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Abstract—This paper introduces a new approach to construct-
ing normative models that exhibit the same ambiguity aversion
as human decision makers. The models are constructed using
a decision-theoretic framework based on the theory of belief
functions interpreted as generalized probability. The level of
ambiguity aversion is determined by a subjective parameter in
the unit interval so that users have the possibility to fix its
strength in the model. We show using three examples that the
decisions, which are determined by the optimization of a total
subjective reward (corresponding to a reduced expected reward),
are consistent with the experimental results observed by Ellsberg
and other authors.

Index Terms—belief functions, credal set, probability trans-
form, decision-making, vagueness

I. INTRODUCTION

In this note, we propose a new way of modeling ambiguity
aversion behavior using a theory of belief functions. Ellsberg
[5] shows that the ambiguity aversion behavior violates the
postulates of Savage’s expected utility theory. Although we
do not claim that the ambiguity aversion behavior is rational,
we do consider it normal, i.e., non-paradoxical. Our subjective
decision making behavior, and also that of many of our
colleagues, is consistent with this phenomenon.

Savage’s expected utility theory [13] is based on the idea
that the behavior of a decision maker can be modeled with
the help of a subjective probability mass function. In this
paper, the models proposed are based on the theory of belief
functions that can be interpreted as generalized probability,
i.e., a set of probability mass functions (PMFs) called a credal
set [8]. We adopt a decision-theoretic framework where a
belief function is first transformed into a PMF, and then, to
make a decision, we subscribe to Savage’s expected utility
theory. In our modification, however, we add one additional
step. Before computing the expected reward, we reduce the
probabilities to account for ambiguity aversion. Otherwise,
our approach is similar to Smets’ decision-making framework
[16], which is based on the Dempster-Shafer theory of belief
functions [4], [14]. Here, we are concerned with a theory of
belief functions interpreted as generalized probability [8].

This work is supported in part by funds from grant GAČR 15-00215S to
the first author, and from the Ronald G. Harper Distinguished Professorship
at the University of Kansas to the second author.

We believe that the ambiguity aversion phenomenon is
closely connected to the fact that classical probability theory
has difficulties with representing ignorance, or vagueness [14].
This insufficiency explains why some decision theorists con-
sider human decision-making behavior paradoxical. Consider
the following simple example.

a) 6-Color Example: Consider an urn possibly contain-
ing balls of six colors: red (r), blue (b), green (g), orange (o),
white (w), and yellow (y). You have neither any information
about how many balls of each particular color are in the urn,
nor about the total number of balls in it. You only know that
there is at least one ball in the urn. You win $100 if a randomly
drawn ball is red. How much are you willing to pay to play
this gamble?

The fact that people are not willing to pay in the described
situation as much as in the case where they know that
the urn contains the same amount of balls of each color
is called Ellsberg’s paradox [5]–[7], or ambiguity aversion.
Most people do not like making decisions under ignorance.
They distinguish between two situations: knowing that the
urn contains the same number of balls of each color (risk),
versus the situation described in 6-Color Example (ambiguity).
Perhaps this fact was also among the main reasons why several
alternative uncertainty theories were developed in the last
decades of the last century.

One of the theories designed to model vagueness is a theory
of belief functions where the values of belief functions are
interpreted as lower bounds on some unknown probabilities.
The main goal of this paper is to describe a decision-making
framework using the theory of belief functions yielding the
outcomes corresponding to observed human behavior, not only
in situations described by the 6-Color Example but also in the
following example.

b) One Red Ball Example: Consider an urn possibly
containing balls of six colors: red (r), blue (b), green (g),
orange (o), white (w), and yellow (y). The only information
you have is n, the total number of balls in the urn, and
also that there is exactly one red ball among them. A ball
is randomly drawn from the urn, and you win $100 if the
color of the ball drawn from the urn matches the color that
you chose before the draw. What color do you choose?

978-1-5386-2726-6/17/$31.00 ©2017 IEEE
326



We are not proposing a psychological theory explaining
human behavior. We are proposing a decision-theoretic frame-
work that is descriptive of human behavior, especially in situ-
ations where it does not conform to Savage’s expected utility
theory. The outcomes of our framework are descriptive of
the observations we made in ad-hoc discussions with students
and colleagues. On a number of occasions, we presented the
One Red Ball Example to an audience (usually students or
researchers interested in AI) and asked them to describe how
they would behave. We have the following observations:
• As one can expect, for n ≤ 6, everyone chose red.
• Naturally, the situation changes with increasing n. For n

large enough no one chose red.
• Interesting situations are for n = 7, . . . , 11. We do not

have exact experimental data, but in ad hoc experiments,
all chose the red color for n = 7. With increasing n, they
usually quit betting on the red color for n = 8, or 9. But
there were a few individuals who kept betting on the red
ball even for n = 10 and 11!

This behavior was observed with students and researchers
familiar with Savage’s expected utility decision theory. In the
general population, we can expect to encounter individuals
who would keep choosing the red color even for higher values
of n.

As we mentioned earlier, we believe that this fact is closely
connected with the ambiguity aversion phenomenon. Never-
theless, for some individuals, it can also have a pragmatic
basis. Not knowing the process of how the balls were in-
serted into the urn, they may be suspicious that it was done
deliberately so that no one (or only a small minority) can
win the reward. Whether or not there is a normative model
that explains ambiguity aversion, it is a psychological phe-
nomenon. Decision under vague (or incomplete) information
is subjective, and therefore we should expect that a normative
model would also have a subjective element.

The remainder of the paper is organized as follows. In
Section II, we make a brief introduction to belief function
theory and its basic interpretation. In Section III we introduce
three different approaches to transforming a belief function
to an equivalent PMF. In Section IV we propose a new
way of computing a subjective expected reward under the
ambiguity aversion, and Section V illustrates this approach
on two examples presented above, and on the example from
the Ellsberg’s paper [5]. In fact, it is this Section V where the
reader learns how to proceed to get models with the required
properties. The last section concludes with a summary and
some unsolved issues.

II. BELIEF FUNCTIONS

It is beyond the scope of this paper to introduce the full
theory of belief functions. For this, the interested reader is
referred to [14]. Fortunately, in this paper, it is sufficient
to introduce a couple of basic notions from this theory.
Similar to probability theory, where a probability measure is
a set function defined on some σ-algebra, belief functions are
represented by functions defined on the set of all nonempty

subsets of a state space Ω. We assume Ω is finite. Let 2Ω

denote the set of all nonempty subsets of Ω.
We start with a definition of a basic probability assignment

(bpa). It is a function m : 2Ω → [0, 1], such that∑
a∈2Ω

m(a) = 1.

a ∈ 2Ω is said to be a focal element of bpa m if m(a) > 0.
Based on the set of focal elements we describe two classes of
special bpa’s:
• m is said to be vacuous if m(Ω) = 1, i.e., it has only

one focal element, Ω. A vacuous bpa is denoted by mι.
• m is said to be Bayesian, if all its focal elements are

singletons, i.e., for Bayesian bpa m, m(a) > 0 implies
|a| = 1.

Vacuous bpa mι represents total ignorance, whereas
Bayesian bpa’s represents exactly the same type of knowledge
as PMFs. As all focal elements of a Bayesian bpa m are
singletons, we can define the PMF Pm for Ω corresponding
to m such that

Pm(x) = m({x}) (1)

for all x ∈ Ω.
In the generalized probability theory of belief functions,

which is what we are concerned with in this paper, the fact
that a ⊆ Ω, for which |a| > 1, is a focal element for bpa m,
expresses our ignorance regarding how the probability mass
m(a) is distributed among the elements of set a. For example,
suppose Ω = {x1, x2}, and bpa m is defined as follows:
m({x1}) = 0.2, m({x2}) = 0.3, m({x1, x2}) = 0.5. Bpa
m represents the knowledge that the probability of x1 is at
least 0.2 and at most 0.7, and the probability of x2 is at least
0.3 and at most 0.8. We know nothing more, nothing less.

The same knowledge that is expressed by a bpa m can
also be expressed by a belief function, and by a plausibility
function. Namely, each bpa m can be uniquely characterized
by the belief function Belm corresponding to m, which is for
all a ∈ 2Ω defined as follows:

Belm(a) =
∑

b∈2Ω:b⊆a

m(b). (2)

Alternatively, each bpa m can also be uniquely characterized
by the plausibility function Plm corresponding to m, which
is for all a ∈ 2Ω defined as follows:

Plm(a) =
∑

b∈2Ω:b∩a6=∅

m(a). (3)

Notice that from (2) and (3), it is obvious that for all a ∈ 2Ω,

Bel(a) ≤ Pl(a).

If Bel(a) = Pl(a) then we are sure that the probability of
a equals this value. Otherwise, a larger difference Pl(a) −
Bel(a) means there is more ambiguity about the value of the
probability of a.
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III. PROBABILITY TRANSFORMS OF BELIEF FUNCTIONS

Savage’s decision-making theory is based on the compu-
tation of expected utility. To compute it we need a PMF.
Therefore, given a bpa m, we need a way to find a PMF
that represents m. Equation (1) describes a unique relation
between PMFs and Bayesian bpa’s. A non-Bayesian bpa m
corresponds to a convex set of PMFs P on Ω as follows (P
denote the set of all PMFs on Ω):

P(m) =

{
P ∈ P :

∑
x∈a

P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}
.

P(m) is called the credal set of bpa m. Notice that Pm
defined by Equation (1) for a Bayesian bpa m is such that
P(m) = {Pm}. In addition to this, there are several methods
for selecting one PMF that represents bpa m. By probability
transform we mean a mapping that assigns a PMF to each bpa.
In this paper, we consider three such probability transforms.
For their properties and for other probability transforms not
discussed in this paper, the reader is referred to [3].

One straightforward approach is to select the maximum
entropy representative of the respective credal set, i.e.,

Me Pm = arg max
P∈P(m)

{H(P )},

where H(P ) denotes the Shannon entropy of PMF P .
Another representative, called the pignistic transform, was

advocated by Smets [15], [17]. It is defined for all x ∈ Ω as
follows:

Bet Pm(x) =
∑

a∈2Ω:x∈a

m(a)

|a|
.

Notice that this transform redistributes the probability mass
assigned to a non-singleton set a equally to all singletons
contained in a.

The last transform considered in this paper is the plausibility
transform suggested by Voorbraak [18], which is defined for
all x ∈ Ω as follows:

Pl Pm(x) =
Plm({x})∑
y∈Ω Plm({y})

.

As advocated by Cobb and Shenoy [2], this is the only
transform consistent with the Dempster-Shafer (DS) theory of
evidence, because it is the only transform that commutes with
the Dempster combination rule. As we are concerned with the
generalized probability theory of belief function and not DS
theory, we do not go into details and refer the interested reader
to papers [2], [3].

A summary of the basic properties of the three probability
transforms, which are important from the point of view of this
paper, are as follows:
• For vacuous bpa mι, Me Pmι(x) = Bet Pmι(x) =
Pl Pmι(x) = 1

|Ω| for all x ∈ Ω.
• For Bayesian bpa m, Me Pm = Bet Pm = Pl Pm =
Pm, where Pm is from (1).

• Both Me Pm and Bet Pm belong to P(m). It does not
necessarily hold for Pl Pm.

IV. REWARDS AND SUBJECTIVE REDUCED WEIGHTS

This section describes how a belief function model can be
used to get an optimal decision that imitates the human way
of decision-making.

Suppose our uncertainty is described by a general bpa m
on Ω. First, we follow a standard approach and transform
bpa m to PMF1 Pm defined on Ω. For this, any transform
described in the preceding section can be used. Nevertheless,
in the next section, where we present some examples, we will
see that the preferable transform is the pignistic transform. The
pignistic transform is used in Smets’ transferable belief model
for decision making [17]. Our decision-making framework is
similar to Smets’, but we are using the generalized probability
semantics of belief functions instead of Smets’ transferable
belief model semantics.

Usually, decision makers choose an alternative that is opti-
mal with respect to PMF Pm. The novelty of our approach lies
in the following simple idea. Inspired by Hurwicz’s optimism-
pessimism approach [9], [10], we introduce a subjective co-
efficient of ambiguity aversion α ∈ [0, 1]. The higher the
value of this coefficient, the higher the ambiguity aversion of
a decision maker. This coefficient is then used to reduce the
expected reward. We do not propose to compute an expected
value. Instead, we propose to compute a weighted sum of the
rewards. For this computation, we do not use probabilities, but
some weights, which we call r-weights (for reduced weights),
which do not sum to one. These weights are defined as follows:

rm,α(x) = (1− α)Pm(x) + αBelm({x}) (4)

for all x ∈ Ω. Notice that each r-weight rm,α(x) can be re-
garded as a reduced version of probability Pm(x). The amount
of reduction depends on the ambiguity aversion coefficient α,
and the amount of ignorance associated with the state x. If
we are certain about the probability of state x, it means that
Pm(x) = Belm({x}), and the corresponding probability is not
reduced: rm,α(x) = Pm(x). On the other hand, the maximum
reduction is achieved for the states connected with maximal
ambiguity, i.e., for the states for which Belm({x}) = 0.

Some trivial properties of r-weights are as follows:
1)

∑
x∈Ω rm,α(x) ≤ 1; and

2) m is Bayesian if and only if m({x}) = Pm(x) =
rm,α(x) for all x ∈ Ω, and α ∈ [0, 1].

These r-weights are then used to compute total subjective
reward, which is computed similarly to expected value, but
the probabilities are substituted by the respective r-weights.

Rm,α =
∑
x∈Ω

rm,α(x)g(x),

where g(x) denote the reward (gain) one expects in case x ∈ Ω
occurs. Thus, Rm,α does not express a mathematical expected
reward, but a subjectively reduced expectation of a decision
maker, whose subjectivity, i.e., level of ambiguity aversion,

1Notice that we used the same symbol as that in (1). It does not lead to
any confusion because if m is Bayesian then all the introduced probability
transforms yield the PMF defined in (1).
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Fig. 1. Maximal bets in 6-Color Example in dependence on the coefficient
of ambiguity aversion

is described by α. In a way, it corresponds to what is called
subjective expected utility (SEU) by other authors [1], [11].

V. THREE EXAMPLES

a) 6-Color Example: For this example, Ω =
{r, b, g, o, y, w}, and the knowledge about Ω is described by
the vacuous bpa mι for Ω.

In this case Me Pmι = Bet Pmι = Pl Pmι = Pmι(x) =
1
6 and rmι,α(x) = 1−α

6 for all colors x ∈ Ω. Let g(x) denote
the gain received in case when color x is drawn, i.e., g(r) =
100, and for x 6= r, g(x) = 0. The total subjective reward is
as follows:

Rmι,α =
∑
x∈Ω

rmι,α(x)g(x) =
∑
x∈Ω

1− α
6

g(x)

=
100 · (1− α)

6
.

This can be interpreted as follows. A person should be
willing to pay (for playing the game) a maximum amount
of $ 100·(1−α)

6 . Thus, a person with α = 0.28 is willing to
pay a maximum of $12 (see the graph in Figure 1).

b) One Red Ball Example: For this example, again Ω =
{r, b, g, o, y, w}, and the uncertainty is described by the bpa
m% as follows:

m%(a) =


1
n , if a = {r};
n−1
n , if a = {b, g, o, y, w};

0, otherwise.

First, let us apply the plausibility transform. The respective
plausibility function for all singletons is as follows:

Plm%({x}) =


1
n , if x = r ;
n−1
n , for x ∈ {b, g, o, y, w},

which means that∑
x∈Ω

Plm%({x}) =
5n− 4

n
,

and, therefore,

Pl Pm%(x) =


1

5n−4 , if x = r ;
n−1
5n−4 , for x ∈ {b, g, o, y, w}.

The r-weights are as follows:

rm%,α(x) =


1

5n−4 , if x = r ;

(1−α)(n−1)
5n−4 , for x ∈ {b, g, o, y, w},

because Belm(x) = 0 for all x ∈ {b, g, o, y, w}.
For simplicity’s sake, let us consider betting on red and

white colors. For these two colors, the respective gain func-
tions are denoted gr(x), and gw(x), respectively (i.e., gr(r) =
100, and for x 6= r, gr(x) = 0, and, analogously, gw(w) = 100,
and for x 6= w, gw(x) = 0). This yields the total subjective
rewards when betting on red as follows:

Rm%,α(r) =
1

5n− 4
gr(r) +

∑
x∈Ω:x6=r

(1− α)(n− 1)

5n− 4
gr(x)

=
100

5n− 4
,

and analogously, for betting on white

Rm%,α(w) =
1

5n− 4
gw(r) +

∑
x∈Ω:x6=r

(1− α)(n− 1)

5n− 4
gw(x)

=
100(1− α)(n− 1)

5n− 4
.

This means that if α = 0, i.e., no ambiguity aversion, we
would never bet on the red ball if n > 2. For three balls in
the urn (n = 3) we would bet on the red ball only with the
coefficient of ambiguity α > 1

2 , and for n = 5 we would bet
on the red ball only with α > 3

4 . In our opinion, this does not
correspond to our informal experimental findings.

However, using the pignistic transform (or maximum en-
tropy, in this example these two transforms coincide), we get:

Bet Pm%({x}) =

{
1
n , if x = r ;
n−1
5n , for x ∈ {b, g, o, y, w}.

Since Belm%({x}) = 0 for all x ∈ {b, g, o, y, w}, and
Belm%({r}) = 1

n we get the following reduced weights:

rm%,α(x) =

{
1
n , if x = r ;

(1− α) · n−1
5n , for x ∈ {b, g, o, y, w}.

Considering the gain functions gr(x), and gw(x), the total
subjective rewards are as follows. When betting on red it
equals

Rm%,α(r) =
1

n
gr(r) +

∑
x∈Ω:x6=r

(1− α)(n− 1)

5n
gr(x) =

100

n
,
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and analogously, for betting on white

Rm%,α(w) =
1

n
gw(r) +

∑
x∈Ω:x6=r

(1− α)(n− 1)

5n
gw(x)

=
100(1− α)(n− 1)

5n
.

Some of the values of these functions are tabulated in
Table I. From this table we see that, for example, a person
with α = 0.28 should bet on red color for n ≤ 7, because
for these Rm%,α(r) > Rm%,α(x) (x 6= r), and bet on any other
color for n ≥ 8, because for these n, Rm%,α(r) ≤ Rm%,α(x)
(x 6= r). This means that for n ≤ 7, it is subjectively more
advantageous to bet on the red color.

c) Ellsberg’s Example: Consider the original Ellsberg’s
example ( [5], pp. 653–654) with an urn containing 30 red balls
and 60 black or yellow balls, the latter in unknown proportion.
With this urn, Ellsberg considers two experiments. The first
experiment (Ellsberg’s Actions I and II) studies whether people
prefer betting on red or black ball, in which case they get the
reward ($100) if the ball of the respective color is drawn at
random. In the second experiment (Ellsberg’s Actions III and
IV), a person has a possibility to bet on red and yellow, or,
alternatively, on black and yellow. Again, the participant gets
the reward ($100) in case that the randomly drawn ball is of
one of the selected colors.

The uncertainty can be described with Ω = {r, b, y} and
the bpa mε as follows:

mε(a) =


1
3 , if a = {r};
2
3 , if a = {b, y};

0, otherwise.

It is easy to see that the pignistic transform (notice that
it is again the same as the maximum entropy transform
and different from the plausible transform) is a uniform
PMF Bet Pmε(x) = 1

3 for all x ∈ Ω. The corresponding
belief function is Belmε({r}) = 1

3 , and Belmε({b}) =
Belmε({y}) = 0. Therefore, we get the following r-weights

rmε,α(x) =

{ 1
3 , if x = r ;

(1−α)
3 , for x ∈ {b, y}.

The gain functions gr(x), and gb(x) for betting on red and
black balls, respectively, are as follows:

gr(r) = 100, gr(b) = gr(y) = 0,

gb(b) = 100, gb(r) = gb(y) = 0.

The total subjective reward for betting on red ball is as follows:

Rmε,α(r) =
1

3
gr(r) =

100

3
,

and analogously, for betting on black ball is as follows:

Rmε,α(b) =
(1− α)

3
gb(b) =

100(1− α)

3
.

Thus, for positive α, we get Rmε,α(r) > Rmε,α(b), which
is consistent with Ellsberg’s observation that “very frequent
pattern of response is that betting on red is preferred to betting
on black.”

Let us consider the second experiment, which involves
betting on a couple of colors. In comparison with the first
experiment, the situation changes only in the respective gain
functions; denote them gry(x) and gby(x) for betting on red and
yellow, and for betting on black and yellow balls, respectively.

gry(r) = gry(y) = 100, gry(b) = 0,

gby(b) = gby(y) = 100, gby(r) = 0.

Thus, the total subjective rewards are as follows:

Rmε,α(ry) =
1

3
gry(r) +

(1− α)

3
gry(y) =

100(2− α)

3
,

and similarly,

Rmε,α(by) =
(1− α)

3
gby(b) +

(1− α)

3
gby(y)

=
100(2− 2α)

3
.

In this case we get Rmε,α(ry) ≥ Rmε,α(by), which is not
consistent with Ellsberg’s observation that “betting on black
and yellow is preferred to betting on red and yellow balls.”
However, the decision maker has another way for evaluating
the total subjective rewards Rmε,α(ry), Rmε,α(by), which will
be described in the rest of this section.

Compared to probabilities, the r-weights are not additive.
So, thanks to the fact that we have beliefs for all subsets of
Ω = {r, b, y}, we can, using the idea expressed in formula (4),
compute the r-weights (the reduced probabilities) not only for
individual colors, but also for all nonempty subsets of Ω =
{r, b, y}. Notice that Belmε({r}) = 1

3 , and Belmε({b}) =
Belmε({y}) = 0, Belmε({r, b}) = Belmε({r, y}) = 1

3 ,
Belmε({b, y}) = 2

3 , and Belmε(Ω) = 1. Therefore,

rmε,α(a) =



1
3 , if a = {r};
(1−α)

3 , for a = {b}, {y};
(2−α)

3 , for a = {r, b}, {r, y};
2
3 , if a = {b, y}.

Notice that the expected value∑
x∈Ω

Bet Pmε(x)gry(x)

= Bet Pmε({r, y})gry(r) +Bet Pmε(b)gry(b),

because gry(y) = gry(r). This suggests that we compute:

Rmε,α(ry) = rmε,α({r, y})gry(r) + rmε,α({b})gry(b)

=
(2− α)

3
100,
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TABLE I
ONE RED BALL EXAMPLE: TOTAL SUBJECTIVE REWARD AS A FUNCTION OF THE COEFFICIENT OF AMBIGUITY AVERSION α, AND THE NUMBER OF

BALLS n.

Rm%,α(w)
n Rm%,α(r) α=0 α=0.1 α=0.2 α=0.28 α=0.3 α=0.4 α=0.5
5 20.00 16.00 14.40 12.80 11.52 11.20 9.60 8.00

6 16.67 16.67 15.00 13.33 12.00 11.67 10.00 8.33

7 14.29 17.14 15.43 13.71 12.34 12.00 10.29 8.57

8 12.50 17.50 15.75 14.00 12.60 12.25 10.50 8.75

9 11.11 17.78 16.00 14.22 12.80 12.44 10.67 8.89

10 10.00 18.00 16.20 14.40 12.96 12.60 10.80 9.00

11 9.09 18.18 16.36 14.55 13.09 12.73 10.91 9.09
12 8.33 18.33 16.50 14.67 13.20 12.83 11.00 9.17

and, analogously,

Rmε,α(by) = rmε,α({b, y})gby(b) + rmε,α({r})gry(r)

=
2

3
100.

Thus, in this alternative way, we observe that, for positive α,
Rmε,α(by) > Rmε,α(ry), which is consistent with Ellsberg’s
observations.

VI. SUMMARY & CONCLUSIONS

Generally, computational intelligence covers two streams
of research. The main stream is connected with developing
procedures yielding solutions to difficult problems, solutions
that are as good as (or better than) those achievable by the
best specialists. The second stream focuses on the roots of
artificial intelligence that are reflected by the famous Turing
test: to set up systems that exhibit the intelligent behavior of
humans, i.e., behavior that is indistinguishable from that of
humans.

In this paper, we describe a method belonging to the second
stream of research, an approach for modeling decision-making
behavior of humans in situations with ambiguous information.
We start with an assumption that uncertainty is described by a
bpa, which is interpreted in the framework of belief functions
as generalized probability. The total subjective reward, which
is to be maximized by the decision maker, is then computed
in two steps: First, the bpa is transformed to an equivalent
PMF. Second, the values of the PMF are reduced, using
the subjective coefficient of ambiguity, into r-weights. These
weights are then used to compute the total subjective reward
defined as the weighted sum of values of a gain (reward)
function. For the three examples considered in the paper,
we show that the optimal decision with respect to such a
subjective total reward function is consistent with observed
experimental results. The 6-Color Example illustrates the role
of the subjective coefficient of ambiguity on the simplest
possible example. The One Red Ball Example is used to
show that the selection of probability transform matters. The
Ellsberg’s example is included because of two reasons. First,
it is a classical, and well known, example. Second, it shows
that the application of the proposed framework is not always

trivial. Moreover, all the three examples reveal some issues
that require further study.

In Section III we introduce three probability transforms.
Using One Red Ball Example we show that, though the
plausibility transform is the only one that is consistent with
Dempster-Shafer theory of evidence, it is not suitable for
decision making in the framework of the generalized prob-
ability theory interpretation of belief functions. In the three
examples, the bpa’s are such that the maximum entropy and
pignistic transforms coincide. It is obvious that they do not
always coincide. So, a natural question is: Which of these two
transforms should be considered in case they are different?
In a decision-making framework, Perez suggests considering
a minimax barycenter as a representative of a convex set
of PMFs [12]. Under what conditions does the barycenter
coincide with the pignistic transform? If they do not always
coincide, which one is better for decision making?

When studying the second experiment of the Ellsberg’s
example, we show that there are two ways of evaluating the
total subjective reward yielding different results. We consider
better the one that explains Ellsberg’s observation. However,
how does one recognize the best way of evaluating the total
subjective reward in a more general situation?

As one of the anonymous reviewers noted, another direction
of the further research is connected with the interpretation
of the coefficient of ambiguity. This mathematical proposal
should be complemented with experimental research studying
to what extent the coefficient α is a characteristic of a decision
subject, or, as quoted from the review: “Another experimental
alternative would be to obtain the alpha value in one example,
and then apply this value in the other examples for each subject
and test the matching level of the decisions.”
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