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Abstract

To enable inference in continuous Bayesian networks containing nonlinear deterministic
conditional distributions, Cobb and Shenoy (2005) have proposed approximating nonlinear
deterministic functions by piecewise linear ones. In this paper, we describe two princi-
ples and a heuristic for finding piecewise linear approximations of nonlinear functions.
We illustrate our approach for some commonly used one- and two-dimensional nonlinear
deterministic functions.

1 Introduction

This paper is concerned with inference in con-
tinuous Bayesian networks containing nonlinear
deterministic conditional distributions for some
continuous variables. In a BN, each variable is
associated with a conditional probability distri-
bution (or a conditional, in short) for each value
of its parent variables. A conditional for a vari-
able is said to be deterministic if the variances
of the conditional are all zeroes (for all values
of the variable’s parents). If a continuous vari-
able has a deterministic conditional, then the
joint probability density function for all contin-
uous variables does not exist, and this must be
taken into account in a propagation algorithm
for computing posterior marginals. Recently,
Shenoy and West (2011a) have described an
extension of the Shenoy-Shafer architecture for
discrete BNs (Shenoy and Shafer, 1990), where
deterministic conditionals for continuous vari-
ables are represented by Dirac delta functions
(Dirac, 1927).

A major problem in inference in continu-
ous BNs is marginalizing continuous variables,
which involves integration. Often, there are no
closed form solutions for the result of the inte-
gration, making representation of the interme-
diate functions difficult. We will refer to this as
the integration problem.

One of the earliest non-Monte Carlo methods
for inference in BNs with continuous variables
was proposed by Lauritzen and Jensen (2001)
for the special case where all continuous vari-
ables have conditional linear Gaussian (CLG)
distributions. Since marginals of multivariate
Gaussian distributions are multivariate Gaus-
sian distributions whose parameters can be eas-
ily found from the parameters of the original
distributions, this obviates the need to do in-
tegrations. However, the requirement that all
continuous conditional distributions are CLG
restricts the class of hybrid BNs that can be
represented using this method.

Another method for dealing with the integra-
tion problem is the mixture of truncated ex-
ponentials (MTE) model proposed by Moral
et al. (2001). The main idea here is to ap-
proximate conditional probability density func-
tions (PDFs) by piecewise exponential func-
tions, whose exponents are linear functions of
the variables in the domain, and where the
pieces are defined on hypercubes, i.e., inter-
vals for each variable. Such functions are called
MTEs, and this class of functions is closed under
multiplication, addition, and integration, oper-
ations that are done in the propagation algo-
rithm. Thus, the MTE method can be used for
BNs that do not contain deterministic condi-
tionals and any conditional distribution can be



used as long as they can be approximated by
MTE functions.

Similar to the MTE method, Shenoy and
West (2011b) have proposed another method
called mixture of polynomials (MOP) to ad-
dress the integration problem. The main idea
is to approximate conditional PDFs by piece-
wise polynomials defined on hypercubes. In all
other respects, the MOP method is similar in
spirit to the MTE method.

Recently, Shenoy (2012) has proposed a gen-
eralization of the MOP function by allowing the
pieces to be defined on regions called hyper-
rhombuses, which are a generalization of hy-
percubes. One advantage of MOPs defined
on hyper-rhombuses is that such functions are
closed under transformations needed for multi-
dimensional linear deterministic functions.

Cobb and Shenoy (2005) extend the applica-
bility of MTE and MOP methods to continuous
BNs containing nonlinear deterministic condi-
tionals. The main idea is to approximate a non-
linear function by a piecewise linear (PL) func-
tion, and then apply the usual MTE or MOP
method.

In this paper, we propose two principles and
a heuristic for finding piecewise linear approxi-
mations of nonlinear functions, and illustrate it
for an one-dimensional function Y = X2, and a
two-dimensional function W = X · Y .

An outline of the remainder of the paper is as
follows. In Section 2, we briefly define mixtures
of polynomials functions. Also, we describe
some numerical measures of goodness of an ap-
proximation of a PDF or cumulative distribu-
tion function (CDF). In Section 3, we describe
two basic principles, and a heuristic, for finding
piecewise linear approximations of a nonlinear
functions in one and two dimensions, and we il-
lustrate this technique for the functions Y = X2

in the one-dimensional case, and W = X ·Y for
the two-dimensional case. Finally, in Section
4, we summarize our contributions and discuss
some issues for further research.

2 Mixtures of Polynomials

In this section, we briefly define mixture of poly-
nomials functions. For the remainder of the pa-
per, all functions are assumed to equal zero in
undefined regions.

The definition of mixture of polynomials
given here is taken from (Shenoy, 2012).

An m-dimensional function f : Rm → R is
said to be a MOP function if

f(x1, x2, . . . , xm) ={
Pi(x1, x2, . . . , xm)

for (x1, x2, . . . , xm) ∈ Ai, i = 1, . . . , k.

where Pi(x1, x2, . . . , xm) are multivariate poly-
nomials in m variables for all i, and the regions
Ai are disjoint and as follows. Suppose π is a
permutation of {1, ...,m}. Then each Ai is of
the form:

l1i ≤ xπ(1) ≤ u1i,
l2i(xπ(1)) ≤ xπ(2) ≤ u2i(xπ(1)),

...

lmi(xπ(1), . . . , xπ(m−1)) ≤ xπ(m)

≤ umi(xπ(1), . . . , xπ(m−1)) (2.1)

where l1i and u1i are constants, and
lji(xπ(1), . . . , xπ(j−1)) and uji(xπ(1), . . . , xπ(j−1))
are linear functions of xπ(1), xπ(2), . . . , xπ(j−1)
for j = 2, . . . ,m, and i = 1, . . . , k. We will
refer to the nature of the region described in
Equation (2.1) as a hyper-rhombus.

A hypercube is a special case of a hyper-
rhombus where l1i, . . . , lmi, u1i, . . . , umi are all
constants.

Example 1. An example of a 2-piece, 3-degree
MOP approximation g1(·) of the standard nor-
mal PDF in 1-dimension is as follows:

g1(x) =


0.424 + 0.128x− 0.085x2 − 0.028x3

if −3 < x < 0,

0.424− 0.128x− 0.085x2 + 0.028x3

if 0 ≤ x < 3

(2.2)
g1(·) was found using Lagrange interpolating
polynomial with Chebyshev points (Shenoy,
2012).



The family of MOP functions is closed un-
der multiplication, addition and integration, the
operations that are done during propagation of
potentials in the extended Shenoy-Shafer archi-
tecture for BNs. They are also closed under
transformations needed for linear deterministic
functions.

In this paper, we focus on the use of PL ap-
proximations in conjunction with MOP func-
tions to facilitate inference in BNs. In many
cases, the PL approximations can also be used
with MTE functions. This is demonstrated in
(Cobb and Shenoy, 2012).

2.1 Quality of MOP Approximations

In this section, we discuss some quantitative
ways to measure the accuracy of a MOP ap-
proximation of PDFs.

We will measure the accuracy of a PDF with
respect to another defined on the same domain
by four different measures, the Kullback-Leibler
(KL) divergence, maximum absolute deviation,
absolute error in the mean, and absolute error
in the variance.

If f is a PDF on the interval (a, b), and g is
a PDF that is an approximation of f such that
g(x) > 0 for x ∈ (a, b), then the KL divergence
between f and g, denoted by KL(f, g), is de-
fined as

KL(f, g) =

∫ b

a
ln

(
f(x)

g(x)

)
f(x) dx.

KL(f, g) ≥ 0, and KL(f, g) = 0 if and only
if g(x) = f(x) for all x ∈ (a, b). We do not
know the semantics associated with the statistic
KL(f, g).

The maximum absolute deviation between f
and g, denoted by MAD(f, g), is given by:

MAD(f, g) = sup{|f(x)− g(x)| : a < x < b}

One semantics associated with MAD(f, g) is as
follows. If we compute the probability of some
interval (c, d) ⊆ (a, b) by computing

∫ d
c g(x) dx,

then the error in this probability is bounded by
(d− c) ·MAD(f, g).

The maximum absolute deviation can also be
applied to CDFs. Thus, if F (·) and G(·) are

the CDFs corresponding to f(·), and g(·), re-
spectively, then the maximum absolute devia-
tion between F and G, denoted by MAD(F,G),
is

MAD(F,G) = sup{|F (x)−G(x)| : a < x < b}

The absolute error of the mean, denoted by
AEM(f, g), and the absolute error of the vari-
ance, denoted by AEV (f, g), are given by:

AEM(f, g) = |E(f)− E(g)| (2.3)

AEV (f, g) = |V (f)− V (g)| (2.4)

where E(·) and V (·) denote the expected value
and the variance of a PDF, respectively.

3 Finding PL Approximations of
Nonlinear Functions

When we have nonlinear deterministic condi-
tionals, Cobb and Shenoy (2005) propose ap-
proximating these nonlinear functions by piece-
wise linear (PL) ones. The family of MOP func-
tions is closed under operation needed for linear
deterministic functions.

There are many ways in which one can ap-
proximate a nonlinear function by a PL func-
tion. In this section, we describe two basic prin-
ciples and a heuristic for minimizing the errors
in the marginal distribution of the variable with
the deterministic conditional represented by the
PL approximation.

3.1 One-Dimensional Function Y = X2

To illustrate PL approximations, consider a sim-
ple BN as follows: X ∼ N(0, 1), Y = X2. The
exact marginal distribution of Y is chi-square
with 1 degree of freedom. We will use the 2-
piece, 3-degree MOP g1(·) defined in Equation
(2.2) on the domain (−3, 3), for the MOP ap-
proximation of the PDF of N(0, 1).

3.1.1 Two Basic Principles

In constructing PL approximations, we will
adhere to two basic principles. First, the do-
main of the marginal PDF of the variable with
the deterministic conditional should remain un-
changed. Thus, in the chi-square example, since
the PDF of X is defined on the domain (−3, 3),



and Y = X2, the domain of Y is (0, 9), and
we need to ensure that any PL approximation
of the function Y = X2 results in the marginal
PDF of Y on the domain (0, 9).

Second, if the PDF of X is symmetric about
some point, and the deterministic function is
also symmetric about the same point, then we
need to ensure that the PL approximation re-
tains the symmetry. In the chi-square exam-
ple, the PDF of X is symmetric about the point
X = 0, and Y = X2 is also symmetric about the
point X = 0 on the domain (−3, 3). Therefore,
we need to ensure that the PL approximation is
also symmetric about the point X = 0.

3.1.2 AIC-like Heuristic

In the statistics literature, Akaike’s informa-
tion criterion (AIC) (Akaike, 1974) is a heuristic
for building statistical models from data. For
example, in a multiple regression setting, if we
have a data set with p explanatory variables and
a response variable, we could always decrease
the sum of squared errors in the model by us-
ing more explanatory variables. However, this
could lead to over-fitting and lead to poor pre-
dictive performance. Thus, we need a measure
that has a penalty factor for including more ex-
planatory variables than is necessary. If we have
a model with p explanatory variables, and σ̂2 is
an estimate of σ2 in the regression model, the
AIC heuristic is to minimize n × ln(σ̂2) + 2p,
where the 2p term acts like a penalty factor for
using more explanatory variables than are nec-
essary.

Our context here is slightly different from
statistics. In statistics, we have data, and the
true model is unknown. In our context, there
is no data and the true model is known (the
true model could be a nonlinear model esti-
mated from data). However, there are some
similarities. We could always decrease the error
in the fit between the nonlinear function and
the PL approximation by using more parame-
ters (pieces), but doing so does not always guar-
antee that the error in the marginal distribution
of the deterministic variable with the nonlinear
function will be minimized. Making inferences
with MOPs that have many pieces can be in-

tractable (Shenoy et al., 2011). For this reason,
we need to keep the number of pieces as small
as possible.

Suppose fX(x) denotes the PDF of X and
suppose we approximate a non-linear determin-
istic function Y = r(X) by a PL function, say
Y = r1(X). The MSE of the PL approximation
r1, denoted by MSE(r1), is given as follows:

MSE(r1) =

∫ ∞
−∞

fX(x) (r(x)− r1(x))2 dx.

(3.1)
The AIC-like heuristic finds a PL approxima-
tion Y = r1(X) with p free parameters such that
the AIC(r1) = ln(MSE(r1)) + p is minimized
subject to the domain and symmetry principles.

3.1.3 Example

For the chi-square BN, the domain and sym-
metry principles require use of (−3, 9), (0, 0),
and (3, 9) knots. The knots are the points
that are connected by straight lines to form
the PL approximation. Suppose we wish to
find a 4-piece PL approximation. Let (x1, y1)
and (−x1, y1) denote the two additional knots
where −3 < x1 < 0, and 0 < y1 < 9. Such
a PL approximation would consist of 2 free
parameters (where the parameters are x1 and
y1). Solving for the minimum MSE(r1) with
MOP g1(x) as the PDF of X results in the
solution: x2 = −1.28, y2 = 1.16, minimum
MSE(r1) = 0.043, and AIC(r1) = −1.141.
The PL approximation Y = r1(X) is as follows
(see Figure 1):

Y =


−4.66− 4.55X if −3 < X < −1.28

−0.91X if −1.28 ≤ X < 0

0.91X if 0 ≤ X < 1.28

−4.66 + 4.55X if 1.28 ≤ X < 3

(3.2)

If we approximate Y = X2 by a PL ap-
proximation Y = r2(X) with, say 6 pieces (4
free parameters), then the value of MSE(r2)
is 0.0060, and the value of AIC(r2) is −1.124,
which is higher than AIC(r1). Similarly, if we
use an 8-piece approximation (6 free parame-
ters), then the value of MSE(r3) is 0.002, and



Figure 1: Y = r1(X) overlaid on Y = X2

the value of AIC(r3) is −0.421, which is higher
than AIC(r1) and AIC(r2). Thus, the AIC
heuristic suggests a 2-piece PL approximation
Y = r1(X). The accuracies of the marginal
PDF of Y computed using MOP g1(x) for the
PDF of X, and the three PL approximations r1,
r2, and r3 are shown in the table below (best val-
ues are shown in boldface). The model used as
the exact PDF to calculate the goodness of fit
statistics is the marginal PDF of Y found using
g1(·) and Y = X2.

# pieces 4 6 8

p 2 4 6
MSE 0.043 0.006 0.002
AIC −1.141 −1.124 −0.421
KL 0.250 0.153 0.110
MAD of PDF 35.332 35.092 34.713
MAD of CDF 0.164 0.133 0.101
AEM 0.059 0.189 0.168
AEV 0.065 0.106 0.186

CPU 4.774s 13.151s 22.932s

The MAD of the PDFs occurs near zero where
the values of the actual PDF and the approx-
imations are very large. The CPU row in the
table above represents the combined time to
obtain the PL approximation and calculate the
goodness of fit statistics. The latter is an indica-
tion of the relative computing time that would
be required to perform inference in a BN using
these PL approximation with MOPs. All com-
putations were made in Mathematica 8.0 on a
computer with Intel Core 2 Duo processor (2.93
GHz) with 16 GB of memory.

The minimum AIC heuristic uses the infor-
mation in the PDF of X as well as the nature

of the deterministic function Y = g(X) to find
a PL approximation. Its main disadvantage is
that determining the knots of a minimum AIC
PL approximation involves solving a nonlinear
optimization problem. The more pieces there
are in a PL approximation, the more variables
there are in the nonlinear optimization prob-
lem, and more complex it is to solve the non-
linear optimization problem. However, we can
often exploit special features of the PDF and
the nonlinear function (such as the domain and
symmetry principles) to minimize the number
of variables in a optimization problem to make
its solution tractable. Since the AIC-like heuris-
tic includes a penalty for adding pieces to the
PL approximation, the reduction in MSE asso-
ciated with doing so may not be justified. In
fact in this example, the AEM and AEV statis-
tics for the resulting marginal distribution of
interest are better when fewer pieces are used
in the PL approximation. As expected, compu-
tation time increases with the number of pieces
in the PL approximation.

3.2 Multi-Dimensional Function
W = X · Y

For multi-dimensional nonlinear functions, we
can use the same two basic principles and the
minimum AIC-like heuristic as for the one-
dimensional case.

Consider this example: X ∼ N(5, 0.52), Y ∼
N(15, 42), and W = r(X,Y ) = X · Y . We
construct a 2-piece, 3-degree MOP gX(x) =
g1(

x−5
0.5 )/0.5 of the PDF of X on the domain

(3.5, 6.5), and a 2-piece, 3-degree MOP gY (y) =
g1(

y−15
4 )/4 of the PDF of Y on the domain

(3, 27) (here g1(·) is the 2-piece, 3-degree MOP
approximation of the standard normal PDF on
the domain (−3, 3) as described in Equation
2.2).

Using these two MOP approximations of the
PDFs of X and Y , we can find an “exact”
marginal PDF of W as follows:

gW (w) =∫∞
−∞ gX(x)

(∫∞
−∞ gY (y) δ(w − x · y) dy

)
dx,

(3.3)
where δ is the Dirac delta function (Shenoy



and West, 2011a). δ(w − x · y) represents the
conditional distribution of W given X = x and
Y = y. gW (·) is not a MOP, but we do have
a representation of it, can graph it, and can
compute its mean (E(gW ) = 75) and variance
(V (gW ) = 458.96). Unfortunately, we cannot
compute the CDF corresponding to gW (·). So
we do not report any MAD for the CDFs statis-
tics.

Suppose we wish to find a 2-piece PL approx-
imation of W = X · Y . The domain of the
joint distribution of X and Y is a rectangle
(3.5 < X < 6.5) × (3 < Y < 27). The ex-
act domain of W is (10.5, 175.5). Because gX
is symmetric about the axis X = 5, and gY is
symmetric about the axis Y = 15, there are sev-
eral ways one can find a two-piece region using
the symmetry principle. The PDF of X is sym-
metric about the line X = 5, while the PDF
of Y is symmetric about the line Y = 15. The
slope and intercept of the line connecting the
points (3.5, 3) and (6.5, 27) are 8 and −25, re-
spectively, so the joint PDF of (X,Y ) is sym-
metric about the line Y = 8X − 25. The joint
PDF of (X,Y ) is similarly symmetric about the
line Y = −8X+55. There is no symmetry in the
function W = X · Y about any axis. Thus, we
can divide the domain vertically using the hy-
perplane X = 5 or horizontally using Y = 15 or
diagonally using Y = 8X−25 or Y = −8X+55.
The best approximation (lowest AIC score) ob-
tained was by dividing the domain of X and
Y vertically using the hyperplane X = 5. We
conjecture that this works better than dividing
the rectangle vertically since X has a smaller
variance than Y .

Next, we need to find a PL approximation for
r(X,Y ) = X · Y in each of the two rectangles
that satisfies the domain principle. The small-
est value of W = X · Y is 10.5 at the point
(X,Y ) = (3.5, 3), and the largest value of W
is 175.5 at the point (X,Y ) = (6.5, 27). For
the first rectangle, 3.5 < X < 5, 3 < Y <
27, consider a PL approximation r11(X,Y ) =
a1X + b1Y + c1, where a1, b1, c1 are constants.
One way to satisfy the lower bound domain
constraint is by selecting the PL approxima-
tion r1 such that r11(3.5, 3) = 10.5. Thus, we

can eliminate one of the three parameters, e.g.,
c1 = 10.5−3.5a1−3b1. To find values of the re-
maining two parameters, we solve an optimiza-
tion problem as follows:

Find a1, b1, c1 so as to

Minimize
∫ 5
3.5 gX(x)

(∫ 27
3 (r(x, y)

−r11(x, y))2 gY (y) dy
)

dx
subject to : c1 = 10.5− 3.5a1 − 3b1

(3.4)

For the second rectangle 5 ≤ X <
6.5, 3 < Y < 27, consider a PL approxima-
tion r12(X,Y ) = a2X + b2Y + c2. To sat-
isfy the upper domain constraint, we impose
the constraint r12(6.5, 27) = 175.5, i.e., c2 =
175.5 − 6.5a2 − 27b2. To find values of the re-
maining two parameters, we solve the optimiza-
tion problem:

Find a2, b2, c2 so as to

Minimize
∫ 6.5
5 gX(x)

(∫ 27
3 (r(x, y)

−r12(x, y))2 gY (y) dy
)

dx
subject to : c2 = 175.5− 6.5a2 − 3b2, and

5a2 + 3b2 + c2 ≥ 10.5

(3.5)

The logic behind the second constraint in
(3.5) is that assuming a2 ≥ 0 and b2 ≥ 0 (which
are implicitly satisfied in minimizing MSE), the
smallest value of W = r12(X,Y ) is at the point
(X,Y ) = (5, 3). Thus, in order to satisfy
the domain principle, we need to ensure that
r12(5, 3) ≥ 10.5. This constraint is binding at
the optimal solution. Solving the optimization
problems in (3.4) and (3.5), we obtain a PL ap-
proximation r1 as follows:

r1(X,Y ) ={
8.15X + 4.18Y − 30.55 if X < 5
25.51X + 5.28Y − 132.89 if X ≥ 5

(3.6)
The total MSE for r1(X,Y ) when compared to
r(X,Y ) using PDFs gX(x) and gY (y) is 14.98.
Since we have 4 free parameters (a1, b1, a2,
b2) in the PL approximation r1(X,Y ), the AIC
value is AIC(r1) = 6.71.

Let gW1(·) denote the marginal PDF of
W computed using gX(x), gY (y), and δ(w −
r1(x, y)). gW1(·) is computed as a 13-piece, 7-
degree MOP on the domain (10.5, 175.5). A



graph of gW1(·) overlaid on the graph of gW (·)
is shown in Figure 2.

Figure 2: gW1(·) overlaid on gW (·)

The goodness of fit statistics of gW1 compared
to gW are as follows:

Errors Values

KL(gW , gW1) 0.0069
MAD(gW , gW1) 0.0012
AEM(gW , gW1) 1.8074
AEV (gW , gW1) 12.7308

One way to reduce the AIC value for the
PL approximation is to reduce its number of
parameters. In solving the optimization prob-
lems (3.4) and (3.5), if we add the constraints
c1 = −a1 · b1 and c2 = −a2 · b2, we obtain a PL
approximation r2 as follows:

r2(X,Y ) ={
3.00X + 4.60Y − 13.81 if X < 5
27.00X + 5.19Y − 140.06 if X ≥ 5

(3.7)
The approximation W = r2(X,Y ) has a MSE
of 18.10, compared to MSE of 14.98 for W =
r1(X,Y ). Notice that the approximation W =
r2(X,Y ) has only 2 free parameters (compared
to 4 for W = r1(X,Y )). The corresponding val-
ues of the AIC heuristic is AIC(r2) = 4.90. Let
gW2(·) denote the marginal PDF ofW computed
using gX(x), gY (y), and δ(w − r2(x, y)). gW2(·)
is computed as a 13-piece, 7-degree MOP on the
domain (10.5, 175.5). A graph of gW2(·) overlaid
on the graph of gW (·) is shown in Figure 3.

The goodness of fit statistics of gW2 compared
to gW are as follows:

Figure 3: gW2(·) overlaid on gW (·)

Errors Values

KL(gW , gW2) 0.0023
MAD(gW , gW2) 0.0008
AEM(gW , gW2) 1.2620
AEV (gW , gW2) 10.5493

Comparing these statistics with those ob-
tained without the constraints c = −a · b, we
see that even though the MSE of r2 is higher,
all goodness of fit statistics for gW2 (computed
using r2) are better than the corresponding ones
for gW1 (computed using r1). This is probably
because the AIC value of r2 (4.90) is lower than
the AIC value of r1 (6.71). The AIC value of r2
is lower than the AIC value of r1 since r2 has 2
less parameters than r1.

4 Summary and Conclusions

This paper is concerned with inference in BNs
containing nonlinear deterministic conditionals
using MOPs. The family of MOP functions
is not closed under operations needed for in-
ference with nonlinear deterministic condition-
als, but is closed for inference with liner deter-
ministic conditionals. Cobb and Shenoy (2005)
suggest approximating nonlinear deterministic
conditionals by piecewise linear ones. However,
there are many ways of finding such approxi-
mations, and a very näıve heuristic was used in
(Cobb and Shenoy, 2005), which examined only
1-dimensional nonlinear functions.

In this paper, we describe a principled ap-
proach to finding PL approximations of non-
linear functions. The domain principle en-
sures that the domain of the PL approximation
should be exactly the same as in the nonlinear



case, and the symmetry principle states that the
approximation should retain symmetry of the
nonlinear function (if any), and the symmetry
of the PDFs of the parent variables (if any). An
AIC-like heuristic for finding PL approximation
is described.

Using these two principles and the AIC-
like heuristic, PL approximations of some com-
monly used nonlinear functions are described.
For the nonlinear functions Y = X2 and W =
X · Y , we find the marginal of the variable
with the nonlinear deterministic conditional us-
ing PL approximations, and compare it with the
marginal found using the exact nonlinear func-
tion, and estimate the errors in the marginals
using MOP approximations of PDFs.

Cobb and Shenoy (2012) use the principles
and heuristic in this paper to find PL approx-
imations of Y = eX and W = 3X/Y , and
also solve two small hybrid Bayesian networks
that contain nonlinear deterministic condition-
als. The use of MTE functions in combination
with PL approximations to nonlinear determin-
istic conditionals is also demonstrated.
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