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Abstract 

This article presents a descriptive theory for complex choice problems. In line with the bounded rationality 
assumption, we hypothesize that decision makers modify a complex choice into some coarse approximations, 
each of which is a binary lottery. We define the value of a best coarse approximation to be the utility of the 
choice. Using this paradigm, we axiomatize and justify a new utility function called the coarse utility function. 
We show that the coarse utility function approximates the rank- and sign-dependent utility function. It satisfies 
dominance but admits violations of independence. It reduces judgmental load and allows flexible judgmental 
information. It accommodates phenomena associated with probability distortions and provides a better reso- 
lution to the St. Petersburg paradox than the expected and rank-dependent theories. 
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Complexity lies deep in the nature of things. Discovering tolerable approximation pro- 
cedures and heuristics lies at the heart of human intelligence (Simon, 1978). This article 
presents a descriptive theory of complex decision problems. In line with the bounded 
rationality assumption (Simon, 1955), we hypothesize that decision makers (DMs) view 
complex choices approximately. We argue that DMs may not attend to all the outcomes 
of a many-outcome lottery. Instead, they modify the lottery into some coarse approxima- 
tions, each of which is a binary lottery with only one nonzero outcome. Such a coarse 
approximation is shown to be a step distribution function that approximates the original 
distribution of the lottery. We justify the approximation scheme in terms of complexity, 
as measured by Shannon's entropy: A maw-outcome lottery has more entropy than any 
of its approximations. We speculate that the more complex a lottery is, the harder it is to 
assess its utility. Therefore, it is descriptive to evaluate complex lotteries based on their 
approximations. We also justify the approximation scheme from a prescriptive view- 
point. Approximation is not only an accurate portrayal of much choice behavior, it is also 
a prescriptively sensible adjustment to the costs and character of information gathering 
and processing. Relative to exact theories, the coarse utility theory requires not only 
fewer but also more flexible assessments. 

The main purpose of this article is to axiomatize and justify a new utility function 
called the coarse utili(yfunction. We do this by means of a mixed rational and plausible 
approach. We first develop a function that measures the utility of coarse approximations 



18 LIPING LIU/PRAKASH P. SHENOY 

based on some rational and plausible axioms. We then use a set of coarse approximations 
to approximate a lottery. The value of a best approximation is defined as the utility of the 
lottery. Let | denote the outcome space, which includes {0} as the status quo, 19 + as the 
gain subspace, and 19- as the loss subspace, i.e., 19 = 19- U {0} U (9 +. As in prospect 
theory (Kahneman and Tversky, 1979), we assume the existence of a value function v(o) 
over gains and losses with v(0) = 0, v(o) > 0 for o E 19+, and v(o) < 0 for o E |  As 
in the rank- and sign-dependent theory of Luce and Fishburn (1991, 1994) and Tversky 
and Kahneman (1992), we use different decision weights W + (p) for gains, and W- (p) for 
losses. Given a lotteryL = {(o,P(o)) ] o ~ 19}, for anygaino ~ | letP(5) denote the 
probability of winning o or more. Similarly, for any o E |  Let P(o) denote the proba- 
bility of winning o or less. Then the coarse utility function is represented as follows: 

~, 

UC(L) = o~19 +MAX v(o)W'$(p(o)) + oMcI~_ v(o)W-(P(o)). (1) 

The coarse utility function is shown to be very descriptive. It accommodates violations 
of independence as evidenced by Allais's paradox. It provides a better resolution to the 
St. Petersburg paradox than the expected and rank-dependent utility theories. The 
coarse utility function is an approximation of the rank- and sign-dependent utility func- 
tion of Luce and Fishburn (1991, 1994) and Tversky and Kahneman (1992). When a 
lottery is a regular prospect (Kahneman and Tversky, 1979), or when a Simon's satis- 
ricing value function is assumed, the coarse utility theory and the rank- and sign- 
dependent utility theory are reconcile~. Thus, much of the evidence that supports the 
rank- and sign-dependent theory also supports the coarse utility theory. 

The coarse utility function has been established in a mixed rational and plausible 
approach. Despite its descriptive focus, i~ has some normative appeal. The model is 
shown to underlie a continuous and weakl,preference relation. It satisfies the require- 
ment of consistency with the first-order stochastic dominance principle. But the under- 
lying preference relation is independent of irrelevant alternatives only when the prefer- 
ence relation is implied by stochastic dominance. 

The coarse utility function has some prescriptive advantages. Liu (1994) applied the 
coarse utility theory to the portfolio selection problem and developed a coarse-utility- 
based portfolio selection model. The model extends the mean-variance model, in the 
sense that it imposes no restrictions on asset distributions and preference structures. 
Under the assumption of normality, it reduces to the mean-variance model. Thus the 
foundation of modern portfolio analysis (Tobin, 1959; Markowitz, 1959) can also be built 
on the theory of coarse utility. If all lotteries are normal, then they can be ranked by their 
means and variances according to the coarse utility criterion. This implication renders 
the coarse utility theory empirically testable. 

An outline of the remainder of this article is as follows. In section 1, we describe and 
justify the coarse approximation scheme. In section 2, we axiomatize the coarse utility 
function based on both rational and plausible axioms. In section 3, we describe some 
basic mathematical properties of the coarse utility function. In section 4, we present 
empirical evidence in support of the descriptiveness of the coarse utility function. In section 
5, we summarize our findings. Finally, in section 6, we give proofs of all results in the article. 



A THEORY OF COARSE UTILITY 19 

1. Coarse approximations 

The constructive nature of preferences suggests that preferences are not necessarily 
procedural-invariant and context-independent. Preferences may be different if lotteries 
are framed and edited in different ways. The strategies for framing and editing vary as a 
function of response modes and context complexity (Payne, 1982). In past decades, 
researchers have actively pursued the fit between decision theories and the DM's 
information-processing strategies. Guided by observed and/or imagined micro- 
phenomena in the choice process, theories of choice have become much more refined 
than ever before. However, there exist gaps between evidence and theory. In general, it 
remains unclear how individual, task, and context factors affect people's information- 
processing strategies. These factors still poorly fit generalized utility theories (Camerer, 
1992). Specifically, generalized theories often rely on empirical evidence which is accu- 
mulated from experiments with simple gambles that abstract away task complexities and 
their effect on the use of information-processing strategies. In the past, most experi- 
ments were conducted on simple gambles such as binary or ternary choices. Generalized 
theories, on the other hand, were presumably applicable to choices of any complexity. 
They essentially assume that the information-processing strategies used are invariant 
across complexities. Unfortunately, evidence does not support this invariance. In simple 
choice environments, various simple heuristics may be available that closely approximate 
the responses from a utility theory. For example, anchoring and adjustment models can 
closely approximate expected utility theory in some cases (Hershey and Schoemaker, 
1985; Johnson and Payne, 1985; Goldstein and Einhorn, 1987; Johnson and Schkade, 
1989). However, when choice problems are complex, such as selecting portfolios or 
deductibles in insurance policies, the calculations and problems structures will just be- 
come too complex for optimal solutions (Schoemaker, 1993). 

Complexity raises an obvious inconsistency between our methodologies of formulating 
utility theories and the bounded rationality assumption. Traditionally, a utility function is 
formulated by implicitly assuming that DMs are able to attend to all the outcomes of any 
complex gambles. They view a lottery as a set of outcome-probability pairs. Each 
outcome-probability pair contributes to the utility of the lottery, i.e., summing the utility 
of each outcome-probability pair gives the utility of the lottery. This paradigm of formu- 
lation reigned for several centuries, from the proposal of Bernoulli's expected utility to 
the formulation of early decision weight models (Edwards, 1955, 1962; Fellner, 1961; 
Handa, 1977; Karmarkar, 1978), and to the more recent formulation of various rank- 
dependent utility theories (Kahneman and Tversky, 1979; Quiggin, 1982; Yaari, 1987; 
Luce and Fishburn, 1991, 1994; Tversky and Kahneman, 1992). If we interpret the 
contribution of each outcome-probability pair more generally to include a weighted 
value or a regret, then this dominant weighted-average paradigm is also shared by many 
other nondecision-weight models, such as the weighted linear model of Chew (1983), the 
expected regret model of Bell (1982) and Loomes and Sugden (1982), and the SSA 
model of Fishburn (1986). 

On the other hand, the bounded rationality assumption implies that people have 
difficulties in anticipating or considering all options and all information (March, 1978). 
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They tend to discover approximation procedures and heuristics to simplify decision 
problems. Simon (1978) argues that attention is sometimes a scarce resource. We cannot 
afford to attend to information simply because it is there. Approximation is an econom- 
ical way of using our attention resource. Many behavioral researchers have found that 
people's internal representations of problems are simple, even though the environment 
is complex (Brunswik, 1952; Hammond, McClelland, and Mumpower, 1980). For exam- 
ple, Kunreuther et al. (1978) found that learning about flood insurance from friends or 
neighbors was a key determinant of purchase. Empirical evidence shows that human 
information processing is seldom more complex than a linear model (Dawes and Cor- 
rigan, 1978; Dawes, Faust, and Meehl, 1989). Cohen, Jaffray, and Said (1985) found that 
people can seldom comprehend probabilities beyond very coarse descriptions such as 
"very likely," "likely," and "not likely." 

At this time, little is known about how people approach complex decision problems. 
However, our informal observations support the generalization that DMs do not attend 
to all the outcomes of a many-outcome gamble. For example, some lotteries are often 
pessimistically valued by their bad outcomes, and others are often optimistically valued 
by their good outcomes. DMs' intrinsic risk attitudes explain such phenomena (Schoe- 
maker, 1993). We argue that their focused attention also matters. As reported by Tver- 
sky, Sattath, and Slovic (1988), choice responses are often dominated by prominent 
attributes, which tend to form the bases for compelling reasons or arguments for the 
choice made. In line with this observation, we hypothesize that DMs do not attend to all 
the outcomes of a many-outcome lottery. Instead, they approximate a many-outcome 
lottery by some coarse approximations, each of which is a binary gamble with one non- 
zero outcome. The approximation scheme depends on whether a lottery involves only 
gains, or only losses, or mixed gains and losses. We describe it case by case in the following. 

In the case of gains, consider lottery L1 with ten mutually exclusive monetary out- 
comes, $0, $100, $200, . . . ,  $900. Assume that each of these outcomes is equally likely. 
Traditionally, it has been assumed that DMs evaluate L1 based on the unedited informa- 
tion that L 1 pays $100 10% of the time, $200 another 10% of the time . . . .  and $900 still 
another 10% of the time. That is, L1 is the set of outcome-probability pairs as follows: 
L1 = {($0, 0.1), ($100, 0.1), ($200, 0.1), ... , ($900, 0.1)}. We assume that DMs evaluate 
L1 based on the edited information that L1 will pay at least $100 90% of the time, at least 
$200 80% of the t i m e , . . . ,  or at least $900 10% of the time. Similarly, in the case of 
losses, consider lottery L 2 = {($0, 0.1), ( -  $100, 0.1), (-$200, 0.1), ... , ( -  $900, 0.1)}. 
We assume that DMs evaluate L2 based on the edited information that L 2 will make you 
lose at least $100 90% of the time, at least $200 80% of the t i m e , . . . ,  or at least $900 10% 
of the time. In the case of mixed gains and losses, we assume that DMs first code 
outcomes as gains and losses in the editing phase. Then a lottery involving mixed gains 
and losses is decomposed into a joint receipt of a positive part, obtained by replacing 
losses by the status quo, and a negative part, obtained by replacing gains by the status 
quo. For example, the mixed lottery {($0, 0.1), ($100, 0.5), ( - $200, 0.4)} can be decom- 
posed into {($0, 0.5), ($100, 0.5)) and {($0, 0.6), ( - $200, 0.4)). In summary, we assume 
that, although a lottery is presented to a DM as a set of outcome-probability pairs, it is 
represented and processed in cumulative or decumulative terms. This assumption has 
been supported by many psychological experiments. As Lopes (1984, 1987) has argued, 
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Lorenz curves, which are normalized cumulative distribution curves, can capture 
cumulative features of risky choices that are salient to people when they judge or 
choose risks. 1 Some verbal protocols in Schneider and Lopes (1986) reveal that 
people tend to talk as though they view lotteries in terms of the cumulative likelihood 
of meeting or exceeding a certain outcome or the decumulative likelihood of getting 
zero or bad outcomes. 

We now formally describe and justify the above approximation scheme. Consider 
lotteryL1 described above. Consider an outcome of L1, say $300, to focus on. Then the 
lottery L 1 gives a monetary outcome of less than $300 with probability 0.3, and a mone- 
tary outcome of $300 or more with probability 0.7. Therefore, L1 is approximated by a 
binary lottery {( < $300, 0.3), ( _> $300, 0.7)}. In this binary lottery, ( _> $300, 0.7) is the 
outcome-probability pair that is of interest to the DM. Relative to ( > $300, 07), ( < $300, 
0.3) represents a group of moderate and zero payoffs, and its value can be ignored. 
Hence, we further approximate ( _> $300,0.7) by ($300, 0.7) and ( < $300, 0.3) by ($0, 0.3). 
Consequently, we obtain another binary lottery L1($300) = {($0, 0.3), ($300, 0.7)}. It is 
clear that the lottery L1($300) is an approximation of the original lottery L 1. We call 
L1($300) a coarse approximation of L 1. Given any lottery, we can usually derive many 
coarse approximations of it, as above, by focusing on different outcomes. The lottery L t 
can be approximated by ten coarse approximations--one for each outcome of L l - -as  
follows: L1($0 ) = {($0, 1)}, L1($100) = {($0, 0.1), ($100, 0.9)}, L1($200) = {($0, 0.2), 
($200, 0.8)}, . . . ,  L1($800) = {(0, 0.8), ($800, 0.2)}, and L1($900 ) = {($0, 0.9), ($900, 0.1)}. 

By the reduction principle (Fishburn, 1988), a lottery is simply a probability distribu- 
tion over a set of outcomes. In terms of cumulative probabilities, we can regard a coarse 
approximation as a step function that approximates the cumulative probability distribu- 
tion of the original lottery. For example, consider lottery L 1 as described above and its 
approximation L1($500 ) = {($0, 0.5), ($500, 0.5)}. Their cumulative probability distribu- 
tions are shown by figure 1. 

A psychological justification for approximating a lottery lies in the fact that a lottery is 
more complex than its approximation. If we regard a lottery L = {(ol,Pl), (o2,P2), ... , 
(~ as a random system having the state oi with probabilitypi, then entropy H(L) = 
E{-pilog(pi) I i = 1, 2, ... , n} can be used as a standard measure of complexity of the 
lottery L (Shannon, 1948). It follows from this formula that a lottery has more entropy 
than its approximation. For example, the entropy of the lottery L 1 = {($0, 0.1), ($100, 
0.1), ($200, 0.1), ... , ($900, 0.1)} is 3.3, while the entropy of any coarse approximation is 
less than or equal to 1. We speculate that the more complex a lottery is, the harder it is to 
assess its utility. This speculation is supported by the work of Hogarth and Einhorn 
(1990), in which they demonstrate that the amount of mental simulation used in assess- 
ing the utility of a lottery increases with complexity. Consequently, people may be more 
comfortable in assessing coarse approximations of a complex lottery than the lottery itself. 

Lottery L1($0) has only one outcome-probability pair, ($0, 1). The remaining nine 
approximations are binary lotteries. Given the nature of each binary approximation, we 
can simply describe it by one outcome-probability pair. For example, lottery L1($100 ) = 
{($0, 0.1), ($100, 0.9)} is described completely by ($100, 0.9), L1($200 ) by ($200, 0.8), and 
so on. Thus the set of ten approximations of L1 can be described by a set of ten outcome- 
probability pairs, namely, {($0, 1), ($100, 0.9), ($200, 0.8) . . . .  , ($900, 0.1)}. In general, if 
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Figure 1. The cumulative distributions of lotteryL1 and its approximation L~($500). 

a lottery involves only gains, i.e., L = {(o, P(o)) I o E | + U {0}}, then (o, P(6)) is a 
coarse approximation for any outcome o ~ O + U {0}, where P(b) is the probability of 
winning o or more. 

We can similarly describe and justify coarse approximations for a lottery involving only 
losses. Consider lottery L2 described earlier. Consider an outcome of L2, say - $300 to 
focus on. Then the corresponding coarse approximation for L 2 is binary lottery 
L 2 ( -  $300) = { ( -  $300, 0.7), ($0, 0.3)}. L2 can be also approximated by other coarse 
approximations--one for each outcome of L2--as follows: L2($0) = {($0, 1)}, 
L2( - $100) = {( - $100, 0.9), ($0, 0.1)}, L2( - $200) = {( - $200,0.8), ($0, 0.2)}, . . . ,  and 
L2(-$900)  = {(-$900, 0.1), ($0, 0.1)}. In terms of decumulative probabilities, each 
coarse approximation is a step function that approximates the decumulative probability 
distribution of the original lottery L 2. For example, consider lottery L 2 as described 
above and its approximation L2( - $300) = {( - $300, 0.7), ($0, 0.3)}. Their decumulative 
probability distributions are shown by figure 2. We can simply describe each binary 
approximation by one outcome-probability pair. For example, lottery L2( - $100) is de- 
scribed completely by ( - $100, 0.9), L2( - $200) by ( - $200, 0.8), and so on. Thus, the set 
of ten approximations of L2 can be described by a set of ten outcome-probability pairs, 
namely, {($0, 1), ( -  $100, 0.9), ( -  $200, 0.8) . . . ,  ( -  $900, 0.1)}. In general, if a lottery 
involves only losses, i.e., L = {(o, P(o)) I o ~ O -  W {0}}, then (o, P(o)) is a coarse 
approximation for any outcome o ~ |  U {0}, where P(o) is the probability of winning 
o or less. 

A complex lottery involving mixed gains and losses is decomposed into the joint re- 
ceipt of a positive part involving only gains, and a negative part involving only losses, 
which are then approximated according to the above schemes. 
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Figure 2. The decumulative distributions of lottery L 2 and its approximation L2( - $300). 

The coarse approximation scheme can also be justified from its potential prescriptive 
properties (Bell, Raiffa, and Tversky, 1988). Theories of rational choice stand up on the 
grounds of two critical assessments: assessments about future consequences of current 
actions and assessments about future preferences for those consequences (Savage, 1954; 
Thompson, 1967). Neither assessment is necessarily easy. Both assessments are further 
complicated when uncertainty is involved. Exact theories usually require the conse- 
quences and their probabilities to be assessed with precision. This seems to be too 
difficult in practice. The number of outcome-probability pairs to be assessed may be 
infeasibly large, and the consistency of information to be assessed may be beyond the 
limited rationality of human beings. According to the dominant paradigm for formulat- 
ing utility theories, each possible outcome-probability pair has a value-added contribu- 
tion to the utility of a choice. Thus, ignoring or mis-assessing any outcome will miscalcu- 
late its utility. To be consistent with the theories, all the possible outcomes and the 
corresponding probabilities of each choice should be assessed precisely. Otherwise, us- 
ing Howard's (1992) terminology, no warranties can be obtained. For example, Brockett 
and Kahane (1992) show that, for any lottery (continuous or discrete, unimodal or asym- 
metric), even if an approximation matches any number of its moments exactly, it may not 
approximate its expected utility (see also Liu, 1993; Keefer, 1994). Applying the Markov- 
Krein Theorem (Karlin and Studden, 1966) to the Choquet integral, one may also show 
that similar results hold for generalized theories. In contrast, as suggested by its formu- 
lation, the coarse utility function requires much fewer assessments. The coarse utility of 
a lottery is determined only by its best coarse approximation. Therefore, in essence, only 



24 LIPING LIU/PRAKASH P. SHENOY 

one assessment corresponding to a best approximation is critical to the utility calculation. 
This feature of the coarse utility theory implies the substantial reduction of judgmental 
load. It also implies the improvement of judgmental information quality by suggesting 
the focus of deliberation. 

2. The coarse utility function 

In this section, we define and justify the coarse utility function using a mixed rational and 
plausible approach. We first establish a utility function for coarse approximations of 
lotteries involving only gains and losses. We then define the utility of a positive or negative 
lottery to be the utility of its best coarse approximation, and the utility of a mixed lottery to 
be the sum of the utilities of its positive and negative decompositions. 

Each coarse approximation is an outcome-probability pair (o,p) in | x [0, 1]. I fo  E 
O + t_) {0}, then p is the probability of winning o or more. If o C |  U {0}, p is the 
probability of winning o or less. Let ~ be a binary preference relation on | x [0, 1]. We 
define a utility function Vfor the coarse approximations as a mapping Von @ x [0, 1] 
such that 

g(ol,Pl ) >- V(02,P2 ) if and only if (ol,Pl) 2 (02,P2). 

Such a utility function can be regarded as a bi-attribute value function, where outcomes 
and likelihoods are the two criteria considered and maximized. Let - and > be, respec- 
tively, the indifference and the strictly preference relations induced from ~ .  We assume 
the five axioms as follows: 

Axiom 1 . 0  is a connected and separate topological space. 

Axiom 2. ~ is a weak order on @ x [0, 1]. 

Axiom 3. ~ is continuous on O x [0, 1]. 

Axiom 4. If (obpl) first-degree dominates (o2,P2), then (ol,pl) > (o2,P2). 

Axiom 5. IfOl, 02,  and 03 are nonzero andpl,P2, andp3 > 0, (ol,pl) - -  ( 0 2 , P 2 )  and 
(o2,P3) - (o3,Pl) implies (ol,P3) ~ (o3,P2). 

These axioms are intuitively acceptable at a normative level. Axioms 1-3 are the suffi- 
cient and necessary conditions for the existence of a continuous and order-preserving 
function determined up to a strictly increasing transformation (Debreu, 1954). Axiom 4 
is intuitive and normative. Axiom 5 is called the cancellation assumption (Roskies, 1964) 
or the Thomsen condition (Krantz et al., 1971), which is weaker than the counterpart 
assumed by Debreu (1960) and Luce and Tukey (1964). 
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2.1. The coarse utility of  positive lotteries 

If a lottery involves only gains, i.e., L = {(o, P(o)) I o E O + tO {0}}, then (o, P(O)) is a 
coarse approximation for any point o ff @ + U {0}. Therefore ,  any coarse approximation 
of a positive lottery is a point in the space [| + U {0}] x [0, 1]. Theorem 1 shows that 
there is a multiplicative function V, which is unique up to a transformation V ~ where a > 
0 and can be used to measure the preference on [O + U {0}] x [0, 1] qualitatively 
characterized by Axioms 1-5. 

Theorem 1. Suppose o* is a most preferred outcome in | +, and any outcome o in O + is 
strictly preferred to the status quo 0. Axioms 1-5 hold iff there exists an order-preserving 
function V(o,p), which is continuous in O + x (0, 1], such that: 

V(o,p) = V(o, 1)V(o*,p), V(o, O) = O, V(o*, 1) = 1, V(O,p) = O, (2) 

V(o ,p)  E [| U {0}] x [0, 1]. If V' is another  function satisfying (2), then V' = I~  
where o~ > 0. 

Since V(o, 1) measures the value of o under  certainty, it is an ordinary value function 
and denoted by v(o). It is easy to see from (2) that v(o) is a strictly increasing function of 
o, and v(0) = 0 and v(o*) = 1. V(o*,p) measures the preference value of probabili typ, 
with which the most preferred outcome o* is obtained. V(o*, p) is a strictly increasing 
function of  probability p and denoted by W + (p). According to (2), W + (0) = 0 and 
W + (1) = 1. In these notations, (2) becomes 

V(o,p) = v ( o ) W + ( p ) , v ( 0 )  = 0 , v ( o * )  = 1, w + ( 0 )  = 0, w + ( 1 )  = 1. (3) 

Therefore ,  for lo t teryL = {(o, P(o)) I o E | + U {0}}, its coarse approximation (o, P(6)),  
corresponding to the outcome o ~ O + U {0}, has the utility value V(o, P(6)) = 
v(o)W + (P(O)). Since there are many such approximations to L, we define the coarse 
utility of the lottery L to be the maximum utility value of  the coarse approximations: 

UC(L) = M A X  v(o)W+(p(o)). (4) 
o E |  + 

Note  that v(o)W + (P(6)) = 0 if o --- 0. Therefore ,  UC(L) is well defined in (4), even 
though we take maximum over | + rather  than | + U {0}. As argued in section 1, we 
essentially approximate lottery L = {(o, P(o)) [ o E 0 +  U {0}} by a binary lottery 
{(0, 1 - P(6)), (o, P(6))}. The  approximation is conservative. Then  in (4) we assess the 
utility of a lottery by the maximum utility of  its coarse approximations. Choosing the 
maximum utility in (4) offsets the conservatism. 

Equat ion (4) is a normative definition for the coarse utility of a positive lottery. For- 
mally, to compute a coarse utility value requires one to solve an optimization problem. 
This is obvious beyond the bounded rationality. However,  we see definition (4) as a 
descriptive approximation of DM's  intention to search for bet ter  coarse approximations. 
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As we argued before, a binary lottery, say L(o) = (o, P(6)), is only one approximation of 
the lotteryL. There are several such approximations and some are better than others. In 
figure 3, we plot the cumulative probability distribution of L and the cumulative proba- 
bility distribution of the approximation L(o). We measure the goodness of approxima- 
tion L(o) by the total absolute errorE(L(o)) = Aa + A2, whereAa andAz are the areas 
between the cumulative distribution of L and that of L(o), as shown in figure 3. If we are 
correct in hypothesizing that a DM uses the coarse approximation scheme to evaluate L, 
he or she will attempt to obtain a best approximation L(o) (for o E | + U {0}) that has 
the smallest total absolute error E(L(o)). It is clear from figure 3 that the total area 
between the cumulative distribution curve and the horizontal linep = 1, i.e.,A1 + A2 + 
A3, is fixed. E(L(o)) = A1 + A2 is minimized only when A 3 = oP(6) is maximized. 
Because of the subjective perception effect, o is perceived as v(o), and P(6) is perceived 
as W + (P(6)). To choose a best coarse approximation, people maximize v(o)W + (P(6)). 
The maximum value itself, by (4), is the utility value of the best approximation. There- 
fore, we justify (4), in the sense that a DM attempts to evaluate a lottery based on 
approximations which are as close as possible. 

2. 2. The coarse utility of negative lotteries 

If a lottery involves only losses, i.e., L = {(o, P(o)) I o E | U {0}, (o, P(o)) is a coarse 
approximation for any outcome o E O -  U {0}. Therefore, any coarse approximation of 
a negative lottery is a point in the space [•- U {0}] x [0, 1]. Theorem 2 shows that there 
exists a multiplicative function V, which is unique up to a transformation - ( - V) '~ where 
ct > 0 and which can be used to measure the preference on [~ -  U {0}] • [0, 1] qualita- 
tively characterized by Axioms 1-5. 

P i r, - I - ,r . . . . .  

f _ _ _ J  ~ calf fo r  L(o)  

I cd~fo r  L ,.._ 

v 

O 

Figure 3. The measure of approximation errors for a positive lottery. 
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Theorem 2. Suppose o .  is a least preferred outcome in 19-, and any outcome o in 19- is 
strictly less preferred than the status quo 0. Axioms 1-5 hold iff there exists an order- 
preserving function V(o,p), which is continuous in O -  x (0, 1], such that: 

V(o,p) = - V(o, 1)V(o, ,p),  V(o, O) = O, V(o,,  1) = - 1, V(O,p) = O, (5) 

V(o, p) C [19- U {0}] x [0, 1]. If IF is another function satisfying (5), then V' = 
- ( - V ) ~ w i t h a  > 0. 

V(o, 1) measures the value of o under certainty. Therefore, V(o, 1 ) is an ordinary value 
function of losses and is denoted by v(o). It is easy to see from (5) that v(o) is a strictly 
increasing function ofo, and v(0) = 0 and v(o,)  = - 1. V(o, ,p)  measures the preference 
value of probabilityp, with which the most undesirable loss o ,  is obtained. V(o , ,p)  is a 
strictly decreasing function of probabilityp. Let W-(p)  = - V ( o , , p ) .  Then W-(p)  can 
be regarded as the preference value of probabilityp, with which the most undesirable 
loss o ,  is avoided. W- (p) is a strictly increasing function, and W-  (0) = 0 and W- (f) = 
1. In these notations, (5) becomes 

V(o,p) = v (o )W-  (p), v(O) = O, v(o,)  = - 1, W -  (0) = O, W -  (1) = 1. (6) 

Therefore, applying (6) to a coarse approximation of L, say (o, P(o)), yields V(o, P(o)) = 
v(o)W-(P(o.)). Since there are many such coarse approximations to L, we define the 
coarse utility of L to be the minimum utility value of the coarse approximations: 

UC(L) = M I N  o e o -  v(o)W- (t'(o)). (7) 

Note that v (o )W-  (P(o.)) = 0 if o = 0. Therefore, UC(L) is well defined in (7), even 
though we take minimum only over |  rather than O -  U {0}. As argued in section 1, we 
approximate lotteryL = {(o,P(o)) I o ~ |  U {0}}by binary lotteries {(0, 1 - P(o.)), (o, 
P(o))}. The approximation overestimates the value of L. Then in (7) we assess the utility 
of a lottery by the minimum utility of its coarse approximations. Choosing the minimum 
utility in (7) offsets the overestimation. 

We can similarly give a behavioral justification for (7), in the sense that it represents a 
descriptive approximation of a DM's intention to search for better coarse approxima- 
tions. But this time we define a better approximation to be the one whose decumulative 
distribution is closer to that of the original lottery L. Given a negative lottery L and one 
of its approximations L(o) = (o, P(o)), in figure 4, we plot the decumulative probability 
distribution of L and that of approximation L(o). We measure the goodness of approxi- 
mation L(o) by the total absolute error E(L(o))  = A 1 + A2, whereA 1 andA 2 are the 
areas between the decumulative distribution of L and that of L(o), as shown in figure 4. 
A DM attempts, by our hypothesis, to find a best approximation L(o) (for o E 19- or 
o = 0) that has the smallest total absolute errorE(L(o)).  It is clear from figure 4 that the 
total area between the decumulative distribution curve of L and the horizontal linep -- 
1, i.e., A 1 + A 2 + A3, is fixed. E(L(o))  = A 1 + A 2 is minimized only when A3 is 
maximized. That corresponds to the minimization ofoP(o), because o is negative. Due to 
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perceptional effect, o is perceived as v(o), and P(o) is perceived as W-  (P(o)). To choose 
a best coarse approximation, people minimize v(o)W-(P(o). The minimum value itself, 
by (7), is the utility value of the best approximation of the lottery L. 

2.3. The coarse utility of mixed lotteries 

Following the decomposition axiom of Luce and Fishburn (1991), we treat a lottery with 
mixed gains and losses as indifferent to the joint receipt of its gains pitted against the 
status quo and of its losses against the status quo. Of course, using the double matching 
and the co-monotonic independence axioms of Tversky and Kahneman (1992) and Wak- 
ker and Tversky (1991), we can also establish that the utility of a lottery is the sum of the 
utilities of both its positive and negative parts. 

SupposeL = {(o,P(o)) [ o E 19} is a mixed lottery. Then, its positive part, denoted by 
L +, is 

Io on  {(0,,- 

and its negative part, denoted by L - ,  is 

L - = { ( o , P ( o ) ) l o ~ e - } u { ( o ,  1 -  

o@O + 

z ,d}, 
o E O -  

In light of Tversky and Kahneman (1992) and Luce and Fishburn (1991), we assume that 
the utility of a mixed lottery is equal to the sum of its decompositions. 
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Axiom 6. Suppose L + and L - are the positive and the negative duplex decompositions 
of L, respectively. Then, UC(L) = UC(L +) + UC(L-). 

Axiom 6 was called duplex decomposition by Slovic (1967) and Slovic and Lichtenstein 
(1968). As Luce and Fishburn (1991) have argued, it is not rational but plausible. Some 
empirical data support its descriptive accuracy (Slovic, 1967; Slovic and Lichtenstein, 
1968; Cho, Luce, and von Winterfeldt, 1993). Notice that v(0) = 0. Thus, combining (4), 
(7), and Axiom 6 yields 

MIN UC(L) = MAXv(~176 + oE|  v(o)W-(P(o)). 
o E O  + 

2. 4. Psychophysics of perception 

According to Luce and Fishburn (1991) and Tversky and Kahneman (1992), a binary 
lottery {(0, 1 - p), (o, p)} with the single nonzero outcome o has rank- and sign- 
dependent utility v(o)W + (p) if o is a gain, or v(o)W-(p) if o is a loss. It follows from (3) 
and (6) that V(o*, p) is a weighting function for gains, and - V(o,, p) is a weighting 
function for losses, in the spirit of Kahneman and Tversky (1979). Therefore, W + (p) and 
W- (p), which are defined in this article as W + (p) -- V(o*,p) and W- (p) = - V(o,,p), 
can be called decision weights, consistent with the literature of rank- and sign-dependent 
utility theories. Also, in line with Kahneman and Tversky (1979), Luce and Fishburn 
(1991), and Tversky and Kahneman (1992), we assume a value function v(o) over gains 
and losses, with v(0) = 0, v(o) > 0 for gains, and v(o) < 0 for losses. We allow different 
decision weights W + (p) and W- (p) for gains and losses, with W + (0) = W- (0) = 0, and 
W+(1) = W-(1) = 1. 

The coarse utility function stands up on the ground of the normative and plausible 
Axioms 1-6. However, to test its descriptive accuracy, we need to study the features of 
the value function V(o,p) from the psychophysical perspective. Specifically, we need to 
know how real people perceive the value function v(o) and the weighting functions 
W + (p) and W- (p). 

Based on the assumption that equal relative changes in wealth are equally significant, 
Bernoulli proposed a logarithmic value function that is concave everywhere. Allais em- 
pirically justified Bernoulli's proposition. However, early work on the value assessments 
found a bizarre phenomenon: most value functions assessed are concave for gains and 
convex for losses. This prevalent finding led Kahneman and Tversky (1979) and Tversky 
and Kahneman (1992) to formally propose that the value function is S-shaped and is 
steeper for losses than for gains. They justify this assumption based on the principles of 
diminishing sensitivity and loss aversion. Of course, as Fishburn (1988) has pointed out, 
the above finding is by no means universal. Cohen, Jaffray, and Said (1985) found no 
correlation between attitudes toward gains and losses. Leland (1986, 1988) and Fried- 
man (1989) argue and justify that the S-shaped value function is only an approximation 
of "true" preferences, given the constraint of a subject's inexperience and/or cognitive 
limitations. 
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Extensive experiments have reported that a weighting function takes a skew S-shape, 
as shown in figure 5 (Kahneman and Tversky, 1979). Notice that the slope of the skew 
S-curve is initially very large, then becomes smaller, but finally increases asp approaches 
1. In other words, the curvature is negative whenp is close to zero, and positive whenp is 
close to one. Tversky and Kahneman (1992) assume that decision weights measure the 
contributions of events to the desirability of prospects. They argue that the principle of 
diminishing sensitivity also applies to the interpretation of the skew S-shaped pattern of 
weighting functions. Currently, a large body of evidence seems to support the daim 2 that 
a normative theory that does not consider probability distortions cannot be an accurate 
descriptive theory (Fishburn, 1988). 

In this article, v(o) = V(o, 1), W+(p) = V(o*,p), and W-(p)  = -V(o.,p), while 
V(o,p) measures a person's preference of the binary lottery {(0, 1 - p), (o,p)}. There- 
fore, observed patterns of values and weights are determined by the pattern of the 
function V(o,p), which, according to psychophysics, is in turn determined by individual 
perceptional sensitivity. If one subscribes to the psychophysical perspective, one can 
apply the principles of diminishing sensitivity and loss aversion to the perception of 
V(o,p) and provide a unified explanation to the S-shaped pattern of value functions and 
the skew S-shaped pattern of weighting functions. For example, W+(p) = V(o*, p) 
measures the utility value of receiving lottery {(0, 1 - p), (o*,p)}. Whenp is close to zero, 
people naturally compare it with zero and value it as a gain of certainty from zero. On the 
other hand, whenp is close to one, people naturally compare it with one and value it as a 
loss of certainty from one. W + (p) is concave in the frame of gains of certainty, and convex 

y 

W+(p) or W-(p) 

P 
Figure5. Skew S-curve ofweighting functions. 
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in the frame of losses of certainty. This is consistent with the S-shaped value function for 
monetary outcomes which Tversky and Kahneman refer to as the reflection effect. Also, 
it is obvious from W + (p) = V(o*,p) and W-  (p) = - V(o,,p) that the size and the sign 
of the extreme outcomes o* and o ,  enter into the valuation of probabilities. The behav- 
ior of perceiving p will be different given different absolute sizes of o* and o, .  The 
difference is attributed to probability • utility interactions by many theorists and sup- 
ported by the venture theory of Hogarth and Einhorn (1990) and others. 

Note that the representation of values and weights as functions of o and p is by no 
means complete. According to psychophysics (Sinn, 1983), perceptional sensitivity de- 
pends not only on the magnitude of the stimulus o andp,  but also on some important 
personal factors such as initial wealth position, experience and knowledge, cognitive 
ability, and emotion. The higher the initial position and the emotion, the lower the 
sensitivity of perceiving gains and losses; the more experience, knowledge, and cognitive 
ability a person has, the higher his sensitivity to outcomes and probabilities. These indi- 
vidual factors were left uncontrolled and unexplained in past experiments. Therefore, 
their findings about the patterns of values and weights are at best approximate. 

3. Properties of the coarse utility function 

In the spectrum of risk attitudes, the maximin criterion corresponds to extreme risk 
aversion, while the maximax criterion corresponds to extreme risk seeking. Let U min and 
U ~ax denote the utility ftmctions of the maximin and maximax criteria, respectively. Let U E 
denote the expected utility function. If we arrange lottery L into {(O_m, P(o_m)), . . . ,  
(o-1, P(o-1)), (o0, P(oo)), (Ol, P(Ol)), . . . ,  (On, P(on))} such that O-m 
O-(m-1) N ' N o -1  ~ o0 N ol ~ o 2 N  ' N On, then its rank- and sign- 
dependent utility is represented as follows: 

n--1 
uRS (L) = v(o.)W+ + Z,,(oi)(W - W + ( P ( 6 i +  1 ) ) )  

i=0 
- m%-1  

-t- V(O _ re)W- (P(Q -rn)) + 2_., v(oi)(W- (P(ei)) - W- (P(Qi- 1))). (S) 
i=0 

Property 1. For any lottery L, the following inequalities hold: 

(1) umin(z) <- UC(L) <. uRSD(L) <- umax(z)ifL is positive; 

(2) umin(z) <- uRSD(L) <-- UC(L) <- umax(z)ifL is negative; 

(3) umin(t) <- uRSD(L) ~-- UC(L) <- umax(z) i fL  mixed. 

This property states that, compared to the coarse utility function, the rank- and sign- 
dependent utility function overestimates the utility of a positive lottery, underestimates 
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the utility of a negative lottery, and approximates the utility of a mixed lottery. Therefore, 
we can regard the coarse utility function as an approximation of the rank- and sign- 
dependent utility function. 

Generalized models compute the utility of a lottery by aggregating the utility of each 
outcome-probability pair of the lottery, regardless of the value of the outcome or the 
belief of its likelihood. Compared to the coarse utility function, their overestimation or 
underestimation comes from low-valued outcomes and relatively unlikely outcomes, 
according to the proof of Property 1 in section 6. We hypothesize that by including 
outcomes with relatively low values, or outcomes with low likelihoods, generalized models 
bias the utilities of lotteries. For example, consider the St. Petersburg lottery {($2, 1/2), 
($2 2, 1/2 2) . . . .  , ($2 n, 1/2 n . . . .  }. For large values of n, the outcomes $2 n are extremely 
unlikely, and these outcomes should not contribute to the aggregate utility. The inclusion 
of these terms overestimates the utility of a lottery and is not desirable. 

Property 2. Suppose L 1 and L 2 a re  positive lotteries, and 0 _< a _< 1. Then, 

OC({(L1, or), (/.,2, 1 - o0} ) _< otUC(L1) + (1 - o0UC(L2) (9) 

if W + (P) is convex or linear; supposeL1 andL2 are negative lotteries and 0 _< e~ _< 1. Then, 

uc({(L1, ~x), (L2, 1 - or)}) ___ otUC(L1) q- (1 - o0UC(L2) (10) 

if W- (p) is convex or linear. 
Note that empirical weighting functions are convex whenp is large, and concave when 

p is small. The critical pointspc at which W + (Pc) = Pc or W- (Pc) = Pc vary from study to 
study. For example, Preston and Baratta (1948) foundpc ~ 0.2. Hogarth and Einhorn 
(1990), on the other hand, found that the location ofpc depends on the absolute size and 
the sign of payoffs. In general, pc < 0.5 for W+(P) andpc > 0.5 for W-(p). Specifically, 
the convex region of W+(p) grows as o* increases, and the concave region of W-(p) 
grows as ]o, ] increases. A recent study in Tverskyand Kahneman (1992) foundpc 
0.32 for both W + (P) and W- (P).3 

Property 1 states the difference between the coarse utility U c and the rank- and 
sign-dependent utility U RsD. Property 2 states the nonlinearity of the coarse utility func- 
tion and its difference from the expected utility. As we see from (8), when weighting 
functions are linear, the rank- and sign-dependent utility U Rs9 reduces to the expected 
utility. The expected utility function has an obvious advantage over any other generali- 
zations in evaluating multistage choices in decision trees (Raiffa, 1968), or their variants 
such as those which influence diagrams (Olmsted, 1983; Schacter, 1986) and valuation 
networks (Shenoy, 1992, 1994). According to Sarin and Wakker (1994), violations of 
independence are not allowed in decision tree analysis if one accepts folding back and 
interchangeability of consecutive event nodes. As we reviewed before, the rank- and 
sign-dependent utility function allows violations of independence. Shortly we will show 
that the coarse utility function does not observe independence in general. Therefore, the 
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standard rollback procedure in decision-tree analysis does not work for both the rank- 
and sign-dependent and the coarse utility calculi. Nevertheless, we can easily show that 
the rank- and sign-dependent utility and the coarse utility are reconciled if the value 
function v(o) is a step function, as suggested by Simon (1955). Furthermore, when the 
weighting functions are linear, the expected utility, the rank- and sign-dependent utility, 
and the coarse utility are all reconciled. 

The coarse utility and the rank- and sign-dependent utility are also reconciled when a 
lottery has only one nonzero outcome. I lL  = {(0, 1 - p), (o,p)}, UC(L) = uRSD(L) = 
v(o)W + (P(6)), ifo is a gain, and v(o)W- (P(o)) ifo is a loss. This simple property can be 
utilized to derive a procedure for assessing value or weighting functions. In the expected 
utility theory, a value function is elicited from a DM through a procedure that assesses 
certainty equivalents of standard lotteries. In the assessment procedure, given a standard 
lottery, the DM finds a certain outcome such that the standard lottery is equally pre- 
ferred to the certain outcome. The same procedure will also work for our coarse utility 
function. For a degenerate lotteryL = {(o, 1)}, the utility is UC(L) = v(o). In words, the 
value of an outcome is the utility of the corresponding degenerate lottery. For a positive 
standard lottery L + -- {(0, 1 - p), (o*,p)}, where o* is a best outcome, UC(L +)  = 
v(o*)W + (p) = W + (p). Suppose the certainty equivalent o fL  + is o, which is the degen- 
erate lotteryL = {(o, 1)}. Then, UC(L) = v(o). Therefore UQL +)  = W+(p) = UC(L) 
= v(o). In words, the weight of the best outcome in the standard lottery is the value of its 
certainty equivalent. Similarly, for a negative standard lotteryL~- = {(0, 1 - p), (o,,p)}, 
where o,  is a worst loss, suppose its certainty equivalent is o. Then W- (t7) = - v(o), i.e., 
the weight of the worst loss in the standard lottery is the negative value of its certainty 
equivalent. Therefore, when decision weights are known, values can be assessed using 
the standard lottery approach, and vice versa. 

Property 3. The underlying preference relation of the coarse utility function is asymmet- 
ric, negatively transitive, and continuous. 

Property 4. I fL 1 stochastically dominates L2, then UC(L1) > UC(L2), and for anyL 3 and k, 

u C ( { ( L 1 ,  h), r  1 -- h)}) > uC({(L2, k), (L3, 1 - k)}). 

If UC(L1) - UC(L2) for any increasing function v(o), then L 1 stochastically dominates L2. 

These two properties show the normative appeal of the coarse utility function. Property 
3 relates the coarse utility function to the preference order. Property 4 states that the 
coarse utility function satisfies the requirement of consistency with the first-order sto- 
chastic dominance principle. Note that the dominance of L1 over L 2 implies UC(L1) -> 
UC(L2). This inequality is not strict. Indeed, there are situations where L 1 stochastically 
dominates L2, but UC(L1) = UC(L2). For example, suppose L is a positive lottery, and o 
maximizes v(o)W + (P(6)). Then, according to (4), the coarse approximation L(o) and L 
have the same coarse utility value, while L weakly dominates L(o). The coarse utility 
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function shows its weakness in this respect. One can construct other similar counterintu- 
itive examples. Our defense here is that the coarse utility function approximates the 
utility of a lottery. Thus, UC(L1) -- UC(L2) should be interpreted as U(L1) ~ U(L2), and 
this is not inconsistent with our empirical findings. According to Property 4, the coarse 
utility function does not admit the violations of dominance. Therefore, this example 
simply shows that the coarse utility is sometimes incapable of identifying preferences 
among weakly differentiated lotteries. 

In general, the coarse utility function does not satisfy the independence axiom of the 
expected utility theory. For example, ifL 1 = {(02, 0.8), (03, 0.2)}, L 2 = {(ol, 0.4), (03, 0.6)}, 
L3 = {(Ol, 0.1), (03, 0.9)}, where V(Ol) = 0.1, v(o2) = 0.65, v(o3) = 0.8. Suppose W + (p) is an 
identity. Using (1), we can compute UC(L1) = 0.65 > UC(L2) = 0.48. Let ~ = 0.3. Then 

uC({(L1, h), (/-,3, 1 - = MAX{0.1, 0.604, 0.552} = 0.604, 
Uc({(L2, (L3, 1 - = MAX{0.1,  0.526, 0.648} = 0.648. 

T h e r e f o r e ,  UC({(L1, X), (L3, 1 - ~.)}) < uc({(L2,  ~k), (L3, 1 - )k)}). The independence of 
irrelevant alternatives is a controversial property of the expected utility theory, and one 
that is also violated in observed decision-making behavior. Therefore, we do not view the 
noncompliance of this property by the coarse utility function as a flaw. 

4. Empirical evidence 

Like any decision-weight model, the coarse utility function uses decision weights to 
reflect DMs' attitudes to probabilities. Therefore, it permits the analysis of phenomena 
associated with the distortion of subjective probability and accommodates some empiri- 
cal violations of the expected utility theory. However, because attitudes to outcomes and 
attitudes to probabilities are not separable, one cannot assess values and weights inde- 
pendently. As we showed in section 3, by assessing the certainty equivalent of a standard 
lottery, we can assess weights given values or values given weights, but not both simulta- 
neously. This difficulty is prevalent in any other theory. In the expected utility theory, 
weighting functions are linear. The probability of the best outcome of a standard lottery 
is the same as the value of the certainty equivalent (Raiffa, 1968; Keeney and Raiffa, 
1976). In decision-weight theories, as exemplified by Hogarth and Einhorn (1990), Cam- 
erer and Ho (1991), and Tversky and Kahneman (1992), people assess decision weights 
by assuming a linear or power value function. The resulting findings confound the gen- 
eral test of a full-fledged, decision-weight theory with that of a specific value function. As 
Tversky and Kahneman (1992) have pointed out, the assessment of values and weights 
for a complex model, such as the rank- and sign-dependent utility theory, is problematic. 
More research with different perspectives is needed in this regard. For example, as a spec- 
ulation, we might be able to trace values from the mechanism of their origin and formation. 

In the coarse utility theory, a value function v (o )  is normalized such that v ( o , )  = - 1, 
v(0) = 0, and v ( o * )  = 1. Therefore, in applying the coarse utility theory, an important 
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step is to specify the outcome space ~, its worst loss o. ,  and its best gain o*, which should 
be fixed in a given decision context because of the normalization ofv(o) and its impact on 
assessing decision weights. 

In this section, we use three examples to compare the coarse utility function with the 
expected utility function and the rank- and sign-dependent utility function of Luce and 
Fishburn (1991) and Tversky and Kahneman (1992). Since the magnitude of payoffs in 
our examples is close to that in the experiments of Tversky and Kahneman (1992), a 
value function and a weighting function that fit their data, we believe, could approxi- 
mately describe the choice behavior of the subjects in our examples. Tversky and Kah- 
neman (1992) obtained such a pair of fitted functions as follows: 

p0.61 
v(o) = 0 o.88 for o > 0 and W + (p) = [p0.61 + (1 _p)0.6111/0.61, (11) 

which is quite close to the result of similar studies in Camerer and Ho (1991). Using 
Karmarkar's weighting function form (1978), we can also fit the following functions to 
their data very well: 4 

= p0.55 
V(O) = 00"761 for o --> 0 and W + (p) p0.55 + (1 _p)0.55" (12) 

As Tversky and Kahneman (1992) indicate, their results provide a reasonably good 
approximation to both aggregate and individual data only for probabilities in the range 
between 0.05 and 0.95. Since there are no data available to assess W + (p) forp < 0.05, we 
use interpolations to estimate W + (p) for extremely smallp in Example 2. Several exper- 
iments were conducted in a research seminar and three undergraduate classes in the 
School of Business at the University of Kansas. In all the examples, the experimental 
results are robust to the choice of value and weighting functions (11) and (12), and 
strongly support the descriptive accuracy of the coarse utility function. 

Example 1. Let L1 = {($0, 0.1), ($100, 0.1), ($200, 0.1), ($300, 0.1), ($400, 0.1), ($500, 
0.1), ($600, 0.1), ($700, 0.1), ($800, 0.1), ($900, 0.1)} and L 2 = {($350, 1)}. Which lottery 
do you prefer, L1 or L2? 80% of the subjects preferred L2 to L1. Also, when those who 
preferred L2 to L 1 were asked what was the most they were willing to pay for L1, 60% 
responded between $100 and $250, 30% responded $300, and 10% responded less than 
$100. Assume the value function and the weighting function in (11). Then, according to 
the expected utility theory, the certainty equivalent for L 1 is CEE(L1) = $435.58; thus L 1 
is preferred to L2. According to the rank- and sign-dependent utility theory, the certainty 
equivalent for L1 is CERSD(L1) = $363.34; thus L 1 is also preferred to L2. According to 
the coarse utility theory, the certainty equivalent forL1 is CEC(L1) = $192.45; thusL2 is 
preferred to L 1. Similarly, assume (12). Then, the expected utility theory suggests that 
the certainty equivalent for L 1 i s  CEE(L 1) = $419.4; thus, L1 is preferred to L2. Accord- 
ing to the rank- and sign-dependent utility theory, the certainty equivalent for L 1 is 
CERSD(L1) = $399.54; thus L1 is also preferred to L2. According to the coarse utility 
theory, the certainty equivalent for L 1 is CEC(L1) = $209.5; thus L2 is preferred to L1. 
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Example 2. Consider the truncated St. Petersburg lottery, L = {($2, 1/2), 
($4, 1/4), ... , ($21~ 1/21~ ($211, 1/21~ We first assume the value function (11) and 
normalize it by dividing each value by 2048 ~ We compute W+(p) forp > 0.05 using 
(11). We estimate W+(p) fo rp  < 0.05 based on the interpolation formula: W+(p) = 
2.36p forp < 0.05. The resulting values and weights are shown in table 1. Then, accord- 
ing to the expected utility theory, the certainty equivalent for L is CEE(L) = $9.59; 
according to the rank- and sign-dependent utility theory, the certainty equivalent for L is 
CERSD(L) = $15.99; according to the coarse utility theory, the certainty equivalent forL 
is CEC(L) = $3.63. We then repeat the above calculations using (12). We find the 
certainty equivalent for L by the expected utility theory is CEe(L) = $7.54; by the rank- 
and sign-dependent utility theory is CEnS~ = $17.04; and by the coarse utility theory 
is CEC(L) = $3.51. In our experiments, 88% of the subjects were willing to pay no more 
than $8 for the gamble, 12% were willing to pay between $10 and $16, 72% between $2 
and $4, and 61% between $3 and $4. The results support the prediction of the coarse 
utility theory. 

Example 3. Consider a variant of Allais's Paradox (Kahneman and Tversky, 1979). 
Consider a pair of lotteries L1 = {($3000, 1)}, and L2 = {($4000, 0.8), ($0, 0.2)}, and 
another pair L3 = {($3000, 0.25), ($0, 0.75)} and L 4 = {($4000, 0.2), ($0, 0.8)}. According 
to an experiment conducted by Kahneman and Tversky, many subjects preferred L 1 to 
L2, and L 4 to  L 3. Let v(0) = 0. Then the expected utility theory will produce the incon- 
sistency that 0.8 < v( 3000 )/v( 4000 ) < 0.8. Using the coarse utility function, the choices 
of majority in the experiment can be represented by 

~7(L1) = v(3000) > UC(L2) = v(4000)W+(0.8), 
UC(L3) = v(3000)W+(0.25) < UC(L4) = v(4000)W+(0.2). 

Then we have the inequality that W + (0.8) < v(3000)/v(4000) < W + (0.2)/W + (0.25). 
This result is consistent with the experimental finding that people tend to overweight 
small probabilities and underweight large ones (Kahneman and Tversky, 1979; Hogarth 
and Einhorn, 1990; Tversky and Kahneman, 1992). For example, one can verify that it is 
consistent with the empirical curves shown in (11) and (12). In fact, when a lottery has 
only one nonzero outcome or has one positive and one negative outcome, the coarse 
utility function and the prospect theory are reconciled. Any empirical evidence with such 
kinds of lotteries will equally support both the coarse utility theory and the prospect theory. 

Table 1. The value function and the weighting function of form (11) for example 2 

o $211 $210 $29 $28 $27 $26 $25 $24 $23 $22 $2 

v(o) 1 0.543 0 .295  0 .160  0 .087  0 .047  0 .026  0 .014  0 .008  0 .004  0.002 
P(~5) 1/21~ 1/29 1/28 1/27 1/26 1/25 1/24 1/23 1/22 1/2 1 
W + (p) .0023  .0036  .0093  .0185  .0370  .0740  .1475 .2077  .2907  .4206 1.0 
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5. Conclusion 

In this article, we argue that DMs use approximations in evaluating complex lotteries. 
We describe a coarse approximation scheme which approximates a many-outcome lot- 
tery by several binary lotteries. We define the utility of a lottery to be the utility of its best 
binary approximation. We thus propose a new descriptive model called the coarse utility 
function. The coarse utility function is shown to be descriptive. It accommodates viola- 
tion of independence evidenced by Allais's paradox and it provides a better resolution to 
the St. Petersburg paradox than the expected and the rank- and sign-dependent utility 
theories. The coarse utility theory also has many prescriptive advantages for practical 
decision making. It requires fewer assessments than any other exact theories. It is flexible 
enough to allow both additive and nonadditive probabilities and flexible judgmental 
information. It generalizes the mean-variance model for portfolio selection (Liu, 1994). 
The coarse utility function has been established using a mixed rational and plausible 
approach. Despite its descriptive focus, it has some normative appeal. The model is 
shown to underlie a continuous and weak preference relation. It satisfies the require- 
ment of consistency with the first-order stochastic dominance principle. But the under- 
lying preference relation is independent of irrelevant alternatives only when the prefer- 
ence relation is implied by the stochastic dominance. 

Like any rank-dependent utility models, the coarse utility function is generally nonlin- 
ear with respect to probabilities. Like the rank- and sign-dependent utility function of 
Luce and Fishburn (1991, 1994) and Tversky and Kahneman (1992), the coarse utility 
function allows different decision weights for gains and losses. Thus, it permits the anal- 
ysis of phenomena associated with the distortion of probabilities and the framing effect. 
However, there are some differences between the coarse utility function and the rank- 
dependent utility theories. First, the coarse utility function is not based on weighted 
averages. The utility of a lottery is the utility of its best approximation, where probabili- 
ties (or distorted probabilities) act as discount rates. In a certain sense, the coarse utility 
function can be regarded as an approximation of the rank- and sign-dependent utility 
function of Luce and Fishburn (1991) and Tversky and Kahneman (1992). When a 
lottery is a regular prospect (Kahneman and Tversky, 1979), or when a Simon's satisfic- 
ing value function is assumed, the coarse utility theory and the rank- and sign-dependent 
utility theory are reconciled. 

Second, in the coarse utility theory, decision weights are formalized rather than de- 
fined in an ad hoc fashion. The weighting function W + (p) for gains measures the subjec- 
tive value of the probabilityp with which the most desirable gain is obtained. The weight- 
ing function W-  (p) for losses measures the subjective value of the probability p with 
which the most undesirable loss is avoided. This formalization allows a natural interpre- 
tation of overweighting small probabilities and underweighting large ones, as well as the 
value x probability interaction. The formalization also implies that the weighting func- 
tions depend only on the decision context characterized by the maximum gain and loss. 
However, in rank-dependent theories, weighting functions are assumed to be both 
context- and lottery-dependent. As Quiggin (1993) has elaborated, the overweighting of 
small probabilities should be applied to low-probability extreme outcomes, and not to 
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low-probability intermediate outcomes. Thus, the same cumulative probability may be 
weighted differently in different lotteries. This feature makes the empirical tests and 
prescriptive applications of the rank-dependent theories difficult. Also, the weighting 
functions formalized in this article, have no constraints such as W(0.5) = 0.5 or W(p) is 
convex or concave, etc., unlike some earlier decision-weight models. Also, unlike several 
previous sign-dependent theories (Kahneman and Tversky, 1979; Starmer and Sugden, 
1989; Schmeidler, 1989; Gilboa, 1987; Nakamura, 1990; Wakker, 1989), we do not as- 
sume W+(p) = W-(p) or W+(p) = 1 - W-(1 - p). 

Third, in the expected utility theory, Arrow (1971) and Pratt (1964) show the equiva- 
lence between risk aversion and the concavity of a value function. This equivalence is not 
sustained in more general theories because of the additional dimension of attitudes 
toward probability preferences. As Friedman and Savage (1948) have argued, risk- 
seeking behavior can be modeled in terms of probability attitudes, without the use of 
convex segments of a value function. In rank-dependent utility theories, when a value 
function is linear, Yaari (1987) shows that a DM is pessimistic if and only if he/she always 
overweights probabilities and that a DM is optimistic if and only if he/she always under- 
weights probabilities. If a value function is assumed to be concave, Quiggin (1993) proves 
that a DM is risk averse if he/she always overweights probabilities. In general, Chew, 
Karni, and Safra (1987) establish that a rank-dependent utility model follows second- 
order stochastic dominance if and only if both a value function and a weighting function 
are concave. In the coarse utility theory, Liu (1994) establishes a measure of risk atti- 
tudes that resembles the Arrow-Pratt measure. He shows that a DM with a concave 
value function and a convex weighting function is more conservative than a DM with a 
linear value function and a linear weighting function. A DM with a convex value function 
and a concave weighting function is more risk seeking than a DM with a linear value 
function and a linear weighting function. 

We agree with Tversky and Kahneman (1992) that theories of choice are at best 
approximate and incomplete. Besides its incapability of identifying weakly differentiated 
preferences, the coarse utility function is also not general enough to accommodate vio- 
lations of transitivity (Grether and Plott, 1979; Slovic and Lichtenstein, 1983) and viola- 
tions of dominance (Coombs, 1975). The coarse utility is subject to this criticism in 
company with many other utility theories such as the rank- and sign-dependent and 
expected utility functions. Quiggin (1982) suggests several answers to this objection. Ac- 
cording to Fishburn (1988), most theorists regard the reduction principle, asymmetry of 
strict preference, and first-degree stochastic dominance as normatively essential, and there 
is little concern about possible failures of the continuity axiom. The view that transitivity can 
no longer be regarded as a tenet of the normative creed is presently a minority position. 

6. Proofs 

Proof of Theorem 1. We will only prove the sufficiency part of the theorem, because the 
necessity is obvious. Under Axioms 1-3, Debreu (1954) shows that there is a real, con- 
tinuous, and order-preserving function V on | x [0, 1]. V is unique up to a strictly 
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increasing transformation. Letx  = V(o, 1) andy = V(o*,p). Since Vis continuous and 
both (9 and [0, 1] are connected, the ranges ofx andy are real intervals. Since o* is strictly 
preferred to 0, (o*, 1) stochastically dominates (0, 1) and (o*, 0). According to Axiom 4, 
V(o*, 1) > V(0, 1) and V(o*, 1) > V(o*, 0). Therefore, the ranges of x and y are 
nondegenerate. Letx0 = V(0, 1),x* = V(o*, 1),y0 = V(o*, 0), andy* = x* = V(o*, 1). 
Then, on the space [19 + tO {0}] x [0, 1], the range ofx is [x0,x*], and the range ofy  is 
[Y0,Y*]. Since for anyo in (9+, o > 0, by Axiom 4, V(o, 1) > V(0, 1) = x0. Similarly, for 
anyp > 0, dominance implies V(o*,p) > V(o*, O) = Yo. Therefore, if Vis restricted to 
the space (9+ x (0, 1], the range ofx is (x0,x*], and the range ofy is (Y0,Y*]. 

For anyp > 0, (o,p) ~ (o',p) implies thato 2 o', because, otherwise, ifo' > o, Axiom 
4 will imply (o,p) < (o',p). Thus, for allp > 0, dominance further implies (o,p) ~ (o',p). 
Similarly, (o,p) ~ (o,p')for some o ~ (9+ impliesp ___ p' ,  and thereby implies (o,p) 
(o,p') for all o E (9 + by Axiom 4. Therefore, in terms of multiattribute decision theory 
(Keeney and Raiffa, 1976), Axiom 4 ensures that o ~ | andp ~ (0, 1] are preferen- 
tially independent in the sense that 

(o,p) ~ (o',p) for anyp ~ (0, 1] implies (o,p) ~ (o',p) for allp E (0, 1], 
(o,p) ~ (o,p')for anyo C (9+ implies (o,p) ~ (o,p')for allo ~ (9+. 

According to Theorem 7.1.7 in Sawaragi, Nakayama, and Tanino (1985), the preferen- 
tial independence implies that V(o,p) on (9 + x (0, 1] can be decomposed as V(o,p) = B(x, 
y), where B is continuous and strictly increasing in x ~ (x0, x*] and y E (Y0, Y*]. The 
contours of the function B(x, y) constitute a family of curves {~-I C = V(o,p), (o,p) 
(9+ x (0, 11}, where 

{(x,y) 18(x,y) = C,x (x0,x*l,y (y0,y*]}. 

Besides this family, we can define two other families of curves, which are respectively 
parallel horizontal and vertical lines. At any point (x,y) in the region G = (Xo, x*] x 
(Yo, Y*], exactly one curve of each family goes through it. Two curves of different families 
have at most one common point. Assume (xl, Yl) and (x2, Y2) are on the same curve J-l, 
while (x2,Y3) and (x3,Yl) are on the same curve 3-2 (see figure 6). Let 

X 1 = g(ol ,  1) ,x  2 = g(o  2, 1),x3 = V(o3, 1 ) ,  

Yl = V(~  = V(~ = V(~ 

T h e n ,  w e  have (Ol ,Pl )  - -  (o2,P2) and (o2,P3) N (o3,Pl) ,  which joint imply (Ol,P3) N (o3,P2). 
Since (ol,P3) corresponds to (xl,Y3) and (03,P2) corresponds to (x3,Y2), (ol,P3) -- (o3,P2) 
implies that the points (xl,y3) and (x3, Y2) are on the same indifference curve. Therefore, 
according to Blaschke (1928), there exists a topological transformation that transforms 
all the indifference curves into parallel straight lines. In other words, there exist contin- 
uous and strictly increasing functions f(x) and g(y), which are unique up to a positive 
linear transformation, such that each indifference curve is a straight line: f(x) + g(y) = 
C. We impose thatf(x*) = 0 andg(y*) = 0. Thenf(x) andg(y) are determined up to a 
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I I I = -  

X3 Xl X2 X 

Figure 6. Verifying Thomsen-Blaschke condition. 

positive affine transformation. If we let F(x) = ef(x) and G(y) = eg(Y), then any indiffer- 
ence curve in (x0,x*] x (Y0,Y*] can be represented byF(x)G(y) = C. F and G are both 
strictly increasing functions ofx andy. F(o, 1) = F(V(o, 1)), G(o*,p) = G(V(o*,p)), f/(o, 
p) = F(o, 1)G(o*,p). Then, obviously, f/(o,p) is an order-preserving function on 61 + x 
(0, 1]. Since F(x*) = G(y*) = 1, it is easy to check that ~'(o*, 1) = 1, fZ(o, 1) = _P(o, 1), 
and f/(o*,p) = G(o*,p). Thus, l/(o,p) satisfies 

f/(o,p) = f/(o, 1)f/(o*,p)forany(o,p) ~ 6)+ x (0, 11. (13) 

~z is unique in the sense that, if V' is another order-preserving function satisfying (13), 
then V' -- P~ where R > 0. Finally, for (o,p) ~ {0} x [0, 1] or 6) + x {0}, we define 

[z(0,p) = (/(o, 0) = 0 for anyo  E (9 + andp  E [0, 1]. 

Then, (/(o,p) is an order-preserving function and satisfies f/(o,p) = [Z(o, 1)F'(o*,p) on 
[| U {0}] x [0, 1]. The uniqueness of Vis unchanged. [ ]  

Proof of Theorem 2. The proof of Theorem 1 can be slightly modified as a proof of 
Theorem 2. Under  Axioms 1-3, there is a real, continuous, and order-preserving func- 
tion V on | x [0, 1]. V is unique up to a strictly increasing transformation. Let x = 
V(o, 1) and y = V(o,, p). Since 0 is strictly preferred to o , ,  both (0, 1) and o , ,  0) 
stochastically dominate (o,,  1). According to Axiom 4, V(o,, 1) < V(0, 1), and V(o,, 1) 
< V(o,, 0). Letx0 = V(0, 1),x, = V(o,, 1),y0 = V(o,, 0), a n d y ,  = x ,  = V(o,, 1). Then, 
on [| - U {0}] x [0, 1], the range ofx is [x,,x0], and the range ofy is [Y,,Y0]- Since for any 
o in |  o < 0, by Axiom 4, V(o, 1) < 17(0, 1) = x 0. Similarly, for anyp > 0, dominance 
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implies V(o. ,p)  < V(o.,  O) = Yo. Therefore ,  if Vis restricted to the space O -  x (0, 1], 
the range o fx  is [x.,x0), and the range ofy  is [Y,,Y0). 

Axiom 4 ensures that o E O -  a n d p  E (0, 1] are preferentially independent.  Thus, 
V(o,p) on O -  x (0, 1] can be decomposed as V(o,p) = B(x,y), where B is continuous 
and strictly increasing in x ~ [x.,x0) andy  ~ [Y*,Y0). The  contours of the function B(x, y) 
constitute a family of  curves {3- I C = V(o,p), o ,p)  E O -  x (0, 1]}, where 

3 - =  {(x ,y) /B(x ,y)  = C,x e [x,,xo),y ~ [Y*,Yo)}. 

According to Blaschke (1928), there exists a topological transformation that transforms 
all the indifference curves into parallel straight lines. In o ther  words, there exist strictly 
increasing functions f(x) and g(y), which are unique up to a positive linear transforma- 
tion, such that each indifference curve is t ransformed into a straight line:f(x) + g(y) = 
C, which can also be written as - f ( x )  - g(y) = C. We impose tha t f (x . )  = 0 andg(y . )  = 
0. Then  f(x) and g(y) are determined up to a positive affine transformation. If we let 
F(x) = e-f(x) and G(y) = e-g(Y), then any indifference curve in [x,,xo) x [Y,,Y0) can be 
represented byF(x)G(y) = C. F and G are both strictly decreasing functions o fx  andy.  
Let  F(o, 1) = -F (V(o ,  1)), G ( o , , p )  = - G ( W ( o , , p ) ) ,  (Z(o,p) = - F ( o ,  1)(~(o, ,p) .  
Then,  we can verify that f /(o,p) is an order-preserving function on 19- x (0, 1]. Since 
F(x,)  = G(y , )  = 1, it is easy to check that re(o,, 1) = - 1, f~(o, 1) = F(o, 1), and I)(o,, 
p) = G(o, ,p) .  Thus, f/(o,p) satisfies 

l/(o,p) = - f/(o, 1)f /(o, ,p) for any (o,p) ~ O -  x (0, 11. (14) 

f / is  unique in the sense that, if V' is another  order-preserving function satisfying (14), 
then V' = - ( - 9)~ where a > 0. Finally, for (o,p) ~ {0} x [0, 11 or |  x {0}, we define 

f/(0,p) = f7(o, 0) = 0 for any o ~ |  andp  E [0, 1]. 

Then,  f /(o,p)is an order-preserving function and satisfies (/(o,p) = - f7(o, 1)Ig(o.,v) on 
[ |  U {0}] x [0, 1]. The  uniqueness of f/is unchanged. [ ]  

Proof o f  Property 1. It is easy to show that umin(L) < UC(L), uRSD(L) <-- umax(z). We 

only need to show the relationship between U RsD and U c. Let  L = {(o _ m, P(o _ m)), ... , 
(o-1,  P(o-1)) ,  (o0, P(Oo)), (Ol, P(Ol)), . . .  , (o,, P(on))} with O-m ~ O-(m-1) g "'" 
o_ 1 ~ ~ ~ Ol ~ 02 ~ ' ~ On. Using the Abel's formula, we have 

uRSD(L) = v ( o t ) W + ( P ( O 1 ) )  -b @(02)  - v ( o i ) ) l / V + ( P ( 0 2 ) )  -1- . . -  

+ (V(On) - V(On_l))W+(P(On)) + v ( o - 1 ) W - ( P ( o _ I )  ) + @ ( 0 - 2 )  

-- v(O_l))W-(p(Q_2)  ) + ... + (V(O-m) 
- v ( o _  (m-  1 ) ) )W-  (P(q -m)) .  

Suppose k and j are such that UC(L +) = V(Ok)W+(P(6k) and UC(L - )  = 
v(o_])W-(P(o  _j)). Then,  we see that unSD(L) - UC(L) is the sum of the utility values 
from low-valued outcomes (LV) and from relatively unlikely outcomes (LP), where 
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L V =  

L P =  

k-1 -q - i )  

~y(oi ) (W+(P(Oi) )  - W+(P(Oi+l))) -b Z v(~ 
i=1 i= -1  

- -  W - ( P ( O i _ l ) ) )  

(v(ok + 1) - v (o~ ) )w+ (P(6k + 1)) + ' "  + (v(on) - V(On- i ) ) W  + (P(6 . ) )  
+ (V(O_( /+ l ) )  -- v ( o _ j ) ) W - ( P ( Q _ ( / + I ) )  ) + "'" "t- (v(O_m) 
- -  V(O _ (m - 1))) W -  ( P ( o .  - m ) ) .  

It is easy to observe that  uRSD(L) -- UC(L) >- 0 if L has no negative outcomes,  and 
unSD(L) - UC(L) <<- 0 i fL  has no positive outcomes.  However,  i fL  is a mixed lottery, we 
are uncertain about  the sign of  uRSD(L) - UC(L). Since the undervalued par t  for the 
positive decompos i t ion  and the overvalued par t  for the negat ive decompos i t ion  can- 
cel out  part ial ly or  fully, UC(L) becomes  closer  to uRSD(L) than  for  positive and 
negat ive lotteries.  [ ]  

Proof  o f  Property 2. Let  L1 = {(01, Pl) ,  (02, P2), -.. , (On, Pn)}, and L 2 = {(01, ql),  
(02, q2), ..- , (on, qn)}. Assume01  ~ o2 ~ "'" ~ on. T h e n P ( 6 k )  = Y~i~_~i, and Q(6k) 
= ~i>_kqi" 

{(L1, o0, (/ .2,  1 - o/.)} 
= {(01, o~1  + (1 - oOql),  (o2, {:~/72 + (1 --  Ot.)q2), . . .  , (01, ~Pn + (1 -- OOqn) }. 

u c ( { ( L 1 ,  or (L2, 1 - o/.)}) 
= M A X { W  + [r + (1 -- a)Q(ak)]V(Ok) [ k = 1, 2, . . .  , n} 
<-MAX{otW+(P(Ok))V(Ok) + (1 - a)W+(Q(6k) )V(Ok)  ] k = 1, 2 , . . . ,  n} 
<_ ~ M A X { W + ( P ( S k ) ) V ( O k ) ] k  = 1 , 2  . . . .  , n  

+ (1 - e 0 M A X { W  + (Q(Ok))V(Ok) [ k  = 1, 2 . . . .  , n} 
= o~UC(L1) + (1 - o0UC(L2) .  

Following the same strategy, we can prove (10) for negative lotteries. [ ]  

Proof o f  Property 3. The  asymmetry  and negative transitivity are obvious. In the following, 
we only prove the continuity. Assume O-m ~ O-(m-1)  ~ " ~ o - 1  ~ oo ~ Ol 
0 2 ;~ "'" ~ O n. Let  

L 1 = {(O_m,P_m) , ... , ( O - l , P - 1 ) ,  (oo,Po), ( o l , P l ) , - . . ,  (On,Pn)}, 
L 2 = {(O - m ,  q -  m) . . . .  , (o _ 1, q - 1), (o0, q0), (Ol, ql), -.. , (on, qn)}, 
L 3 = {(O_m, r_ m), . . . ,  (o_ 1, r_  1), (o0, r0), (Ol, rl), .-. , (On, rn)}, 

P(6k) = s Q(Ok) = ~,i>_~ti, R(Ok) = ~,i>_:i, P ( O . - k ) =  ~,i<_-:i, Q(O--k) = 
s and R(q-I~) = Y~i<_-m. Suppose UC(L1) = W+(P(Olq))v(olq) + 
W -  (P(o _jl))V(o -Jl)' u C ( L 3 )  = W+ (Q(Ok,))V(Ok3) + W -  (Q(o  _j3))v(o -J3), L L  > L2  and 
L2 > L3. We  first prove that there is ot such that Uc({(L1, a), (L3, 1 - r > Ue(L2). Set 0 
< 2e < UC(L1) - UC(L2). According to Theorems  1 and 2, W + (p) and W - ( p )  are 
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continuous on the compact  interval [0, 1]. Thus,  W + (p) and W - ( p )  are uniformly con- 
tinuous. Therefore ,  there is a such that, for all k and j, 

- e  < W + [ ( ~ P ( O k )  + (1  - a ) R ( O k ) ]  - W+(P(Ok)) < e, 
- e  < W-[(xP(o_j)  + (1 - cOR(q_j) ] - W-(P(o_j)) < e. 

Thus 

M A X { W + [ ( x P ( G )  + (1 - oOR(G)]V(Ok) l k -- 1, 2 , . . .  ,n}  
-> M A X { W  + [P(Ok)lV(Ok) I k = 1, 2, . . .  , n} - 8 = W + ( P ( O k l ) ) V ( O k l )  - -  E, 

MIN{W-[od: ' (o_ j )  + (1 - a)R(q_j) lv(o_j)  ]j = 1, 2 , . . . ,  m}  
>_ M I N { W - [ P ( q _ j ) ] v ( o _ y )  I j  = 1, 2 , . . . ,  m } -  e 
-- W -  (e(o_ _k) )v (o_ j l )  - -  g' 

uC({(L1, (x), (L3, 1 - o0} ) >- UC(L1) - 2 e  > UC(L2). 

Then  we prove that  there is [3 such that OC({(/_,l, [3), (L3, 1 - [3)}) < UC(L2). Set 

0 < 2~ < u c ( L 2 )  - ~ ( L 3 ) .  

The  uniform continuity of  W + (p) and W -  (p) implies that  there  is [3 such that, for all k 
and j, 

- e  < W+[[3P(Ok) + (1 - [3)R(bk)] - W+(R(Ok))  < e, 
- ,  < W-[[3P(o._j)  + (1 - [3)n(o_j)]  - W - ( R ( o _ j ) )  < ~. 

Therefore ,  

M A X { W  + [~P(bk) + (1 -- [3)R(6k)lv(ok) ] k = 1, 2 , . . . ,  n} 
-- M A X { W  + [n(6k)]V(Ok) I k = 1, 2 . . . .  , n} + e = W + (R(OK~))v(%) + ~, 

M I N { W - [ [ 3 P ( q _ j )  + (1 - ~)R(o._j)]v(o_j)  l j  = 1, 2 , . . . , m }  
<- M I N { W -  [ R ( o _ j ) ] v ( o _ j )  I J = 1, 2, . . .  , m}  + e 
= W - ( R ( o _ j 3 ) ) v ( o _ j 3  ) --~ ~, 

UC({(L1, [3), (L3, 1 - [3)}) _< UC(L3) + 2e < UC(L2). [ ]  

Proof of Property 4. A s s u m e o _ m  N O_(m_l) N ""  ~ o - 1  ~ o0 ~ ol N o2 N ""  ~ on. 
Let  

g 1 = { ( O _ m , P _ m ) ,  " " ,  ( O _ l , P _ l ) ,  ( o 0 , P o ) ,  ( o I , P l ,  "-" , O n , P n ) } ,  

L2 = {(o _m, q - m )  . . . .  , (o _ 1, q - 1), (o0, q0), (ol, ql, . - - ,  On, qn)}, 

P(Ok) = ~Pi, Q(bk)= 2qi ,  P(o.-k)= Z p i ,  andQ(o.-k)= Z qi. 
i>_k i>_k i <_ - k  i< - k  

I lL1  stochastically dominates  L2, then P(Ok) >-- Q(Ok), P(o. _j) _< Q(o. - j) for all k and j, 
andL1 ~ L2. Therefore ,  
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MAX{W + (P(6,O)v(ok) ] k = 1, 2 , . . . ,  n} 
-> MAX{ W+ (Q(Ok))V(Ok) ] k = 1, 2 . . . .  , n}, 

MIN{W- (e(o_j))v(o_j) I J = 1, 2 , . . .  , m} 
>_ M I N { W -  (O(o. _j))v(o_j) I J = 1, 2, . . . ,  m}. 

Therefore, UC(L1) _> gC(z2). 
Let  L3 = {(o -m, r-m)  . . . .  , (o_ 1, r_ 1), (o0, r0), (Ol, rl), . . . ,  (on, rn)}, R(Ok) = ~,i>_kri, 

andR(q_k)  = Y,i<_ -kri �9 For  any k E (0, 1), and anyk  and j, 

XP(6k) + (1 - k)R(6k)  -> kQ(~Sk) + (1 - k)R(Ok), 
XP(o_:) + (1 - X)R(e-j) -< kQ(q_j) + (1 - k)R(q_j).  

Thus 

MAX{W+[kP(6k) + (1 - X)R(6k)lv(ok)lk  = 1,2, . . .  ,n} 
--> MAX{W + [kQ(Ok) + (1 - k)R(6k)]V(Ok) I k = 1, 2 . . . .  , n}, 

MIN{W-[XP(o_j)  + (1 - k)R(o._:)]v(o_j) l j  = 1, 2 . . . . .  m} 
>__ M I N { W -  [XQ(o. _j) + (1 - k)R(o. _j)]v(o_j) I J = 1, 2 . . . .  , m}. 

Therefore ,  uc({(L1, k), (L3, 1 - k)}) __ Uc({(L2, k), (L3, 1 - k)}). I ndependence  
is proved.  

Now we prove the converse. We first prove that UC(L( )  _> UC(L~ -) and UC(L~) >_ 
UC(L~ -) for any increasing function v(o). Otherwise, assume there  is a value function 
v(o) such that 

MAX{ W+ [P(Ok)]V(~ I k = 1, 2, . . . ,  n} 
< MAX{W + [Q(6k)]V(Ok) ] k = 1, 2 , . . . ,  n}. 

Since UC(L1) _> UC(L2), we must have 

M I N { W -  [P(o_:)]v(o_j) I J = 1, 2, ... , m} 
> M I N { W -  [Q(o_j)]v(o_j) ]j = 1, 2 , . . .  , m}. 

Let  v'(o_)) = etv(o_j) for all j  = 1, 2, . . .  , m and v'(ok) = v(Ok ) for all k = 1, 2, . . .  , n, 
where 

or< 

Then,  

MAX{W+ [Q(,~k)]v(ok)}--MAX{W+lP(0k)]v(ok)} 
M I N { W -  [P(o_i )]v(o_j )} -MIN{W- [Q(q_:)]v(o_j)}" 

Os) 

MAX{ W+ [P(Ok)]V'(Ok) I k = 1, 2, . . . ,  n} 
= M A X { W  + [P(ak)]v(o~) I k = 1, 2, . . . ,  n}, 
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M A X { W + [ Q ( ~ 1 7 6  I k = 1, 2, . . . ,  n} 
= MAX{W + [Q(Ok)]V(Ok) [ k = 1, 2 , . . . ,  n}, 

M I X { W -  [P(o_j)]v'(o_]) [ j  = 1, 2, . . . ,  m}  
= a M I N { W -  [P(o_ _j)]v(o_j)  ]j = 1, 2, . . .  , m}, 

M I X { W -  [Q(o. _j)]v ' (o_j )  I J = 1, 2, . . .  , m}  
= a M I N { W -  [O(o_ _j)]v(o_j)  [ j  = 1, 2 . . . .  , m}. 

Therefore, according to (15), 

MAX{W+[P(~ I k = 1, 2, . . . ,  n} 
+ M I X { W - [ P ( o _ j ) ] v ' ( o _ j )  I J = 1, 2 , . . . ,  m}, 

< MAX{W+[Q(Ok)]V'(Ok) [ k = 1, 2 , . . .  , n} 
+ M I N { W - [ Q ( o _ j ) ] v ' ( o _ j )  I J = 1, 2, ... , m}}. 

That is, UC(L1) < UC(L2) for the function v'(o) .  This contradicts the given condition. 
Similarly, we can prove that UC(L~ -) --- UC(L2) for any increasing function v(o).  

Then we prove that, if UC(L1) >_ UC(L2) for any increasing function v(o) and L 1 and 
L 2 are either both positive or both negative, L 1 stochastically dominates L 2. If L1 and L 2 
are both positive, we need to show that P(Ok) > Q(6k).  First we prove that P(Sn) >- 
Q(6n). Otherwise, assume 0 _< P(6~) < Q(Sn). Let V(Ok) = (k - 1)e when k - n - i and 
v(on) be any positive number. Let e < W + ( Q ( G )  )v(on)/(n - 1). Then 

W + [ P ( 6 k ) ] ( k  - 1 ) e - <  W+[Q(6n)]V(On) ,  W + [ Q ( O k ) ] ( k  - 1)e < W + [ Q ( 6 n ) ] v ( o n ) ,  
UC(L1)  = M A X { W  + [P(6k ) l ( k  - 1)e, W + [P(On)]V(On) I k = 1, 2, . . . ,  n - 1} 

< W + [Q(On)]V(On) = M A X { W  + [Q(Ok)](k  - 1)e, 
W + [ Q ( G ) ] v ( o ~ )  ] k = 1, 2 , . . . ,  n - 1} = UC(L2) .  

It contradicts the condition t h a t  UC(L2) N UC(L1) for any v(o).  Suppose for all k _ i + 
1, P(6k)  >-- Q(6k).  We then prove that P(Si) >- Q(6i). Otherwise, assume P(6i) < Q(6i). 
Then, if k > i, 

Q(Ok) <- P(Ok) < P(Oi) < Q(Oi), 
(n - i ) W  + [Q(oi)] - (n - k ) W  + [P(Ok)] > O, 
(n -- i ) W  + [Q(6i)] - (n - k ) W  + [Q(6k)] > O. 

L e t v ( o k )  = (k - 1)~whenk <_ i - 1,V(Ok) = v(on) -- (n -- k)ewhenk >_ i, a n d v ( o n ) b e  
any positive number. Set 

W + [Q(Oi)]V(On) {W + [Q(Oi)] - W + [P(Ok)]}V(On) 
0 < e < M I X  i - 1 + (n - i ) W  + [Q(6i)]' (n - i ) W  + [Q(6i)] - (n - k ) W  + [P(Ox)] ' 

{W + [Q(5i)] - W + [Q(a~)]}v(on) I k > i}.  
(n - i ) W  + [Q(Oi)] - (n - k ) W  + [Q(6k)] 
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Then 

UC(L1) = M A X { W  + [P(Ok)](k - 1)e or  k < i, W + [P(Ok)](V(On) 
- ( n  - I , ) ~ ) f o r  k -> i} 

< W+[Q(Oi)l(v(On) - ( n -  i)e) 
= M A X { W  + [Q(bk ) ] (k  - 1)e for  k < i, W + [O(bk)] (v (on)  

- (n - k)e)  for  k -> i} = UC(L2) .  

This contradicts the condition that UC(L2) _< UC(L1) for any v(o). By the induction 
principle, we know that P(6k) >- Q(6~) for all k = 1, 2, . . . ,  n. Following the same 
strategy as above, we can prove P(o _j) _< Q(o_y) for any j  if UC(L2) < UC(L1) for any 
v(o) and L 1 and L2 are negative. 

If  L1 and L2 are mixed lotteries, as proved before, UC(L1) > UC(L2) for any v(o) 
implies UC(L~ -) _> UC(L~ -) and/fC(L~-)  --- UC(L~ -) for any increasing function v(o), 
which implies, in turn, P(6~) >_ Q(6~) for all k and P(o _j) _< Q(o _j) for anyj .  Thus, La 
dominates L 2. [ ]  
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