditional independence in VBS. The framework of VBS was
def’med earlier by Shenoy [1989, 1991a]. However, the
VBS framework def’med there is inadequate for the pur-
poses of studying properties of independence. In this pa-
per, we embellish the framework by including three new
classes of valuations called proper, normal, and positive
proper normal, and by including a new operator called re-
moval. The new def’mitions are stated in the form of ax-
ioms. Shenoy [I991b] shows that these axioms are gen-
eral enough to include probability theory, Dempster-
Shafer’s belief-function theory, Spohn’s epistemic belief
theory, and Zadeh’s possibility tlw~ry.
The framework of VBS as described in this paper enables
us to def’me independence and conditional independence,
and enables us to derive all major properties of conditional
independence that have been derived in probability theory.
Indc~ndence and conditional independence are def’med in
terms of factorization of the joint valuation. Thus, not
only do we have a deeper understanding of independence in
probability theory, we also understand what independence
means in various non-probabilistic uncertainty theories.
This should deflect some criticism that non-pmbabilistic
uncertainty theories are not as well developed as probabil-
ity theory.
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