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Chapter 4

Modelling ignorance in
uncertainty theories

Prakash P. Shenoy

4.1 Introduction

How do different uncertainty theories represent ignorance? This paper gives an
answer to this question using the axiomatic framework of valuation-based
systems (VBS).

The VBS framework was initially proposed by Shenoy [14]. It is able to
represent many different uncertainty calculi such as probability theory [18],
Dempster-Shafer (D-S) belief-function theory [23], Spohn’s epistemic-belief
theory [16, 18], and Zadeh’s possibility theory [20]. The VBS framework is also
flexible enough to include propositional logic [15, 24], discrete optimization [17],
Bayesian decision analysis [19, 21, 25], and constraint satisfaction [26].
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72 Probabilistic Reasoning and Bayesian Belief Networks

It is commonly believed that the D-S belief-function theory is better able to
represent ignorance than, for example, probability theory. We disagree.
Ignorance can be represented in probability theory as well as it can be represented
in D-S belief-function theory. All uncertainty theories that fit in the VBS
framework can represent ignorance equally well.

Complete ignorance is represented in valuation-based systems by identity
valuations. In probability theory, complete ignorance is modelled by an equally
likely probability distribution. In D-S belief-function theory, complete ignorance
is modelled, for example, by a commonality function that is identically one. In
Spohn’s epistemic-belief theory, complete ignorance is modelled by a disbelief
function that is identically zero. And in Zadeh’s possibility theory, complete
ignorance is modelled by a possibility function that is identically one.

In probability theory (and in Spohn’s epistemic-belief theory and Zadeh’s
possibility theory), complete ignorance coincides with knowledge that all
elements of a frame are equally likely (or equally believed in Spohn’s theory, or
equally possible in Zadeh’s theory). In D-S theory, there are many ways to model
knowledge that all elements of a frame are equally likely. For example, consider a
variable X whose frame has two configurations, say x and ~x. Then a basic
probability assignment (bpa) function m such that m({x}) = m({~x}) = p, m({x,
~x}) =1-2p, where 0 < p £ 0.5, represents knowledge that all elements of the
frame of X are equally likely. However, only one of these bpa functions (with p
=0) represents complete ignorance. This expressiveness of belief-function
theory, however, should not be misinterpreted as inability of probability theory
(or Spohn’ theory or Zadeh’s theory) to represent complete ignorance.

On a frame with n elements, a probability distribution function (or a Spohnian
disbelief function or a possibility function) has n—1 independent parameters. On
the other hand, a D-S belief function (or bpa function or plausibility function or
commonality function) has 2" - 1 independent parameters. Consequently, given a
frame of fixed size, a D-S belief function is more expressive than a probability
function. Of course, this expressiveness comes at a computational cost. Also,
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probability theory can achieve the same expressiveness as D-S theory by simply
increasing the size of the frame.

Besides complete ignorance, we also define the notion of contextual
ignorance. Contextual ignorance for o is knowledge 3 that does not add anything
new to the state of knowledge G, i.e. 6®3, = 6. Complete ignorance is a special
case of contextual ignorance for any context 6. These ideas are further explored in
this paper.

An outline of the remainder of the paper is as follows. In Section 4.2, we
sketch the VBS framework in the abstract. In Section 4.3, we describe four
specific instances of VBS, namely probability theory, D-S belief-function theory,
Spohn’s epistemic-belief theory, and Zadeh’s possibility theory. In Section 4.4,
we discuss how ignorance is modelled in VBS in general and in different un-
certainty theories in particular. We also introduce the notion of contextual

ignorance. In Section 4.5, we summarize our findings.
4.2 The VBS framework

In this section, we describe the axiomatic framework of valuation-based systems
(VBSs). Most of the material in this section is taken from [22].

In the VBS framework, we represent knowledge by entities called variables
and valuations. We infer conditional independence relations using three
operations called combination, marginalization, and removal. We use these
operations on valuations.

Variables. We assume there is a finite set % whose elements are called
variables. Variables are denoted by upper-case Latin alphabets, X, Y, Z, etc.
Subsets of % are denoted by lower-case Latin alphabets, 1, s, t, etc.

Valuations. For each s © %, there is a set U';. We call the elements of U
valuations for s. Let U denote U{ V', | sc % }, the set of all valuations. If
o€ VU, then we say s is the domain of ©. Valuations are denoted by lower-case
Greek alphabets, p, 0, T, etc.
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Valuations are primitives in our abstract framework and, as such, require no
definition. But as we shall see shortly, they are objects that can be combined,
marginalized, and removed. Intuitively, a valuation for s represents some
knowledge about variables in s.

Zero Valuations. For each s ¢ %, there is at most one valuation eV,
called the zero valuation for s. Let Z denote {{ | s %}, the set of all zero
valuations. Notice that we are not assuming zero valuations always exist. If zero
valuations do not exist, Z = . We call valuations in U'~Z nonzero valuations.

Intuitively, a zero valuation represents knowledge that is internally
inconsistent, i.e., knowledge that is a contradiction, or knowledge whose truth
value is always false. The concept of zero valuations is important in the theory of
consistent knowledge-based systems [Shenoy 1994c].

Proper Valuations. For each s %, there is a subset ® s of U—{L{.}. We
call the elements of ®_ proper valuations for s. Let ® denote U{®,|sc 6}, the
set of all proper valuations. Intuitively, a proper valuation represents knowledge
that is partially coherent. By coherent knowledge, we mean knowledge that has
well-defined semantics. Proper valuations play no role either in the definition, or
in the characterizations, or in the properties of conditional independence. The only
role of proper valuations is in the semantics of knowledge.

Normal Valuations. For each s c %, there is another subset N of Ve~
{&}. We call the elements of N normal valuations for s. Let N, denote
U{ N Isc %}, the set of all normal valuations. Intuitively, a normal valuation
represents knowledge that is also partially coherent, but in a sense that is different
from proper valuations. Normal valuations play an important role in the definition
and characterization of conditional independence.

We call the elements of ® T\, proper normal valuations. Intuitively, a proper
normal valuation represents knowledge that is completely coherent, i.e.,
knowledge that has well-defined semantics.

Combination. We assume there is a mapping ®:U'xV — NUZ, called
combination, that satisfies the following four axioms:
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Axiom C1 (Domain): If pe U and 6€ U, then p@c e VU ;
Axiom C2 (Associative): p®(c®1) = (pDo)DT;
Axiom C3 (Commutative): p®c = 6®p; and

Axiom C4 (Zero): Suppose zero valuations exist, and suppose
o€ Vs Then { &0 =, .

If p®o, read as p plus o, is a zero valuation, then we say that p and ¢ are
inconsistent. If p@ac is a normal valuation, then we say that p and ¢ are
consistent.

Intuitively, combination corresponds to aggregation of knowledge. If p and 6
are valuations for r and s representing knowledge about variables in r and s,
respectively, then p@o represents the aggregated knowledge about variables in
rus.

An implication of Axiom C2 is that when we have multiple combinations of
valuations, we can write it without using parenthesis. For example,
(..((6,90,)®6,)®...00, ) can be written simply as 6,®...&c,, without
parenthesis. Further, by Axiom C3, we can write 6,®...@6,, simply as ®{0,
..., Op}, i.e., not only do we not need parenthesis, we need not indicate the order
in which the valuations are combined.

An implication of Axioms C1, C2, and C3 is that the set T, (U{{;} together
with the combination operation @ is a commutative semigroup [7]. (If zero
valuations do not exist, then T U{{} = T.) If zero valuations exist, then
Axiom C4 defines the valuation { as the zero of the semigroup T U{{}.

Identity Valuations. We assume the following identity axiom.

Axiom CS5 (Identity): For each s € %, the commutative

semigroup T, U{{} has an identity denoted by t.

In other words, Axiom C5 assumes there exists 1, € T\, U{{,} such that for each
o€ N U{L}, 0Bt = o. Notice that a commutative semigroup may have at most
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one identity. From Axiom C4, it follows that 1 # {, therefore 1, .
Intuitively, identity valuations represent knowledge that is completely vacuous,
i.e., they have no substantive content.

It follows from Axiom CS5 that for each s € %, and for each 6 € T, ;U{{},
there exists at least one identity for it, i.e., there exists a 8;€ N, (U{{;} such that
0®J; = 6. For example, 1 is an identity for each element of N U{{}. A
valuation may have more than one identity. For example, Axiom C4 states that
every element of T\ (U{{} is an identity for (. Notice that if € T\, then
85 € T. Also, notice that 14 has only one identity, namely itself.

Positive Normal Valuations. Let U ; denote the subset of T, consisting
of all valuations in J\ that have unique identities. We call elements of U
positive normal valuations for s. Let U denote U{U ¢ | s %}, the set of all
positive normal valuations. The concept of positive normal valuations is important
because the intersection property of conditional independence holds only for
positive normal valuations. Positive normal valuations correspond to strictly
positive probability distributions in probability theory. Figure 4.1 shows the
relation between different types of valuations.

Figure 4.1. The relation between different types of valuations.
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We assume the following axiom regarding the normal valuation for the empty
set.

Axiom C6 (Normal Valuations for the Empty Set): The set T i
consists of exactly one element.

Axiom C6 implies that Uy = T\ g = {15} where 1 is the identity valuation for the
semigroup N zU{{z}.

Marginalization. We assume that for each nonempty s € %, and for each
X € s, there is a mapping 4(s—{X}): Vs — V's_(x)» called marginalization to s—
{X}, that satisfies the following six axioms:

Axiom M1 (Order of Deletion): Suppose 6 € Vs, and suppose

X, X5€ s. Then

(0¢<s—{x1}))i(s—{xp X,h ¢(s—{x21))i<s—{xl, XD,

=(c
Axiom M2 (Zero): If zero valuations exist, then Csi(s‘{x” =
Cooixps

Axiom M3 (Normal): c¥6~(XD e 9\, if and only if 6 N, ;
Axiom M4 (Positive Normal): If 6 € U, then o¥—(XD e U ;

Axiom CM1 (Combination and Marginalization 1): Suppose
peV,and ce V. Suppose X¢ r, and X € s. Then
(pec)‘]f((fus)—{x)) - p@((fi(s_{x))); and

Axiom CM2 (Combination and Marginalization 2): Suppose
o€ N\, suppose rCs, and suppose 80 1, is an identity for 6% in
N, Then & , is an identity for 6, i.c., 6®8 |, =o.

We call 6¥~(XD the marginal of o for s—{X).
Intuitively, marginalization corresponds to coarsening of knowledge. If G is a
valuation for s representing some knowledge about variables in s, and X € s, then
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oY (XD represents the knowledge about variables in s—{X} implied by & if we
disregard variable X.

If we regard marginalization as a coarsening of a valuation by deleting
variables, then Axiom M2 says that the order in which the variables are deleted

does not matter. One implication of this axiom is that (@K KXy, X, )

*L(S'{xlv X2})

can
be written simply as ¢ , 1.e., we need not indicate the order in which
the variables are deleted.

Axioms M2, M3 and M4 state that marginalization preserves the coherence of
knowledge. An implication of Axiom M4 is that a valuation & for s is normal if
and only if o= .

L(rus-(X} can be

Axiom CM1 states that the computation of (p@®c)
accomplished without having to compute p@c. The combination p®ac is a
valuation for ruUs whereas the combination p@(ous_
(rus)-{X}.

Axiom CM2 states an important property of identity valuations. It follows
from Axiom CM2 that 1 @1, =1, . Also, if rCs, then 1s¢r =1, [22].

Next, we define another binary operation called removal. The removal

XD ) is a valuation for

operation is an inverse of the combination operation.
Removal. We assume there is a mapping ©:V X(NUZ)— (NLUZ), called
removal, that satisfies the following three axioms:

Axiom R1 (Domain): Suppose o€ V', and pe N U{{;}. Then
00p e NrusI{Grus)s
Axiom CR1 (Combination and Removal 1): For each pe LVUZ,

there exists an identity for p, denoted by, say, 1,, such that p©p
=1,; and

Axiom CR2 (Combination and Removal 2): Suppose &, 6 € V,
and pe NUZ. Then, (T®O)Op = tD(OOp).
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We call 6©p, read as ¢ minus p, the valuation resulting after removing p
from o. Intuitively, 6 ©p can be interpreted as follows. If ¢ and p represent
some knowledge, and if we remove the knowledge represented by p from o, then
0 ©p describes the knowledge that remains.

Axioms CR1 and CR2 define the removal operation as an “inverse” of the
combination operation in the sense that arithmetic division is inverse of arithmetic
multiplication, and in the sense that arithmetic subtraction is inverse of arithmetic
addition.

Conditionals. Suppose o € T\, and suppose a and b are disjoint subsets of
s. The valuation Gl(“u”) eoJ'a for aUb plays an important role in uncertainty

theories. Borrowing terminology from probability theory, we call ci(an)@c“

the conditional for b given a with respect to ©. Let 6(bla) denote G‘L(‘wb) eoi"
We call b the head of the domain of o(bla), and we call a the tail of the domain of
o(bla). Also, if a = @, let 6(b) denote o(b|D). The following theorem states

some important properties of conditionals.

Theorem 4.1 [22]. Suppose 6 € N, and suppose a, b, and ¢
are disjoint subsets of s.

i). o(a) = 6*°.

(ii). o(a)®o(bla) = o(auLb).

(iii). o(bla)®o(claub) = o(biicla).

(iv). Suppose b'cb. Then o(bla)l(wbv) =o(b'la).

). (6(bla)@c(claub)) " = o(cla)

vi). 6(bla)" = 15

(vii). o(bla)e T 4 p-

4.3 Instances of VBS

In this section, we describe four specific instances of valuation-based systems,
namely probability theory, D-S belief-function theory, Spohn’s epistemic-belief
theory, and Zadeh’s possibility theory. First we start with the notation.
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Frames and Configurations. We use the symbol W y for the set of
possible values of a variable X, and we call W'y the frame for X. We assume that
one and only one of the elements of W'y is the true value of X. We assume that
all the variables in % have finite frames.

Given a nonempty set s of variables, let W' denote the Cartesian product of
W for Xins; W=X{Wyx|Xe s}. We call W the frame for s. We call the
elements of W' configurations of s. We use this terminology even when s is a
singleton subset. Thus elements of W'y are called configurations of X. We use
lower-case, bold-faced letters such as x, y, etc., to denote configurations.

It is convenient to extend this terminology to the case where the set of
variables s is empty. We adopt the convention that the frame for the empty set &
consists of a single configuration, and we use the symbol ¢ to name that
configuration; W g = {}.

Projection of Configurations. Projection simply means dropping extra
coordinates; for example, if (w,x,y,z) is a configuration of {W,X,Y,Z}, then the
projection of (w,x,y,z) to {W,Y} is simply (w,y), which is a configuration of
{W,Y}. If r and s are sets of variables, rCs, and X is a configuration of s, then
x" denotes the projection of x tor. If r = @, then of course, x¥T=o.

If x is a configuration of , y is a configuration of s, and s = @, then there
is a unique configuration z of ruUs such that z\* = x, and zs = y. Let (x,y) or
(y,x) denote z. As per this notation, (x,¢) = (¢ ,X) = Xx.

Let 2V denote the set of all nonempty subsets of W' . Elements of 2¥s will
be denoted by a, b, C, etc. Let R™ denote the set of all non-negative real
numbers.

4.3.1 Probability theory

In this subsection, we show how probability theory fits in the VBS framework.
More precisely, we define valuations, zero valuations, proper valuations, normal
valuations, combination, marginalization, and removal.
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In probability theory, the basic representational unit is called a probability
function.

Probability Function. A probability function ¢ for s is a function
6:2¥s 5> R™ such that

P1). Z{o({x}) I xe W} =1; and

(P2). 5(@) = {c({x}) I xe a} forallae 2"+.
Notice that although a probability function is defined for the set of all nonempty
subsets of W, it is clear from condition (P2) that it is completely specified by its
values for all singleton subsets of W'g.

In probability theory, a valuation for s is a function 6: W — R*. Zero
valuations exist—a valuation ¢ for s is zero if and only if all values of  are
zeros, i.e., {(x) = 0 for all xe W . Suppose G is a valuation for s. We call 0
proper if and only if o # {, i.e., all nonzero valuations are proper. Suppose G is
a valuation for s. We call & normal if and only if Z{o(x) | xe W} =1. A
normal valuation can be regarded as a probability function defined only for
singleton subsets.

Combination. In probability theory, combination is pointwise multiplication
followed by normalization (if normalization is possible). Suppose p € V', and
ceV, LetK=X{ p(xlr)c(xis) |x € W s }. The combination of p and o,
denoted by p®o, is the valuation for rUs given by

K 'px!nox!s) ifK>0
(P®O)(x) = @.1)
0 ifK=0
for all xe W, s. If K =0, p®c = { . If K > 0, then K is a normalization
constant that ensures p&ac is a normal valuation.

It is easy to see that Axioms C1-C6 are satisfied by the definition of
combination in (4.1). The identity 1, for TU{{} is given by 14(x) = 1/]W | for
all xe W ;. Suppose 6 € Ts. An identity 8, for ¢ in I\ is a normal valuation for
s such that 8,(x) = K™! if 6(x) > 0, and 84(x) = K™ ' if 6(x) = 0, where r is any
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non-negative real number, and K is the normalization constant. Suppose ¢ € .
Notice that G is positive normal if and only if 6(x) >0 for all xe W .

Marginalization. For valuations in probability theory, marginalization is
addition. Suppose 6 € V', and X € s. The marginal of o for s—{X}, denoted by
o¥6-(XD), is the valuation for s—{X} defined as follows:

o XD(y) = B{o(y.x) | xe Wx} 4.2)
for allye W_(x;.

The above definition of marginalization follows from condition (P2) in the
definition of a probability function since a proposition {y} about variables in s—
{X} is the same as proposition {y }xW x about variables in s.

It is easy to see that the definition of marginalization in (4.2) satisfies Axioms
M1-M4. It can be easily shown that Axioms CM1 and CM2 hold [27].

Removal. In probability theory, removal is division followed by
normalization (if normalization is possible). Division by zero can be defined
arbitrarily. For the sake of simplicity of exposition, we define division of any real
number by zero as resulting in zero. Suppose 6€ U5, and pe N, UZ,. LetK =
T{ox¥)px') Ixe W ss.t. p(x}1)>0}. Then the valuation resulting from
the removal of p from G, denoted by 6 ©p, is the valuation for rUs given by

K lox*)/p(x") if K >0 and p(x*") >0
(©Op)X) = 4.3)
0 ifK=0orpx") =0
for all xe W .
If K > 0, K is the normalization constant that ensures ¢ © p is a normal
valuation. It is easy to see that Axioms R1, R2, and CR hold. Suppose
pe N UZ,. The identity 1, for p defined in Axiom R2 is the normal valuation for
r such that 1,(x) = Klif p(x) >0, and 1,(x) = 0 if p(x) = 0, where K is the
normalization constant.
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4.3.2 D-S belief-function theory

In this subsection, we show how D-S belief-function theory [1, 9, 28] fits in the
VBS framework. More precisely, we define valuations, zero valuations, proper
valuations, normal valuations, combination, marginalization, and removal.

In D-S belief-function theory, proper normal valuations correspond to either
basic probability assignment functions, belief functions, plausibility functions, or
commonality functions. For simplicity of exposition, we describe D-S belief-
function theory in terms of commonality functions. We define commonality
functions in terms of basic probability assignment functions. Remember that 2¥s
denotes the set of all nonempty subsets of W'

Basic Probability Assignment Function. A basic probability
assignment (bpa) function for s is a function | 2Vs 5 R such that

(B1). w(@) 2 0 forall ae 2V s
B2). S{p@taec2Vs} = 1.

Commonality Function. A function 6: YL Risa commonality

function for s if there exists a bpa function 1 for s such that
8(@)=Z{u(c)lcoa}l. (4.4)
forallae 2" s,

It is evident from (B1), (B2), and (4.4) that 0<6(a@)<1, and that 6(a) 2
o(b) whenever ac b,

The following two lemmas from [13] will help us understand the math-
ematical properties of commonality functions.

Lemma 4.1. Suppose [ and  are real-valued functions defined
on 2V, Then (4.4) holds for every ae 2" s if and only if

w@) = Z{-1)""e(c) coa}
holds forall @€ 2" «.
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Lemma 4.2. Suppose [ and 0 are real-valued functions defined
on ZwS, and suppose (4.4) holds for every d € 2V's. Then
T{u@lae2¥s} ={)o@) ae2Vs).

These lemmas can be proven by the methods used in the appendix of Ch. 2 of
[9].

From Lemma 4.1, we see that a basic probability assignment is completely
determined by the commonality function. From Lemmas 4.1 and 4.2, and
conditions (B1) and (B2), we see that a function 6: 2w s— R is a commonality
function if and only if two conditions are satisfied:

S{1)""ec)|coa} =0 (4.5)
forevery e ZwS, and
T{(-1)g@)jae2Vs} = 1. (4.6)
Condition (4.5) follows from condition (B1) and Lemma 4.1, and condition (4.6)
follows from condition (B2) and Lemma 4.2.

In belief-function theory, a valuation for s is a function c: 2¥s 5 R*. Zero
valuations exist — a valuation { for s is zero if and only if all values of { are
zeros, i.e., {(@)=0forall ae 2V, Suppose G is a nonzero valuation for s. We
call ¢ proper if and only if Z{(—l)“‘a'e(c) [coa}=0forallae 2V,
Suppose © is a nonzero valuation for s. We say o is normal if and only if
Z{ -D@"*lg@)jae 2V s} = 1. Proper normal valuations are commonality
functions.

In belief-function theory, combination is pointwise multiplication of
commonality functions followed by normalization [9]. Before we can give a
formal definition of combination, we need the definition of projection of subsets
of configurations.

Projection of Subsets of Configurations. If r and s are sets of
variables, rcs,and @ € 't s, then the projection of a to r, denoted by a“, is the
element of 2V ¢ given by alr= {x¢r Ixe a}.
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Combination. Suppose pe V;and ce V. LetK =
T{ (1) p@'no@ls)|ae 2V ). The combination of p and o, denoted by
p®o, is the valuation for ruUs given by

K !p(aino(als) ifK#0
(pDo)(@) = (4.7)
0 ifK=0
forall ae 2V rs If K = 0, then p®o =L, . f K#0, then K is the
normalization constant that ensures p@c is a normal valuation. It is shown by
Shafer [9, p. 61] that if p and ¢ are commonality functions (proper normal
valuations), and K # 0, then p&®gc is a commonality function.

It is easy to see that axioms C1-C6 are satisfied by the definition of
combination in (4.7). The identity 1, for T, U{{,} is given by 1(Q) = 1 for all
ac2Vs Suppose 6 € T An identity 8 for 6 in I\ is a normal valuation for s
such that 5,(@) = K" if 6(@) > 0, and 84(@) = K 'rif 6(@) = 0, where r is any
non-negative real number, and K is the normalization constant. Suppose ¢ € I\ .
Notice that G is positive normal if and only if (@) >0 for all ae ZwS.

Marginalization. Suppose ¢ € Vg, and suppose X € s. The marginal of ¢
for s—{X}, denoted by 6*¢-(X}), s the valuation for s—{X} defined as follows:

oY 1XD@) = £{(-1)* o(b) | b, ce 2V s s.t.
c'cXN5a andboc) (4.8)
forall ae 2V =0,

It is easy to see that the definition of marginalization in (4.8) satisfies Axioms
M1-M4. It can be easily shown that Axioms CM1 and CM2 hold. Formal proofs
that Axioms M1 and CM2 hold can be found in [23].

Removal. We define removal as pointwise division followed by
normalization (if normalization is possible). Division by zero can be defined
arbitrarily. For the sake of simplicity of exposition, we define division of any real
number by zero as resulting in zero. Suppose 6 € U5, and pe N, UZ . LetK =
T{(-1)* g@bs)/p@‘n | ae 2V s st p(@l)> 0}. Then the valuation
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resulting from the removal of p from G, denoted by 6 ©p, is the valuation for
rus given by

K ls@¥s)/patn if K>0and p@a‘n>o0
(cop)@) = (4.9)
0 ifK=0orp@n=0
forall ae 2V s,
If K > 0, K is the normalization constant that ensures ¢ ©p is a normal
valuation. It can be easily shown that Axioms R1, R2, and CR hold. Suppose
pe T UZ,. The identity 1, for p defined in Axiom R2 is the normal valuation for
r such that 1p(a) =K'if p(a@) >0, and 1p(a) =0if p(a) =0, where K is the
normalization constant.
Notice that if 6 and p are commonality functions, it is possible that 6 © p may
not be a commonality function because condition (4.5) may not be satisfied by
6 Op. In fact, if 6 is a commonality function for s, and r s, then even 0’@0‘Lr
may fail to be a commonality function. This fact is the reason why we need the
concept of proper valuations as distinct from nonzero and normal valuations in the
general VBS framework.

4.3.3 Spohn’s epistemic-belief theory

In this section, we show how Spohn’s epistemic-belief theory [30, 31, 16] fits in
the VBS framework. More precisely, we define valuations, proper valuations,
normal valuations, combination, marginalization, and removal.
In Spohn’s theory, a basic representational unit is called a disbelief function.
Let N denote the set of all natural numbers.
Disbelief Function. A disbelief function for s is a function o: 2V N
such that
(D1). there exists a configuration x € W ¢ such that 6({x}) = 0; and
(D2). 6(a) = MIN{c({x}) Ixe @} forallae 2Vs.
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Notice that from condition (D2) in the definition of a disbelief function, a disbelief
function is completely determined by its values for singleton subsets.

Intuitively, o(Q) represents the degree of disbelief in proposition @ (the
proposition that the true configuration of s is in @). The degree of belief in
proposition @ is given by 6(~a), where ~a@ = W —a. Thus o represents an
epistemic state in which @ is believed if and only if 6(~@) >0, a is disbelieved if
and only if 6(Q) >0, and a is neither believed nor disbelieved if 6(Q) = 6(~a) =
0. Also, in epistemic state ¢, @ is more believed than b if o(~a) > (~b) > 0,
and a is more disbelieved than b if o(a)>ao(b)> 0.

In Spohn’s epistemic-belief theory, a valuation for s is a function ¢: W —
N. Zero valuations do not exist, i.e., all valuations are nonzero. Also, all
valuations are proper.

Suppose 6 € V5. We say © is normal if and only if MIN{o(x) | xe W} =
0. A normal valuation for s can be regarded as a disbelief function for s defined
only for singleton subsets of 2Vs,

Combination. In Spohn’s theory, combination is simply pointwise addition
followed by normalization [30, 16]. If pe V', and 6 € V', then their
combination, denoted by p@g, is the valuation for ruUs given by

(P®O)X) = p(x'1) + o(x*) -K (4.10)
for all xe U s, where K is a constant defined as follows:
K = MIN{p(x¥) + o(x¥) | xe W s}
K is the normalization constant that ensures that p@c is a normal valuation.

It is easy to see that axioms C1-C6 are satisfied by the definition of
combination in (4.10). The identity 1, for T (U{C} is given by 1,(x) = O for all
x e W . Every normal valuation in I\ has a unique identity in I\, therefore a
normal valuation is also positive normal.

Marginalization. Suppose o € Vg, and suppose X € s. The marginal of o
for s—{X}, denoted by ci(s'(X}) , is the valuation for s—{X} defined as follows:

Y XD (y) = MIN{o(y,%) | xe Wx} @.11)
for all ye W_(x;.
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The above definition of marginalization follows from condition (D2) in the
definition of a disbelief function since a proposition {y} about variables in s—{X}
is the same as proposition {y}xWy about variables in s.

It is easy to see that the definition of marginalization in (4.1 1) satisfies
Axioms M1-M4. It can be easily shown that Axioms CM1 and CM2 hold.
Formal proofs that Axioms M1 and CM1 hold can be found in [16].

Removal. In Spohn’s theory, removal is subtraction followed by
normalization [16]. Suppose o€ V', and p € N, UZ,. Then the normal valuation
resulting from the removal of p from o, denoted by 6 ©p, is given by

(©OP)®) = o(x*) - p(x') - K (4.12)
for all xe W', where K is a constant given by
K = MIN{o(x"") - p(x™) | xe W, _,}.

Kis the normalization constant that ensures 6 ©p is a normal valuation. It can
be easily shown that Axioms R1, R2, and CR hold. Suppose p e N, UZ,. Since

every normal valuation is positive normal, L=l

4.3.4 Zadeh’s possibility theory

In this section, we describe how Zadeh’s possibility theory [32, 2] fits in the
framework of valuation-based systems. More precisely, we define valuations,
normal valuations, proper valuations, combination, marginalization, and removal.
The basic representational unit in Zadeh’s possibility theory is called a
possibility function.
Possibility Function. A possibility function 7 for s is a function T:
s— R™ such that
(S1). there exists a configuration x € W such that n({x}) = 1; and
(S2). (@) = MAX{n({x}) |xe @} forallae 2V,

z*w
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Notice that from condition (S2) in the definition of a possibility function, a
possibility function is completely determined by its values for singleton subsets.

A possibility function is a complete representation of a consistent possibilistic
state [20]. @ is possible in state 7 if and only if ©(@) = 1, and @ is not possible in
state 7t if and only if T(Q) < 1. A possibility function consists of more than a
representation of a consistent possibilistic state. It also includes degrees to which
proposition are possible and degrees to which propositions are not possible. (@)
can be interpreted as the degree to which proposition @ is possible, and 1-7(Q)
can be interpreted as the degree to which proposition a is not possible, i.e., @ is
more possible than b if n(@) > n(b) and conversely, @ is more impossible than b
ifr(@)<n(b)< 1.

In Zadeh’s possibility theory, a valuation o for s is a function 6: W — R*.
Zero valuations exist — a valuation { for s is zero if and only if all values of g
are zeros, i.e., {(x) =0 for all xe W.

Suppose G is a valuation for s. We say © is proper if and only if 6 # {, i.e.,
all nonzero valuations are proper.

Suppose G is a valuation for s. We say ¢ is normal if and only if MAX{o(x) |
xe W} = 1. A normal valuation can be regarded as a possibility function
defined only for singleton subsets.

Combination.! We define combination as multiplication followed by
normalization (if normalization is possible). Suppose p € U';, and suppose
oe V. Suppose K = MAX{ p(xh)o(xis) Ixe W }. The combination of p
and o, denoted by p®o, is the valuation for rus given by

1 There are several definitions of combination in possibility theory. Zadeh [32] has defined
combination as pointwise minimization (with no normalization). However, several alternative
definitions of combination have been suggested in the fuzzy set literature [see, e.g., 2, pp.78-
85]. Any triangular norm can be regarded as a definition of combination. In the VBS framework,
combination has to be associative, and the combination of two valuations has to be either
normal or zero. These two requirements restrict the definition of combination to pointwise
multiplication (since pointwise minimization followed by normalization, for example, fails to
be associative).
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K pxo ) ifK>0
(P®o)(x) = (4.13)
0 ifK=0

forall xe W, s. f K=0, p&c = { .. If K> 0, then K is the normalization
constant that ensures that p@c is a normal valuation.

It is easy to see that axioms C1-C6 are satisfied by the definition of
combination in (4.13). The identity 1, for T J{E;} is given by 1(x) = 1 for all
xe W,. Suppose 6 € N\.s. An identity 8 for o in T\ is a normal valuation for s
such that 85(x) = 1 if o(x) > 0, and §,4(x) € r if 6(x) = O, where r is any real
number in the interval [0, 1]. Suppose 6 € Ts. Notice that G is positive normal if
and only if 6(x) > 0 for all xe W,

Marginalization. Suppose 6 € VU, and X € s. The marginal of o for s—-
{X}, denoted by 6*~{XD) s the valuation for s—{X} defined as follows:

¥ XD(y) = MAX{o(y.x) | xe W) (4.14)
forallye W_(x;.

The above definition of marginalization follows from condition (S2) in the
definition of a possibility function since a proposition {y} about variables in s—
{X} is the same as proposition {y}xW x about variables in s.

It is easy to see that the definition of marginalization in (4.14) satisfies
Axioms M1-M4. It can be easily shown that Axioms CM1 and CM2 hold.
Formal proofs that Axioms M1 and CM1 hold can be found in [20].

Removal. In possibility theory, removal is division followed by
normalization (if normalization is possible). Division by zero can be defined
arbitrarily. For the sake of simplicity of exposition, we define division of any real
number by zero as resulting in zero. Suppose 6 € U, pe N;UZ,. Suppose K =
MAX { s(x*)/p(x*)) Ixe W such thatp(x*7) > 0} . Then the valuation
resulting from the removal of p from ¢, denoted by c ©p, is given by,
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K ox*)/px™ ifK>0,and px‘n) >0
(cop)(x) = (4.15)

0 if K=0orpx‘n=0

for all xe W .

If K > 0, then K is the normalization constant that ensures 6 ©p is a normal

valuation. It can be easily shown that Axioms R1, R2, and CR hold. Suppose

pe NVZ,. The identity t, for p defined in Axiom R2 is the normal valuation for

r such that 1,(x) = 1 if p(x) >0, and 1(x) =0 if p(x) =0.

4.4 Ignorance in VBS

In this section, we describe how ignorance is modelled in VBS and its instances.
First, let us describe the setting. Suppose s is an arbitrary subset of variables. We
will define complete ignorance about variables in s as a proper normal valuation 1
such that 6@, = ¢ for all 6€ NN . (The requirement that 1, is proper normal
is simply so that 1, represents coherent knowledge.) In words, regardless of our
current knowledge G, 1, does not add any thing new. Notice that in the VBS
terminology, this simply means that 1, is the unique identity for the semigroup
NUZs.

As we saw in Section 4.2, complete ignorance has certain properties. First,
1,®1 = 1, i.€., the combination of complete ignorance about variables in r and
complete ignorance about variables in s results in complete ignorance about
variables in ruUs. Second, if rCs, then tslr =1,. In words, if we are completely
ignorant about variables in s, and we disregard variables in s—r, then we are
completely ignorant about variables in r.

As we saw in Section 4.3, complete ignorance about variables in s can be
represented in probability theory by the probability distribution 1(x) = K for all
xe W, where K =W, i.e., 1 is the equally likely probability distribution for
s. In D-S theory of belief functions, complete ignorance is represented by the
commonality function 1(@) = 1 for all @ ¢ W;. This commonality function
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corresponds to the bpa function that assigns probability 1 to the frame W', and
consequently, probabilities O to all subsets of W ;. In Spohn’s epistemic-belief
theory, complete ignorance about variables in s is the disbelief function 1 such
that 1(x) = O for all xe W . Finally, in Zadeh’s possibility theory, complete
ignorance about variables in s is the possibility function 1y given by 1(x) = 1 for
allxe W

Contextual Ignorance. Suppose C is a proper normal valuation for s.
Suppose 'c represents our current state of knowledge about variables in s. We will
define ignorance in context of o as a proper normal valuation 3 such that 6®J
=0. Unlike complete ignorance 1, ignorance in context of 6, 5 may not be
unique. If G is positive proper normal, then 8 is unique and same as 1. If ¢ is
not positive proper normal, then 3, is not unique. For example, in probability
theory, consider a probability distribution ¢ for {X, Y} such that o(x, y) =0,
o(x, ~y) = 0, 6(~x, y) = 0.2, 6(~x, ~y) = 0.8. Notice that & is not positive proper
normal. Then 8 is any probability distribution for {X, Y} such that 84(x, y) = p,
35(x,~y) = q, 85(~X,y) =1, 85(~X,~y) =1, where p20,920,r>0,andp +q
+2r=1.

Contextual ignorance arises when we marginalize the heads of conditionals.
From statement (vi) of Theorem 4.1, we know that if a and b are disjoint subsets,
o(bla) is a conditional for b given a, and we marginalize variables in b out of
o(bla), then the result G(bla)la is ignorance in context of 6(a). What this means is
that the conditional o(bla) has no additional information regarding variables in a
given that we have information 6(a).

4.5 Conclusion

It is commonly believed that the D-S belief-function theory is better able to
represent ignorance than, for example, probability theory. As we have argued,
this is not true. Ignorance can be represented in probability theory as well as it can
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be represented in D-S belief-function theory. All uncertainty theories that fit in the
VBS framework can represent ignorance equally well.

It is true that in D-S belief-function theory, representation of ignorance is
distinct from representation of an equally likely distribution, whereas in
probability theory, the representation of ignorance is the same as the
representation of an equally likely distribution. What this means is that if we have
a probabilistic encoding of knowledge, it is not possible to automatically translate
a probabilistic representation to a D-S belief-function representation without
knowing what knowledge the probabilistic representation represents [5].

The axiomatic VBS framework reveals that there are a lot of similarities
between the different uncertainty theories. Of course, there are also many
differences. The question then is which uncertainty theory should one use in a
particular application. The answer to this question depends on the nature of
knowledge available in the particular application. Each uncertainty theory is based
on some semantics. For example, since probability theory is based on frequency
semantics, if we have frequency information in the application under
consideration, then probability theory is the appropriate uncertainty calculus that
should be used. Semantics for D-S belief-function theory can be found in Shafer
[10, 11, 12] and Smets [29]. Semantics for Spohn’s epistemic-belief theory can
be found in Pearl [6], and Goldszmidt and Pearl [3, 4]. Semantics for possibility
theory can be found in [8] and [20].
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