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Since their introduction in the mid 1970s, influence diagrams have become a de facto standard for

representing Bayesian decision problems. The need to represent complex problems has led to extensions

of the influence diagram methodology designed to increase the ability to represent complex problems.

In this paper, we review the representation issues and modeling challenges associated with influence

diagrams. In particular, we look at the representation of asymmetric decision problems including

conditional distribution trees, sequential decision diagrams, and sequential valuation networks. We

also examine the issue of representing the sequence of decision and chance variables, and how it is done

in unconstrained influence diagrams, sequential valuation networks, and sequential influence diagrams.

We also discuss the use of continuous chance and decision variables, including continuous conditionally

deterministic variables. Finally, we discuss some of the modeling challenges faced in representing

decision problems in practice and some software that is currently available.

Key words: Decision-making under uncertainty, influence diagrams, probabilistic graphical models, se-

quential decision diagrams, unconstrained influence diagrams, sequential valuation networks, sequential

influence diagrams, partial influence diagrams, limited memory influence diagrams, Gaussian influence

diagrams, mixture of Gaussians influence diagrams, mixture of truncated exponentials influence dia-

grams, mixture of polynomials influence diagrams

1 Introduction

Influence diagrams (IDs) are graphical models for representing and solving complex decision-making

problems based on uncertain information. Nowadays, they have become a popular and standard

modeling tool. As pointed out in a recent special issue of the Decision Analysis journal devoted to

IDs, these models “command a unique position in the history of graphical models” [62]. They were

first used in 1973 by the Decision Analysis Group at Stanford Research Institute for a project for

the Defense Intelligence Agency. IDs were used to model political conflicts in the Persian Gulf to
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see whether more intelligence resources should be allocated, and they tried to measure the value of

information produced by the Agency. Miller invented the new graphical convention that we now call

an ID. Howard coined the term “influence diagram.” The first resulting (classified) paper on IDs is [58].

This information is chronicled by the authors of the facts in [37]. But it is Howard and Matheson’s

paper, [34], reprinted in [36], that is considered to contain the invention of IDs and to be the pioneering

paper. Other interesting details of the evolution and application of IDs since their inception may be

found in a retrospective article [35].

IDs are directed acyclic graphs that may be seen as Bayesian networks augmented with decision and

value nodes. There are three types of nodes: (1) decision nodes (rectangular) representing decisions to

be made; (2) chance nodes (oval or elliptical) representing random variables described by probability

distributions; and (3) value nodes (diamond-shaped) representing the (expected) utilities that model

the decision-maker’s preferences for outcomes. The arcs have different meanings depending on which

node they are directed to: the arcs to chance nodes indicate probabilistic dependence, the arcs to value

nodes indicate functional dependence, and the arcs to a decision node indicate what information is

known at the time the decision has to be made. Accordingly, the arcs are called conditional, functional,

and informational, respectively.

At the qualitative (or graphical) level, the ID has a requirement that there must be a directed

path comprising all decision nodes. It ensures that the ID defines a temporal sequence (total order)

of decisions and it is called the sequencing constraint. As a consequence, IDs have the “no-forgetting”

property: the decision maker remembers the past observations and decisions. In contrast, the transitive

closure of the precedence binary relation induced by the informational arcs is a partial order on the

set of all decision and chance nodes. Therefore, the information constraints represented by these arcs

may not specify a complete order. From a semantic viewpoint, it means that the decision-maker may

not impose constraints regarding which of two or more chance nodes must precede the others in the

decision-making process. For example, after deciding to admit a patient into a hospital, it will not

matter which chance variable, “cost of stay” or “risks of being admitted” (infections, contagions, etc.)

is the first to occur.

At the quantitative level, an ID specifies the state spaces of all decision and chance nodes: a set

of alternatives for each decision variable, and the set of possible values ΩX of each chance variable

X. Also, a conditional probability table is attached to each chance node consisting of conditional

probability distributions, one for each state of its parents (direct predecessors), and a real-valued

function, the utility function, is defined over the states of a value node’s parents. Probabilities and

utilities represent beliefs and preferences, respectively, of the decision maker. When a problem has a

utility function that factorizes additively, each of the additive factors is represented as a value node.
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Figure 1 shows an example of the graphical part of an ID. The problem deals with the oil wildcatter’s

problem [69]. An oil wildcatter has to decide whether to drill or not at a particular site. He does not

know whether the site has oil or not. Before he drills, he has the option of conducting a seismic test

which will reveal the seismic structure of the site, which is related to oil volume.

T and D are decision variables, O and S are chance variables, and υ1 and υ2 are value nodes. υ1

is a function of the states of T , υ2 is a function of the states of D and O. The joint utility function is

the pointwise sum of υ1 and υ2. As in a Bayesian network, the arcs directed to chance nodes such as S

mean that the conditional probability attached to S is a function of the states of O and T . Finally, the

informational arcs directed to D say that at the time the drill decision is made, we know the outcome

of S and the decision made at T . Since we have a directed path (T , S, D), the arc (T , D) is implied by

the no-forgetting condition and could be omitted. The information constraints specify the (complete)

order given by T , S, D, and O.

υ1 υ2

Stru
ture (S)Seismi
 Volume (O)Oil
Seismi
Test? (T) Drill?(D)

Figure 1: An influence diagram for the oil wildcatter’s problem

IDs were initially proposed as a front-end for decision trees, in the sense that their compact repre-

sentation facilitated the problem structuring, but they were later converted into a decision tree during

the solution process. Although there are now several efficient algorithms for solving influence diagrams,

many still continue to convert IDs to decision trees during the solution process (see, e.g., [9]). Olmsted

[59] describes a method, that involves arc reversals, to solve IDs directly without converting them into

decision trees. Shachter [74] published the first ID evaluation algorithm. Evaluating an ID means com-

puting an optimal strategy, one that has the maximum expected utility. Instead of using arc reversals,

as in Olmsted’s and Shachter’s algorithms, other algorithms based on variable elimination strategies

or on clique-trees approaches may now be used to solve IDs [18, 78, 38, 77, 90, 52]. Although far from

negligible, computational issues related to ID evaluation are beyond the scope of this paper. Some

critical difficulties and their solutions are discussed and exemplified in [27, 2], where a large ID, called

IctNeo, models neonatal jaundice management for an important public hospital in Madrid.

This paper focuses on modeling issues. IDs have an enormous potential as a model of uncertain
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knowledge. The process of building an ID provides a deep understanding of the problem, and ID

outputs are remarkably valuable. Given a specific configuration of variables, an ID yields the best

course of action. But ID responses are not limited to provide optimal strategies of the decision-making

problem. Inferred posterior distributions may be employed to generate diagnosis outputs (probabilities

of each cause). IDs may also automatically generate explanations of their proposals as a way to

justify their reasoning [24, 1]. Moreover, the domain expert may formulate a difficult query, without

specifying all the variables required by the ID to determine the optimal decision. It will lead to

imprecise responses. If we want the decision maker to receive a convincing response, a refinement

is needed, as in [23]. By reasoning in the reverse direction, assuming that the final results of the

decisions are known, IDs can be used to generate probabilistic profiles that fit these final results. For

example, after a complete remission of a cancer, endoscopically verified by a surgery decision, we can

be interested in the probability distributions of other variables, such as patient survival five years

following treatment, side effects, etc. Also, the computation of the expected value of information has

been shown to play a vital role in assessing the different sources of uncertainty [75].

The aforementioned special issue of Decision Analysis devoted to IDs is a sign of the lively interest

in IDs. Boutilier [6] discusses the profound impact that IDs have had on artificial intelligence. As a

professional decision analyst, Buede [7] reports on the value of IDs for tackling challenging real decision

problems and considers IDs almost as indispensable as a laptop computer. Pearl [62] recognizes the

significant relevance of IDs, but he underscores some limitations. First, due to their initial conception

with emphasis on subjective assessment of parameters, econometricians and social scientists continue

to use the traditional path diagrams, where the parameters are inferred from the data itself. Second,

artificial intelligence researchers, with little interaction with decision analytic researchers (in the early

1980s), established conditional independence semantics using the d-separation criterion, and developed

their own computational tools. Thus, although IDs are informal precursors to Bayesian networks, the

former had a milder influence on automated reasoning research than the latter. Finally, Pauker and

Wong [61] show that IDs have disseminated slowly in the medical literature [60, 55], compared to the

dominating model of decision trees.

This paper provides a review of ID modeling, discussing the recent contributions. It aims at bringing

closer the theoretical and practical developments of IDs to foster their wide use. Also, the analysis

identifies challenges and provides insights into the community involved in the design of decision models

using IDs.

The paper is organized as follows. Section 2 discusses the representation of asymmetric decision

problems. Section 3 discusses the sequencing of decisions and observations that, when partially specified

(or unspecified), leads to another kind of asymmetry. Section 4 discusses the use of continuous chance
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and decision variables, including the use of continuous conditionally deterministic variables. Section

5 discusses some challenges of representing decision problems in practice. Finally, section 6 concludes

with a summary, discussion, and an outline of issues not discussed in this paper.

2 Asymmetric Decision Problems

In this section, we will define asymmetric decision problems and review various techniques that have

been proposed in representing such problems based on influence diagrams.

In a decision tree representation, a path from the root node to a leaf node is called a scenario.

A decision problem is said to be symmetric if (i) in all its decision tree representations, the number

of scenarios is equal to the cardinality of the Cartesian product of the state spaces of all chance and

decision variables, and (ii) there exists a decision tree representation of the problem such that the

sequence of variables is the same in all scenarios. A decision problem is said to be asymmetric if it is

not symmetric.

We will illustrate an asymmetric problem using the reactor problem, which was originally described

by [19], and subsequently modified by [4]. An electric utility firm has to decide whether to build (D2)

a reactor of advanced design (a), conventional design (c), or no reactor (n). If the reactor is successful,

i.e., there are no accidents, an advanced reactor is more profitable, but it is riskier. Experience

indicates that a conventional reactor (C) has probability 0.98 of being successful (cs) and 0.02 of being

a failure (cf). On the other hand, an advanced reactor (A) has probability 0.66 of being successful

(as), probability 0.244 of a limited accident (al), and probability 0.096 of a major accident (am). If

the firm builds a conventional reactor, the profits are estimated to be $8B if it is a success, and −$4B

if it is a failure. If the firm builds an advanced reactor, the profits are $12B if it is a success, −$6B if

there is a limited accident, and −$10B if there is a major accident. The firm’s utility function is linear

in dollars. Before making a decision to build, the firm has an option to conduct a test (D1 = t) or not

(nt) of the components of the advanced reactor at a cost of $1B. The test results (R) can be classified

as bad (b), good (g), or excellent (e). Figure 2 shows a causal probability model for A and R. Notice

that in the probability model, if A = as, then R cannot assume the state b. Thus, if the test results

are observed to be bad, then an advanced reactor will result in either a limited or major accident (as

per the probability model), and consequently, the Nuclear Regulatory Commission will not license an

advanced reactor.

Figure 3 shows a decision tree representation of the reactor problem. The computation of the

marginal for R, and the conditional for A given R, have been done using the causal probability model

for A and R, and this computation is shown in Figure 4. In this figure, the leaves of the tree contain

the joint probabilities for A and R. The optimal strategy is to do the test; build a conventional reactor
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Figure 2: A probability model for A and R in the reactor problem

if the test results are bad or good, and build an advanced reactor if the test results are excellent. The

expected profit associated with this strategy is $8.130B.
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Figure 3: A decision tree representation and solution of the reactor problem

The decision tree representation, shown in Figure 3, easily captures the asymmetric structure of

the reactor problem. The cardinality of the Cartesian product of the state spaces of all variables is 108,

but there are only 21 possible scenarios. The decision tree is shown using coalescence, i.e., repeating

subtrees are shown only once.

There may be three kinds of asymmetry in asymmetric decision problems: chance, decision, and

information. The state space of a chance variable may depend on the scenario, and in the extreme,

a chance variable may be non-existent. For example, in the reactor problem, C does not occur in

scenarios that include D2 = a. This is called chance asymmetry. Similarly, the state space of a
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Figure 4: The pre-processing of probabilities in the reactor problem

decision variable may depend on a scenario, and in the extreme, may be non-existent. For example,

the alternative D2 = a is not available in some scenarios. This is called decision asymmetry. Finally,

the sequence of variables may depend on the scenario. For example, R does not precede D2 in all

scenarios. This is called information asymmetry.

Since decision trees depict all possible scenarios, they can capture asymmetry easily. However, the

number of nodes in a decision tree grows combinatorially with the number of variables, and are not

tractable for large problems. Also, pre-processing of probabilities may be required (as in the reactor

problem).

Influence diagrams were proposed by Howard and Matheson [34] to avoid the problem of pre-

processing in decision trees and to represent large problems that would be otherwise intractable using

decision trees. However, IDs cannot capture asymmetric features of decision problems as easily as

decision trees. One solution is to artificially enlarge the state spaces of chance and decision variables

and embed the asymmetric problem in a higher dimensional symmetric problem. For example, an

influence diagram representation of the reactor problem is shown in Figure 5.

1 2
D D

A C
υ2 υ3υ1

R �

Figure 5: A symmetric ID representation of the reactor problem
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Variable R in the decision tree has been replaced by R′ which has state space {b, g, e, nr}, and

its conditional distribution now depends also on D1 as shown in Table 1. Thus, if D1 = nt, then

R′ = nr with probability 1, and if D1 = t, then we have the conditional probability distribution as

before. Arc (R′,D2) means the true value of R′ is known when an alternative of D2 has to be chosen.

υ1, υ2 and υ3 are additive factors of the joint utility function. The constraint that the alternative

D2 = a is not available when R′ = b is modeled by making R′ a parent of υ2 and making the value of

υ2(b, a, as) = υ2(b, a, al) = υ2(b, a, am) = −M , where M is a large positive number. This will ensure

that when R′ = b, D2 = a will never be optimal, and the constraint will be satisfied.

P (R′|D1, A) (nt, as) (nt, al) (nt, am) (t, as) (t, al) (t, am)

b 0 0 0 0 0.288 0.313
g 0 0 0 0.182 0.565 0.437
e 0 0 0 0.818 0.147 0.250
nr 1 1 1 0 0 0

Table 1: The conditional probability distribution for R′ given D1 and A

This completes a symmetric influence diagram representation of the reactor problem. Notice that

we have increased the size of the problem in the sense that if we convert the influence diagram into a

decision tree, it would result in 144 scenarios, whereas the asymmetric decision tree (shown in Figure

3) only has 21 scenarios. Thus, the symmetric influence diagram representation is not very efficient.

To address the inefficiency of the symmetric ID technique, Smith et al. [85] propose represent-

ing the asymmetric aspects of a decision problem in the conditional distributions, leaving the overall

ID graphical representation unchanged. The conditional distributions are represented using graphical

structures called conditional distribution trees consisting of conditioning scenarios and atomic distribu-

tions. For example, in the reactor problem, the conditional distribution trees for D2 and R′ are shown

in Figure 6.

One advantage of conditioning trees is that the number of scenarios is trimmed back to the minimum

necessary. Also, constraints on decision variables can be represented directly without having to add

large negative utilities. Thus, we do not need to include an arc from R′ to υ2 in the ID graph. However,

some disadvantages remain, such as the artificial state nr for R′, having D1 as a parent of R′, an arc

(D1,D2) needs to be added to the ID graph, etc. Bielza and Shenoy [4] discuss other strengths,

weaknesses and open issues associated with the conditional distribution tree technique.

Next, we will discuss another approach to representing asymmetric decision problems called sequen-

tial decision diagrams proposed by Covaliu and Oliver [19]. Unlike the conditioning tree technique,

sequential decision diagrams (SDDs) represent the asymmetric structure of the decision problem di-

rectly in the SDD graph. The SDD graph for the reactor problem is shown in Figure 7.
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Figure 6: The conditional distribution trees for D2 and R′
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D D
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D1 = t

υ

D2 = a|∗

D1 = nt

Figure 7: A sequential decision diagram for the reactor problem. ∗ denotes the constraint (D1 =
nt) ∨ ((D1 = t) ∧ (R 6= b))

Like in IDs, each variable appears once in a SDD. The arcs in a SDD denote the sequencing of

variables in scenarios like in decision trees. Arcs may be annotated by conditions and constraints.

For example, arc (D1,D2) has a condition D1 = nt, which means that whenever D1 = nt, the next

variable in the scenario is D2. If there are any constraints on decisions, then this can also be listed

on the corresponding arc. For example, D2 = a is only possible if D1 = nt, or if D1 = t and R 6= b.

The details of the probability model and utility function are not depicted in the SDD representation.

Covaliu and Oliver assume that these details are represented by a corresponding symmetric influence

diagram (this would be similar to the symmetric ID in Figure 5, but with only one value node encoding

the joint utility function with all five variables as parents).

SDDs can represent the set of all scenarios compactly. Also, we do not need to add dummy states to

variables (such as R = nr as ID representations require). On the other hand, there are some drawbacks.

First, SDDs cannot represent probability models consistently. For example, the ID representation has

state space ΩR′ = {nr, b, g, e} for R′, whereas the SDD representation has ΩR = {b, g, e} for R. Second,

SDD representation assumes that we have an unfactored joint utility function. This implies that solving
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a SDD cannot be done as efficiently (as we could have if we had an additive factorization of the joint

utility function).

Demirer and Shenoy [20] propose a representation called sequential valuation networks (SVNs) that

is a hybrid of Shenoy’s [80] asymmetric valuation network and Covaliu and Oliver’s SDDs. A SVN

representation of the reactor problem is shown in Figure 8.

1 2
D D

R

A

C
T

ρδ1 δ2 α χ

D1 = t

D1 = nt D2 = n

D2 = c

D2 = a

υ1 υ4|n υ2|a υ3|c

Figure 8: A sequential valuation network for the reactor problem

A SVN consists of an SDD plus indicator, probability and utility valuations. The SVN has an

hexagonal terminal node (instead of the diamond node in the SDD) whose only role is to signify the

end of a scenario. Solid arcs represent the sequence of variables in scenarios (as in SDDs). Probability

valuations are shown as single-bordered triangular nodes. The dashed edges connecting probability

valuations to variables denote the domain of the probability valuation. Thus, the domain of ρ is

{A,R}, the domain of α is {A}, and the domain of χ is {C}. If the probability valuation is a

conditional for a subset of its domain given the rest of the domain, then the dashed edges to the

variables in the subset are directed towards them. Thus, ρ is a conditional for {R} given {A}, α is a

conditional for {A} given ∅, and χ is a conditional for {C} given ∅. The set of all probability valuations

denotes a multiplicative factorization of the joint probability distribution of the chance nodes in the

SVN representation. Indicator valuations encode qualitative constraints on the joint state spaces of

variables and are represented as double-bordered triangular nodes in the SVN graph. The reactor

problem representation has two indicator valuations. δ1 with domain {R,D2} removes the state (b, a)

from the joint state space of {R,D2}, and δ2 with domain {R,A} removes the state (b, as) from the

joint state space of {R,A}. Utility valuations represent additive factors of the joint utility function

and are represented by diamond shaped nodes, and the dashed edges between the utility valuations
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and variables denote the domain of the valuations. In practice, many of the values of the utility factors

are zeroes and need not be specified. For example, the costs associated with building an advanced

reactor are only associated with D2 = a. Thus, this factor is defined on the state space {a}×ΩA. This

factor is denoted in the SVN representation by υ2|a. Similarly, υ3|c with domain {D2, C}, and υ4|n

with domain {D2} are utility valuations defined on {c} × ΩC and {n}, respectively.

Besides the representations already discussed, there are a number of other graphical representations

proposed in the literature for asymmetric decision problems. These include combination of symmetric

influence diagrams and decision trees [8], decision graphs [68], contingent IDs ([25]), asymmetric valu-

ation networks [80], asymmetric influence diagrams [57], unconstrained influence diagrams [40], coarse

valuation networks [51], and sequential influence diagrams [39].

In spite of the plethora of different graphical representations, some aspects of asymmetric decision

problems are difficult to represent. One example is a certain event that is repeated a random number of

times. Thus, e.g., we can often find medical situations where a specific treatment cannot be performed

more than, e.g., twice per full treatment of a patient due to its risks. Also, that risky treatment must

be followed and preceded by a certain control treatment, etc. Traditional IDs could not meet these

constraints, containing sequences of treatments that are impossible. For another example, a physician

has to decide on a subset of possible tests and on a sequence for these tests until a satisfactory diagnosis

can be made. If the set of possible tests is large, the combinatorial explosion of the sequencing of all

subsets makes the problem intractable for representation and solution. We will discuss this problem

in more detail in the next section.

In summary, IDs provide a compact graphical method for representing and solving symmetric

decision problems. For asymmetric decision problems, several alternative representations have been

proposed, including conditional distribution trees, sequential decision diagrams, and sequential valua-

tion networks. While there have been some studies (e.g., [4]) that compare some of the representations,

more studies are needed to compare all of the different proposed representations.

3 Sequencing of Decisions and Chance Variables

In this section, we will discuss information constraints that specify the decisions and chance variables

that are observed at the time a decision has to be made. It also includes a relaxation of the total order

of decisions—sequencing constraint—and those between decisions and chance variables.

In a symmetric decision problem, the information constraints are the same in all scenarios. Thus,

in the symmetric ID representation of the reactor problem shown in Figure 5, for decision D1 (whether

to do a test of the advanced reactor or not), all chance and decision variables are unobserved, and for

decision D2 (type of reactor to build), the results of the test R′ and decision D1 are observed, but the
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true states of C and A are not. This is represented in the symmetric ID shown in Figure 5 as follows.

Since all chance and decision variables are unobserved for D1, there are no arrows into D1. Since the

results of test R′ are observed for D2, we have (R′,D2). Since we have a directed path from D1 to D2,

and we are assuming the no-forgetting condition, the decision made at D1 is known when a decision

at D2 has to be made. This can be modeled explicitly by including an arc (D1,D2), or implicitly by

not having the arc, but assuming the no-forgetting condition during the evaluation process.

In asymmetric decision problems, the information constraints may not be the same in all scenarios.

For example, in the decision tree representation of the reactor problem (shown in Figure 3), R is

an information predecessor of D2 in some scenarios (when D1 = t), but not in some others (when

D1 = nt). While this problem can be made symmetric as described in the previous section, the

technique described there—adding artificial states to some chance variables—cannot be applied in all

problems. This is especially true if the chance variable being modified is a parent of other chance

variables since if we add an artificial state to such a variable, then we have to make up conditional

distributions for each of the child variables that are consistent with the original joint distribution,

which is a non-trivial task.

Consider a problem of diagnosing diabetes. Diabetes can be detected by doing a blood test and

measuring the level of Glucose, which is elevated for diabetic patients. A less expensive test is to take

a urine specimen and measure the level of Glucose in urine. A physician is trying to decide whether

or not to treat a patient for diabetes. Before she makes this decision, she can order a test (blood or

urine). Based on the results of the first test, she can then decide whether or not to order a second test.

A symmetric ID model for this problem is shown in Figure 9.

D
BG GU

FT FTR ST STR TD

υ3

υ2υ1

Figure 9: A symmetric ID model for the diabetes diagnosis problem

In this model, D is the chance variable diabetes with states d (has diabetes) and nd (no diabetes),

BG is the chance variable blood Glucose with states bge (elevated) and bgn (normal), GU is the chance

variable Glucose in urine with states gue (elevated) and gun (normal), FT is the decision variable first
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test with states bt (blood test), ut (urine test), and nt (no test), FTR is the chance variable first test

results with states bge, bgn, gue, gun, and nr (no results), ST is the decision variable second test with

the same states as FT , STR is the chance variable second test results with the same states as FTR,

and TD is the decision variable treatment for diabetes with states td (treat) and ntd (not treat). υ1, υ2,

and υ3 are additive factors of the joint utility function. FTR and STR are conditionally deterministic

variables with conditional distributions as follows. If FT = bt, and BG = bge, then FTR = bge with

probability 1, etc. This formulation allows the possibility of repeating the same test. An advantage of

this formulation is that we leave the original Bayesian network consisting of arcs (D,BG), and (D,GU)

unchanged with no artificial states added to the chance variables. A disadvantage of this formulation

is that we add two artificial chance variables FTR and STR with large state spaces. Thus, if we have

a decision problem with, say 20 possible tests, formulating a symmetric ID in this fashion would be

intractable to solve.

To deal with diagnosis problems with many possible tests and no ordering specified among them,

Jensen and Vomlelova [40] propose a representation called unconstrained influence diagrams (UIDs). In

UIDs, the requirement that there exists a directed path that includes all decision variables is dropped.

The order of tests is deliberately unspecified so that there is a partial order among the decision variables.

In the solution phase, we need to determine the tests to be done in some sequence as a function of

what is observed from the results of the tests that are already done. A UID model for the diabetes

diagnosis problem is shown in Figure 10.

TDBT UT
κ2

D υ3

κ1

GUBG
UTRBTR

Figure 10: An unconstrained ID model for the diabetes diagnosis problem

In this model, D, BG, GU , TD are as before. BT is a decision variable with states bt and nt, and

UT is a decision variable with states ut and nt. BTR (for blood test results) is a chance variable with

13



states bge, bgn, and nr, and UTR (for urine test results) is a chance variable with states gue, gun,

and nr. BTR and UTR are conditionally deterministic variables such that if BT = bt and BG = bge,

then BTR = bge with probability 1, etc. If BT = nt, then BTR = nr with probability 1 (regardless

of the state of BG). Similarly for UTR. Notice that there is only a partial order among the decision

variables. {BT,UT} precede TD. The ordering between BT and UT is left unspecified. An optimal

solution would include a sequencing of some tests as a function of what is observed from the previous

tests performed. If BT is the first test and UT is the second test, then BTR becomes an informational

predecessor of UT , etc.

An advantage of UIDs is that the state spaces of some of the decision and chance variables are

much smaller than in a corresponding symmetric ID. For example, the state spaces of BT and UT

have cardinality two, whereas in the symmetric ID representation, FT and ST have cardinality three.

Also, the state spaces of BTR and UTR have cardinality three, whereas the corresponding variables

FTR and STR have cardinality five. Furthermore, BTR and UTR each have two parents, whereas

the corresponding variables FTR and STR each have three parents. (We should note here that

BTR and UTR have different semantics than FTR and STR. The latter are artificial variables that

are constructed to represent the information asymmetry inherent in the decision problem.) These

differences in the number of states are even more accentuated with the number of tests. Thus, if we

have a diagnosis problem with say 10 possible tests, a UID representation may be tractable for solution

even though a symmetric ID is not.

UIDs are designed to simplify the representation of diagnosis/troubleshooting problems, and they

are not appropriate for the general class of decision problems. Also, the evaluation procedure for solving

UIDs is much more complex than the procedure for solving a symmetric ID since the sequencing of

the tests is not specified and has to be determined in the solution phase. When the number of possible

tests is large, solving a UID may also be intractable. At this stage, there is no study on the size of

diagnosis problems that can be solved using UIDs. As computing power increases, problems that are

intractable today may be tractable in the future.

In principle, a decision tree representation should be able to easily represent the asymmetric features

of the diabetes diagnosis problem. A drawback would be the size of the decision tree. Since sequential

valuation networks are able to represent a decision tree compactly, this representation could be used

to represent this problem using no artificial variables. A SVN representation of the diabetes diagnosis

problem is shown in Figure 11. In this model, FT and ST are decision variables with states bt, ut,

and nt. The chance variables D, BG, and GU have no dummy states. The model allows for repeating

the tests.

The diabetes diagnosis problem can also be represented by a sequential influence diagram [39]. A
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ST = bt

FT = nt
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FT = ut
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ST = ut

FT = bt

ST = btFT = ut

υ2 ρ β δ

υ1 υ3

Figure 11: A sequential valuation network model for the diabetes diagnosis problem

sequential influence diagram (SID) can be considered as a combination of sequential decision diagrams,

influence diagrams, and unconstrained influence diagrams. There are two types of arcs in a SID—

sequential and dependence. To distinguish between the two, we show sequential arcs by solid lines

and dependence arcs by dotted lines. If we have a partial order on the information constraints, we use

clusters and sequential arcs between clusters to represent partial orders. A SID representation of the

diabetes diagnosis problem is shown in Figure 12.

BT
UT

BG
GU

D

TD
UT = ut

BT = bt

κ1

υ3κ2

Figure 12: A sequential ID model for the diabetes diagnosis problem

In this model, arcs (D,BG) and (D,GU) constitute a Bayesian network without any dummy states

for BG and GU . BT and UT are decision nodes with state spaces {bt, nt}, and {ut, nt}, respectively.

The sequential arc (BT,BG) with the annotation BT = bt denotes that BG follows BT only in
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scenarios where BT = bt. Thus, if BT = nt, then BG does not follow BT . Similarly for the sequential

arc (UT,GU) with the annotation UT = ut. The cluster of nodes containing BT , UT , BG and

GU represents the fact that the sequence of tests is unspecified and to be determined. However, the

sequential arc from this cluster to TD specifies that in all scenarios, TD follows the two tests. Finally,

D follows TD in all scenarios. The remaining part of the diagram has the same semantics as an

influence diagram.

If we compare this model with the UID model in Figure 10, we notice that we do not need dummy

variables BTR and UTR. If we compare the SID model with the SVN model shown in Figure 11,

we notice that the sequence of tests is represented explicitly in the SVN representation, while it is

represented in the SID representation using the UID convention. Thus, if we have 10 different tests,

a SVN representation can get complex to account for all possible sequences of tests, whereas the

SID representation remains simple. The SID representation is more efficient than either the UID

representation or the SVN representation. Unlike UIDs, SIDs are designed for representation of the

general class of decision problems, not just diagnosis/troubleshooting problems.

We conclude this section with a discussion of partial influence diagrams (PIDs) and limited memory

influence diagrams (LIMIDs). The algorithms for solving IDs assume that there is a total ordering

of the decision variables. This condition is sufficient for computing an optimal strategy, but it is not

necessary. Nielsen and Jensen [56] define partial IDs (PIDs) as IDs where there is no total order

specified for decision variables. Since the solution to a decision problem may depend on the ordering of

the decision variables, Nielsen and Jensen specify conditions that ensure that a PID has a well-defined

optimal strategy even though there is no total order on the decision variables. The conditions are

based on d-separation and can be read from the graphical structure of a PID.

Lauritzen and Nielsen [47] introduce the notion of limited memory IDs (LIMIDs) as a model for

multistage decision problems in which two conditions are relaxed: total order for decision variables

and no-forgetting. The sequence in which decisions are to be made is not specified other than through

it being compatible with the partial order induced by the ID graph, i.e., if D2 is a descendant of D1,

then decision D1 must be made before D2. The parents of a decision node D represent exactly the

variables whose values are known and taken into consideration when a decision at D has to be made.

Thus, LIMIDs allow for multiple agents of a decision maker (who may not be able to communicate

with each other) or for forgetful decision makers.

The example of a LIMID presented in [47] describes a pig breeder problem involving decisions about

injecting a certain drug as a treatment for a given disease. The disease can be detected with a test

(ti). The decisions about injections must be done during the first three months of pigs life, one per

month (Di, i = 1, 2, 3). The pigs will be sold in the fourth month. The market price will depend on the
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health status of the pigs (hi). This problem can be considered with two different points of view. The

first one assumes that the breeder keeps individual records for every pig, and this information is used

before deciding about the injections. Thus, the no forgetting condition is assumed, see Figure 13(a).

The second assumes that there are no individual records for the pigs, and that the decisions are

made knowing the test result only for the given month (the LIMID version, see Figure 13(b)). Nodes

vi, i = 1, 2, 3 are related to the costs of performing the test and v4 denotes the benefit obtained with

the pig sale.

1 2 3

1

1 2

2 3

3 4

D D D
t
h h

t t
h h

υ1 υ2 υ3

υ4

(a) ID version

1 2 3

1

1 2

2 3

3 4

D D D
t
h h

t t
h h

υ1 υ2 υ3

υ4

(b) LIMID version

Figure 13: The ID and limited memory ID models for the pig problem

The main motivation of LIMIDs is that by limiting the number of information arcs, its solution

is computationally tractable whereas the same decision problem could be intractable if we assumed

the no-forgetting condition. The disadvantage is that an optimal solution of a LIMID may not be

optimal for the same decision problem if we were to assume the no-forgetting condition. Thus, we

trade-off tractability of solution with optimality. Lauritzen and Nilsson describe an algorithm called
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single policy updating for finding a local optimal solution of a LIMID. Thus, if we consider the ID in

Figure 10 as a LIMID, and solve it using the single policy updating algorithm, assuming that no test

pays by itself, a solution may be that no test shall be done, even though an optimal UID solution for

the problem is to first do a urine test, and if positive, then do a blood test.

In summary, we have examined different representations of problems in which we have informa-

tion asymmetry. We have examined symmetric influence diagrams, unconstrained influence diagrams,

sequential valuation networks, sequential influence diagrams, partial influence diagrams, and limited

memory influence diagrams. For the class of problems in which we have several diagnostic tests that

can be done in any sequence, the sequential influence diagram representation is very efficient in rep-

resenting such problems. The exact solution of these problems, however, is hard and may not be

tractable when we have a large number of tests. In some decision problems, there may not be a total

order specified among the decision nodes, but it admits a well-defined optimal solution through the

use of partial influence diagrams. Also, for a class of multi-stage problems, influence diagrams may

be intractable. By dropping the no-forgetting condition, the solution of a decision problem may be

tractable using the single policy updating algorithm of LIMIDs.

4 Continuous Chance and Decision Variables

In this section, we review the literature on the use and issues related to using continuous chance and

decision variables in representing and solving decision problems.

In practice, it is safe to assume that one encounters chance and decision variables that are continu-

ous. A chance or decision variable is said to be discrete if the state space is countable, and continuous

otherwise. Typically, the states of discrete variables are symbols, whereas the states of continuous

variables are real numbers. The conditional distribution of continuous chance variables are typically

conditional probability density functions (PDFs). One major problem associated with solving IDs with

continuous chance variables is integration of products of conditional PDFs and utility functions when

computing expected utilities. There are many commonly used PDFs, such as the Gaussian PDF, that

cannot be integrated in closed form. Another major problem is finding the maximum of a utility

function on the state space of a continuous decision variable. Depending on the nature of the multi-

dimensional utility function, we can have a difficult non-linear optimization problem. To avoid these

difficulties, one standard approach is to discretize the continuous variables using bins. Using many

bins results in a computational burden for solving the discrete ID, and using too few bins leads to an

unacceptable approximation of the problem.

One of the earliest work on using continuous variables in IDs is by Kenley and Shachter [42, 76]. In

their representation, which they call Gaussian IDs (GIDs), all chance variables are continuous having
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the so-called conditional linear Gaussian (CLG) distribution. This is a Gaussian PDF, whose mean

is a linear function of its parents, and the variance is a constant. An implication of this condition is

that the joint distribution of all chance variables is multivariate normal. One can find marginals of the

multivariate normal distribution without doing any integration. So the problem of integration does

not exist for such IDs. GIDs also assume that all decision nodes are continuous and that the utility

function is a quadratic function of its parent chance and decision variables. An implication of this

condition is that there is a unique maximum for the decision variables, which can be found in closed

form. Thus, the optimization problem of finding an optimal solution does not exist either for such IDs.

An example of a GID is shown in Figure 14 [76]. A consultant has purchased an expensive computer

for use in her practice. She will bill her clients for computer usage at an hourly rate. Also, she expects

to have the computer unused most of the time and she would like to sell some of these idle hours to time-

sharing users. She must decide on a price for her consulting clients, and a price for her time-sharing

users, so as to maximize her total profit.

She believes that the number of consulting hours sold will depend on consulting price, and that

the cost of the computer facilities for consulting, consulting cost, will depend on consulting hours. Her

accountant will work up a consulting estimate of the number of consulting hours she will bill. This

will be known before deciding on the price for time-sharing users. The number of time-share hours will

depend on time share price and the hours the computer is not busy with consulting work (idle hours).

The cost of running the time-sharing service, time sharing cost, will depend on the hours purchased,

time share hours, and idle hours. Her profit will be the difference between total revenues and costs.

Specific parameters for the Gaussian distributions attached to all the continuous variables must be

assessed. These are shown in Figure 14, with the corresponding conditional mean and conditional

variance next to each node. All continuous variables (chance or decision) are depicted with a double

border.

Poland [64] extends GIDs to mixture of Gaussians IDs (MoGIDs). In MoGIDs, we have discrete

and continuous chance variables. As in GIDs, continuous variables have a CLG distribution whose

mean is a linear function of its continuous parents, and a constant variance. The linear function and

constant variance can be different for each state of its discrete parents. However, discrete nodes cannot

have continuous parents. An implication of these conditions is that given a state of each discrete

variable, the joint distribution of the continuous variables is multivariate normal. Again the problem

of integration does not exist. MoGIDs have the same restriction as GIDs regarding utility functions

associated with continuous decision variables (quadratic).

An example of a MoGID is shown in Figure 15 [64]. This is a different formulation of the oil

wildcatter’s problem than the one given earlier in Figure 1. The previous formulation discretizes oil
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N(58000 + 4ch, 4000000)
CC|ch ∼

N(1500− 5cp, 40000)
CH|cp ∼

CE|ch ∼
N(1500 + ch, 250000)

N(5000 + 1.25th− 1.25ih, 40000)
TC|(th, ih) ∼TH|(tp, ih) ∼

N(750− 10tp + 0.05ih, 10000)

−CC − TC
P = CP ·CH + TP ·TH

Pri
e (TP)Time Share

Consulting

Time ShareCost (TC)Hours (TH)
Hours (IH)Idle Pro�t (P)
ConsultingCost (CC)ConsultingPri
e (CP)

ConsultingEstimate (CE)
Hours (CH)

Time Share
IH|ch ∼
N(3500− 3ch, 100)

Figure 14: A Gaussian ID for the Consultant’s Problem

volume and drilling cost (included in υ2). Here, they are represented as continuous variables (with

double borders). Oil volume has a mixed distribution: it has a PDF for positive volumes but there is a

probability mass at zero. Poland includes these two variables conditioned by “case” (discrete) variables

to make their PDF mixtures. For example, oil volume case has three states: “zero”, “medium” and

“high”, with associated probabilities conditioned on seismic structure. For each of these, oil volume has

a distinct distribution: a probability mass at zero for the “zero” case, and a PDF for the other cases.

Seismi
Stru
ture (S) Case (OS)Oil
TestResults (TR) OilVolume (O)

Seismi
Test? (T) Drill?(D) Pro�t (P) Utility
Cost (DC)DrillingCase (CS)Cost

Figure 15: A MoGID for the oil wildcatter’s problem

If we have a continuous variable whose conditional PDF is not CLG, then we can approximate it with

a mixture of Gaussians. The parameters of the mixture distribution (number of distributions, weights,

and means and variances of the Gaussian distributions) can be found either by using a minimum

entropy technique [65] or by solving a non-linear optimization problem that minimizes some distance

measure between the target distribution and mixture distribution [81].

If we have a discrete chance variable with a continuous parent, then we do not have a mixture
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of multivariate normal distribution for the continuous chance variables. Some authors suggest ap-

proximating the product of the conditionals for the discrete variable and its parents by a CLG using

a variational approach [54] or a numerical integration called Gaussian quadrature [49]. Shenoy [81]

suggests using arc reversals to remedy this situation. However, arc reversals may destroy the CLG

distribution of the parent, in which case, it has to be approximated by a mixture of Gaussians.

If besides continuous chance variables, we have a decision problem with (few) continuous decision

variables, Bielza et al. [3] suggest the use of a Markov Chain Monte Carlo (simulation) method for

finding an approximately optimal strategy as a remedy for the optimization and integration problem.

They define an artificial distribution on the product space of chance and decision variables, such that

sampling from this artificial augmented probability model is equivalent to solving the original decision

problem. The approach can accommodate arbitrary probability models and utility functions.

Charnes and Shenoy [10] investigate the problem of solving large IDs with continuous chance

variables and discrete decision variables using a Monte Carlo method where only a small set of chance

variables are sampled for each decision node. Using this technique, they solve a problem of valuation

of a Bermudan put option with 30 discrete decision variables and continuous chance variables with

non-CLG distributions.

Another strategy for easing the problem of integration is suggested by Moral et al. [53]. They sug-

gest approximating conditional PDFs by mixtures of exponential functions whose exponent is a linear

function of the state of the variable and its continuous parents. Each mixture component (or piece)

is restricted to a hypercube. One advantage of this approximation is that such mixtures of truncated

exponentials (MTEs) are easy to integrate in closed form. Also, the family of MTE functions are closed

under multiplication and integration, operations used in solving influence diagrams. Cobb et al. [17]

describe MTE approximations of commonly used PDFs using an optimization technique similar to the

one described earlier for finding parameters of a mixture of Gaussian approximation. Cobb and Shenoy

[16] define MTE IDs, where we have continuous chance variables with MTE conditional PDFs, discrete

decision variables, and utility functions that are also MTE functions. Such MTE IDs can be solved

using the solution technique of discrete IDs with integration used to marginalize continuous chance

variables. Cobb [13] introduces continuous decision MTE influence diagrams (CDMTEIDs), where be-

sides using MTE potentials to approximate PDFs and utility functions, continuous decision variables

are allowed. A piecewise-linear decision rule for these continuous decision variables is developed.

In the same spirit as MTEs, Shenoy and West [82, 84] suggest the use of mixture of polynomials

(MOPs) to approximate conditional PDFs. Like MTE functions, MOP functions are easy to integrate,

and the family of MOP functions is closed under multiplication and integration. Unlike MTEs, finding

MOP approximations is easier for differentiable functions as one can use the Taylor series expansion

21



to find a MOP approximation. Finding an MTE approximation for a multi-dimensional distribution

(such as the conditional for a variable given another continuous variables as parents) can be difficult,

whereas finding a MOP approximation is easier at it can be found using the multi-dimensional version

of the Taylor series.

In an ID, a continuous chance variable is said to be deterministic if the variances of its conditional

distributions (for each state of its parents) are all zeroes. An example of a deterministic variable

is a continuous variable whose state is a deterministic function of its continuous parents, and the

function may depend on the state of its discrete parents. An example of a deterministic variable is

Profit = Revenue − Cost, where Revenue and Cost are continuous chance variables, and Profit

is a deterministic variable with Revenue and Cost as parents. Deterministic variables pose a special

problem since the joint density for all the chance variables does not exist. For GIDs and MoGIDs,

deterministic variables are not a problem as long as the functions defining the deterministic variables are

linear. The theory of multivariate normal distributions allows linear deterministic functions [71, 46].

The class of MTE functions is also closed under transformations required by linear deterministic

functions [14], but not for non-linear deterministic functions. For non-linear deterministic functions,

Cobb and Shenoy [15] suggest approximating a non-linear deterministic function by a piecewise linear

function, and then using the technique proposed in [14]. Cinicioglu and Shenoy [11] describe an

arc reversal theory for hybrid Bayesian networks with deterministic variables with a differentiable

deterministic function. They use Dirac delta functions [22] to represent deterministic functions. The

deterministic function does not have to be linear or even invertible. As long it is differentiable and its

real zeroes can be found, arc reversal can be described in closed form. They conjecture that Olmsted’s

arc-reversal theory [59] for solving discrete IDs can be used for hybrid IDs using their arc-reversal

theory. This claim needs further investigation. The family of MOP functions are closed for a larger

class of deterministic functions than MTEs. For example, MOP functions can be used for quotients

[82]. Li and Shenoy [50] describe a further extension of the extended Shenoy-Shafer architecture [83]

for solving influence diagrams containing discrete, continuous, and deterministic variables. In problems

where no divisions need to be done, MOP approximations can be used for PDFs, utility functions, and

deterministic functions to alleviate the problems of integration and optimization. Finally, deterministic

variables pose no problems for Monte Carlo methods, such as [10], that use independent and identically

distributed samples. However, Markov chain Monte Carlo methods may not converge in the presence

of deterministic variables.

We conclude this section by remarking that much research remains to be done to make the solution

of IDs with continuous chance and decision variables viable in practice. It would be very useful to

have a formal comparison of the various techniques on a test bed of problems with different sizes and
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complexity. This includes a comparison of MoGIDs, MTE IDs, and MOP IDs. Also, for an individual

technique, such as, e.g., MTE IDs, there are many ways to approximate a PDF by an MTE function.

There is a tradeoff between number of exponential terms and number of pieces (mixture components).

Fewer pieces invariably imply more exponential terms. It is not known which approximation is the best

from a computational viewpoint. A similar issue exists for MoGIDs and MOP IDs. Finally, it would

be useful to have bounds on the optimality of the solution based on bounds on the approximations of

the PDFs.

5 Modeling with IDs: Strengths and Limitations

The previous sections have presented ID modeling capabilities and challenges mostly developed and

identified by researchers and published in scientific forums. But there is not much feedback from

analysts and experts about their experiences with IDs for building decision-making models. Specifically,

it would be interesting to know the main problems perceived by those who have tried to model complex

decision-making problems using IDs. Unfortunately, it is well known that the modeling step is not yet

automated, and is considered as an art, and in which most of the literature has taken little interest [12].

Perhaps this is the reason why there are very few papers offering this point of view. Two examples of

these are [2, 27].

These papers describe the problems faced while modeling a neonatal jaundice management problem

in the medical domain. This problem is present during the first few days of a baby’s life, the first 72

hours after birth being the most critical. The first decision is whether to admit (or not) a baby

to a hospital and confining it, eventually, to an intensive care unit. In case the baby is admitted,

it is necessary to control the bilirubin levels, carrying out different tests, and applying some of the

prescribed treatments: phototherapy, exchange transfusion, or observation. The treatment will be

selected depending on some crucial factors such as age, weight, and bilirubin and hemoglobin levels.

Treatments are given along several consecutive stages, observing after each one their effects on the

baby and repeating the process as many times as necessary until the problem is solved (the infant is

then discharged or (s)he receives a treatment related to another disease).

The two main problems identified when constructing an ID for this disease are related to time

modeling and the existence of constraints between the treatments (both are closely related). Since

experts consider that there must be at least 6 hours between two successive treatments (in order to be

able to observe their effects), the initial approach considers an ID containing a sequence of 12 decision

nodes (one per stage). As treatment decisions depend at each stage on the same set of factors, the

entire model can be considered as a repetition of 12 identical slices, the ith-slice inheriting information

from the (i − 1)th-slice. All decision nodes would be identical containing the same set of alternatives.
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Moreover, during the modeling stage, several constraints were identified: not to perform more than two

exchanges per full treatment, start with observation or phototherapy, precede and follow exchanges

by phototherapies, etc. These constraints lead to a highly asymmetric ID and it cannot be modeled

with this structure of 12 identical decisions. Another problem related to time management stems from

the variable length of the full process. Some patients will need only one treatment stage, for example.

For that reason the subsequent decision domains must be filled in with dummy therapeutic actions

(do nothing) in the spirit of symmetric IDs. Although direct, this first approximation entails a highly

asymmetric and intractable ID due to the considerable set of nodes and arcs.

A deeper analysis revealed that the experts normally consider combinations of therapies: photother-

apy of 12 or 18 hours long, for example. Using this fact, and in order to reduce the number of decisions,

three types of frames are considered. The first one corresponds to the first decision, containing the

alternatives allowed when starting the treatment. The second type will be used for two decision nodes

articulating the central part of the treatment. Its alternatives consider grouped treatments satisfying

the constraints (e.g., a 12-hour phototherapy followed by an exchange transfusion and then a 12-hour

phototherapy again). The fourth and fifth decisions are related to the third type of frame. The fourth

one concerns light treatments and the last only final actions. The consideration of combined actions

makes more complex the definition of the decision domains, but reduces the model size to five decision

nodes and limits the presence of incoherent treatments as well. There is another set of constraints not

included in the new domains (because they affect the entire process) and will have to be considered

during the model evaluation process.

In spite of these difficulties, the modeling of this ID was described as a rich exercise for experts, who

felt very comfortable reasoning about the different alternatives under consideration. This reasoning

process led to a better understanding of the jaundice problem, and as a direct consequence, to a drastic

reduction in the number of aggressive treatments. These positive outcomes were mostly a result of the

modeling process, rather than of the model evaluation process.

Another way to check whether the ID methodology is really useful in practice is to examine the

literature on applications of decision problems using IDs. A compilation can be found in [26]. But

this examination does not provide information about which systems are real applications and which

are just prototypes. Real applications will refer to final systems in use and prototypes may be related

to research projects without a commercial use.

More indicators of ID dissemination and acceptance can be obtained by looking at commercial

software for modeling and evaluating IDs. These tools would not exist if IDs were not considered

useful. As a sample, we list several relevant tools including the URL of the companies. Several of these

URLs also contain links to case studies related to IDs, as well as a list of clients or partners who use
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IDs for modeling their decision-making problems.

• Analytica (http://www.lumina.com/) is a visual tool for creating, analyzing, and communicat-

ing decision models as IDs.

• Decision Manager (http://www.deciware.com) offers tools for effective business management

including decision trees and IDs.

• DPL 7 (http://www.syncopation.com), a professional tool for decision analysis. It offers a single

and coherent application with a straightforward graphical user interface.

• HUGIN (http://www.hugin.com) has focused on delivering advanced solutions for decision mak-

ing under uncertainty. It offers a complete and intuitive tool for building and analyzing BNs and

IDs.

• Netica (http://www.norsys.com/) is a powerful and easy-to-use program for working with BNs

and IDs.

• PrecisionTree (http://www.palisade.com) does decision and sensitivity analysis in Microsoft

Excel using decision trees and IDs.

• TreeAge Pro (http://www.treeage.com) enables the creation of decision trees, IDs and Markov

models which can be analyzed with a sophisticated set of tools and offering a variety of graphs,

charts and reports for communicating the results.

There are also some free tools with remarkable features. One of them is GeNie (http://genie.sis.pitt.edu),

which has a very good user interface as well as efficient methods for computing and analyzing the strate-

gies. Another one is Elvira (http://leo.ugr.es/elvira), which is mostly focused on research purposes

although it offers a clear user interface and a complete set of algorithms for inference on IDs and

Bayesian networks.

Unfortunately, most of the models considered here are so recent that they are not yet incorporated in

these tools. As far as we know, there are no commercial tools for evaluating or modeling with sequential

decision diagrams, unconstrained influence diagrams, sequential valuation networks and sequential

influence diagrams. HUGIN has incorporated LIMIDs and continuous variables, and Elvira offers

algorithms for using MTEs for Bayesian networks inference. Therefore, this is an urgent need if we

want these models to be widely used.

In summary, it seems that IDs have been accepted as a model for dealing with decision problems

in many different fields such as business, chemistry, environmental science, and medicine. There is a

general agreement on their capability for offering a clear and powerful representation for reasoning and

decision making under uncertainty.
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6 Summary and Discussion

IDs have proven to be a powerful tool for communicating ideas in decision-making problems. IDs

represent a new dimension for decision models [29]. As an extension of Bayesian networks, IDs have

benefitted from research in artificial intelligence, decision analysis, and statistics. The intersection

of these disciplines has produced a useful instrument for representing and solving decision-making

problems. The analysis presented here reveals complementary cross-discipline efforts and interactions.

We have studied the qualitative level of representation of an ID. Several new capacities have been

identified. Unlike traditional symmetric IDs, intelligent modifications of IDs allow one to directly model

different kind of asymmetries—chance, decision and information asymmetries—in different ways. In

Section 2, we have elaborated on conditional distribution trees, sequential decision diagrams, and

sequential valuation networks, as the most outstanding approaches and mentioned a number of other

graphical representations proposed in the literature. However, challenges to be able to model, e.g.,

constraints on the sequence of decisions remain.

Directly related to this, and more generally having different information constraints in all scenarios,

led us to study, in Section 3, the contributions made to the so-called sequencing constraint. Examples

include diagnosis/troubleshooting problems. The main models here are the unconstrained IDs, the

sequential valuation network and the sequential IDs, where the requirement of a directed path including

all decision variables is dropped. Sequential influence diagram representation is very efficient. However,

when the number of decisions without constraints is large, solving these models may be intractable.

The limited memory influence diagrams drop the no-forgetting condition, which may make problems

that are intractable to solve exactly tractable for an approximate solution. The challenge here is,

perhaps, to design “anytime” algorithms to find an approximate solution when having time constraints

that prevent completion of an exact algorithm.

We have discussed some literature and challenges associated with the use of continuous chance and

decision variables in IDs. This is an area that is ripe for further research on the use of mixture of

truncated exponentials (MTE) functions and mixture of polynomials (MOP) functions to approximate

PDFs and utility functions. Using the extended Shenoy-Shafer architecture [50], the MTE and MOP

functions can be propagated in a binary join tree [79] to compute an optimal strategy.

We have not gone into other issues that are also important and are listed as follows:

• Decisions may involve groups of people rather than single decision makers [66, 87, 44, 21, 72].

• Beyond the typical what-if questions on the quantitative values of the ID, perturbations of the ID

may also include its structure, i.e., critical evaluation of functional relations on variables is also

necessary. This also involves the complicated and burdensome process of generating an ID. Ideas
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here range from suggesting a case-based reasoning approach where candidate IDs are retrieved

from a set of similar IDs (a case base) [48], to using a neural network for yielding an initial ID

that is later refined to generate a well-formed ID [43].

• Explanation capabilities of IDs are a key element that can improve the effectiveness and justifi-

cation of decisions. Explanations enhance the decision maker’s ability to understand and have

confidence in the ID model, thereby accepting ID advices. Generating explanations is related

to the search of the most relevant information and how to present it to the decision maker in a

structured form. Although in Bayesian networks there has been much research in the topic, see

a review in [45], we expect to see more work in decision-making [41, 5, 28].

• Modeling temporal processes is one of the greatest challenges of IDs. Dynamic IDs [86], and

temporal IDs [67], are possibilities that have in (partially observable) Markov decision processes

a strong competitor.

• The need to deal with time- or modeling-pressured situations in developing time-critical dynamic

decision support systems is a practically useful but difficult problem. Xiang and Poh [88, 89]

consider time-critical dynamic IDs to choose, from a meta-reasoning approach, the best model

with optimal trade-off between model quality and computational tractability. Other authors con-

struct anytime algorithms providing approximate strategies incrementally refined as computation

progresses [30, 31, 32, 63, 70, 33].

• A daunting challenge would be to face the continuous change in the environment. IDs are difficult

to scale up and adapt to changing and evolving knowledge, policies, standards, regulations,

operating procedures, etc. Perhaps IDs were not conceived to reach so far. However, combining

the inclusion of time together with a mechanism that detects when the ID fails and suggests an

alternative model is a possibility. These adaptive models have been the topic of many recent

world conferences, like that organized by AAAI in 2005.

• Moreover, models need to effectively operate in the rapidly developing distributed infrastructures,

gathering knowledge from different sources [73], like from different computers in a network.
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