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ABSTRACT

This paper describes valuation-based systems for representing and solving
discrete optimization problems. In valuation-based systems, we represent in-
formation in an optimization problem using variables, sample spaces of vari-
ables, a set of values, and functions that map sample spaces of sets of vari-
ables to the set of values. The functions, called valuations, represent the fac-
tors of an objective function. Solving the optimization problem involves us-
ing two operations called combination and marginalization. Combination tells
us how to combine the factors of the joint objective function. Marginalization
is either maximization or minimization. Solving an optimization problem can
be simply described as finding the marginal of the joint objective function for
the empty set. We state some simple axioms that combination and marginal-
ization need to satisfy to enable us to solve an optimization problem using lo-
cal computation. For optimization problems, the solution method of valua-
tion-based systems reduces to non-serial dynamic programming. Thus our
solution method for VBS can be regarded as an abstract description of dy-
namic programming. And our axioms can be viewed as conditions that permit
the use of dynamic programming.

Subject classification: Dynamic programming: axioms, theory, algorithm.

1. INTRODUCTION

The main objective of this paper is to describe a valuation-based system (VBS) for
representing and solving discrete optimization problems. There are several reasons why this
is useful.

First, I initially proposed VBSs for managing uncertainty in expert systems [Shenoy,
1989, 1991]. Here I show that these systems also have the expressive power to represent and
solve optimization problems.

Second, problems in decision analysis involve managing uncertainty and optimization.
That these problems can be solved in a common framework suggests that decision problems
also can be represented and solved in the framework of VBS. Indeed, Shenoy [1990a,b]
shows that this is true. In fact, the solution procedure of VBSs when applied to decision
problems results in a method that is computationally more efficient than decision trees and
influence diagrams.

Third, the solution procedure of VBS when applied to optimization problems results in a
method called non-serial dynamic programming [Bertele and Brioschi, 1972]. Thus in an
abstract sense, the local computation algorithms that have been described by Pearl [1986],
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Shenoy and Shafer [1986], Dempster and Kong [1988], and Lauritzen and Spiegelhalter
[1988] are just dynamic programming.

Fourth, we provide an answer to the question: What is dynamic programming? Dynamic
programming is commonly viewed as an optimization technique. This is how Bellman
[1957] described it. However, it is also recognized that dynamic programming is more than
an optimization technique. For example, Aho, Hopcroft and Ullman [1974] refer to dynamic
programming as a “divide-and-conquer” methodology. In this paper, we give a formal
definition of a problem and a formal method solving the problem. The formal method for
solving the problem can be thought of as an abstract definition of dynamic programming.

Fifth, we provide an answer to the question: When does dynamic programming work?
We describe some simple axioms for combination and marginalization that enable the use of
dynamic programming for solving optimization problems. We believe these axioms are new.
They are weaker than those proposed by Mitten [1964].

Sixth, the VBS described here can be easily adapted to represent propositional logic
[Shenoy 1990c,d] and constraint satisfaction problems [Shenoy and Shafer, 1988].

An outline of this paper is as follows. In Section 2, we show how to represent an
optimization problem as a VBS. In Section 3, we state some simple axioms that justify the
use of local computation in solving VBSs. In Section 4, we show how to solve a VBS.
Throughout the paper, we use one example to illustrate all definitions and the solution
method. In section 5, we compare our axioms to those proposed by Mitten [1964] for serial
dynamic programming. In section 6, we make some concluding remarks. Finally, in section
7 we provide proofs for the main results in the paper.

2. REPRESENTATION OF OPTIMIZATION PROBLEMS

A valuation-based system representation of an optimization problem uses variables, frames,
and valuations. We will discuss each of these in detail. We will illustrate all definitions
using an optimization problem from Bertele and Brioschi [1972].

An Optimization Problem. There are five variables labeled as A, B, C, D, and E. Each
variable has two possible values. Let a and ~a denote the possible values of A, etc. The joint
objective function F for variables A, B, C, D, and E factors additively as follows:

F(v,w,x,y,z) = F1(v,x,z) + F5(v,w) + F3(w,y,z), where F, Fy, and Fj3, are as shown below in
Figure 1. The problem is to find the minimum value of F and a configuration (v,w,X,y,z) that
minimizes F.

Figure 1. The factors of the objective function, Fy, F,, and Fs.

we WIA,QE] FI(W) Wew[A_.El Fz(W) we ‘ufM} Fs(w)
a c e 1 a b 4 b d e 0
a c~¢ 3 a ~b 8 b d~e 5
a~ e 5 ~a b 0 b~d e 6
a~c ~e 8 ~a ~b 5 b ~d ~e 3
~a C € 2 ~b d e 5
~a ¢ ~e 6 ~b d ~e 1
~a ~C € 2 ~b~d e 4
~a ~C ~¢ 4 ~b ~d ~e 3

Variables, Frames, and Configurations. We use the symbol W'y for the set of possible
values of a variable X, and we call Wy the frame for X. We are concerned with a finite set
% of variables, and we assume that all the variables in % have finite frames.
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Given a finite nonempty set h of variables, we let W', denote the Cartesian product of
Wy for X in h, ie., Wy, =X{Wx | Xeh}. We call W}, the frame for h. We call elements of
W, configurations of h. Lower-case bold-faced letters, such as X, y, etc., denote
configurations. If x is a configuration of g, y is a configuration of h, and gnh=@, then (x,y)
denotes the configuration of guUh obtained by concatenating x and y.

It is convenient to allow the set of variables h to be empty. We adopt the convention that
the frame for the empty set & consists of a single element, and we use the symbol ¢ to name
that element; Wg = {¢}. If x is a configuration of g, then (x, ) is simply x.

Values and Valuations. We are concerned with a set W whose elements are called
values. Y may be finite or infinite. Given a set h of variables, we call any function
H: Wy, — Y, a valuation for h. Note that to specify a valuation for &, we need to specify
only a single value, H(#). If H is a valuation for h and Xe h, then we say H bears on X.

In our problem, the set W corresponds to the set of real numbers, and we have three
valuations F;, F, and F3. F is a valuation for {A,C,E}, F, is a valuation for {A,B} and F; is
a valuation for {B,D,E}. Figure 2 shows a graphical depiction of the optimization problem.
We call such a graph a valuation network. In a valuation network, square nodes represent
variables, and diamond-shaped nodes represent valuations. Each valuation is linked to the
variables it bears on. ,

Let V', denote the set of valuations for h, and let U denote the set of valuations, i.e., U =

UV} | he).

Figure 2. The valuation network for the optimization problem.

G—E—

Projection of Configurations. Projection of configurations simply means dropping
extra coordinates; if (~a,b,~c,d,e) is a configuration of {A,B,C,D,E}, for example, then the
projection of (~a,b,~c,d,e) to {A,C,E} is simply (~a,~c,e), which is a configuration of
{A,CE]}.

If g and h are sets of variables, hcg, and x is a configuration of g, then let xh denote the
projection of x to h. The projection xthis always a configuration of h. If h=g and xis a
configuration of g, then xth = x. If h=, then of course x'h = o.

Combination. We assume there is a mapping ©: VxVY — W called combination so

thatif u, v e Y, then u©v is the value representing the combination of u and v. We define a
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mapping @:UxV — V in terms of ©, also called combination, such that if G and H are
valuations for g and h, respectively, then G®H is the valuation for guh given by
(GOH)(x) = G(x"#)OH(x"") @1
for all xe W g Wecall GBH the combination of G and H.
In our optimization problem, © is simply addition, i.e.
(GeH)(x) = G(xlg) + H(xlh) 2.2)
Using (2.2), we can express the joint objective function F as follows F = F;®F,®F;.
Marginalization. We assume that for each hc%, there is a mapping
Ih:u{v gl goh} — Yy, called marginalization to h, such that if G is a valuation for g and
goh, then G is a valuation for h. We call GVt the marginal of G for h.
For our optimization problem, we define marginalization as follows:
Gh(x) = MIN{G(x.y) | ye W} (2.3)

for all xe Wy. Thus, if F is an objective function, then Fw(o) represents the minimum value
of F.

In an optimization problem, besides the minimum value, we are usually also interested in
finding a configuration where the minimum of the joint valuation is achieved. This motivates
the following definition.

Solution for a Valuation. Suppose H is a valuation for h. We call xe Wy, a solution for
Hif H(x) = H9(s).

Solution for a Variable. As we will see, once we have computed the minimum value of
a valuation, computing a solution for the valuation is a matter of bookkeeping. Each time we
eliminate a variable from a valuation using minimization, we store a table of configurations
of the eliminated variable where the minimums are achieved. We can think of this table as a
function. We call this function “a solution for the variable.” Formally, we define a solution
for a variable as follows. Suppose X is a variable, suppose g is a subset of variables

containing X, and suppose G is a valuation for g. We call a function Wx: W_x) > Wy a
solution for X (with respect to G) if
e-(X
G*¢ ™ Ve) = G(e,¥x(©) 24)
for all ce ‘llfg_(X].
If G is a large set of variables, then a brute force computation of F and an exhaustive

search of the set of all configurations of % to determine a solution for F is computationally
infeasible. In the next section we will state axioms for combination and marginalization that
make it possible to use local computation to compute the minimum value of F and a solution
for F.

3. THE AXIOMS

We state three axioms. Axiom Al is for combination. Axiom A2 is for marginalization.
And Axiom A3 is for combination and marginalization.

Al. (Commutativity and associativity of combination). Suppose u, v, and w
are values. Then u©w = vOu and u©(vOw) = (UOV)Ow.

A2. (Consonance of marginalization). Suppose G is a valuation for g, and
kchcg. Then (Gl =Gk,
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A3. (Distributivity of marginalization over combination). Suppose G and H
are valuations for g and h, respectively. Then (GOH)2 = Go(Heh),

It follows from axiom A1 that @ is commutative and associative. Therefore, the
combination of several valuations can be written without using parentheses. For example,

(...((F19F,)®F3)®...8Fy) can be simply written as F;®...©F, without specifying the order
in which to do the combination.

If we regard marginalization as a reduction of a valuation by deleting variables, then
axiom A2 can be interpreted as saying that the order in which we delete the variables does
not matter.

Axiom A3 is the crucial axiom that makes local computation of marginals and solution

possible. Axiom A3 states that computation of (G®H)'® can be done without having to

compute G®H.
For our optimization problem, it is easy to see that the definitions of combination in (2.2)
and marginalization in (2.3) satisfy the three axioms.

4. SOLVING A VBS USING LOCAL COMPUTATION

Suppose we are given a collection of valuations {Fj, ..., F,} where each valuation F; is for

subset h; of %. The problem is (i) to find the minimum value of F = F;®...®F, and (ii) to
find a solution for F. We assume that combination and marginalization satisfy the three
axioms.

We call the collection of subsets {hy, ..., h} for which we have valuations a hypergraph

and denote it by 36.
Solving a VBS proceeds in three phases. In phase one, we arrange the subsets of

variables in 36 in a “rooted Markov tree.” In the phase two, we “propagate” the valuations

F1, ..., Fi} in the rooted Markov tree using a local message-passing scheme resulting in the
k g

computation of the marginal Fw. In the phase three, we construct a solution for F again

using a local message-passing scheme.

4.1. PHASE ONE: FINDING A ROOTED MARKOV TREE ARRANGEMENT

A Markov tree is a topological tree, whose vertices are subsets of variables, with the property
that when a variable belongs to two distinct vertices, then every vertex lying on the path
between these two vertices contains the variable.

A rooted Markov tree is a Markov tree with the empty subset & as the root and such that
all edges in the tree are directed toward the root.

First, note that the only information we need in phase one is the set %. Second, in
arranging a set of subsets in a rooted Markov tree, we may have to add some subsets to the

hypergraph 3. Figure 3 shows a rooted Markov tree arrangement of the subsets {A,C,E},

{AB}, and {B,D,E}. Subsets {A,E}, {B,E}, {A,B,E}, {A}, and & have been added during
the arrangement process. Third, in general, there may be many rooted Markov tree
arrangements of a hypergraph.

The computational efficiency of phase two depends on the sizes of the frames of the
vertices of the Markov tree constructed in the phase one. Finding an optimal rooted Markov
tree (a rooted Markov tree whose largest frame is as small as possible) has been shown to be
a NP-complete problem [Arnborg et al., 1987]. Thus we have to balance the computational
efforts in the two phases. We should emphasize, however, that this is strictly a
computational effort question. If computational effort is not an issue, then it does not matter
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which rooted Markov tree is used for propagating the valuations. All rooted Markov trees :
give the same final answer, i.e., the marginal of the joint valuation for the empty set. We will
describe a heuristic called “one-step-look-ahead” due to Kong [1986] to find a good rooted
Markov tree.

The method described below for arranging a hypergraph in a rooted Markov tree is due to
Kong [1986] and Mellouli [1987].

Figure 3. A rooted Markov tree for the optimization problem.

©

(esd @D

Suppose %6 is a hypergraph on %. To arrange the subsets in 3 in a Markov tree, we first
pick a sequence of variables in %. As we will see, each sequence of the variables gives rise
to a Markov tree arrangement. Mellouli [1987] has shown that an optimal Markov tree
arrangement can be found by picking some sequence. Of course, since there are an
exponential number of sequences, finding an optimal sequence is, in general, a difficult
problem.

Suppose we have a sequence of variables. Consider the first variable, say X, in the
sequence. We add two subsets g;= U{h|X;eh} and f; = g;~{X;} to %. We form the
rooted Markov tree (U, &) where V' = {he % | X;eh}U{f,}u{g} and & =

{(h,g) Ihe (%~{g,f.}), X;eh}u{(g,f)}. We now consider X; as marked and subsets that
contain X, as arranged. We repeat this process for the unarranged subsets until all variables
are marked.
Consider the following set of instructions in pseudo-Pascal:
u:=% {Initialization}
¥o:=¥ {Initialization}
V:=0 {Initialization}
& =@ {Initialization}
fori=1tondo
begin
Pick a variable from set u and call it X;
u=u-— {Xj}
g = U{he %i—l I Xie h}.

fi=g - {X}.
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V=Vu [hE %i-l | Xie h} U {fl} |V {gl}
& =8 U {(hg) | he (3. ~{g,£;)), X;eh} U {(g. )}
%i = {hE %i—l IXIEh} (&) {fl}

end {for}

After the execution of the above set of instructions, it is easily seen that the pair (V', 8) is
a rooted Markov tree arrangement of ¥ where U denotes the set of vertices of the rooted
Markov tree and & denotes the set of edges directed toward the root.

Kong [1986] has suggested a heuristic called one-step-look-ahead for finding a good
Markov tree. This heuristic tells us which variable to mark next. As the name of the
heuristic suggests, the variable that should be marked next is an unmarked variable X; such

that the cardinality of ‘Uffi is the smallest. Thus, the heuristic attempts to keep the sizes of

the frames of the added vertices as small as possible by focussing only on the next subset
added. In the optimization problem, a marking sequence selected by the one-step-look-ahead
heuristic is CDEBA. Figure 4 illustrates the construction of a rooted Markov tree using this
marking sequence. The resulting Markov tree is the same as that shown in Figure 3. See
Zhang [1988] for other heuristics for good Markov tree construction.

4.2. PHASE TWO: FINDING THE MARGINAL OF THE JOINT VALUATION
Suppose we have arranged the hypergraph % in a rooted Markov tree. Let 3%’ denote the set
of subsets in the Markov tree. Clearly ¥%'2%. To simplify the exposition, we assume there

is exactly one valuation for each nonempty subset he 3". If h is a subset that was added
during the rooted Markov tree construction process, then we can associate the vacuous
valuation (the valuation whose values are all 0) with it. On the other hand, if subset h had
more than one valuation defined for it, then we can combine these valuations to obtain one
valuation.

If we assume that the directed edges of a rooted Markov tree point from a child to its
parent, then the rooted Markov tree defines a parent-child relation between adjacent vertices.
If there is an edge (h;,h;) in the rooted Markov tree, we refer to h; as h;’s parent and refer to

h; as hy’s child. Lethy = denote the root of the Markov tree. Let Pa(h) denote h’s parent
and let Ch(h) denote the set of h’s children. Every non-root vertex has exactly one parent.
Some vertices have no children and we call such vertices leaves. Note that the root has
exactly one child.

In describing the process of finding the marginal of the joint valuation for the empty set,
we will pretend that there is a processor at each vertex of the rooted Markov tree. Also, we
assume these processors are connected using the same architecture as the Markov tree. In
other words, each processor can directly communicate only with its parent and its children.

In the propagation process, each subset (except the root hp) transmits a valuation to its
parent. We call the valuation transmitted by subset h; to its parent Pa(h,) a valuation message

and denote it by vhi~P2®)  syuppose %' = (hg, hy, ..., hy} and let F; denote the valuation
associated with nonempty subset h;. Then, the valuation message transmitted by a subset h;
to its parent Pa(h;) is given by

VP _ (@ (vPM | he Ch(hy) }@F,) HHinPet) @.1)
In words, the valuation message transmitted by a subset to its parent consists of the
combination of the valuation messages it receives from its children plus its own valuation

suitably marginalized. Note that the combination operation in (4.1) is on the frame W'p,.
Expression (4.1) is a recursive formula. We need to start the recursion somewhere. Note
that if subset h; has no children, then Ch(h;) = @ and the expression in (4.1) reduces to
yhioPaty) _ (Fi)l(hinPa(hi)) “2)
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'ﬁgure 4. The construction of the rooted Markov tree for the optimization problem.

1. The initial hypergraph. Variables
are shown as squares and subsets are
shown as black disks. The elements
of each subset are indicated by dotted
lines.

2. The Markov tree fragment after C
is marked. Subset {A,E} is added to
the hypergraph. Subset {A,C,E} is
now arranged.

3. The Markov tree fragment after D
is marked. Subset {B,E} is added to
the hypergraph. Subset {B,D.E} is
now arranged.

4. The Markov tree fragment after E
is marked. Subset {A,B,E} is added
to the hypergraph. Subsets {AE},
{B.E} and {A,B,E} are now
arranged.

5. The Markov tree fragment after B
and then A are marked. Subsets (A}
and & are added to the hypergraph.
All subsets are now arranged.
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Thus the leaves of the Markov tree (the subsets that have no children) can send valuation
messages to their parents right away. The others wait until they have heard from all their
children before they send a valuation message to their parent.

The following theorem states that the valuation message from hg’s child to hy is indeed
the desired marginal.

Theorem 1. The marginal of the joint valuation for the empty set is equal to
the message received by the root, i.e., (FIGB...GBFk)ua =Vh=ho,

Theorem 1 is valid not only for optimization problems but for any VBS where axioms
Al, A2, A3 hold. We give a simple proof of Theorem 1 in section 6.
The essence of the propagation method described above is to combine valuations on

smaller frames instead of combining all valuations on the global frame associated with %.
To ensure that this method gives us the correct answers, the smaller frames have to be
arranged in a rooted Markov tree.

Figure 5 shows the propagation of valuations in the optimization problem. Figure 6
shows the details of the valuation messages. As is clear from Figure 6, the minimum value of
the joint objective function F is 2.

Figure 5. The propagation of valuations in the optimization problem. The valuation
messages are shown as rectangles overlapping the corresponding edges. The
valuations associated with the vertices are shown as diamonds linked to the
corresponding vertices by dotted lines.

(( (F, L{AE) @F3L{B,E))l(A,B]®F2)L(A] )l@

((Fll[A,E}®F3l[B,E])l[A,B]®F2)i{A) @ . <1>

3 l(A,E}®F3l{B,E} )l(A,B}

{A7B 7E}
FlitA,El F3l-{B,E}

{A.E} {B.E}
Fli[A,E) F3l[B,E)

@ {A,CE} {B,D,E} @
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Figure 6. The details of the valuation messages for the optimization problem.
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4.3. PHASE THREE: FINDING A SOLUTION

In phase two, each time we marginalize a variable, assume that we store the corresponding
solution for that variable at the vertex where we do the marginalization. For example, in the
optimization problem, we store a solution for C at vertex {A,C,E}, we store a solution for D
at vertex {B,D,E}, we store a solution for E at vertex {A,B,E}, we store a solution for B at
vertex {A,B}, and we store a solution for A at vertex {A} (see Figures 4, 5, and 6).

In this phase, each vertex of the rooted Markov tree sends a configuration to each of its

children. We call the configuration transmitted by vertex h; to its child hje Ch(h)) as a

configuration message and denote it by ¢" . ¢ will always be an element of ‘Ufhinhj.

As in phase two, we give a recursive definition of configuration messages.
The messages start at the root and travel toward the leaves. The configuration message

from vertex & to its child, say hy, is given by
L R @3)

In general, consider vertex h;. It receives a configuration message 20D from its
parent Pa(h;). Let h; be a child of h;. The configuration message from h; to h; depends on
whether h; has a solution for a variable stored at its location. (Remember that vertex h; has a
solution for X stored with it if h—Pa(h;) = {X}).

If h; has a solution for a variable stored at its location, then

himty = (PP, (P ohiy) L) (4.4)
where X is such that {X} = hi-Pa(hy).

If h; has no solution for a variable stored at its location, then

hihj (cPa(hi)—>hi)l(hinhj). 4.5)

We stop the message passing process when each vertex that has a solution stored at its

location has received a configuration message.

Theorem 2. Suppose hy denotes the vertex that has the solution for X stored
at its location. Then ze W' given by

2 - Wy (P2™X2MX) - for every Xe % (4.6)
is a solution for F;®...®F,.

Figure 7 illustrates the message passing scheme for the optimization problem. As per
Theorem 2, a solution for F is given by (¥4(¢? ), Wy (c!A1 (4Bl w ((AEIDIACE]
¥ (cBEIBDE) g (ABISIABE)))  Erom Figures 6 and 7, we sce that configurations
(~a,b,c,d,e) and (~a,b,~c.d,e) are both solutions for F.

5. MITTEN’S AXIOMS FOR DYNAMIC PROGRAMMING

In optimization problems, the computational scheme described in section 4 is essentially the
same as the method of non-serial dynamic programming (Nemhauser, 1966; Bertele and
Brioschi, 1972). Bellman's dynamic programming methodology appealed to a principle of
optimality that translates into axiom A3 with combination interpreted as addition and
marginalization interpreted as maximization over the deleted variables (Bellman 1957).
Mitten (1964) has described a more general framework for discrete dynamic programming.
In this section, we describe Mitten's framework in terms of our notation.

Values and Valuations. The value space is R, the set of real numbers. A valuation for
h is a real-valued function on W},
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Figure 7. The propagation of configuration messages in the optimization problem.
The configuration messages are shown as rectangles with rounded corners
overlapping the corresponding edges. Note that the direction of messages is opposite
to the direction of the edges. The solutions for the five variables are shown as
inverted triangles attached to the vertices (where they are stored) by dotted lines.

Combination. There is a mapping ©: RxIR — R that is commutative and associative.
Define a mapping ®:UXxVU — U such that whenever G and H are valuations for g and h
respectively, G®H is a valuation for guh given by

(GOH)(x) = G(x'8) © H(x'h)
for all xe Wy .

Monotonicity of Combination. We say that © is monotonic if u©v; 2 u©vy whenever
v1 2 vp. Suppose H; and Hj are valuations for h. We say that Hy = Hy if Hj(x) = Ha(x) for
all xe W;. Note that if © is monotonic, then G®H; > G®H; whenever H; >Hy.

Marginalization. Define a mapping {h: U{V g | g2h} — VU, such that whenever G is a
valuation for g, Gh is a valuation for h given by

GY(x) = MAX{G(x,y) | ye W ;) .1y
for all xe W,
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Theorem 3. Suppose the value space is R and suppose marginalization is
defined as in (5.1). If © is monotonic, and G and H are valuations for g and h,
respectively, then (G@H)'8 = GH(HLsNh),

Thus monotonicity of © implies axiom A3. The other condition that Mitten requires is
called separability and it amounts to a serial factorization of the joint objective function. In
our framework, we do not require any particular structure for the factorization of the joint
valuation.

6. CONCLUSIONS

In the introduction, we raised two questions: What is dynamic programming? And, when
does dynamic programming work? The main contribution of this paper is the abstract
framework of valuation-based systems consisting of variables, frames of variables, values,
valuations, and two operations—combination and marginalization. Assuming that
combination and marginalization satisfy three simple axioms, we have described a method
for computing a solution for the joint valuation using only local computation. We can think
of the framework and its solution method as the answer to the first question. The three
axioms constitute one answer to the second question.

7. PROOFS

In this section, we provide proofs for the Theorems 1 and 2 stated in section 5 and Theorem 3
stated in section 6. We prove Theorems 1 and 2 only using axioms A1, A2 and A3. In other
words, we do not assume that combination is addition and marginalization is minimization.

Lemma 7.1. Suppose hy, ..., hy are the vertices of a rooted Markov tree.
Suppose fori = 1, ..., k, vertex h; has the valuation F; associated with it, where
F, is a valuation for h;. Suppose hy is a leaf in the rooted Markov tree with

parent hy ;. Suppose % denotes hyu...Uhy and %' denotes hyuU...Uhy_;. Then
(F,®..®F)*" = F,®..®F, ,®(F, ,®F, " k-1)) a.1

Proof of Lemma 7.1. Note that axiom Al allows us to write the LHS of (7.1) as is written
above. The result in (7.1) follows directly from axiom A3 by substituting %' for g, hy for h,
F®...®F,_, for G, and Fy for H. Since h, is a leaf in the rooted Markov tree with parent hy_;,

hgnhy_; < hy ;. Thus Fk_1®Fkl(hknhk-l) is a valuation for hy_;. |

Proof of Theorem 1. By axiom A2, (Fl®...®Fk)lg is obtained by sequentially marginalizing
all variables in any sequence. A proof of this theorem is obtained by repeatedly applying the
result of Lemma 7.1. At each step, a leaf of the rooted Markov tree sends a message to its
parent, the parent combines this message with its own valuation, and the leaf is deleted from
the tree. When the tree is reduced to only one vertex, the root, we have the result. |

Next, we state a lemma that is needed to prove Theorem 2.
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Lemma 7.2. Suppose hy, ..., hy are the vertices of a rooted Markov tree.
Suppose fori =1, ..., k, vertex h; has the valuation F; associated with it, where
F, is a valuation for h;. Suppose hy is a leaf in the rooted Markov tree with

parent hy; and suppose h—~(hynhy_1) = {X;} If ‘I’Xj is a solution for X; (with
respect to Fy), and ¢ is a solution for Fl®...®Fk_2®Fk_1®FkJ'a‘kﬁhk-1), then
(c, ‘I’xj(ci(hkhhk'l))) is a solution for F;®...®F,.

Proof of Lemma 7.2. We need to prove that (F;®...8F,)(c, ‘I‘Xj(cw‘k”hk-l))) =
(F,®..®F)‘2(+). We have (F1®...®Fk)(c,\ij(c*“‘k“hk-l’))
= (F,®..8F,_;)(c) © F, (¢} D, \ij(c““k”“k-ﬂ)) (by definition of combination)
= (F,®..®F,_,)(¢) © F, Mk -1 w1
(since ‘I’xj is a solution for X; with respect to Fy)

= (F,®...9F, ,®F, ,®F, x™MD)c) (by definition of combination)
= (F,®...®F, ,8F; | 8F "k "-0)12(y)

(since ¢ is a solution for (Fl®...®Fk_2®Fk_1®Fkl(hk“hk-1)) )

= ((F,®...8F,) t19-ho-X)y12 4 ) (using Lemma 7.1)
= (F1®...®Fk)w( ¢) (using axiom A2)
m

Proof of Theorem 2. A proof of this theorem is obtained by repeated application of Lemma
7.2. First we apply Lemma 7.2 for the entire rooted Markov tree. In our rooted Markov tree

construction algorithm, if hy_, is a parent of hy, then either hy—(h,"hy_;) = {X} for some

j€ %, or hychy ;. The first case corresponds to the statement of Lemma 7.2. In the second
case, when hy sends a valuation message to hy_,, there is no marginalization. Hence, there is

no solution function stored at hy. But in this case, Fl®...®Fk_2®Fk_1®Fkl(hknhk-1) =
F®...®F,. Next, we apply Lemma 7.2 to the rooted Markov tree with vertex hy and edge
(hy,h_1) deleted. And so on, until the only vertex left is &. But ¢ is the solution for
(F1®...®Fk)w. Thus the configuration messages as defined in (4.3), (4.4) and (4.5) give us
the solution for F;®...®F, as stated in Theorem 2. |

Proof of Theorem 3. Suppose xe W, and ye W, ;. Then
(GOH)le(x,y) = MAX{(GOH)(x,y,z) | z& 'Ufh_g}

= MAX{G(x,y)©OH(y,z) | ze ‘llfh_g}

2 G(x,y)©O(MAX({H(y,z) | z& Wy_,})
In other words, (G&H)Ye > G®(H'e"h). But since © is monotonic and
MAX{H(y,z)|ze Wy_g} 2 H(y,z) for all ze ‘wh_g,we have

G(x,y)O(MAX{H(y,z) | & W}_,}) 2 G(x,y)OH(y,z)

for all ze Wy_,. In particular, this inequality must hold for the maximum of the RHS with
respect to z, i.e., G(x,y)©(MAX{H(y,z) | ze ‘U)‘h_g}) > MAX{G(x,y)©H(y,z) | ze ‘Ufh_g},
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ie., G®(H'eNh) > (GBH)!s. Since we have already shown that (GBH)s > GB(H'enh), we
have the result. [ |
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