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Abstract

We describe a framework and an algo-
rithm for solving hybrid influence diagrams
with discrete, continuous, and deterministic
chance variables, and discrete and continu-
ous decision variables. A continuous chance
variable in an influence diagram is said to be
deterministic if its conditional distributions
have zero variances. The solution algorithm
is an extension of Shenoy’s fusion algorithm
for discrete influence diagrams. We describe
an extended Shenoy-Shafer architecture for
propagation of discrete, continuous, and util-
ity potentials in hybrid influence diagrams
that include deterministic chance variables.
The algorithm and framework are illustrated
by solving two small examples.

1 Introduction

An influence diagram (ID) is a formal compact rep-
resentation of a Bayesian decision-making problem.
It consists of four parts: a sequence of decisions, a
set of chance variables with a joint distribution repre-
sented by a hybrid Bayesian network (BN), the deci-
sion maker’s preferences for the uncertain outcomes
represented by a joint utility function that factors
additively, and information constraints that indicate
which uncertainties are known (and which are un-
known) when a decision has to be made. IDs were
initially defined by [8].

Hybrid IDs are IDs containing a mix of discrete and
continuous chance and decision variables. In practice,
most decision problems are hybrid. However, solving a
hybrid ID involves two main computational challenges.
First, marginalizing a continuous chance variable in-
volves integration of a product of density and utility
functions. In some cases, such as the Gaussian density

function, there may not exist a closed-form represen-
tation of the integral. We will refer to this problem as
the integration problem.

Second, marginalizing a decision variable involves
maximizing a utility function. If the decision vari-
able is continuous and has relevant continuous infor-
mation predecessors, then we may be faced with the
problem of finding a closed-form solution of the max-
imization problem. Not only do we have to find the
maximum value of the decision variable (as a function
of the states of its relevant information predecessors),
we have also to find a closed-form expression of the
maximum utility (as a function of the states of its rel-
evant information predecessors). We will refer to this
problem as the optimization problem.

A traditional method for solving hybrid IDs is to ap-
proximate a hybrid ID with a discrete ID by discretiz-
ing the continuous chance and decision variables (see,
e.g., [9]). If we discretize a continuous variable using a
few bins, we may have an unacceptable approximation
of the problem. On the other hand, if we use many
bins, we increase the computational effort of solving
the resulting discrete ID. In the BN literature, [10]
describes a dynamic non-uniform discretization tech-
nique for chance variables depending on where the pos-
terior density lies. This technique needs to be adapted
for solving hybrid IDs.

Another method for solving hybrid IDs is to use Monte
Carlo (MC) simulation. One of the earliest to suggest
MC methods for solving decision trees was [6], where
the entire joint distribution is sampled. [2] proposes a
MC method that samples from a small set of chance
variables at a time for each decision variable. [13] pro-
poses several MC methods and provide bounds on the
number of samples required given some error bounds.
[1] explores using Markov chain MC methods to solve a
single-stage decision problem with continuous decision
and chance nodes to solve the maximization problem.

Among exact methods, [16] provides a theory to solve
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IDs where all chance and decision variables are con-
tinuous. The continuous chance variables have con-
ditional linear Gaussian (CLG) distributions, and the
utility function is quadratic. Such IDs are called Gaus-
sian IDs. These assumptions ensure that the joint dis-
tribution of all chance variables is multivariate normal
whose marginals can be easily found without the need
for integration. Also, the quadratic nature of the util-
ity function ensures that there is a unique maximum
than can be computed in closed form without the need
for solving an optimization problem.

[14] extends Gaussian IDs to include discrete chance
variables that do not have continuous parents. If a
continuous chance variable does not have a CLG dis-
tribution, then it can be approximated by a mixture
of Gaussians represented by a discrete variable with
mixture weights and a continuous variable with the
discrete variable as its parent and with a CLG distri-
bution.

To find marginals in hybrid BNs, [12] proposes ap-
proximating probability density functions (PDF) by
mixtures of truncated exponentials (MTE) as a solu-
tion for the integration problem. The family of MTE
functions is easy to integrate, is closed under combina-
tion and marginalization, and can be propagated using
the Shenoy-Shafer architecture [18]. [4] describes MTE
IDs, where the PDFs of continuous chance variables,
and utility functions, are described using MTE func-
tions. Thus any PDF can be used as long as they can
be approximated by MTE. Discrete variables can have
continuous parents, and there is no restriction on the
nature of the utility function.

Similar to MTE, [21] proposes approximating PDFs by
piecewise polynomial functions called mixture of poly-
nomials (MOP). Like MTE, MOP functions are closed
under multiplication and integration. Thus, they can
be used to find exact marginals in hybrid BNs. MOP
functions have some advantages over MTE functions.
MOP approximations can be easily found using the
Taylor series for differentiable functions, even for mul-
tidimensional functions. Also, they are closed for a
larger class of deterministic functions than MTE func-
tions, which are closed only for linear deterministic
functions.

[3] describes arc reversals in hybrid BNs that con-
tain a mix of discrete, continuous, and deterministic
variables. The conditionals for discrete variables are
represented by discrete potentials, for continuous vari-
ables by density potentials, and for deterministic vari-
ables by Dirac potentials (containing a weighted sum
of Dirac delta functions [5]). The deterministic func-
tion does not have to be linear or invertible. The only
requirement is that it should be differentiable. [20]

extends this framework by defining mixed potentials,
and combination marginalization operations for mixed
potentials. They call their framework the extended
Shenoy-Shafer architecture.

In this paper, we propose further extending the ex-
tended Shenoy-Shafer architecture for solving hybrid
IDs that include deterministic chance variables. The
solution technique is conceptually the same as the one
proposed by [17] for discrete decision problems. We ex-
tend this method to include continuous and determin-
istic chance variables, and continuous decision vari-
ables. To address the integration problem, we propose
MOP approximations of PDFs and utility functions.
Since MOP functions are easily integrable, finding the
maximum of a utility function that is in MOP form is
also easier.

An outline of the remainder of this paper is as follows.
In section 2, we describe the framework and an algo-
rithm to solve hybrid IDs with deterministic variables.
In section 3, we describe MOP functions. In section
4, we solve two small decision problems to illustrate
our framework and algorithm. Finally, in section 5,
we conclude with a summary and discussion on the
limitations of our algorithm.

2 The Extended Shenoy-Shafer

Framework

In this section, we describe a framework and an al-
gorithm for solving hybrid IDs with deterministic
variables. The algorithm described is adapted from
[17, 11]. The framework described here is a further
extension of the extended Shenoy-Shafer architecture
described in [20] for inference in hybrid Bayesian net-
works with deterministic variables. Here, we include
decision variables, and utility potentials. Mixed po-
tentials are a triple of discrete, continuous, and utility
potentials. The definition of marginalization of mixed
potentials is revised to accommodate non-associativity
of multiplication and addition in the definition of com-
bination of potentials.

Variables and States. We are concerned with a fi-
nite set V = D ∪ C of variables. Variables in D are
called decision variables, and variables in C are called
chance variables. Each variable X ∈ V is associated
with a set ΩX of possible states. If ΩX is finite or
countable, we say X is discrete, otherwise X is con-

tinuous. We will assume that the state space of con-
tinuous variables is the set of real numbers, and that
the state space of discrete variables is a set of sym-
bols (not necessarily real numbers). If r ⊆ V , r 6= ∅,
then Ωr = ×{ΩX |X ∈ r}. If r = ∅, we will adopt the
convention that Ω∅ = {⋄}.
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We will distinguish between discrete chance variables
and continuous chance variables. Let Cd denote the set
of all discrete chance variables and let Cc denote the set
of all continuous chance variables. Then, C = Cd ∪ Cc.
We do not distinguish between discrete and continuous
decision variables.

In an ID, each chance variable has a conditional distri-
bution function for each state of its parents. A condi-
tional distribution function associated with a continu-
ous variable is said to be deterministic if the variances
(for each state of its parents) are all zeros. For sim-
plicity, henceforth, we will refer to continuous variables
with non-deterministic conditionals as continuous, and
continuous variables with deterministic conditionals as
deterministic.

In an ID, we will depict decision variables by rect-
angular nodes, discrete chance variables by single-
bordered elliptical nodes, continuous chance vari-
ables by double-bordered elliptical nodes, determinis-
tic chance variables by triple-bordered elliptical chance
nodes, and additive factors of the joint utility function
by diamond-shaped nodes. We do not distinguish be-
tween discrete and continuous decision variables.

Projection of States. If x ∈ Ωr, y ∈ Ωs, and r ∩
s = ∅, then (x,y) ∈ Ωr∪s. Thus, (x, ⋄) = x. Suppose
x ∈ Ωr, and s ⊆ r. Then, the projection of x to s,
denoted by x↓s, is the state of s obtained from x by
dropping states of r\s. Thus, e.g., (w, x, y, z)↓{W,X} =
(w, x), where w ∈ ΩW , and x ∈ ΩX . If s = r, then
x↓s = x. If s = ∅, then x↓s = ⋄.

Discrete Potentials. In an ID, the conditional
probability functions associated with chance variables
are represented by functions called potentials. If A is
discrete, it is associated with a conditional probabil-
ity mass function. The conditional probability mass
functions are represented by functions called discrete

potentials. Suppose r ⊆ V is such that if it is non-
empty then it contains a discrete variable. A discrete
potential for r is a function α : Ωr → [0, 1]. The values
of discrete potentials are probabilities.

Although the domain of the potential α is Ωr, we will
refer to r as the domain of α. Thus, the domain
of a potential representing the conditional probability
function associated with some chance variable X in an
ID is always the set {X}∪pa(X), where pa(X) denotes
the set of parents of X in the ID graph. Notice that
a discrete potential can have continuous chance vari-
ables or decision variables in its domain, but, in this
case, it must also include a discrete chance variable,
i.e., if the domain of a discrete potential is non-empty,
then it must include a discrete variable. The values of
discrete potentials are always in units of probability.

Density Potentials. Continuous chance variables
are typically associated with conditional PDFs. Con-
ditional PDFs are represented by functions called den-

sity potentials. Suppose r ⊆ V is such that if it is non-
empty then it contains a continuous variable. A den-
sity potential ζ for r is a function ζ : Ωr → R+, where
R+ is the set of non-negative real numbers. The values
of density potentials are probability densities. Notice
that a density potential can have discrete chance vari-
ables or decision variables in its domain, but, in this
case, it must include a continuous chance variable, and
its values are always in units of (probability) density.

Dirac Delta Functions. Deterministic variables
have conditional distributions described by equations.
We will represent such distributions by Dirac poten-

tials that use Dirac delta functions δ [5].

δ : R → R+ is called a Dirac delta function if δ(x) = 0
if x 6= 0, and

∫

δ(x)dx = 1. Whenever the limits of
integration of an integral are not specified, the entire
range (−∞,∞) is to be understood. δ is not a proper
function since the value of the function at 0 doesn’t
exist (i.e., is not finite). It can be regarded as a limit
of a certain sequence of functions (such as, e.g., the
Gaussian density function with mean 0 and variance
σ2 in the limit as σ → 0). However, it can be used
as if it were a proper function for practically all our
purposes without getting incorrect results. It was first
defined by Dirac [5].

Dirac Potentials. Suppose t = r∪s is a set of vari-
ables containing some discrete variables r and some
continuous chance variables s, and suppose s 6= ∅. A
Dirac potential for t is a function ξ : Ωt → R+ such
that ξ(r, s) is of the form:

ξ(r, s) = Σ{pr,iδ(z − gr,i(s
↓(s\{Z})))|r ∈ Ωr,

i = 1, . . . , nr},
(1)

where r ∈ Ωr, s ∈ Ωs, Z ∈ s is a continuous or
deterministic variable, z ∈ ΩZ , δ(z − gr,i(s

↓(s\{Z})))
are Dirac delta functions, pr,i are probabilities for all
i = 1, . . . , nr, and nr is a positive integer. Here, we
are assuming that continuous or deterministic vari-
able Z is a weighted sum of deterministic functions
gr,i(s

↓(s\{Z})) of the other continuous variables in s,
with probability weights pr,i, and that the nature of
the deterministic functions and weights may depend
on the state r of the discrete variables in r, or on some
latent index i. Like density potentials, Dirac poten-
tials must include a continuous variable in its domain
if it is non-empty, and its values are in units of density.

Continuous Potentials. Both density and Dirac
potentials are special instances of a broader class of
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potentials called continuous potentials. Suppose t ⊆ V
is such that if it is non-empty then it contains a con-
tinuous chance variable. Then, a continuous potential

for t is a function ξ : Ωt → R+. Like density and Dirac
potentials, continuous potentials must include a con-
tinuous variable in its domain if it is non-empty, and
its values are in units of density.

Utility Potentials. An ID representation includes
utility functions, that represent the preferences of the
decision maker for the various outcomes. If an ID has
more than one utility node, we assume an additive fac-
torization of the joint utility function. Each additive
factor of the utility function is represented by a utility
potential. A utility potential υ for t ⊆ V is a function
υ : Ωt → R. The values of utility potentials are in
units of utiles.

Mixed Potentials. To keep track of the nature of
potentials, we define mixed potentials. A mixed po-
tential has three parts. The first part is a discrete po-
tential, the second is a continuous potential, and the
third is a utility potential. Suppose α is a discrete po-
tential for r. Then, a mixed potential representation
of α is µ = (α, ιc, ιu), where ιc denotes the identity
continuous potential for ∅, ιc(⋄) = 1, and ιu denotes
the identity utility potential for ∅, ιu(⋄) = 0. Suppose
ζ is a continuous potential for s. Then, a mixed po-
tential representation of ζ is µ = (ιd, ζ, ιu), where ιd
denotes the discrete identity potential for ∅, ιd(⋄) = 1.
Finally, if υ is a utility potential for t, then a mixed
potential representation of υ is µ = (ιd, ιc, υ). ιd is a
discrete potential for ∅ whose value is in units of prob-
ability, ιc is a continuous potential for ∅ whose value
is in units of density, and ιu is an utility potential for
∅ whose value is in units of utiles.

Combination of Potentials. The definition of
combination of potentials depends on the nature (dis-
crete, continuous, or utility) of potentials. Although
there are nine permutations, we have only two distinct
definitions. Utility functions are additive factors of the
joint utility function. Thus, combination of two util-
ity potentials involves pointwise addition. In all other
eight cases, combination of potentials involves point-
wise multiplication.

Suppose υ1 is a utility potential for t1 and υ2 is a
utility potential for t2. Then, the combination of υ1

and υ2, denoted by υ1 ⊗ υ2, is a utility potential for
t1 ∪ t2 given by:

(υ1⊗υ2)(x) = υ1(x
↓t1)+υ2(x

↓t2) for all x ∈ Ωt1∪t2 .
(2)

Suppose α1 is a potential (discrete, continuous, or util-
ity) for t1 and α2 is a potential (discrete, continuous,

or utility) for t2. Suppose that both α1 and α2 are
not both utility. Then, the combination of α1 and α2,
denoted by α1 ⊗α2, is a potential for t1 ∪ t2 given by:

(α1 ⊗ α2)(x) = α1(x
↓t1)α2(x

↓t2) for all x ∈ Ωt1∪t2 .
(3)

If α1 and α2 are both discrete, then α1 ⊗ α2 is a dis-
crete potential. If α1 and α2 are both continuous, then
α1 ⊗ α2 is a continuous potential. If α1 is discrete or
continuous, and α2 is utility, or vice-versa, then α1⊗α2

is a utility potential. In all other cases, we will define
the nature of the the combined potential when we de-
fine marginalization of mixed potentials.

Combination of Mixed Potentials. Suppose
µ1 = (α1, ζ1, υ1) and µ2 = (α2, ζ2, υ2) are two mixed
potentials for r1 ∪ s1 ∪ t1 and r2 ∪ s2 ∪ t2, respec-
tively, with discrete parts α1 for r1, and α2 for r2,
respectively, continuous parts ζ1 for s1, and ζ2 for
s2, respectively, and utility parts υ1 for t1, and υ2

for t2, respectively. Then, the combination of µ1

and µ2, denoted by µ1 ⊗ µ2, is a mixed potential for
(r1 ∪ s1 ∪ t1) ∪ (r2 ∪ s2 ∪ t2) given by

µ1 ⊗ µ2 = (α1 ⊗ α2, ζ1 ⊗ ζ2, υ1 ⊗ υ2) (4)

Since the combination of two discrete potentials is dis-
crete, two continuous potentials is continuous, and two
utility potentials is utility, the definition in eq. (4)
is consistent with the definition of mixed potentials.
If µ1 = (α, ιc, ιu) is a mixed potential for r, µ2 =
(ιd, ζ, ιu) is a mixed potential for s, and µ3 = (ιd, ιc, υ)
is a mixed potential for t, then µ1⊗µ2⊗µ3 = (α, ζ, υ)
is a mixed potential for r ∪ s ∪ t.

It is easy to confirm that combination of mixed po-
tentials is commutative and associative. This follows
from the commutativity and associativity of the com-
bination of discrete potentials, the combination of con-
tinuous potentials, and the combination of utility po-
tentials.

Marginalization of Potentials. The definition of
marginalization of potentials depends on the nature
of the variable being marginalized. We marginalize
discrete chance variables by addition over its state
space, continuous chance variables by integration over
its state space, and decision variables (discrete or con-
tinuous) by maximization over its state space.

Suppose α is a potential (discrete or continuous or util-
ity or some combination of these) for a, and suppose
X ∈ a is a discrete variable. Then, the marginal of
α by deleting X , denoted by α−X , is a potential for
a \ {X} given as follows:

α−X(y) = Σ{α(x,y)|x ∈ ΩX} for all y ∈ Ωa\{X}.
(5)

325 LI & SHENOY UAI 2010

Appeared in: Uncertainty in Artificial Intelligence (UAI-2010), P. Grunwald and P. Spirtes (eds.), pp. 322--331, 2010, AUAI Press, Corvallis, OR



If X ∈ a is a continuous variable, then α−X is defined
as follows:

α−X(y) =

∫ ∞

−∞

α(x,y)dx for all y ∈ Ωa\{X}. (6)

And ifX ∈ a is a decision variable, then α−X is defined
as follows:

α−X(y) = max{α(x,y)|x ∈ ΩX} for all y ∈ Ωa\{X}.
(7)

In some examples, if X is a decision variable, the state
space of X may be further constrained as a function
of the states of some of its information predecessors.
In this case, we assume that the maximization in eq.
(7) is subject to these additional constraints.

Division of Potentials. The definition of marginal-
ization of mixed potentials involves division of proba-
bility (discrete or continuous) potentials by probability
potentials. Also, the potential in the divisor is always
a marginal of the potential being divided.

Suppose α is a discrete or continuous potential for a,
and suppose X ∈ a is a discrete or continuous chance
variable. Then the division of α by α−X , denoted by
α⊘ α−X , is a potential for a defined as follows:

(α⊘ α−X)(x,y) = α(x,y)/α−X (y) (8)

for all x ∈ ΩX , and y ∈ Ωa\{X}. In eq. (8), if the
denominator is zero, then the numerator is also 0, and
in this case we define 0/0 as 0. The nature of the
potential α ⊘ α−X depends on X . If X is discrete,
α⊘ α−X is discrete, and if X is continuous, α⊘ α−X

is continuous [3].

Marginalization of Mixed Potentials. Similar
to marginalization of potentials, marginalization of
mixed potentials depends on the nature of the variable
being marginalized. We distinguish between marginal-
izing a decision variable and marginalizing a chance
variable from a mixed potential.

Suppose µ = (α, ζ, υ) is a mixed potential for r∪ s∪ t,
where α is a discrete potential for r, ζ is a continuous
potential for s, and υ is a utility potential for t. Sup-
pose X ∈ D and X ∈ r∪s∪ t. Then the marginal of µ
by deleting X , denoted by µ−X , is defined as follows:

µ−X =


















(α, ζ, υ−X) if X /∈ r, X /∈ s, and X ∈ t

(ιd, ζ, (α⊗ υ)−X) if X ∈ r, X /∈ s, and X ∈ t

(α, ιc, (ζ ⊗ υ)−X) if X /∈ r, X ∈ s, and X ∈ t

(ιd, ιc, (α⊗ ζ ⊗ υ)−X) if X ∈ r, X ∈ s, and X ∈ t

(9)

We will assume that each decision variable is the do-
main of at least one utility potential. If so, at the time
when a decision variable is to be marginalized from a
mixed potential, it will always be in the domain of the
utility part. Thus, we have only four cases in eq. (9).

Suppose µ = (α, ζ, υ) is a mixed potential for r∪ s∪ t,
where α is a discrete potential for r, ζ is a continuous
potential for s, and υ is a utility potential for t. Sup-
pose X ∈ C and X ∈ r∪ s∪ t. Then the marginal of µ
by deleting X , denoted by µ−X , is defined as follows:

µ−X = ((α⊗ ζ)−X , ιc, ((α⊗ ζ) ⊘ (α⊗ ζ)−X) ⊗ υ)−X)

if X ∈ r, X ∈ s, X ∈ t, and (r ∪ s) \ {X} ⊆ Cd,

= (ιd, (α⊗ ζ)−X , ((α⊗ ζ) ⊘ (α ⊗ ζ)−X) ⊗ υ)−X)

if X ∈ r, X ∈ s, X ∈ t, and (r ∪ s) \ {X} * Cd,

= (α, ζ−X , ((ζ ⊘ ζ−X) ⊗ υ)−X)

if X /∈ r, X ∈ s, X ∈ t, and s \ {X} * Cd,

= (α⊗ ζ−X , ιc, ((ζ ⊘ ζ−X) ⊗ υ)−X)

if X /∈ r, X ∈ s, X ∈ t, and s \ {X} ⊆ Cd,

= (α−X , ζ, ((α ⊘ α−X) ⊗ υ)−X)

if X ∈ r, X /∈ s, X ∈ t, and r \ {X} * Cc,

= (ιd, α
−X ⊗ ζ, ((α ⊘ α−X) ⊗ υ)−X)

if X ∈ r, X /∈ s, X ∈ t, and r \ {X} ⊆ Cc,

= (α, ζ, υ−X) if X /∈ r, X /∈ s, and X ∈ t,

= ((α⊗ ζ)−X , ιc, υ) if X ∈ r, X ∈ s, X /∈ t,

and (r ∪ s) \ {X} ⊆ Cd,

= (ιd, (α⊗ ζ)−X , υ) if X ∈ r, X ∈ s, X /∈ t,

and (r ∪ s) \ {X} * Cd,

= (α, ζ−X , υ) if X /∈ r, X ∈ s, X /∈ t,

and s \ {X} * Cd,

= (α⊗ ζ−X , ιc, υ) if X /∈ r, X ∈ s, X /∈ t,

and s \ {X} ⊆ Cd,

= (α−X , ζ, υ) if X ∈ r, X /∈ s, X /∈ t,

and r \ {X} * Cc,

= (ιd, α
−X ⊗ ζ, υ) if X ∈ r, X /∈ s, X /∈ t,

and r \ {X} ⊆ Cc. (10)

Some comments about the marginalization of a chance
variable from a mixed potential are as follows. In the
first six cases, we have division of potentials that cor-
respond to arc reversal in influence diagrams [15, 3].
This is necessary when we have an additive factor-
ization of the joint utility function since multiplica-
tion and addition are not associative [17]. The last six
cases in which the chance variable being marginalized
doesn’t belong to the domain of the utility potential
is exactly as discussed in [20].

The divisions in the first six cases of eq. (10) can be
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avoided if either there is no additive factorization of
the joint utility function, i.e., there is a single utility
potential in the ID representation, or if the divisor is
a vacuous potential (i.e., a potential whose values are
all ones). In either of these two cases, the definition
of marginalization of a chance variable in eq. (10)
simplifies as follows (only the cases where X ∈ t are
shown as the other cases remain unchanged):

µ−X =










(ιd, ιc, (α⊗ ζ ⊗ υ)−X) if X ∈ r, X ∈ s, X ∈ t,

(α, ιc, (ζ ⊗ υ)−X) if X /∈ r, X ∈ s, X ∈ t,

(ιd, ζ, (α⊗ υ)−X) if X ∈ r, X /∈ s, X ∈ t.

(11)

Solving Hybrid Influence Diagrams. We have
all the definitions needed to solve hybrid influence di-
agrams with deterministic variables. The solution al-
gorithm is basically the same as described in [17, 11].
We use the Shenoy-Shafer architecture [18] to propa-
gate the potentials in a join tree. All variables need to
be marginalized in a sequence that respects the infor-
mation constraints in the sense that if X precedes Y in
the information sequence, then Y must be marginal-
ized before X . Each time we marginalize a decision
variable, we keep track of where the maximum is at-
tained (as a function of the remaining variables in the
potential being marginalized). This yields a decision
function for the decision variable. The collection of all
decision functions constitutes an optimal strategy for
the influence diagram.

3 Mixture of Polynomials

Approximations

In this section, we describe MOP functions. [19] de-
scribes MOP approximations of the PDFs of the uni-
variate normal and chi-square distribution, and the
conditional linear Gaussian distribution in two dimen-
sions.

3.1 MOP Functions

A one-dimensional function f : R → R is said to be a
mixture of polynomials (MOP) function if it is a piece-
wise function of the form:

f(x) =
{

a0i + a1ix+ · · · + anix
n for x ∈ Ai, i = 1, . . . , k,

0 otherwise.

(12)

where A1, . . . , Ak are disjoint intervals in R that do
not depend on x, and a0i, . . . , ani are constants for

all i. We will say that f is a k-piece (ignoring the 0
piece), and n-degree (assuming ani 6= 0 for some i)
MOP function.

The main motivation for defining MOP functions is
that such functions are easy to integrate in closed form,
and that they are closed under multiplication and in-
tegration. They are also closed under differentiation
and addition.

An m-dimensional function f : Rm → R is said to be
a MOP function if:

f(x1, . . . , xm) = f1(x1) · f2(x2) · · · fm(xm) (13)

where each fi(xi) is a one-dimensional MOP function
as defined in eq. (12). If fi(xi) is a ki-piece, ni-
degree MOP function, then f is a (k1 · · · km)-piece,
(n1 + . . .+ nm)-degree MOP function. Therefore it is
important to keep the number of pieces and degrees
to a minimum. [19, 21] discuss the process of finding
MOP approximations of univariate and bivariate con-
ditional distributions. For space considerations, these
are not discussed here.

4 Two Examples

In this section, we illustrate our algorithm for solving
hybrid influence diagram with deterministic variables
by solving two problems. The first one is called En-
trepreneur’s problem [7], and has continuous chance
and deterministic variables, a continuous decision vari-
able, and an unfactored utility function. The second
problem is an American put option [2]. This prob-
lem has continuous chance variables, discrete decision
variables with continuous chance predecessors, and an
additive factorization of the joint utility function.

4.1 Entrepreneur’s Problem

This problem is adapted from [7]. An entrepreneur
has to decide on a price for his product. When the en-
trepreneur selects a price P , the quantity Qn that he
will sell is determined from the demand curve Qn(P ).
This quantity Qn will have a cost of manufactur-
ing Cn(Qn) given by the total cost curve. The en-
trepreneur’s profit will then be the difference between
his revenue P ·Qn and his cost Cn or π = P ·Qn−Cn.
The entrepreneur needs to find a price P that will
maximize his profit.

This problem would be very simple if the demand
curve and total cost curve were known with certainty,
but this is seldom the case. We shall assume that the
quantity Qn(P ) determined from the demand curve is
only a nominal value and that the actual quantity sold
will be Qn + Z1, where Z1 is a standard normal ran-
dom variable. Furthermore, producing this quantity
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Qa = Qn +Z1 will cost Ca = Cn +Z2, where Z2 is an-
other independent standard normal random variable.
Note that the profit is now π = P ·Qa − Ca.

For the demand curve, the functional form is Qn(p) =
ln α−ln p

β
, where 0 < p ≤ α, with parameters α = 50,

β = 1
80 . For the total cost function we assume the form

Cn(qa) = k0 + k1qa + k2(1 − e−k3qa), with parameters
k0 = 700, k1 = 4, k2 = 400, k3 = 1

50 . We restrict the
range of P to [1, 47] to ensure that Qa is nonnegative
(with a very high probability of 0.999999). An ID
representation of the problem is depicted in Figure 1.

Figure 1: An ID representation of the entrepreneur’s
problem

We will solve the entrepreneur’s problem by
marginalizing variables in the following sequence:
Ca, Z2, Cn, Qa, Z1, Qn, P . Z1 and Z2 are continuous
variables with density potentials φ(z1), φ(z2), where
φ(·) is the PDF of the standard normal random vari-
able. As discussed in section 2, the conditional distri-
butions of the deterministic variables Ca, Cn, Qa, Qn

are described by Dirac potentials. Since we have a
single utility potential, no divisions are necessary dur-
ing the solution process.

First, we marginalize Ca. The Dirac potential asso-
ciated with Ca is σ1(ca, cn, z2) = δ(ca − (cn + z2)).
Resulting potential π1 is a utility potential.

π1(p, qa, cn, z2) = (π ⊗ σ1)
−Ca

=

∫ ∞

−∞

δ(ca − (cn + z2)) (pqa − ca)dca

= p · qa − (cn + z2)

Next, we marginalize Z2. Let ϕ6,p(z) denote the 6-
piece, 3-degree MOP approximation of φ(z) as de-
scribed in [21]. The density potential associated with
Z2 is ϕ6,p(z2). The result of marginalizing Z2 is the
utility potential π2 as follows.

π2(p, qa, cn) = (π1 ⊗ ϕ6,p)
−Z2

=

∫ ∞

−∞

ϕ6,p(z2) [p · qa − (cn + z2)]dz2

= p · qa − cn

Next we marginalize Cn. Let fCn
(qa) denote the

cost function 700 + 4qa + 400(1 − e−
qa

50 ). Thus, the
Dirac potential associated with Cn is σ1(cn, qa) =
δ(cn − fCn

(qa)). There is no closed form for the re-
sult of marginalizing chance variable Cn. Therefore,
we approximate fCn

(qa) by a 3-piece, 3-degree, MOP
approximation, that is denoted by fpCn

(qa), in the in-
terval (2, 316) as follows:

fpCn
(qa) =



















TSeries[fCn
(qa), qa = 54, d = 3] if 2 < qa ≤ 106

TSeries[fCn
(qa), qa = 158, d = 3] if 106 < qa ≤ 201

TSeries[fCn
(qa), qa = 263, d = 3] if 201 < qa < 316

0 otherwise.

(14)

The notation in eq. (14), introduced in [19], means
using the Taylor series expansion of fCn

at a point qa,
up to degree d, in the specified interval. A graph of
fpCn

overlaid on fCn
is shown in Figure 2.

Figure 2: A graph of fpCn
overlaid on fCn

The result of marginalizing Cn is denoted by π3, which
is a utility potential in MOP form.

π3(p, qa) = (π2 ⊗ σ3)
−Cn

=

∫ ∞

−∞

δ(cn − fpCn
(qa)) (pqa − cn)dcn

= p · qa − fpCn
(qa)

Next, we marginalize Qa. The Dirac potential associ-
ated with Qa is σ4(qa, qn, z1) = δ(qa − (qn + z1)). The
result of marginalizing Qa is denoted by π4, which is
a utility potential in MOP form.

π4(p, qn, z1) = (π3 ⊗ σ4)
−Qa

=

∫ ∞

−∞

π3(p, qa) δ(qa − (qn + z1))dqa

= p · (qn + z1) − fpCn
(qn + z1)

Next, we marginalize Z1. The density potential for Z1

is ϕ6,p(z1). The result of marginalizing Z1 is denoted
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by π5, which is a utility potential. Notice that since
ϕ6,p and fpCn

are MOP functions, π5 is also a MOP
function (46 pieces, 3 degree).

π5(p, qn) = (π4 ⊗ ϕ6,p)
−Z1

=

∫ ∞

−∞

π4(p, qn, z1) ϕ6,p(z1)dz1

Next, we marginalize Qn. Let fQn
denote the demand

function: fQn
(p) = ln 50−ln p

80 , where 1 ≤ p ≤ 47. We
use a 3-piece, 3-degree MOP function fpQn

to approx-
imate fQn

.

fpQn
(p) =



















TSeries[fQn
(p), p = 4, d = 3] if 1 ≤ p ≤ 7

TSeries[fQn
(p), p = 14, d = 3] if 7 < p ≤ 21

TSeries[fQn
(p), p = 34, d = 3] if 21 < p ≤ 47

0 otherwise.

The Dirac potential associated with Qn is σ5(qn, p) =
δ(qn − fpQn

(p)). The result of marginalizing Qn is
denoted by π6, which is a utility potential for P in
MOP form.

π6(p) = (π5 ⊗ σ5)
−Qn

= π5(p, fpQn
(p))

Figure 3 shows a graph of π6 vs. p. Finally, we
marginalize P . The maximum profit is $194.87 at
p = $24.40. For comparison, when demand and sup-
ply are known with certainty, the problem reduces to a
simple nonlinear optimization problem and the maxi-
mum profit $198 is obtained when price is $24.10. This
completes the solution of the Entrepreneur’s problem.

Figure 3: A graph of π6(p) vs. p

4.2 An American Put Option

This problem is adapted from [2]. An option trader
has to decide whether to exercise or not a put op-
tion p with initial stock price S0 = $40 and ex-
ercise price X = $35. The option is available for

exercise at three equally-spaced decision points over
a 7-month period. Following standard practice in
the financial literature, the stock prices, S1, S2 . . . Sk

evolve according to the discrete stochastic process:

Sj = Sj−1 · Y , where Y ∼ LN((r − σ2

2 )∆t, σ2∆t),
for j = 1, 2, . . . , k, Sj is the stock price at time j∆t,
r is the risk-less annual interest rate, σ is the stock’s
volatility, T denotes the length of the option (in years),
and ∆t = T

k
. We assume r = 0.0488, T = 0.5833

years, ∆t = 0.1944 years, k = 3 stages and σ = 0.3.
Thus, S1 ∼ LN(ln 40 + 0.00074, 0.132292), S2|s1 ∼
LN(ln s1 + 0.00074, 0.132292), S3|s2 ∼ LN(ln s2 +
0.00074, 0.132292). An ID representation of the prob-
lem is shown in Figure 4.

Figure 4: An ID representation of the American put
option

Figure 5: Conditionals for the put option decision
nodes

The conditionals for the decision nodes in the prob-
lem are shown in Figure 5, where ei, hi, nci denote
the alternatives: exercise, hold, or no choice, respec-
tively, for decision Di. The only possible decision for
stage i is no choice if the stock was exercised at a prior
time. The additive factors of the utility function are:
πj = e−rj∆t max {X − Sj , 0}, if Dj = ei; πj = 0, oth-
erwise.

We approximate the marginal PDF of S1 by a MOP
function φ1(s1). Also the MoP approximations of the
conditional PDFs for S2|s1, and S3|s2 are denoted by
ψ1(s1, s2), and ψ2(s2, s3), respectively.

Marginalizing D3 and S3. Since no arc reversals
are needed in this problem, no divisions are done, and
we can use the definitions given in eq. (11). Since
π3(e3, s3) ≥ π3(h3, s3) and π3(e3, s3) ≥ π3(nc3, s3),
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the marginalized utility function is:

π′
3(d2, s3) =

{

π3(e3, s3) if d2 = h2,

0 otherwise.

Thus the optimal strategy for D3 is to always exercise
the option (assuming this alternative is available, and
s3 < 35).

Marginalizing S3 involves combination and marginal-
ization:

π′′
3 (d2, s2) =











∫ ∞

−∞
π′

3(d2, s3) ψ2(s2, s3)ds3 if d2 = h2,

π2(e2, s2) if d2 = e2,

0 otherwise.

The ID after marginalizing D3 and S3 is shown in Fig-
ure 6.

Figure 6: The ID after marginalizing D3 and S3 (left),
and after marginalizing D2 and S2

Marginalizing D2 and S2. From Figure 7, we know
that π′′

3 (e2, s2) ≥ π′′
3 (h2, s2), if s2 ≤ 30.14. Suppose

I(R) denotes the indicator function for the region R.
Thus the marginalized utility function is:

π′
2(d1, s2) =











π′′
3 (e2, s2) I(0 ≤ s2 ≤ 30.14)+

π′′
3 (h2, s2) I(s2 ≥ 30.14) if d1 = h1,

0 otherwise.

Figure 7: Utility functions π′′
3 (h2, s2) (in bold) and

π′′
3 (e2, s2) vs. s2

Optimal strategy for D2 is to exercise the option if it
is available and if the stock price is less than 30.14;
otherwise hold it until D3.

Marginalizing S2 is similar to S3:

π′′
2 (d1, s1) =











∫ ∞

−∞ π′
2(d2, s2) ψ1(s1, s2)ds2 if d1 = h1,

π1(e1, s1) if d1 = e1,

0 otherwise.

Marginalizing D1 and S1. From Figure 8, we know
that π′′

2 (e1, s1) ≥ π′′
2 (h1, s1), if s1 ≤ 30.00. Thus the

marginalized utility function is:

π′
1(s1) = π′′

2 (e1, s1) I(0 ≤ s1 ≤ 30.00) +

π′′
2 (h1, s1) I(s1 ≥ 30.00)

Figure 8: Utility functions π′′
2 (h1, s1) (in bold) and

π′′
2 (e1, s1) vs. s1

Optimal strategy for D1 is to exercise the option when
the stock price is less than 30.00; otherwise hold it until
D2.

The value of the option is π′′
1 :

π′′
1 (⋄) =

∫ ∞

−∞

π′
1(s1) φ1(s1) ds1 = 1.19

Our result compares favorably to option pricing theory
that prices it at $1.219 and the result $1.224 computed
by Monte Carlo method using 30 stages [2]. This com-
pletes the solution of this problem.

5 Summary and Discussion

The main contribution of this paper is a framework for
solving hybrid IDs with discrete, continuous, and de-
terministic chance variables, and discrete and contin-
uous decision variables. The extended Shenoy-Shafer
architecture for making inferences in hybrid Bayes nets
has been extended to include decision variables and
utility functions.

Two main problems in solving hybrid IDs are
marginalization of continuous chance variables and
marginalization of continuous decision variables. For
decision problems that do not involve divisions, a so-
lution is to approximate PDFs by MOP functions.
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MOP functions are closed under multiplication, ad-
dition, integration, and differentiation. They are not
closed under divisions. Thus MOP approximations
could be used to mitigate the problems associated with
marginalization of continuous and decision variables.

References

[1] C. Bielza, P. Müller, and D. Rı́os. Decision anal-
ysis by augmented probability simulation. Man-

agement Science, 45(7):995–1007, 1999.

[2] J. M. Charnes and P. P. Shenoy. Multi-stage
Monte Carlo method for solving influence dia-
grams using local computation. Management Sci-

ence, 50(3):405–418, 2004.

[3] E. Cinicioglu and P. P. Shenoy. Arc reversals in
hybrid Bayesian networks with deterministic vari-
ables. International Journal of Approximate Rea-

soning, 50(5):763–777, 2009.

[4] B. R. Cobb and P. P. Shenoy. Decision making
with hybrid influence diagrams using mixtures of
truncated exponentials. European Journal of Op-

erational Research, 186(1):261–275, 2008.

[5] P. A. M. Dirac. The physical interpretation of
the quantum dynamics. Proceedings of the Royal

Society of London, Series A, 113(765):621–641,
1927.

[6] D. Hertz. Risk analysis in capital investment.
Harvard Business Review, 42(1):95–106, 1964.

[7] R. A. Howard. Proximal decision analysis. Man-

agement Science, 17(9):845–879, 1971.

[8] R. A. Howard and J. E. Matheson. Influence dia-
grams. In R. A. Howard and J. E. Matheson, edi-
tors, Readings on the Principles and Applications

of Decision Analysis, volume II, pages 719–762.
Strategic Decisions Group, 1984.

[9] D. L. Keefer. Certainty equivalents for three-
point discrete-distribution approximations. Man-

agement Science, 40(6):760–773, 1994.

[10] A. Kozlov and D. Koller. Nonuniform dynamic
discretization in hybrid networks. In D. Geiger
and P. P. Shenoy, editors, Uncertainty in Arti-

ficial Intelligence: Proceedings of the 13th Con-

ference, pages 302–313, San Francisco, CA, 1997.
Morgan Kaufmann.

[11] S. Lauritzen and D. Nilsson. Representing and
solving decision problems with limited informa-
tion. Management Science, 47(9):1235–1251,
2001.

[12] S. Moral, R. Rumı́, and A. Salmerón. Mixtures
of truncated exponentials in hybrid Bayesian net-
works. In S. Benferhat and P. Besnard, edi-
tors, Symbolic and Quantitative Approaches to

Reasoning with Uncertainty: 6th European Con-

ference, ECSQARU-2001, Lecture Notes in Ar-
tificial Intelligence 2143, pages 156–167, Berlin,
2001. Springer.

[13] L. E. Ortiz and L. P. Kaelbling. Sampling meth-
ods for action selection in influence diagrams. In
H. Kautz and B. Porter, editors, Proceedings of

the 17th National Conference on Artificial Intel-

ligence, pages 378–385, Menlo Park, CA, 2000.
AAAI Press.

[14] W. Poland III. Decision analysis with continuous

and discrete variables: A mixture distribution ap-

proach. PhD thesis, Department of Engineering-
Economic Systems, Stanford University, Stan-
ford, CA., 1994.

[15] R. D. Shachter. Evaluating influence diagrams.
Operations Research, 34(6):871–882, 1986.

[16] R. D. Shachter and C. R. Kenley. Gaussian influ-
ence diagrams. Management Science, 35(5):527–
550, 1989.

[17] P. P. Shenoy. Valuation-based systems for
Bayesian decision analysis. Operations Research,
40(3):463–484, 1992.

[18] P. P. Shenoy and G. Shafer. Axioms for proba-
bility and belief-function propagation. In R. D.
Shachter, T. Levitt, J. F. Lemmer, and L. N.
Kanal, editors, Uncertainty in Artificial Intelli-

gence 4, pages 169–198. North-Holland, 1990.

[19] P. P. Shenoy and J. C. West. Inference in hybrid
Bayesian networks using mixtures of polynomials.
Working Paper 321, University of Kansas School
of Business, Lawrence, KS, May 2009.

[20] P. P. Shenoy and J. C. West. Inference in hybrid
Bayesian networks with deterministic variables.
In C. Sossai and G. Chemello, editors, Symbolic

and Quantitative Approaches to Reasoning with

Uncertainty–10th ECSQARU, Lecture Notes in
Artificial Intelligence 5590, pages 46–58, Berlin,
2009. Springer-Verlag.

[21] P. P. Shenoy and J. C. West. Mixtures of polyno-
mials in hybrid Bayesian networks with determin-
istic variables. In J. Vejnarova and T. Kroupa,
editors, Proceedings of the Eighth Workshop on

Uncertainty Processing, pages 202–212, Prague,
Czech Republic, 2009. University of Economics.

331 LI & SHENOY UAI 2010

Appeared in: Uncertainty in Artificial Intelligence (UAI-2010), P. Grunwald and P. Spirtes (eds.), pp. 322--331, 2010, AUAI Press, Corvallis, OR




