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This paper has three main results. First, we present a new
computational technique for checking for inconsistencies in
valuation-based systems. This technique is different from the
implicit enumeration method of Davis-Putnam and its variants.
Our technique uses the divide-and-conquer method of dynamic
programming. The computational complexity of this technique
depends on the sizes of the valuations and on the graphical
structure of the valuation-based system. Second, if a
valuation-based system is consistent, we describe a method
for generating a model for the system, i.e., an assignment of
values for each variable that is consistent with each valuation
in the system. Third, if a valuation-based system is inconsis-
tent, we describe a method for isolating a minimal inconsistent
set of valuations.

A valuation-based system is a knowledge-based system in
which knowledge is represented by functions called valua-
tions.!"® 2} For example, a rule-based system can be repre-
sented as a valuation-based system.

This paper presents a new computational technique for
checking for inconsistencies in valuation-based systems.
We use the word inconsistency in the logical sense—a set
of propositions is inconsistent if contradiction is entailed.
This technique is capable of detecting all contradictions
that can be detected using the expressive power of proposi-
tional logic. The computational complexity of this tech-
nique depends on the sizes of the valuations and on the
graphical structure of the valuation-based system.

The problem of consistency is NP-complete in the
worst case.’) However, this does not mean that real-world
valuation-based systems always conform to the worst case.
In such cases, it is desirable to have an efficient method for
detecting inconsistencies. In this paper, we describe a fu-
sion algorithm for checking for inconsistency that uses only
local computation. The computational complexity of the
fusion algorithm is O(n%k + (n + k)s), where n is the
number of variables, k is the number of valuations, and s
is the cardinality of the frame of the largest subset of
variables on which combination is done in the fusion
algorithm.

The issue of consistency in valuation-based systems is an
important one. Most commercial rule-based languages do
not check whether the rule-base is consistent or not. For
example, in Texas Instruments’ PERSONAL CONSUL-
TANT system, if two rules such as If X = x then Y =y, and

Subject classifications:

If X = x then Y = ~y are entered with variable Y as the
goal, the system will first ask the user for the value of X. If
the user responds by stating that X = x, the system then
responds by concluding either Y =y or Y = ~y, depend-
ing on the order in which the rules were entered in the
rule-base.

The method we propose is distinct from previous ap-
proaches to this problem. Suwa et al.?*! and Nguyen et
all'* restrict their analyses to pairs of rules with contradic-
tory conclusions. As Ginsberg!®! has pointed out, such
pairwise comparisons cannot guarantee detection of all
potential inconsistencies. Ginsberg’s!®! method, called
“knowledge-base reduction,” is based on techniques devel-
oped by de Kleer?! for assumption-based truth mainte-
nance systems. His method flags all potential inconsisten-
cies. The task we address is a bit simpler. We do not
attempt to detect potential inconsistencies. The method we
present detects actual inconsistencies. Thus, two rules such
as If X =x then Y =y, and If X = x then Y = ~y are not
inconsistent until X = x is posited.

The problem of consistency we address is the same as
the satisfiability problem in propositional logic. Several fast
algorithms have been developed for this problem (see, for
example, [4, 12, 8, 10]). In fact, if all knowledge can be
represented as propositional Horn formulae, then consis-
tency checking can be done in linear time°! All of these
methods are based on the branch-and-bound technique of
integer programming. In comparison, the method we pro-
pose is based on the divide-and-conquer technique of dy-
namic programming. We exploit the fact that knowledge
can be broken down into small formulae connected to-
gether, for example, by logical conjunction. This is the only
fact that is exploited in our method. As such, our method is
not as fast as the branch-and-bound algorithms mentioned
earlier. However, our method is more general. It applies
not only to Boolean propositions, but also to multiple-
valued variables. Also, our method has several by-products
not obtained from these other methods.

If a valuation-based system is consistent, then it is useful
to have a configuration of all variables that is consistent
with each valuation in the system. We call such a configu-
ration a “model” for the system. One of the by-products of
the fusion algorithm is that we can generate a model for a
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consistent valuation-based system for a small additional
cost.

If a valuation-based system is inconsistent, then it is
useful to isolate a minimal set of valuations that are incon-
sistent. This will help a knowledge engineer to modify the
knowledge-base so as to make it consistent. We propose a
method for isolating a minimal set of inconsistent valua-
tions. This method is a minor extension of the fusion
algorithm for detecting inconsistencies.

All three methods described in this paper are based on
the framework of valuation-based systems.'® 21 This
framework is very general and applies to many domains
such as probability theory,*> ?2! Dempster-Shafer theory
of belief functions,?> 22 Spohn’s theory of epistemic
beliefs,['”" 221 possibility theory,’” '*) discrete optimiza-
tion,['® constraint satisfaction,?*! and Bayesian decision
theory.12% 211

An outline of this manuscript is as follows. In section 1,
we define valuations and proper valuations which are used
to represent knowledge. In section 2, we define two opera-
tions on valuations called combination and marginaliza-
tion. These operations are used to make inferences from the
knowledge-base. In section 3, we give a formal definition of
a consistent valuation-based system. In section 4, we de-
scribe a fusion algorithm for checking for inconsistency in a
valuation-based system and describe its computational
complexity. In section 5, we describe a method for generat-
ing a model for consistent valuation-based systems. In
section 6, we describe a method for identifying a minimal
set of inconsistent valuations in an inconsistent valuation-
based system. In section 7, we make some concluding
remarks. Finally, in section 8, we provide proofs for the
three main theorems in the paper.

1. Knowledge Representation
We represent knowledge by functions, called valuations,
from the space of configurations to the space of values.

Consider a variable X. We use the symbol #% for the set
of possible values of X. We assume that one and only one
of the elements of #y can be the true value of X. We call
¥y the frame for X. For example, suppose we are interested
in determining whether Dick is a crook or not. We con-
struct a variable IS_DICK_A_CROOK whose frame has
two elements: “‘yes”” and “‘no.”

We assume #y is defined such that the propositions
regarding X that are of interest are precisely those of the
form “The true value of X isin A, where A is a subset of
#. Thus, the propositions regarding X that are of interest
are in a one-to-one correspondence with the subsets of #%;
see p. 36 of [15].

The correspondence between subsets and propositions is
useful since it translates the logical notions of conjunction,
disjunction, implication and negation into the set-theoretic
notions of intersection, union, inclusion and complementa-
tion, respectively; see pp. 36-37 of [15]. Thus, if A and B
are two subsets of #%, and A’ and B’ are the correspond-
ing propositions, then A N B corresponds to the conjunc-
tion of A" and B’, A U B corresponds to the disjunction of
A’ and B’, A C B if and only if A’ implies B’, and A is
the set-theoretic complement of B with respect to #% if
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and only if A’ is the negation of B'. Notice also that the
proposition that corresponds to (J is false and the proposi-
tion that corresponds to #Z is true.

Let 2 denote the set of all variables. In this paper, we are
concerned only with the case where 2 is finite. Also, we
assume that all the variables in 2 have finite frames.

We often deal with non-empty subsets of variables in 2.
Given a non-empty subset h of 2, let #, denote the
Cartesian product of # for X in h,i.e, %), = X{#x| X € h}.
We can think of the set %}, as the set of possible values of
the joint variable . Accordingly, we call 7;, the frame for h.
Also, we call elements of %;, configurations of h. We use this
terminology even when h consists of a single variable, say
X. Thus we call elements of #y configurations of X. We use
lower-case, bold-faced letters such as x, y, etc. to denote
configurations. Also, if x is a configuration of g, and y is a
configuration of h, and g Nk =, then (x,y) denotes a
configuration of g U h.

It is convenient to extend this terminology to the case
where the set of variables h is empty. We adopt the
convention that the frame for the empty set & consists of a
single configuration, and we use the symbol ¢ to name
that configuration; %, = {#}. To be consistent with our
notation above, we adopt the convention that if x is a
configuration for g, then (x, ) = x.

In (categorical) rule-based systems, knowledge is repre-
sented by rules. For example, we may have a rule relating
two variables X and Y: If X = x then Y = y. In our frame-
work, we represent knowledge using functions called valu-
ations.

Suppose h C 2. A valuation for h is a function H: %), —
{1, 0}. We call the elements of the set {1, 0} values. The value
1 represents true, and the value 0 represents false. Thus, a
valuation for & is a function from the set of configurations
of h to the set of values. If H is a valuation for & and
X € h, then we say H bears on X. Also, if H is a valuation
for i, then we say the domain of H is h.

Consider the rule If X = x then Y =y that relates two
variables X and Y whose frames are, respectively, #x =
{x, ~x} and % = {y, ~y). This rule can be represented by
the valuation V for {X, Y} defined as follows:
Vix,y) =1, V(x, ~y) =0, V(~x,y) =1, V(~x, ~y) = L
Note that this. is basically the truth-table representation of
the rule interpreted as a conditional.

In order to represent the notion of consistent knowledge,
we define proper valuations. Suppose h C£. A valuation
H for h is said to be proper if there exists a configuration x
of h such that H(x) = 1, and improper otherwise. Thus a
proper valuation cannot be identically equal to 0 for all
configurations.

The motivation behind the above definition is clear.
Earlier, we had defined a frame as a set of configurations
exactly one of which is true. Thus, it should not be possible
for a consistent piece of knowledge to rule out all configu-
rations.

2. Combination and Marginalization

In this section, we define two basic operations for valua-
tions called combination and marginalization. Combination
corresponds to logical conjunction and represents aggrega-

b
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tion of knowledge. Marginalization corresponds to logical
disjunction and represents coarsening of knowledge.

Before we define the two operations, we need to intro-
duce some notation. Projection of configurations simply
means dropping extra coordinates; if (w, x, y, z) is a con-
figuration of {W, X, Y, Z}, for example, then the projection
of (w, x, y, z) to {W, X} is simply (w, x), which is a config-
uration of {W, X}. Formally, if g and h are sets of vari-
ables, h C g, and x is a configuration of g, then we let x Lh
denote the projection of x to h. The projection x ' * is always
a configuration of h. If h = &, then of course x Vh = ¢,

Comhination

Suppose G and H are valuations for ¢ and h, respectively.
The combination of G and H, denoted by G ® H, is the
valuation for g U h defined as follows:

(G ® H)(x) = G(x*&)H(x ")

forall x € 7, .

Suppose x € #,, ;- Then x can be regarded as a proposi-
tion about variables in g U h. Note that proposition x is the
same as the logical conjunction of propositions x ‘¥ and
x ‘", Since the truth table for logical conjunction is simply
pointwise multiplication, this explains the definition in
@.1.

Intuitively, combination corresponds to aggregation of
knowledge. The valuation G ® H represents the aggrega-
tion of the knowledge in G and H. Note that if either G or
H is improper, then G ® H is improper. However, if both
G and H are proper, then G ® H may be proper or im-
proper. Whether G ® H is proper or not depends on if the
knowledge represented by G and H are consistent or not
when aggregated.

Note that the combination operator is commutative and
associative;, G® H=H® G, and (G® H)® K=G ®
(H ® K). Thus, when we combine several valuations
Gy, ..., G, we can write G; ® - ® G, or simply ®{G, | i =
1,..., k} without indicating the order in which the combi-
nation is carried out.

Consider two variables X and Y whose frames are,
respectively, #y = {x, ~x} and 77, = {y, ~y}. Let G,, G,,
and G, be three valuations for {X}, {X,Y}, and {X, Y},
respectively, given as follows:

(2.1)

G(x) =1,G{(~x) =0;
Gy(x, ) = 1,Gy(x, ~y) =0,Gy(~x,y) =1,
Gy(~x, ~y) =1;
Gy(x, ) =0,G3(x, ~y) =1,Gy(~x,y) =1,
Gy(~x, ~y) =1.
G, represents the proposition X = x; G, represents the
conditional If X = x then Y =y; and G; represents the
conditional If X = x then Y = ~y. Table I shows that G, ®

G, ® G5 is an improper valuation. Therefore, the set of
valuations {G,, G,, G;} is inconsistent.

Marginalization
Suppose G is a valuation for g, and suppose h C g. Then
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the marginal of G for h, denoted by G Lk is the valuation for
h defined as follows:

G"x) = MAX{G(x,y) |y € 7,_,} (2.2
for all x € 7,

Suppose x € 7;,. Then x can be regarded as a proposition
about variables in . Note that proposition x is the same as
the disjunction of propositions in the set {(x,y) | y € #,_,}.
Since the truth table for disjunction is simply maximiza-
tion, this explains the definition in (2.2).

Intuitively, marginalization corresponds to coarsening of
knowledge. If G is a valuation for ¢ representing some
knowledge about variables in g, and & C g, then G'*
represents knowledge about variables in & implied by G if
we disregard variables in g — h.

It follows from the above definition that G *” is proper if
and only if G is proper. Also, if X;, X, €¢, and G is a
valuation on g, then (G!(&~{(XiM)lg—{X, Xoh -
(G &~ 1XN) L= (X X)) In words, the order of deletion of
variables in the marginalization operation does not matter.

Consider the valuations G, and G, as defined above
representing proposition X = x, and conditional If X = x
then Y =y, respectively. If we combine G, and G, and
marginalize the combination for {Y}, the resulting valua-
tion (G, ® G,)*!Y) is given by (G, ® G)*"(y) =1 and
(G, ® G'M(~y) =0, ie., (G, ® G,)*!) represents the
proposition Y =y (see Table II). Thus, combination and
marginalization give the same result as the modus ponens
form of inference in propositional logic (X =x, and If
X=xthenY =y, .Y =y

Similarly, other forms of logical inference such as modus
tollens (Y =~y, and If X =x then Y =y, -. X = ~x), dis-
junctive syllogism (X = x or Y =y, and X = ~x, .Y =y),
and disjunctive elimination (X =x or Y =y, If X = x then
Z=z and IfY =y then Z =z, -.Z = z) are shown to be

Table I. The Combination of G,, G,, and G,

w Gwi X)) Gy(w) Gyw) (G, ® G, ® Gy)(w)

X oy 1 1 0 0
X ~y 1 0 1 0
~x Yy 0 1 1 0
~x ~Yy 0 1 1 0
Table II. Modus Ponens Represented as Combination

and Marginalization

7y, x) G G, G;®G, (G;® G Wy
y X 1 1 1 1 x
y ~x 0 1 0 . K
~y X 1 0 0 0 x
~y ~x 0 1 0 _

G, represents the proposition X =x, and G, represents the
conditional If X = x then Y = y. (G, ® G,)*!) represents the con-
clusion Y = y. ¥y is a solution for X with respect to G, ® G,.

Copyright © 2001 All Rights Reserved
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Table III. Modus Tollens Represented as Combination
and Marginalization
Z(x,v) G, G, G, ®G, (G, &Gyt
x y 0 1 0 0
x ~y 1 0 0 -
~x Y 0 1 0 1
~x ~y 1 1 1 -

G, represents the proposition ¥ = ~y, and G, represents the
conditional If X = x then Y = y. (G; ® G,)*{*} represents the con-
clusion X = ~x.

Table IV. Disjunctive Syllogism Represented as
Combination and Marginalization

Yy, x) Gs Gy G;0G, (G5 G
y X 0 1 0 1
y ~X 1 1 1 -

~y x 0 1 0 0

~y ~x 1 0 0 -

Gs represents the proposition X = ~x, and G4 represents the
disjunction X = x or Y = . (G5 ® Gg)'") represents the conclu-
sion Y = y.

special cases of combination and marginalization in Tables
III, IV, and V, respectively.

In consistent valuation-based systems, it is useful to
have a model, i.e., a configuration of all variables that is
consistent with all valuations in the system. This motivates
the following definition.

Model for a Valuation
Suppose G is a proper valuation for g. We call x € 7, a
model for G if G(x) = 1.

Solution for a Variable

As we will see, once we have shown that a VBS is consis-
tent, generating a model for the VBS is a matter of book-
keeping. Each time we marginalize a variable out of a

valuation using maximization, we store a table of values of
the variable where the maximums are achieved. We can
think of this table as a function. We call this function " a
solution for the variable.”” Formally, we define a solution as
follows. Suppose g is a subset of variables, suppose X € g,
and suppose G is a valuation for g. A function ¥y: 7, _ x,
— ¥ is called a solution for X with respect to G if

G~ XD(y) = G(y, ¥(y))

for all y € #,_ 4, Table II shows a solution for X with
respect to G; ® G,.

3. Consistent Valuation-Based Systems
In this section, we formally define what we mean by a
consistent valuation-based system.

A valuation-based system consists of a finite set of vari-
ables £, a finite frame #% for each variable X in 2, and a
finite collection of valuations {V, ..., V,} where each valua-
tion V, is for some subset h, of #. We assume that
uih,, ..., h} =2 (If not, we can always disregard vari-
ables that are not included in the domain of some valua-
tion.) Thus, a valuation-based system (VBS) can be denoted
formally by the 3-tuple {2, {#%)}xco (Vi ..., Vi}} repre-
senting variables, frames, and valuations, respectively.

Suppose p ={Z, #xlxco (Vy,.... Vi}} is a valuation-
based system. We say that p is consistent if ®{V,,...,V,}is
a proper valuation and inconsistent otherwise. We call
®{V,,..., V,} the joint valuation. Note that the joint valua-
tion is a valuation for 2.

If a valuation-based system has, say, 50 variables, and
each variable has, say, 2 configurations, then the frame of
the joint variable 2 has 2% configurations. Thus, in this
case, it is computationally intractable to explicitly compute
the joint valuation in order to verify whether it is consistent
or not. In the next section, we describe a fusion algorithm
for verifying if a VBS is consistent or not without explicitly
computing the joint valuation.

4. A Fusion Algorithm for Consistency Checking
In section 2, we saw that a marginal G*" is proper if and
only if G is proper. Thus, one way of checking whether or

Table V. Disjunctive Elimination Represented as Combination and
Marginalization
Yz, %,v) G, G, Gg Ge®G,®Gy (G, ®G,® Gyt#

z x y 1 1 1 1 1

z x ~y 1 1 1 1 -

z ~Xx y 1 1 1 1 -

z ~Xx ~y 0 1 1 0 -
~Z x Y 1 0 0 0 0
~z x ~y 1 0 1 0 -
~Zz ~X y 1 1 0 0 -
~Zz ~X ~y 0 1 1 0 -

G, represents the disjunction X =x or Y =y. G, represents the conditional If X = x then
Z = z. Gy represents the conditional If Y =y then Z = z. (G4 ® G, ® Gg)*!?) represents the

conclusion Z = z.
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not a VBS is proper is to verify if the marginal of the joint
valuation for the empty set is proper or not. In this section,
we describe a method for computing exactly the marginal
of the joint valuation for the empty set without explicitly
computing the joint valuation.

Suppose p = {Z, Fylxcez (Vi ..., V]J} is a valuation-
based system. We will describe a fusion algorithm for
explicitly computing the marginal (V; ® -+ ® V,)‘2.

The basic idea of the method is to successively delete all
variables from the VBS. Any sequence may be used. All
deletion sequences lead to the same answers. But different
deletion sequences may involve different computational
costs. We will comment on good deletion sequences at the
end of this section.

When we delete a variable, we have to do a “fusion”
operation on the valuations. Consider a set of m valuations
{Ay, ..., A,). Suppose A, is a valuation for a, for i =
1,...,m. Let Fusx{ Ay, ..., A,} denote the collectlon of
valuahons after fusmg the valuatlons intheset{A,,..., A,}
with respect to variable X. Then

Fusy{A,,..., Ay} = (A&~ D} U (A, 1X, €4} (41)
where A = ®{A,|X, €4}, and g, = U{a,| X, € a,}. After
fusion, the set of valuations is changed as follows. All
valuations that bear on X , are combined, and the resulting
valuation is marginalized such that X, is eliminated from
its domain. The valuations that do not bear on X; remain
unchanged.

When we compute the marginal A'@ XD in (4.1),
assume that we store a solution for X, with respect to A,
‘I’X Yo -(x) = #x, In the next section, we describe a
method for const-ructmg a model for a consistent VBS using
these solutions.

We are ready to state the main theorem which describes
the fusion algorithm.

Theorem 1 (Fusion Algorithm). Suppose p = {2, {#x}x c o

(Vi ..., V.}} is a valuation-based system. Suppose X, X, -+ X,
is a sequence of variables in 2. Then
®Fusy { - Fusx {Fusy{Vi,...,V,}}} = (V; ® - ® V)2,

The essence of the fusion algorithm is to perform combi-
nations of valuations on smaller frames instead of combin-
ing all valuations on the global frame associated with 2

If the VBS p is consistent, then (V; ® --- ® V,) ‘A ¢) = 1.
If p is inconsistent, then (V; ® --- ® V,)'4®) = 0. De-
pending on which subsets of valuations are inconsistent,
inconsistency may be detected earlier during a fusion oper-
ation.

Example 1. (Does Fred Dislike Dick?). Consider a knowl-
edge-base consisting of four rules and two facts as follows:

Rule 1: If Fred is a gullible citizen, then Fred is a citizen.

Rule 2: If Dick is an elected crook, then Dick is a crook.

Rule 3: If Fred is a citizen and Dick is a crook, then Fred
dislikes Dick.

RIGHTS L

Table VI. The Proper Valuations Corresponding to the
Four Rules and the Two Facts
Fic.q R, (x, £y R,
c g 1 k e 1
c ~g 1 k ~e 1
~c g 0 ~k e 0
~C ~g 1 ~k ~e 1
#(c, k. ) R; Zs, E, Dy R,
¢ k d 1 g e d 0
c k ~d 0 g e ~d 1
c ~k d 1 g ~e d 1
c ~k ~d 1 g ~e ~d 1
~c k d 1 ~g e d 1
~c k ~d 1 ~g e ~d 1
~C ~k d 1 ~g ~e d 1
~c ~k ~d 1 ~g ~e ~d 1
) F, ) F,
g 1 e 1
~g 0 ~e 0
Rule 4: If Fred is a gullible citizen and Dick is an elected

crook, then Fred does not dislike Dick.
Fred is a gullible citizen.
Dick is an elected crook.

Fact 1:
Fact 2:

One representation of this knowledge-base is as follows.
Let C=¢, G=g, K=k, E=¢, and D =d be five vari-
ables and their respective configurations representing Fred
is a citizen, Fred is a gullible citizen, Dick is a crook, Dick
is an elected crook, and Fred dislikes Dick, respectively.
Suppose all five of these variables have two configurations
in their respective frames.

Rules 1, 2, 3, and 4 are represented by proper valuations
Ry, R,, R, and R, on {C,G}, {K,E}, {C,K, D}, and
{G, E, D}, respectively, as shown in Table VI. Facts 1 and 2
are represented by proper valuations F, and F, on {G} and
{E}, respectively, as also shown in Table VI. Note that the
VBS representation of this knowledge-base is essentially a
truth-table representation if we replace 1 by T and 0 by F.
Thus, the VBS consists of the 3-tuple {#°= {C,G, K, E, D},
we=1{c ~c), ;=13 ~8), i =k ~K}, #; = {e, ~¢},
WD = {d/ ~ d}}, {R1/ R2/ R3/ R4, Fl/ Fz}}

A graphical depiction of a valuation-based system is
called a valuation network. In a valuation network, variables
are represented by circular nodes, valuations are repre-
sented by rectangular nodes, and each valuation is con-
nected by an undirected edge to each variable node that it
bears on. The valuation network for Example 1 is shown in
Figure 1.

Figure 2 depicts the fusion algorithm graphically. The
first network is the initial VBS. The second network is the
VBS resulting from fusion with respect to G. The third
network is the VBS resulting from fusion with respect to K.
The fourth network is the VBS resulting from fusion with
respect to C. The fifth network is the VBS resulting from

Copyright © 2001 All Rights Reserved
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R, | Fl] R, ’ le R,
C G D E K
R,

Aguwe 1. A valuation network for Example 1.

fusion with respect to D. Finally, the sixth network is the
VBS resulting from fusion with respect to E. Theorem 1
tells us that ((R, ® F; ® ROYEDPC g (R, ®
ROVEDNIE @ F)€ = (R®R,®R;® R, ®F, ®
F,) ‘2. The details of the computations are shown in Tables
VII, VIII, and IX. As seen from the last column in Table IX,
the valuation ((R, ® F, ® R)'EPC g (R, ®
RyYEDOYIEY @ F, is improper. Therefore, the VBS is
inconsistent.

Deletion Sequences

The sequence in which we delete variables in the fusion
algorithm is called the deletion sequence. Which deletion
sequence should one use? First, note that all deletion se-
quences lead to the same final result. This is implied in the
statement of Theorem 1. Second, different deletion se-
quences may involve different computational efforts. For
example, consider the VBS shown in Figure 1. In this
example, all deletion sequences starting with variable D
involve more computational effort than sequences that do
not start with D as the former involve combinations on the
frame of all five variables only, whereas the latter involve
combinations on the frame of only four variables. Finding
an optimal deletion sequence is a secondary optimization
problem that has been shown to be NP-complete.!'! But
there are several heuristics for finding good deletion se-
quences.[11/ 13 27)

One such heuristic is called one-step-look-ahead.'!! This
heuristic tells us which variable to delete next. As per this
heuristic, the variable that should be deleted next is one
that leads to combination over the smallest frame. For
example, in the VBS of Figure 1, for first deletion this
heuristic would pick either C, G, E, or K over D since
deletion of D involves combination over the frame of all
five variables whereas deletion of C, G, E, or K involves
combination over the frame of only four variables. After
the first deletion, any remaining variables can be used for
successive deletions as they all lead to combinations over
frames of equal sizes.

Computational Gomplexity

Let us examine the worst-case computational complexity of
the fusion algorithm. Suppose there are n variables and k
valuations in the valuation-based system. In the fusion
algorithm, we do exactly k — 1 binary combinations and
exactly n marginalizations. Let s denote the largest cardi-
nality of the frames on which we do the combinations. (In
Example 1, s = 16.) A binary combination on a frame of

RIGHTS L

®,| |F R, | | R
1 C G D E K
Ry
(R®F ORYEPS) = v, Fal | Re
2 C D E K
R,
3 - ? >L‘£‘
(R,®R )l(EDC) _
V,®V )l[E.D)
: ® \&:)
5. [ vov® | |Ff
6. (v,8Vy)' FoF,)*?

Fgure 2. The fusion algorithm applied to the valuation
network of Figure 1 using deletion sequence GKCDE.

size s involves at most s multiplications. Marginalizing a
variable out of a valuation for a subset whose frame is of
size s involves at most s — 1 comparisons. Thus the worst-
case complexity of the fusion algorithm is O((n + k)s).

Regarding the worst-case complexity of finding a good
deletion sequence, if a heuristic such as one-step-look-ahead
is used, then this involves at most nk multiplications and n
comparisons for determining the first variable in the dele-
tion sequence, at most (n — Dk multiplications and n — 1
comparisons for determining the second variable, etc.
Therefore, the worst-case complexity of this algorithm is
O(n?k).

The key parameter here is s. In the fusion algorithm, if
the largest subset of variables on which we do a combina-
tion has, say, p variables, and each variable has 2 configu-
rations in its frame, then s = 27. A lower bound for p is of
course the size of the largest subset for which we have a
valuation. Therefore if we have even one valuation in p

€opyright © 2001 Al Rights-Reserved:



Downloaded from informs.org by [129.237.57.18] on 30 December 2014, at 14:58 . For personal use only, all rights reserved.

287

Consistency in Valuation-Based Systems

Table VIIL.

The Computation of Valuation

V, = (R, ® F, ® R)!'ED:C)

i pcq Ry, | R, Ri®F ®R, (R{®F ®R)'EPI =V,
e d c g 1 1 o0 0 0
e d c ~g 1 0 1 0 -
e d ~c g 0 1 0 0 0
e d ~c ~g 1 0 1 0 -
e ~d c g 1 1 1 1 1
e ~d c ~g 1 0 1 0 -
e ~d ~c g 0 1 1 0 0
e ~d ~c ~g 1 0 1 0 -
~e d c g 1 1 1 1 1
~e d c ~¢ 1 0 1 0 -
~e d ~c g 0 1 1 0 0
~e d ~c ~g 1 0 1 0 .
~e ~d c g 1 1 1 1 1
~e ~d c ~g 1 0 1 0 -
~e ~d ~c g 0 1 1 0 0
~¢ ~d ~c ~g 1 0 1 0 -

relating all n variables, then s = 2". Of course, when # is
large, it is extremely unlikely that this will ever happen in
real life. In most rule-based systems, for example, rules
generally relate the values of small subsets of variables.
Furthermore, the value of s depends on the “structure”
of the subsets in # = {h,,..., h}. If #Z is an acyclic hyper-
graph”! then all combinations are done on subsets in # if a
reasonable heuristic (such as one-step-look-ahead) is used
to select a deletion sequence.l'’! On the other hand, if # is
not acyclic, then some combinations will be on bigger

Table VIII. The Computation of Valuation
V2 = (RZ ® R3)“E’D’C)

Z(e, b, Ky R; Ry R, ® Ry (R, @ Ry PG =y,
e d ¢ k1 1 1 1
[4 d ¢~k 0 1 0 -
e d ~c k1 1 1 1
e d~c ~k 0 1 0 -
e~d ¢ k1 0 0 0
e~d ¢~k 0 1 0 -
e ~d~c k1 1 1 1
e ~d ~c ~k 0 1 0 -
~¢e d ¢ k1 1 1 1
~e d ¢~k 1 1 1 -
~e d~c k1 1 1 1
~e d~c~k 1 1 1 -
~e~d ¢ k1 0 0 1
~e ~d ¢~k 1 1 1 -
~e ~d ~¢c k1 1 1 1
~e ~d ~c ~k 1 1 1 -

RIGHTS L

subsets for certain, and depending on the nature of the
acyclicity, these subsets could be large.

5. Generating a Model for a Consistent VBS
Suppose p = {2, #x}xc» (Vi,..., Vi}} is a consistent val-
uation-based system. In the previous section, we described
a method for explicitly computing the marginal (V; ® -+ ®
V). When we implement the fusion algorithm, each time
we marginalize a variable, assume that we store a solution
for that variable. If we use deletion sequence X; X, -~ X,
then at the end of the fusion algorithm, we have for each
variable X, a solution ¥y : 7, —x) 2 Fx, where g, is as
defined in (4 1). Note that g1 = U{h I X, € h,). The precise
definition of g, will depend on the valuauons in the
Fusy{V;,..., V,}. However, since X; has been deleted,
g, €{X,, ..., X,} and X, € g,. In general, g, C
{X,...,X,},and X,eg, fori=1,...,n Note that g, =
{X,}.

Theorem 2 describes a recursive method for constructing
a model for the joint valuation. The model is constructed
piecemeal starting with the component corresponding to
X, and working sequentially opposite to the deletion se-
quence.

Theorem 2. Suppose p = {Z, #x}x c o Vi, ..., Vk}} is a con-

sistent valuation-based system. Suppose X, X, - X, 15 a se-

quence of wvariables in 2. Suppose ‘If 7, —x) E£3

is a solution for X, computed during the fuszon opemtzon

FusX{ Fusy{Fusy{V,,..., V), forj=1,...,n. Then z €
gwen by

2t =Wy (21 ETOD) forj=n,m—1,...,1

is a model for V, ® --- ® V..

Copyright © 2001 All Rights Reserved
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Table IX. The Computation of Valuations (V; ® V,)*'52), (V; ® V,)*{¥), and
vV, @ V)ME ®F,

Yoo ViVaVieV, (Ve VOHED (v, @ VOVE F, (V, @ V)P ® F,
e d ¢ 0 1 0 0 0 1 0

e d ~c 0 1 0 - - - -

e ~d ¢ 1 0 0 0 - - -

e ~d ~c 0 1 0 - - - -

~e d ¢ 1 1 1 1 1 0 0

~e d~c 0 1 0 - - -

~e ~d ¢ 1 1 1 1 - - -

~e ~d ~c 0 1 0 - - - -

Agure 8. The valuation network for Example 2.

Example 2. Consider a VBS in which there are six variables
A, B, C, X, Y, and Z. The frame for each variable has 3
configurations: 0, 1, and 2. Thus we have 3% = 729 configu-
rations of all 6 variables. Our knowledge about these vari-
ables can be expressed as five relations as follows: A = X,
B=Y,C=2Z, A+#B,and B # C. A =X means that vari-
ables A and X have the same value (0, 1, or 2), and so on.
These five relations can be encoded as valuations V, ..., Vs
as shown in Table X. The valuation network for this exam-
ple is shown in Figure 3.

If we apply the fusion algorithm with deletion sequence
XYZACB, then we get the result ((V}* o V)P e
((V3L(C} ® Vs)l(B)) ® Vzl(B))lG = (Vl ® - ® V5)l®. The
details of the computation are shown in Table XI. The VBS
is consistent. A model for the joint valuation is constructed

as follows. Since W(#) = 0, ¥(0) = 1, ¥,(0) = 1, ¥,(1) =
1, ¥,(0) =0, and ¥4(0) =0, using Theorem 2, B =0,
C=1A=12=1Y=0, X=1isamodel for the joint
valuation V; ® -- ® V.

6. Identifying a Minimal Set of Inconsistent Valuations

If a valuation-based system is inconsistent, then it is useful
to isolate a minimal subset of inconsistent valuations. This
will help the knowledge engineer to modify the knowl-
edge-base so that it is consistent. In this section we describe
a method for identifying a minimal subset.

Suppose {V,,..., V;} is a collection of proper valuations
in a VBS p. Suppose p is inconsistent. Suppose I, <
{V,....,V,}. We say I, is a minimal set of inconsistent
valuations if ®{V,|V,€l,} is improper, and for every
proper subset I’ of I, ®{V, |V, € I'} is proper. Since each
valuation V, is proper, a minimal set of inconsistent valua-
tions will have at least two valuations.

As we mentioned in section 4, if a set of proper valua-
tions is inconsistent, then this is manifested in the fusion
algorithm when we do the combinations. Suppose the com-
bination operation is implemented in a binary fashion, i.e.,
we combine valuations two at a time and stop whenever
we get an improper valuation as a result. Also, suppose
that when we combine two valuations, we keep track of the

Table X. The Valuations V,,...,V; in Example 2

X
=

Wy X%y Vs

Ve X F

V, #X#, V, X Vs

NNNHHHOOO§
NP, O NP O NSO >§
= OO0 O=0 OO0
NNN === OO0 C
N, O NRLO N-O
_- 00 ORO OO
NNNRR=S OOQ

NP O NP ON~=O

0 0

_ OO0 OR O OO
NNN RS2 OO

N=ONPO N=O
O O == O
NN R=RPR OO

N=, O N=O NP O
O R R OM == O
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Table XI. The Details of Computations in Example 2
Vax¥x Vi VW W wxwy v, VPO Wy v xw, v, VO,

0 0 1 1 0 0 0 1 1 0 0 0 1 1 0
0 1 0 - - 0 1 0 - - 0 1 o0 - -
0 2 0 - -0 2 0 - -0 2 0 - -
1 0 o 1 1 1 0 o0 1 1 1 0 O 1 1
1 1 1 - -1 1 1 - -1 1 1 - -
1 2 0 - -1 2 0 - -1 2 0 - -
2 0 o0 1 2 2 0 0 1 2 2 0 0 1 2
2 1 0 - -2 1 0 - - 2 1 0 - -
2 2 1 - -2 2 1 - -2 2 1 - -
Yy X ¥, v, Vll(A) V,® V]l(A) (V4 ® Vll(A))l(B) v,

0 0 0 1 0 1 1

0 1 1 1 1 - -

0 2 1 1 1 - -

1 0 1 1 1 1 0

1 1 0 1 0 - -

1 2 1 1 1 - -

2 0 1 1 1 1 0

2 1 1 1 1 - -

2 2 0 1 0 - -

Wy X W Vs V3”C’ Vs ® V,t e (Vg V3l(C})l(B) ¥,

0 0 0 1 0 1 1

0 1 1 1 1 - -

0 2 1 1 1 - -

1 0 1 1 1 1 0

1 1 0 1 0 - -

1 2 1 1 1 - -

2 0 1 1 1 1 0

2 1 1 1 1 - -

2 2 0 1 0 - -

(V4 ® V]l(A))l(B} ®
(Vs ® V3l CHid) g

Y (V4 ® V1HA})“B) (V5 ® V3“C))”B) VZL(B) Vzl(B) =V v LG(‘) \I;B(.)
0 1 1 1 1 1 0
1 1 1 1 1 - -
2 1 1 1 1 - -

collection of initial valuations V, which the combination
represents. Thus, if inconsistency is detected during the
combination operation associated with a fusion, then we
can isolate the subset of valuations that are inconsistent.
This subset of inconsistent valuations will depend on the
sequence in which the valuations are combined. In particu-
lar, it will depend on the last valuation, say V,, that would
have been combined during the fusion algorithm if we had
continued the fusion algorithm to the very end. Let I(V))
denote this set of inconsistent valuations. Of course, I(V,)
need not be minimal. Note that if inconsistency is first
detected during the last combination, then V, € I(V)), else
Vy & I(V)).

RIGHTS L

Suppose we repeat the fusion algorithm by making three
changes. First, we only fuse the valuations in I(V;). Second,
we pick a valuation in I(V)), say V,, that is different from
V,, and we pick a deletion sequence such that the variables
in h, (the domain of V,) succeed all other variables. Third,
in implementing the fusion algorithm, valuation V, is
picked to be the last valuation to be combined assuming
we combine all valuations in I(V,). Since I(V,) is an incon-
sistent set of valuations, the fusion algorithm will stop after
some combination results in an improper valuation. Let
1(V,) denote the subset of initial valuations that is detected
to be inconsistent during this second step. Note that I(V,)
c I(V)). As in the first step, V, may or may not be in-
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cluded in I(V,). We repeat this process until we are left
with a set I(V,) of inconsistent valuations such that we
have no more valuations to pick as the last valuation, i.e.,
every valuation in I(V,) has already served as a last
valuation. The following theorem asserts that I(V,) is a
minimal inconsistent set.

Theorem 3. Under the assumptions of the last paragraph, I(V,,)
is a minimal set of inconsistent valuations.

Since the complexity of each propagationis O((n + k)s),
and in the worst case every valuation may be included in
I(V,,), the worst-case complexity of our technique for find-
ing a minimal set of inconsistent valuations in an inconsis-
tent VBS is O((n + k)ks).

7. Conclusion

We have described a method for checking whether a VBS is
consistent or not. We have described a method for con-
structing a model for a consistent VBS. And we have
described a method for isolating a minimal set of valua-
tions in an inconsistent VBS.

The method for checking whether a VBS is consistent or
not is quite general. Although we have described the
method for propositional logic, the method can be easily
adapted to other domains such as probability theory,
Dempster-Shafer theory of belief functions, and Zadeh’s
possibility theory. What is needed for the method to work
are definitions of a valuation, a proper valuation, combina-
tion, and marginalization. Also, for the fusion algorithm to
give correct results, combination and marginalization need
to satisfy three axioms. These axioms are stated in [25, 18,
22].

In the fusion algorithm, just before we compute the
marginal of the joint valuation for the empty set, we com-
pute the marginal of the joint valuation for X,, the last
variable in the deletion sequence. Shenoy and Shafer(*”
describe an efficient implementation of the fusion algo-
rithm for computing the marginal of the joint for each
variable for approximately twice the cost of computing the
marginal for one variable. As we explained earlier in sec-
tion 2, finding the marginal of the joint valuation is a form
of logical inference. Thus the fusion algorithm can also be
used to make inferences from a valuation-based system.
Shenoy!'® 22 describes such a language that uses valua-
tions to encode knowledge and uses combination and
marginalization operations to make inferences from the
knowledge-base.

8. Proofs
In this section, we give proofs for the three theorems in the
paper stated in sections 4, 5, and 6, respectively.

Lemma 1. Suppose p = {2, {#x}xc 2 Vi, ..., Vi}} is a VBS.
Suppose X is a variable in &. Then

(&{V,,..., VD' E XD - orus (V,,..., V).

RIGHTS L

Proof of Lemma 1. Without loss of generality, suppose that
Vi,...,V, are the only valuations that bear on X. Let
V=V, @@V, let g=g,U--Ug,, and let c€
Z— (x)- Then

(®{V,,..., VD F ()

= MAX{[V (c*&,x) - V, (ct8n,x)

XVyolet8ne) e Vie 8] | x € 7y}

= MAX{[Vi(c*81,x) - V, (¢ 8, x)] | x € Zy)
X[Vyp (ct8ner) e V(e t84)]

= MAX{V(c ‘¢ %) x) | x € #y)
X[V, (ct8m+1) e V(e t30)]

=V ig—(X)(clg—(x))[VmH(clg,,m) Vk(cigk)]

=yis{Xl g [Vm+1 ® - ® Vk](C)

= (®Fusx{V,,..., VD). m

Proof of Theorem 1. A proof of this theorem is obtained by
repeatedly applying the result of Lemma 1. At each step,
we delete a variable and fuse the set of all valuations with
respect to this variable. Using Lemma 1, after fusion with
respect to X;, the combination of all valuations in the
resulting VBS is equal to (&{V,,..., VD@ (XD Again,
using Lemma 1, after fusion with respect to X,, the combi-
nation of all valuations in the resulting VBS is equal to
(&{V,,..., VD@ (Xu XD and so on. When all the vari-
ables have been deleted, using Lemma 1, the combination
of all valuation left (there may be just one) will be
(&{Vy,...,V,h¥. =

Next, we state and prove a lemma we need to prove
Theorem 2.

Lemma 2. Suppose p = {2, #x}x cor Vi, ..., V,}} is a con-
sistent VBS. Suppose X is a varigble in 2. Suppose ¥y:
Wy xy = #x is a solution for X computed during
Fusy{V,,...,V,}, and suppose c e%ﬂ_(x}{ is a model for
(®{V,,..., VDY XD Then (c, W(c ‘¢~ 1XY) is a model for
®V,y,..., Vi)

Proof of Lemma 2. Without loss of generality, suppose that
Vi, ..., V, are the only valuations that bear on X. Let
V=V,®--®V, let g=g,U---Ug,, and let c €
Zo.(x)- We need to prove that (&{V,, ..., VD
(¢, ¥ (ctt&- X)) = 1. We have
(@{Vy,..., Vi, W(c s~ (X)

= V(c!t@ XD ¥(c l(x—(X))))VmH(C Lgme1) oo V(e t8)
(by definition of combination)

= V@ XD X Yy (b 8nr1) o V(e b 80)

(since ¥ is a solution for X)
., ViH(o)
(by definition of Fus y{V, ..

= (®Fusy{V,,..
-;Vk})

Y ) L
IUI MO T\TCOSTTVOU

¥
il
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= (&{V,,..., VD @Dy
(by Lemma 1)

Z—{X
~/Vk})l( {xn

= 1 (since c is a model for ® {V, .. [ ]

Proof of Theorem 2. A proof of this theorem is obtained by
repeatedly applying Lemma 2. Consider the VBS
Fusy (- Fusy {Fus x{V,, ..., V}}}. There is only one valua-
tion in this VBS and it is for the empty set. Since p is
consistent, (Fusy{ -+ Fusy{Fusy{V, ..., VJ})(®) =
(V;® - ®V)4®)=1 Since # is a model for (V,
® - ® V), by Lemma 2, (&,¥,(4)) = Yy (@) =
24X is a model for (V, ® - ® V)X,

Since z**7 is a model for (V, ® -+ ® V,)*(*s}, and
Yy, 0 #g, —ix, n.~ Px, , is a solution for X, ,, by
Lemma 2, (21X0, v (2t Xamy) = (g 4G
z X)) = 20X X)) s a model for (V, ® - ®
Vk)“X”' X1},

Continuing in this fashion, we get the result that z is a
model for V, ® - ® V,. =

Proof of Theorem 3. 1t is clear that the valuations in I(V,,)
are inconsistent. We will prove minimality of KV,) by
contradiction. Suppose I(V,,) is not minimal. Then there
exists a valuation V, € I(V,,) such that ®{V,| V, € I(V,,) —
{V}}} is improper. Since V, has served as a last valuation,
consider the step in which V, is the last valuation to be
combined. Since ®{V, |V, € I(V,,) — {V}} is improper and
since I(V,,) € I(V)), this means that inconsistency is de-
tected in this step before V, is combined since V, is com-
bined last. Therefore V, & I(V,). This contradicts the as-
sumption that V, € I(h,,) since I(V,) (V). =m
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