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FOREWORD

The theme of the Twenty - fourth Conference of Army Mathematicians was

" stochastic processes". Four of the six invited speakers , listed

below , spoke on topics related to this theme. In recent years there

has been a shift of interest from the deterministic descriptive

processes to the stochastic processes . This has been brought about

by the need to explain many of the phenomena arising in such fields

as physics, engineering , biology , and medicine . The complexities

and uncertainties that appear in these fields have forced mathematicians

to make frequent use of probabilistic concepts . Army scientists are

having to deal with stochastic equations , principally those associated

with ordinary and partial differential equations . These are concerned

with such phenomena as wave propagation , turbulence and diffusion theory.

Speaker and Institution Area of Talk

Professor E. J. McShane

University of Virginia

Choosing a Mathematical Model

for a System Affected by Noise

Nonlinear Realization TheoryProfessor R. E. Kalman

University of Florida

Professor Y. K. Lin

University of Illinois

Stochastic Theory of Rotor

Blade Dynamics

Professor Roger Brockett

Harvard University

Optimal Multilinear Estimators

Professor Ronald DiPerna Hyperbolic Conservation Laws

Mathematics Research Center

University of Wisconsin -Madison

Professor Eugene Wong

University of California

Berkeley

A Martingale Theory of Random

Fields

The Twenty - fourth Conference of Army Mathematicians was held 31 May

2 June 1978 at Charlottesville , Virginia . The U. S. Army Foreign

Science and Technology Center (AFSATC ), together with the School of

Engineering and Applied Sciences of the University of Virginia , served

as its hosts . Colonel Anthony P. Simkus , Commanding Officer of the

US Army Research Office , played a key role in obtaining the hosts for

this meeting. This fact is borne out by the following quotation from

a letter by Colonel Claire J. Reeder , Commanding Officer of AFSATC .

" I was pleased to receive the proposal by your office to hold the
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24th Conference of Army Mathematicians in Charlottesville . As another

Army Organization with a scientific and technical mission , I welcome

such opportunities to interact with the Army research community. In

this case the University of Virginia will be cooperating with us as

joint host for the meeting and will provide the conference facilities . "

This conference is part of a continuing program of Army -wide symposia

held under the auspices of the Army Mathematics Steering Committee (AMSC )

to promote better communication among Army scientists . In order that

this mission be accomplished , a large number of individuals must expend

a great deal of effort. It is not possible to single out all the persons

involved in making the 1978 conference such a scientific success , but

members of the AMSC would like to recognize a few of these individuals

as well as certain organizations . First of all they would like to

express their gratitude to the University of Virginia and the AFSATC

for providing the necessary facilities and the cordial atmosphere for

this conference . Special recognition is due the outstanding arrangements

made possible by the two chairpersons on Local Arrangements. Mrs.

Betty Jane Pruffer who handled , without a hitch , the administrative

details and Mr. Kent Schlussel who handled in a similar matter the

technical problems . Finally , the members of the AMSC would like to

commend both the invited speakers and the authors of contributed papers

for their excellent presentations and the valuable contributions of

their papers to the field of science .
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A SOLUTION FOR NON - COOPERATIVE GAMES:

Prakash P. Shenoy

Mathematics Research Center

University of Wisconsin at Madison

Madison , WI 53706

ABSTRACT. In this paper we study solutions of strict non - cooperative games

t are played just once . The players are not allowed to communicate with each

er . The main ingredient of our theory is the concept of rationalizing a set

strategies for each player of a game . We state an axiom based on this con

t that every solution of a non-cooperative game is required to satisfy .

ong Nash solvability is shown to be a sufficient condition for the rational

ng set to exist , but it is not necessary . Also , Nash solvability is neither

essary nor sufficient for the existence of the rationalizing set of a game .

: a game with no solution ( in our sense ) , a player is assumed to recourse to

standard of behavior " . Some standards of behavior are examined and discussed .

ies .

I. INTRODUCTION . In this paper , we study solutions of non - cooperative

In a non - cooperative game , absolutely no preplay communication is allowed

:ween the players . The theory of non - cooperative games , in contrast with

perative games , is based on the absence of coalitions in that it is assumed

it each participant acts independently without collaboration or communication

th any of the others . Since in repeated plays of a game it is possible for
+

ayers to "communicate" or signal via their choice patterns on previous plays

shall avoid this feature of a non -cooperative game by only considering games

at are played just once . Our objective is to study strict non - cooperative

nes and although this may be a severe restriction on the class of realistic

mes , like Luce and Raiffa 16 , pp . 105 ) , we feel that

" ... the realistic cases actually lie in the hiatus between strict non

cooperation and full cooperation but that one should first attack these

polar extremes . "

sides , in many of the games that arise in the military and political contexts ,

e players often have a single-play orientation .

Except for this difference , we make the usual assumptions of rationality

d complete information , i.e. , all players are " rational" and each player has

mplete information of this fact and of his own and other players ' utility

nction .

ee Luce and Raiffa 16 , pp . 97-102 ) for a discussion of the temporal repetition

if the prisoner's dilemma .

lere we mean in the usual von Neumann and Morgenstern sense . Later in Section

III , we will look at this assumption more critically and study its implications .

ponsored by the United States Army under contract No. DAAG29-75 - C - 0024 and by .

he National Science Foundation under Grant No. MCS75-17385 A01 .
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II . FORMAL DEFINITIONS AND TERMINOLOGY . In this section we will define

the basic concepts in the non - cooperative theory . The non - cooperative idea will

be implicit , rather than explicit , below .

n

n

i

S

An n -person game is a set of players denoted by N = { 1 , ... , n } , each

with an associated finite set of pure strategies; and corresponding to each

player , i ,
a von Neumann-Morgenstern utility function wi ' which maps the se

of all n - tuples of pure strategies into real numbers . By the term n-tuple , we

mean a set of items with each item associated with a different player . A

mixed strategy of player i will be a probability distribution on his set of

pure strategies . We write Σ
Cia" ia

with = 1
Cia 20 and

to

to represent such a mixed strategy , where the " ia ' are the pure strategies o

player i .

The von Neumann -Morgenstern utility function 4 used in the defi

nition of a finite game above has a unique extension to the n - tuples of mixed

strategies which is linear in the mixed strategy of each player ( n- linear ) .

2

This extension we will also denote byų writing
u

( s ... , S I.e.

cia
a

' s

1

uz (s?,s?,...,s") = {" ...
aj

{ Cla(
)

( T

la

) .
TT

na

n

n

th
TT

We shall use the symbols i , j , k for players and a , B , Y to indicate vario

i i i

pure strategies of a player . The symbols S ,tir will indicate mixed strat

th

egies ; will denote the i player's a pure strategy , etc. We shall

ia

write S , E to denote an n - tuple of mixed strategies . For convenience we shall

1 i- l i i+l

use the substitution notation ( 5 ; t:) to denote , s" ,

where § = (s ?,... , s" .

(s ? , ... , 81-1-1,t ? ,sS

An n - tuple
s

is a Nash equilibrium point if and only if for every i

( s ) = max [u, (s;t ')) .
all ti's

Thus an equilibrium point is an n - tuple such that each player's mixed

strategy maximizes his payoff if the strategies of the others are held fixed .

In an extremely elegant proof , Nash [ 8 ] has shown that every non - cooperative

game with finite sets of pure strategies has an equilibrium point . A strategy

si is player i's equilibrium strategy if the n -tuple lī ; si , is an equi

librium point for some n - tuple t .

A strategy ri is player i's maximin strategy if and only if for all

n - tuples S ,

4 , 15;(sir , ? min [y is ?,...,s"); .
all siis all si,1,...,si- 1,si+ 1 ,... ,sn

max
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m

quantity on the right side of the above inequality is called player i's

timin value and denoted by vi

For 2 - person games only , a strategy ti is player i'sis player i's minimax strategy

and only if for all player j's strategies, si , jy i

ܪ

uz (t *, si , maxmin

all siis all sj's
ly,(st,su, .

S п

ia 'Cia > 0 .

Let si
.

uses

Tia

We say E ) for)هب(5)دهپ
ry E.

We say that a mixed strategy uses a pure strategy
if

ia
i

Σ and If s
Ciß" ib

(s1, ... , s" , and uses we also

B

that s
and ri be two distinct mixed strategies

'
i i

player i . S strongly dominates if ē;
ui

) > ( ,
i

This amounts to saying that S gives player i a higher payoff

i

no matter what the strategies of the other players are . · To see

i

ther a strategy strongly dominates ri , it suffices to consider only

te strategies for the other players because of the n-linearity of 4
Also ,

ui .

say si weakly dominates ri if ; s , for all E

rict inequality holds for at least one E.

S

Based on the concept of an equilibrium point , Nash defined several

lutions " of non - cooperative games . A game is said to be Nash solvable if

set S of equilibrium points satisfies the condition

lī ; ri , e S and ŝe S = (siri , e s . ( 2.1 )

is is called the interchangeability condition . The Nash solution of a Nash

vable game is its sets of equilibrium points . A game is strongly Nash

vable if it has a Nash solution , S, such that for all i's

ses and 4;( 5irts ui. ( 5 ) isiri, es

I then S is called a strong Nash solution . If S is a subset of the set of

ilibrium points of a game and satisfies condition ( 2.1 ) ; and if S is maxi

relative to this property , then we call S a Nash subsolution . Let s be

set of all equilibrium points of a game . De fine

+

i = max [u, (5)1,, vi = min [ v., ( 5 ) ]
SE S SES

vܨ. vii

we write

i

yer i of the game;

exists .

is called the Nash upper value to
i i

the Nash lower value ; and the Nash value , if
i

Note that a non - cooperative game does not always have a Nash solution , but

in it does , the Nash solution is unique . Strong Nash solutions are Nash
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solutions with special properties . Nash subsolutions always exist and have many

of the properties of Nash solutions , but lack uniqueness . A Nash subsolution ,

when unique , is a Nash solution .

Apart from these " solutions " , Luce and Raiffa 16 , Ch . 5 ) have defined

" solution in the strict sense" , " solution in the weak sense" and " solution in

the complete weak sense " . For reasons of space , we do not repeat these defini

tions here .

A natural question that arises is : In what sense are these concepts , solu

tions of non-cooperative games ? I.e. , what constitutes a solution of a non

cooperative game ? These questions are discussed in the subsequent sections .

III . SOLUTIONS OF NON - COOPERATIVE GAMES . What do we mean by a solution of

a non - cooperative game ? Let I be a n-person non - cooperative game . Consider

player i's position in this game . He is informed about the pure strategy sets

of all the players . He is also aware of the von Neumann -Morgenstern utilities

of all players associated with every possible n-tuple of pure strategies . The

only other information he has about the other players is that they are rational

players . The game is to be played just once . Given all these facts , which

strategy should he play in order to maximize his utility? In this situation ,

if a logical analysis of the problem requires player i to play a particular

strategy or a strategy from a particular set of strategies , such a course of

action can be called a solution for player i . On the other hand , a logical

analysis of the situation under the given set of information may not lead to any

particular conclusion , in which case we can say that for the given game , there

is no solution for player i . In the latter case , assuming that not playing the

game is not one of the options that player i has , player i is still faced

with the question of having to pick a strategy . We will assume that in this

case player i recourses to a " standard of behavior " ( as distinct from a solu

tion ) to pick a strategy from the set of all his strategies . Which standard of

behavior player i should opt for is then clearly a meta - game theoretical

question and beyond the scope of game theory .

We will now attempt to define a solution for a non - cooperative game (if one

exists ) . Consider again player i's situation in a game . If he had prior infor

mation about the strategies that his opponents would employ , his problem of

selecting a strategy would simplify to finding the strategy which would maximize

his utility subject to the restriction that each of his opponents play a fixed

strategy which is known to player i . However , player i has no such prior

information . The only clue he has about the actions of the other players is the

fact that they are rational players . What does the assumption of rationality

imply about players ' behavior?

One implication is that if for some player k , his pure strategy " ka is

strongly dominated by another pure strategy "kb '
then player k has never any

incentive to play a mixed strategy that uses the pure strategy TT This is

ka '

because , no matter what strategie
s

the other players play , player k can do

better by playing instead the mixed strategy obtained by substituting
"KB

in

place of

"ka :
Thus a given game can be reduced by the elimination of all

strongly dominated pure strategies of all the players . The reduced game is
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jain examined for strongly dominated pure strategies and the process continued

itil no player has a strongly dominated pure strategy .

What else can we deduce from the assumption of rationality ? We examine this

* i

irst for 2-person games . If player i plays a mixed strategy then the

est reply for the other player , j . is to play any strategy from the set

S

M ; (s ^ 2 ) = {sI
s * ;

0, (6 *3,5* 4 ,
= max (s " , s**, } . ( 3.1 )

j

sj

* i

S
ܪ.

imilarly , if player j plays a mixed strategy S * j , the best reply for player

* j
M. ( s :) defined as in ( 3.1 ) . Suppose ,
i

2 the basis of the assumption of rationality , we can rationalize a unique

trategy for player I.e. , we suppose that , since player ii is a

*i

ational player , he is expected to play a particular strategy
( and no

ther ) . Then , since player j is also a rational player , we can rationalize

* i

he set of strategies , j. I.e. , player j can be expected

j

M. ( s* i . ,

* i

ationalizing for player i is to be valid , we must have

S

S

{ s** } = M. ( s " , v su € M. ( s *i ,

M .

n general , we may be able to rationalize a ( unique) set of strategies for each

layer . We make the following formal definition for a 2-person game . A non

mpty set of strategies xi can be rationalized for player i if and only if

t is the unique set satisfying the following two conditions :

( 3.2 )

a xüsuch that x3 = M Cst,estext

x = M,(s ) sex . ( 3.3 )

The following proposition is an obvious consequence of the above definition .

i

roposition 3.1. can be rationalized for player i ,

3.2 ) can be rationalized for player j .

If si then xi given by

roof : Since conditions ( 3.2 ) and ( 3.3 ) are valid, we only need to show that

j
is a unique set satisfying these conditions . This follows from the fact

hat Xxi is a unique set satisfying these conditions .

Q.E.D.

The concept of rationalizing a set of strategies for each player in a

-person game can easily be generalized to a n - person game . Let
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M :(s?,...,91-1,51+1,...,s") = { t " : 4,(sit", max . 14, ( 3 ; r ' ) )
all riis

where 5 = (s1 , ... ,( s , s" ) .

Let r be ' an n-person game . Let (x1 , ... , xn ) be an n - tuple of nonempty

sets of strategies . х can be rationalized for r ( or xi

rationalized for player i , i = 1 , ... , n ) if X is the unique n - tuple satisfyin

for all i EN

We say can be

1

= M. ( s

i

i+1

i -1 ,
sܨ 1 , ..., s",i- 1, si+11 , ... ,, s" , v is ?,..., s

xi-1 x xi+1 xx .x ? x ... x x Х

Thus we see that the concept of rationalizing an n - tuple of sets of strategies

for a game is a minimal condition that every solution of a non - cooperative game

should satisfy , i.e. , it is a "necessary " condition . We will now attempt to

show that it is , in a sense , a " sufficient " condition as well .

Consider a 2 -person game such that we can rationalize xi for player i

and xi for player j . PlayerPlayer i's situation can be summarized as in Table 1

Hence player i has a reasonable justification for playing a strategy from the

X Also if player j anticipates this action of player i , his subse

quent action merely reinforces player i's choice of picking a strategy from

xi . A similar argument can be made for player i if the game has n players .

If player i picks a

strategy from the set

Assuming that player

j picks a strategy

from the set

The utility payoff

to player i isand then

xi xj the best that playe!

i can hope for

(x indeterminate

(x , xj worse off than if

player i had

played a strategy

from xi

(xi , c indeterminate

Table 1
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We have stated two implications of rationality . We can consider these as

ioms that a solution of a non - cooperative game should always satisfy ( if one

ists ) . For example ,

iom 0 : A non - cooperative game may or may not have a solution .

iom 1 : If a non-cooperative game has a solution and s is an n - tuple of

rategies in the solution , then s does not use any strongly dominated

rategy .

iom 2 : If a non -cooperative game has a solution , then it should be rational

able for the game .

It is clear from the definitions that a rationalizable set cannot contain a

rategy that uses a strongly dominated strategy . Hence Axiom 2 implies Axiom 1 .

the next section , we examine Nash's various solutions and see how they relate

our axioms .

IV . THE ROLE OF EQUILIBRIUM POINTS IN SOLUTIONS OF NON - COOPERATIVE GAMES.

e concept of a Nash equilibrium point is the basic ingredient of Nash's theory

non - cooperative games . We will show that it also plays an important role in

r theory .

pposition 4.1 . Let X be rationalizable for T. Then se x = 5 is a Nash

uilibrium point.

The proof follows from the definition of a rationalizable set for r . We

w examine Nash's theory of non - cooperative games and see how they relate to

Ir axioms .

eorem 4.2 : Let I be a strongly Nash solvable game . Then the strong Nash

lution S is rationalizable for r .

oof : Let xi = {ri : (siri , es€ S for some s } . clearly

xt CM, ( ,....,81-2,,1+1,...,6") v (s ....,81-1,81+1,...,8")

ex? x ... xxi-1 x x
i+1

x

nce is strongly Nash solvable ,

(sirt ,) = u. (s )
şes , y 4 ( s)

isiri, es .

We have

i-1 1+1

x 54,607,...,04-2,5+1.
..., 5", is? , ... ,. s y) v ( s . , 8")IS

e x?€ x ... xxi- 1xi -1 x xi+1 x xxn .
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Hence

x? - M187,...,81-9, 1 ... ,s")v ( 87, ..., 1-1,4 + , ...,s ")

x ? x xi- 1 xi+1 xn .

(x² , .... X" ,

€ x X X xx

is rationalizable for T. But X = S. Hence SHence X = ( X

rationalizable for

is

T.

Q.E.D.

Theorem 4.2 states that strong Nash solvability is a sufficient condition

for the existence of a rationalizable set and that the rationalizable set coin

cides with the strong Nash solution . However , the surprising result is that

strong Nash solvability is not a necessary condition for the existence of a

rationalizable set . The following example illustrates this fact .

Example 4.1 : Consider the 2 -person game represented by the matrix given below

2

В.

1 B2

ay
( 1,3 ) ( 1,3 )

1 :

az
(0,0 ) ( 2 , 2 )

The equilibrium points of this game are (az , B , ' and (@2.B2 . These are not

interchangeable , hence the game is not even Nash solvable . However , it can

easily be shown that { (QznBy ) } is rationalizable for the game.

Since the game in Example 4.1 is not Nash solvable , Nash solvability is not

a necessary condition for the existence of the rationalizable set . Moreover ,

Nash solvability is not a sufficient condition for the existence of a rational

izable set . This is shown in the next example .

Example 4.2 : Consider the 2-person game represented by the matrix given below

2

B

1 B2

a,
( 5 , -3 ) (-4,5 )

1 :

a2
(-5,5 ) ( 3 , -4 )

This game has a unique equilibrium point
9 7 7 10

a + B + B ) Thus

16 1 1 17

the game is Nash solvable . The Nash value of the game to player 1 is -5/17 and

to player 2 is 1/2 . It can easily be shown that the rationalizable set does not
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xist for this game . Hence from our point of view , the game has no solution .

o see why Nash's solution is not really a solution of this game , consider player

' s position . If he plays his equilibrium strategy , the maximum he can get is

is Nash value , 1/2 , provided player l also plays his equilibrium strategy . How

ver , player 2 can guarantee his Nash value irrespective . of player l's actions by

imply playing the maximin strategy B + B Moreover , if player 2 plays

2 2

8 9

is equilibrium strategy and player 1 plays his maximin strategy 15a1 17

to guarantee his Nash value , -5/17 ) , player 2 actually gets 107/289 which is

ess than his Nash value !

+

On the subject of rational behavior , von Neumann and Morgenstern ( 9 ) write :

' ... the rules of rational behavior must provide definitely

for the possibility of irrational conduct on the part of

others... If that should turn out to be advantageous for

them - and quite particularly , disadvantageous to the con

formists then the above " solution " would seem very questionable " .

lence it is not clear why player 2 should play his equilibrium strategy . 0

Next , we study the implications of our axioms when applied to the special

ind well known case of 2-person zero - sum games . We say a 2-person zero - sum game

las a saddle point if it has an equilibrium point in pure strategies . I.e. if

such that ( TT ) is an equilibrium point .
ia ia ' " jB

Proposition 4.3 . Let r be a 2-person zero - sum game . The game has a rational

izable set only if r has a saddle point .

Tia ' " jB

Proof : If r has a saddle point such that it is a strong Nash solution , then

by Theorem 4.2 it is rationalizable for T. If r has no saddle point , then

there exists a unique Nash equilibrium in mixed strategies . If player i plays

nis equilibrium strategy , then player j can play any pure strategy used in his

equilibrium strategy and still get his Nash value of the game and vice-versa .

lence I no rationalizable set for the game .

9.E.D.

Thus , as per our theory , a 2 -person zero - sum game with no saddle point has no

solution . This is in sharp contrast with the universally accepted theory of

von Neumann and Morgenstern ( 9 ) that the equilibrium point always constitutes a

solution of a 2-person zero - sum game . Although we agree that there are many

Other reasons why a player may want to play the equilibrium strategyt , we feel

that it is not necessarily a consequence of the assumption of rationality of

the players .

Since the rationalizable set does not always exist , we cannot have a general

existence result . I.e. a
However , this should not be interpreted negatively .

It is merelylack of a general existence result is not a " defect " in our theory .

+

Some of these reasons are discussed in Section V of this paper .
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an outcome of the " lack of information" that a player has in playing certain non

cooperative games . I.e. some games , those for which a rationalizable set does

not exist , do not give sufficient insight into the behavior of players assuming

only rationality . We do not believe that the conditions imposed by Axiom 2 are

too strong and must therefore be modified to admit existence for all games . We

feel that Axiom 2 is a minimal condition that every solution should satisfy .

For a game that has no solution ( in our sense ) , a player can recourse to a

" standard of behavior " . These are discussed in the next section .

V. SOME STANDARDS OF BEHAVIOR . Let r be a game that has no rational

izable set . Consider the position of a player , i . He has to pick a strategy

to maximize his utility . His job is complicated by the fact that since the

rationalizable set does not exist , he has no inkling of the strategies that the

other players are going to pick . Some of the possible actions that he can take

are as follows .

Undominated Strategies .

The fact that the game has no rationalizable set does not exclude the fact

that some player ( s ) may have strongly dominated pure strategies . If this is the

case , it is safe to assume that a player will never use a strongly dominated

pure strategy in any mixed strategy and thus the game can be reduced by the

elimination of all strongly dominated pure strategies . The reduced game is

again examined for strongly dominated pure strategies and the process continued

until no player has a strongly dominated pure strategy . At the end of this

reduction process , since the game has no rationalizable set , there will be at

least 2 players each of whom will have at least 2 pure strategies .

Let r be a game with no rationalizable set and no strongly dominated pure

strategy . Suppose some player , j , has a weakly dominated pure strategy . Since

player j can do as well ( if not better ) by substituting the weakly dominated

pure strategy by the dominating pure strategy in any mixed strategy that uses

such a weakly dominated strategy , it is conceivable that he will never use his

weakly dominated pure strategy in any mixed strategy . Thus the game can be

reduced by the elimination of all weakly dominated strategies . By the same

reasoning , the reduced game is again examined for weakly dominated strategies

and the process continued until no player has a weakly dominated strategy .

Maximin Strategies .

In a finite game , maximin strategies always exist for all players . Let T

be a game for which no rationalizable set exists . Also suppose that no player

has a dominated pure strategy . For such games , since a player has no idea of

the strategies that the other players will play , he may decide to protect himsel

as much as possible by playing the maximin strategy . Thus by playing a maximin

m

strategy , a player , i , is assured of getting at least his maximin value V

i

irrespective of the actions of the other players .
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For 2 - person zero - sum games , a player's maximin strategy is also his minimax

trategy since

max min ( u, (s “, sus) max min 1 -u; (sť,sis
i

S

= max min

i j
S S

j

S

= max { -max [ u, (s + ,s ) ;}
si si

- {min max cu

i j lu;( 4,801) .
S S

Iso since for all 2-person zero - sum games ,

m m

-V

ji

player's maximin strategy is also his equilibrium strategy . Thus , in a

-person zero - sum game , there is a strong motivation for a player to play his

aximin (which is also his minimax and equilibrium ) strategy . However , as men

ioned before , we are not willing to subscribe to the theory that this consti

utes a solution of the game .

In general , for 2-person non - zero - sum games , maximin strategies are distinct

rom equilibrium strategies and often the maximin value of a player is equal to

he Nash value (when it exists ) . In such cases we feel that it is better in

ome respects for a player to play his maximin strategy instead of his equilib

ium strategy .

inimax Strategies in 2 -Person Games.

For 2-person non - zero - sum games , minimax strategies are usually distinct

rom maximin strategies . However they often coincide with equilibrium strate

jes . Since in a non - zero - sum game , the utility of an outcome for a player has

o relation to the utility of the same outcome to his opponent, we cannot see

ny motivation for a rational player to play his minimax strategy (on its '

erits alone ) .

quilibrium Strategies .

Since equilibrium points always exist , every player i has a nonempty set

of equilibrium strategies .
i

The concept of an equilibrium strategy alone is

ot strong enough to qualify even as a standard of behavior . E.g. , for games

hat are not Nash solvable , it makes no sense for a player to play an equilib

rium strategy because the resulting outcome may not be an equilibrium point.

or games that are Nash solvable (but not strongly Nash solvable ) equilibrium

itrategies may qualify as a standard of behavior .

We end this section by discussing a 2-person non - zero - sum game in detail .
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Example 5.1 . Consider the 2 - person game represented by the matrix given below .

2

B2 B2

“ 1
(1,2 ) ( -1 , -4 )

1

az
(-4 , -1 ) ( 2,1 )

This game has no dominated strategies and also no rationalizable set . There are

3 3 5

3 equilibrium points ,
(Q , B2 ) , (Q2 . By ! and

B Since
4 2 ' 8 1 8 2

these are not interchangeable, the game is not Nash solvable . The minimax

3 3 5

strategy for player 1 is and for player 2 is B + B. ) .

1 4 8 1 8 ܗܕ2

+

.

If player 1 plays his equilibrium strategy any

and for player 2 is

3

B. + B. ) . The maximin value for player 1 is -1/4 and for player 2 is -1/4 .
1 8 2

A summary of the various options open to player 1 and 2 and their consequences

3

is shown in Table 2 . +

4

and player 2 plays his maximin strategy ( to guarantee himself a payoff of -1/4 ) ,

then player l gets only -1 1/4 whereas he can guarantee himself a payoff of -1/4

by playing his maximin strategy . Player 2 is in an identical situation . We let

the reader judge for himself which strategy he would choose if he had to play

the above game just once in the position of player 1 (or player 2 ) against a

rational (but otherwise unknown ) opponent .
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