
 194 LAURITZEN AND SPIEGELHALTER [No. 2,

 Wermuth, N. and Lauritzen, S. L. (1983) Graphical and recursive models for contingency tables. Biometrika, 70,
 527-552.

 Winkler, R. L. (1969) Scoring rules and evaluation of probability assessors. J. Amer. Statist. Ass., 64, 1073-1078.
 Wold, H. D. A. (1954) Causality and econometrics. Econometrica, 28, 443-463.
 Wright, S. (1921) Correlation and causation. J. Agric. Res., 20, 557-585.

 (1934) The method of path coefficients. Ann. Math. Statist., 5, 161-215.
 Yannakakis, M. (1981) Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods, 2,77-79.
 Zadeh, L. A. (1983) The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and

 Systems, 11, 199-228.
 (1986) Is probability theory sufficient for dealing with uncertainty in Al: a negative view. In Uncertainty

 in Artificial Intelligence (eds L. N. Kanal and J. Lemmer), pp. 103-116. Amsterdam: North-Holland.

 DISCUSSION OF THE PAPER BY LAURITZEN AND SPIEGELHALTER
 Dr F. P. Kelly (University of Cambridge): This evening's paper is an important step towards the

 extension of the powerful knowledge representation techniques of expert systems to handle uncertainty,
 and the authors should be particularly congratulated on their positive and constructive approach. The
 arguments for and against the probability calculus paradigm have been well rehearsed: I share the
 authors' belief that the best argument in favour of probability will be a demonstration that it can be
 made to work.

 The knowledge-base of an expert system is usually expressed in terms of a collection of if-then
 statements, and this makes natural the representation of probabilistic knowledge by a causal network,
 together with a system of conditional probability tables. However, the structure at the heart of the
 computational techniques described is a Markov field on a triangulated graph, with the causal network
 appearing as just a favoured method of specifying the field. In between these two structures is the minimal
 Markov field, defined on the minimal graph with respect to which the joint probability distribution is
 a Markov field. Uniqueness of this minimal graph follows from the factorisation theorem contained in
 the early work of Brook (1964) on the relationship between conditional and joint probability
 specifications. For the example of Fig. 2 and Table 1 the minimal graph is the moral graph of Fig. 3.
 The minimal graph may well be smaller than the moral graph: for example in Table 1 if p(b I E, ,B) admits
 a factorisation

 p( I e, /3) oc *(, c)ti(6, /3) over 6

 then the minimal graph would not have a link between nodes ? and ,B. It is interesting here to contrast
 the instincts of the system modeller and the statistician: the former may prefer a general conditional
 probability, while the latter may lean towards more parsimonious representations and may be prepared
 to accept a factorisation unless there is prior evidence for something more complex. Factorisation will
 lead to fewer edges in the minimal graph and may ease the computational burden.

 The authors make clear that for their computational procedures to be feasible the cliques of the
 triangulated graph should not be too large. The MUNIN example suggests that this may often be the
 case, but what if it is not? Pearl, an important writer in this area, has a number of suggestions. One of
 his suggestions (Pearl, 1986a) is that we condition on a separating subset of nodes sufficient to break
 long cycles; this will allow the authors' procedures to be applied for each conditioning instance, and
 will be attractive provided that the state space for the subset of separating nodes is not too big. There
 are various ways in which the approach can be extended, but it remains the case that any general exact
 analysis will need to deal with probability distributions over large state spaces. This raises the question
 of whether there are approaches other than an exact analysis. We mention two.

 We could, as proposed by Pearl (1987a), simulate a stochastic process which has the minimal Markov
 field as its stationary distribution. Sampling from the process will then give noisy estimates of the
 quantities of interest. It is easy to construct an appropriate stochastic process as a locally interacting
 particle system on the minimal graph, and the method is ideal for a parallel processing implementation.
 The method deals readily with the absorption of evidence: to condition on the values taken at a set of
 nodes just hold the nodes fixed at the given values throughout a simulation.

 In statistical physics and communication network modelling Markov fields on multiply connected
 graphs are common, and in both these areas approximations have often been very successful. In the
 present context an obvious approximation technique would be to iterate around long cycles. There is
 concern that such iterations may not converge or may lead to instabilities. Experience in other areas
 suggests that it is quite easy to construct rapidly convergent iterative schemes. Multiple solutions can
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 occur; however, they are generally not artefacts of the approximation, but indicate potential instabilities
 in the Markov field. Such instabilities are unlikely in the present context, where they would correspond
 to a small amount of evidence causing a wholesale revision of beliefs.

 While I have been speaking there has not been a wholesale revision of my own beliefs. I still consider
 the paper to be an important and positive step towards the implementation of expert systems that can
 genuinely deal with probabilistic information, and it gives me great pleasure to propose the vote of
 thanks to Professor Lauritzen and Dr Spiegelhalter.

 Professor D. J. Hand (The Open University, Milton Keynes): My comments will be restricted to the
 expert systems and artificial intelligence side of the paper.

 First, there is a slowly growing realisation that expert systems, as conventionally described, have a
 far more limited applicability than the proponents would like us to believe.

 At least two reasons have been proposed for this. White (1987) suggests that success is limited to
 linguistically constrained, relatively mechanistic, and logical domains, e.g. areas describing systems built
 by humans, such as fault diagnosis or robotics. He cites the Spang Robinson (1986) survey of expert
 systems products in the USA as showing that two-thirds of applications work is in such areas. The
 point is that the conventional expert systems approach may not be or at least has not yet been shown
 to be well matched to more complex, or less well-defined, problems such as medical diagnosis.

 The second suggested reason is described by Coombs and Alty (1984) (see also Hand (1987)). They
 suggest that there is a mismatch between the function that human experts carry out and the role that
 current expert systems are being built to play. In particular, while expert systems are typically intended
 to produce solutions to complex but essentially well-defined problems, human experts are more often
 called on to provide advice and conceptual guidance, such things as showing context, identifying
 important topics and indicating what would happen under different conditions.

 One of the exciting things about the present paper is that the methods that the authors describe may
 well provide the basic substratum representation for a system which can act in this more flexible manner.

 The authors only briefly refer to the actual construction of the network, and yet surely in building
 an expert system this is the most important part. Certainly rule elicitation is proving to be one of the
 most challenging aspects of current expert systems research, with much effort going into automatic rule
 induction methods. No really satisfactory solution has yet been found.

 The situation is aggravated by the fact that real world problems change over time and that the much
 advertised extensibility of conventional expert systems is more fragile than it seems. White (1987), for
 example, cites the story of what is one of the most successful expert systems in the world, the Rl system
 for configuring DEC computer systems: 'Originally only 450 OPS rules, it grew to an effective program
 of about 5000, configuring DEC/VAX computer installations profitably! It subsequently expanded to
 about 7000 rules whereupon it became unmanageable, unmaintainable, and unmodifiable'.

 Have the authors any ideas on how such difficulties can be avoided?
 The authors stress the relevance of the large sparse network representation. However, I am not

 convinced that it is such a ubiquitously good representation. Although it may indeed be the case that,
 as Pearl (1986a) argues, humans implicitly use sparse networks, it is not clear to me that this is necessarily
 the best way to represent the structure of problems. In particular, many problems better match a broad
 shallow network with many parents for each child and with a short maximum path length. If diagnosis
 is the aim, such representations fall more immediately into the simple pattern matching category of
 problems. The issue is one of whether we are trying to solve problems or trying to emulate the way
 that humans solve problems.

 A second point is that, although the large sparse network approach is a very reasonable way of
 retaining great flexibility in the form of the model, I am anxious that the flexibility may be too great
 and that there may be an overfitting problem. Similar issues have cropped up elsewhere in rule-based
 expert systems and in other areas of statistical classification such as nonparametric methods (e.g.
 Titterington et al. (1981)). I look forward with great interest to some comparisons of the authors' system
 with more conventional statistical diagnostic approaches.

 Finally, in a broader context, many of the objections to artificial intelligence involve rather
 philosophical issues, such as whether a machine can be said to 'know' or to 'understand', etc. However,
 there is one genuine technical problem which is a real stumbling-block. This, termed the 'frame problem',
 is the question of how to separate the relevant from the irrelevant in 'intelligent' programs. Thus, when
 I pick up my brief-case from my desk I do not want the program to examine every object in the universe
 to see how each is affected. Yet it must know that the papers within the brief-case are also picked up,
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 while the desk remains where it is, as does the chair on the other side of the room, etc. The authors'
 approach to maintaining consistency of a large collection of entities is intimately connected with this.
 I would be very interested in the authors' comments.

 The techniques that the authors have developed are elegant and convincing. It is clear that they will
 have a big impact on the expert systems community and in doing so they will serve to strengthen and
 promote the discipline of statistics. The authors thus deserve hearty congratulations for producing this
 work and I can sincerely say that it gives me great pleasure to second the vote of thanks.

 The vote of thanks was passed by acclamation.

 Mr A. R. Thatcher (New Malden): The success of the authors' method depends on three assumptions.

 (a) A causal network exists and is known. This also assumes that at least some of the causes or
 diseases or symptoms are independent.

 (b) There are experts who can supply all the required probabilities.
 (c) These probabilities are all conditioned on the event that the patient was presented at the clinic.

 These assumptions are all satisfied in MUNIN, but there may be other applications where they are not
 and it is worth spending a moment to consider whether anything can then be done to try to avoid them.

 If it is not easy to find experts who can provide all the probabilities reliably, an alternative is to infer
 the probabilities from actual data, if we have sufficient. If the records of the previous patients at the
 clinic are available for this, these will have the advantage that they automatically satisfy assumption (c).
 Also, they will not involve any assumptions about independence as in (a).

 There is no need to estimate every probability in the network. All that we require, for a particular
 new patient, are the probabilities which answer the particular questions we wish to ask about him and
 about the possible choices for the next step. If we work through the calculations completely from first
 principles, applying Bayes' theorem without assuming independence and taking joint probability
 distributions directly from the data, the result which finally emerges is very simple indeed (Thatcher,
 1988). As an example, suppose that our new patient is the one in Fig. 8 of the paper and that our first
 question is about the probability that he has tuberculosis. All we have to do is to sort through the
 records to find the past patients who were like him, i.e. those who had visited Asia, had a negative
 X-ray, etc. The proportion of these matching past patients who had tuberculosis now gives an immediate
 estimate of the probability that our new patient will have tuberculosis.

 The confidence limits for this proportion can be calculated by the standard method and give an
 immediate measure of the precision of the estimate. As regards complexity, the number of computer
 operations per question per new patient is of the order of NAP where N is the number of nodes, A is
 the average number of states per node and P is the number of past patients.

 Dr J. Q. Smith (University of Warwick): By using 'evidence potentials' the authors have successfully
 combined Markov field theory with ad hoc but practically more useful graphical methods for manipulating
 probabilities, providing a theoretically sound and usable methodology for probabilistic expert systems.
 Potentials are attractive because they both enable the manipulation of conditional independence (CI)
 and also provide a structure for the calculation of useful probabilities. Unlike alternative direct methods
 of CI manipulation (Pearl, 1986b; Smith, 1987a, b), however, they are not able to cope with, for example,
 mixed distributed nodes.

 Causal networks are useful in at least three areas.

 (a) Although the theory of probability elicitation is well developed the elicitation of model structure
 has received little attention. In this paper it was shown how a set of modelling statements could
 be transformed into a causal network which can be manipulated so that the consequences of
 implicit CI statements can be presented to a client to enable him to modify his model (Smith,
 1987a). Only after an elicitation of the structure of a problem should the elicitation of probabilities
 take place. Incidentally graphical methods etc. are now theoretically developed (Pearl, 1986b;
 Smith, 1987a, b, 1988).

 (b) Casual networks can be used to help to prove theorems about complex decision problems-e.g. see
 Smith (1988).

 (c) Networks help to direct the efficient storage and manipulation of probabilities as discussed here.

 Although causal networks are useful they are not universally so. In practice useful models sometimes
 only have sparse networks conditional on some other variable(s).
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 Example. Identically distributed random variables Xl . ., X, conditional on X0 =nk + r, 1 < k < n,
 1< r < n, have the property Xk = Xr and JL Xi, i-= l., n}\r.
 This idealised distribution is inefficiently stored on a complete network. There is a need for the
 development of more general structures combining causal networks with probability trees. Can
 computational efficiency determine when to use such a hybrid system?

 Finally the introduction of extra variables (like ?) is very useful, indeed central to Bayesian modelling
 (Smith, 1987b). Do the authors have a computational algorithm for determining when functional nodes
 should be introduced?

 Dr Frank Critchley (University of Warwick): The field of expert systems is at the beginning of the
 long road towards maturity. The spirit of my remarks is therefore twofold: first, to comment on some
 possibly fruitful directions in which to make this journey (cf. Section 11.4) and, secondly, to sound some
 cautionary notes about potential dangers.

 Let N denote the total number of mathematically independent quantities needed to specify a probability
 distribution on all possible combinations of node states in a causal network. Even for the modest (one
 muscle, 25 nodes) MUNIN network, I made N to be 1161. For the kinds of network ultimately envisaged,
 values of N of the order of 105 or 106 would be commonplace, i.e. withoutfurther structure, probability
 models for causal networks are not parsimonious, and so the prior distribution does matter. It would
 take an enormous amount of data to swamp it. Equally, an empirically based initial distribution would
 need an enormous amount of pre-existing data for estimability, let alone accuracy. Moreover there is
 the danger that any (however unreliable) input produces apparently precise output. What naive user is
 going to argue when 0.78653 flashes up?

 I was pleased to note that, perhaps under the influence of a recent Society discussion paper, the authors
 place a great weight on morals. I hope that they will bear with me, then, if I draw a few morals from
 the above perceived dangers. We should

 (a) ensure that the prior/initial distribution is specified as accurately as possible ... and, even then,...
 (b) express our uncertainty about these probabilities. It is simply unrealistically optimistic to assume

 precise knowledge about 106 quantities. The scale of this uncertainty, in practical problems trivial
 by comparison with those in the paper, can be enormous: see, for example, Critchley and Ford (1985)
 and Critchley et al. (1988).

 Both (a) and (b) will be aided if we

 (c) use intelligent parsimonious submodels, e.g. of particular conditional distributions, based on.
 (d) ... rich families of discrete distributions for probabilities: helpful progress here is reviewed in

 Aitchison (1986).

 Nevertheless,

 (e) we will still need criticism, for our own good. There is no virtue in deceiving ourselves! Because of
 its discrete nature, studying the influence of the network structure itself is a challenging new
 research problem within this domain.

 Finally,

 (f) beware computer power! ... in that, as this power increases, so does the scope for the dangerous
 shift in emphasis from the question 'is the model sensible?' to 'will it compute?' The danger in
 making this shift unthinkingly is to mistake a necessary condition for a sufficient one and wrongly
 to identify the complexity of a model with its worth.

 In sum, I found the paper a theoretically and computationally impressive contribution to a subject
 that is still in its infancy. May it prosper on its journey towards maturity!

 Professor A. F. M. Smith (University of Nottingham): From a Bayesian perspective, planning (or
 design) is a preposterior activity-what questions to ask and in what order?-and assessing influence
 is a posterior activity-which answers had the most (or least) effect on beliefs, given the other data?
 Both are of great importance, but what they have in common, in addition to this quasi-dual conceptual
 relationship, is that, in the context of the authors' models, they pose extremely challenging computational
 problems. These are not fully recognised or discussed in Section 10. Do the authors see here a potential
 use for novel simulated annealing strategies?
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 Although the authors make clear that it is not the central issue of this paper, the problem of model
 comparison within the structures envisaged here is going to be of great importance. In the context of
 more familiar models (e.g. regression) we typically have a clear understanding of the (e.g. linear space)
 mathematical operations that are implicit in simplifying or elaborating structure. In the present context,
 how is the interplay of graph representation and propagation algorithm affected by structural
 perturbations corresponding to common strategies for model simplification, e.g. replacing a set of nodes
 'test k = t?' by 'uk{test k = t?}?'

 Section 11.4 acknowledges the need for eventual modelling of probabilities as parameters and mentions
 the desirability of full conjugate analysis. Could the authors comment on the nature and role of
 exponential family types of model in the causal network framework? More generally, complex
 multiparameter structures often suggest the use of some form of hierarchical prior specification.
 However, the dependencies induced by collapsing stages in such a hierarchy would seem potentially to
 destroy the local conditional independence that is so fundamental to the authors' approach. Some further
 comments on probabilities as parameters would be helpful.

 As with image processing, the area of expert systems has often been in danger of slipping away from
 the purview of the statistical community. In the image processing context, use of the Bayesian formalism,
 combined with creative modelling and algorithm development exploiting local dependency structures,
 has in recent years provided a clear demonstration of the relevance and power of the mathematical
 statistical perspective and has been a major influence on developments in that field. I believe that this
 fundamentally important paper will have a seminal influence on future developments in handling
 uncertainty in expert systems.

 Dr J#rgen Hilden (Panum Institute, Copenhagen): The paper proves that outcome spaces which are
 structurally rich are valuable objects of scientific efforts. Probabilists have been much too fascinated
 by esoteric, almost unstructured mathematical spaces.

 We also need action nodes with state spaces like {drug A, drug B, no drug}. Suitable dummy probabilities
 can be assigned, it being understood that only action-conditional results make sense. Computing the
 expectation E{f(X,, v E V)}, where f(.) may be survival time or perhaps utility, is easy if f(*) is a sum
 of a few terms, each depending on a single clique. However, f(*) can also be stored as a potential, and
 no new subroutines are then needed. For comparing expected utilities we do not even need Z.

 As to the predictive power of a diagnostic test (Section 5.5), expected increments in logarithmic score
 (Kullback-Leibler entropy differences) are inappropriate for practical decision making, as opposed to
 inference (Glasziou and Hilden, 1988). They effectively assume that absolute diagnostic certainty is
 infinitely useful, which is false because medical utilities are always bounded. If, for instance, the probability
 of lung cancer is already high, we operate, and nothing is gained by refining the preoperative probability
 assessment slightly. For lack of a true utility function I suggest using the quadratic scoring rule (Hilden
 et al., 1978). Its expected increment is

 Mquadratic(u, A) = E p(U) Z [p(l I u) - AAW,
 u A

 which is preferable, also computationally, to its logarithmic counterpart.
 The update ratios URk(Ck) = p*(Sk)/p(Sk), Section 8.3, are p-weighted averages of those of the parent

 clique (Ci, say):

 URk(Ck) = Ep{URi(CQ) I Sk}, where Sk = Ck n Ci

 Thus the effect, however measured, of observation E* is necessarily attenuated as we move towards the
 branches of the clique tree. What is the worst case ill effect of breaking off the propagation when
 UR -1 1 < e (a chosen threshold)?

 Program sentinels should be posted to look out not only for

 (a) incompatible data (Z = 0), but also for
 (b) eliminable nodes (X, = x* with probability 1), and for
 (c) other accidentalfactorisations ('breakable cliques').

 Accidental factorisations may arise when 'conditional conditional' independencies exist and the
 outermost condition attains probability 1. I would welcome a formal apparatus for this. For uniform
 handling, the programmer will no doubt retain eliminated nodes as disconnected subgraphs. In Section
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 8.1 (equation (8.1)) and Section 8.3 (equation (8.3)) he may store

 f = p*(E) = I(E = E*).

 Dr Wilfrid S. Kendall (University of Strathclyde): Cheap but powerful personal computers, supporting
 computer algebra packages such as REDUCE and muMath, open up exciting possibilities for probabilists
 and statisticians. It would be interesting to apply computer algebra to the topic of this paper. Crucial
 probabilities and conditional probabilities would be left as undetermined parameters and carried through
 computations directed by the graphs and graphical constructions described in the paper. As always in
 computer algebra, it would be necessary to evade problems of overflow. Unnecessary computer algebra
 overflow corresponds loosely to prohibitively long numerical calculations of the kind mentioned after
 equation (4.1). The techniques described here should help considerably, when coupled to judicious
 inhibition of algebraic expansion algorithms. Nevertheless we would expect that the symbolic approach
 would be more limited than the numerical approach.

 The symbolic approach offers practical rewards such as immediate and direct calculation of influence
 by means of symbolic differentiation. In the longer term we would envisage a theory of symbolic
 probability dealing with the interplay of abstract probability, graph theory and symbolic computation.
 On a mundane note there would be considerable pedagogic advantages in illustrating the fundamentals
 of probability theory by interacting with symbolic implementations of substantial expert systems. Such
 examples would counterbalance the trivialising influence of the ubiquitous coin, die and card!

 Inspired by the paper, I have made a faltering beginning using the excellent muMath package.
 Combined with a cheap IBM compatible computer, this package yields a remarkably flexible small
 computer algebra system. Unfortunately my results are still far too incomplete to be discussed here.

 On a different note I wonder whether it is practical to investigate methods for detecting possibilities
 for replacing a given expert system by another using fewer nodes and edges. Discriminant analysis and
 logistic regression offer possibilities, but lead away from the sparse graphical structure.

 Finally here is a somewhat unconventional way to display imprecision of probabilities. Consider
 transformations of the probabilities (such as log-odds) as varying randomly with time according to an
 Ornstein-Uhlenbeck diffusion. Set the long-term mean at the original probability specification and set
 the diffusion parameters to reflect imprecision. A specified set of results can then be displayed in animation
 as fluctuating randomly about levels calculated on the basis of the original specifications. Fluctuation
 statistics could be derived using the Ito calculus (perhaps using the symbolic Ito calculus described in
 Kendall (1988)).

 Mr K. G. Olesen and Dr S. K. Andersen (Aalborg University): The authors have made probabilistic
 propagation of evidence in causal networks with loops computationally feasible. We acknowledge the
 work as an essential prerequisite for the HUGIN core-a general tool for handling uncertainty in
 probabilistic networks.

 We should like to address some possible practical simplifications in the scheme of evidence propagation.
 In the 'simple example' outlined in Section 5 a maximum cardinality enumeration of vertices of the

 graph is made several times: first, to perform the initialisation and secondly when propagating evidence.
 In this way the linear running intersection property of the cliques in the triangulated graph is achieved.
 As an alternative, the maximum cardinality ordering performed at the initialisation can be used to
 establish a junction tree as described in the comment of Dr Jensen. Using this approach we obtain a
 static structure which yields an ordering that is usable whenever evidence becomes available.

 The initial effort of creating a junction tree gives a structure of cliques tied together by separation
 sets in which all run time operations such as absorption and propagation are performed. The underlying
 qualitative structure remains the same independently of the representation used.

 As an example the global propagation of multiple evidence (Section 5.3) can be performed in the
 static clique structure. All evidences are propagated to some clique where they are joined (Fig. 12). From
 this clique, now acting as a root in the junction tree, evidence is propagated to the whole tree, the basic
 operation being similar to the propagation of simple items of evidence (Section 5.4).

 The crucial point is when evidence from different branches is merged. Here the order in which the
 different steps of the calculations are performed is essential.

 In the 'simple example' outlined in Section 5 evidence arrives at a and d. This evidence is joined in
 one clique, say (z, A, ?), which now acts as a root and from here the whole system is calibrated. It is not
 necessary to propagate to the 'leaf' cliques which contain a and 3, though.
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 / -- aRoot

 new evidence

 new evidence

 Fig. 12. Global propagation in a junction tree

 In principle this way of updating works in the same way as described in the paper, but it reduces the
 computation involved and makes new maximum cardinality enumeration superfluous.

 These methods can also be used in the initial transformation, i.e. the movement from a causal network
 described by nodes and their conditional probability tables to a junction tree consisting of cliques and
 their corresponding set marginals.

 When the qualitative structure of the junction tree is settled a table is allocated to each clique and
 each separation set. These tables could hold either an evidence potential, a set marginal or a set chain
 representation. Initially the tables associated with the cliques hold an evidence potential composed of
 the conditional probabilities.

 With the global propagation scheme on this set of tables and starting the propagation from all leaves,
 the joining of evidence in the root will leave the tables holding a set chain representation. The following
 calibration will then leave the tables holding a consistent set marginal representation and a run time
 environment is created.

 Dr A. Gammerman (Heriot-Watt University): The paper is important not only because it gives us a
 neat and accurate description of a causal probabilistic reasoning method but also because it introduces
 us to some new ideas in the field of intelligent knowledge-based systems.

 My contribution to the discussion will be limited to a comment on the development of a computational
 model of a causal network.

 A working computational model of the causal probabilistic reasoning method suggested by
 Spiegelhalter (1986, 1987) has been designed and implemented at the Computer Science Department of
 Heriot-Watt University (Gammerman and Crabbe, 1987).

 The model, a causal probabilistic reasoning system, at present consists of two main procedures. The
 first is a knowledge elicitation procedure through which an expert or a user may supply information
 about some area of knowledge in the form of a causal graph and associated conditional probabilities
 and store the information in a file.

 The second part of the model is an evidence propagation procedure which deals with an individual
 case relating to an area of knowledge dealt with by the first procedure.

 All programs in both procedures were written in the language C using UNIX operating environment
 on a VAX 11/750 computer.

 The model is being tested and the question of how it may be used in forensic science is currently the
 subject of research.

 The following contributions were received in writing, after the meeting.

 Dr C. G. G. Aitken (University of Edinburgh): In the paper the authors have discussed a method for
 successively updating on the basis of available evidence a coherent system of probabilities representing
 belief in verifiable propositions. Another area, apart from the medical area, in which we are interested
 in updating beliefs in propositions is that of the interpretation of evidence in forensic science. The
 following artificial example illustrates the point.
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 Two people, A and B, are under suspicion of murdering a third person, V. Fibres from a jacket, similar
 to one found in the possession of A, are found at the scene, S, of the crime. Glass fragments of a refractive
 index similar to that of a window broken at S are found in the soles of pairs of shoes belonging to A
 and B. There is eye-witness evidence that shortly before the commission of the crime both A and B have
 had violent disagreements with V. Hearsay evidence is produced that B drives A's car frequently. This
 introduces the possibility of secondary transfer of fibres-a matter of current concern to forensic
 scientists-from A's jacket to clothes of B and from those clothes of B to S. Suppose, also, that A is a
 glazier. This affects the weight that may be attached to the glass evidence in his case since the glass in
 the soles of his shoes may have reached there in the natural course of his work. There is also the
 possibility that A will leave glass in his car which B may pick up while driving it and then deposit at S.

 It is not difficult to see how these statements may be represented graphically and the techniques of
 today's paper applied. However, there are many problems of interpretation. Conditional probabilities
 need to be obtained and many of these will be subjective. The reliability of eye-witness and hearsay
 evidence needs to be considered. However, there are also exciting possibilities and extensions are not
 difficult to imagine.

 Work is currently being done in collaboration with, and using causal computational models developed
 by, Dr A. J. Gammerman of Heriot-Watt University to investigate the performance of these techniques
 in the assessment of evidence in forensic science. We would be interested to know whether the authors
 have had any experience of such an application. The area seems most appropriate for ideas on imprecision
 and updating as outlined in Section 11.4.

 Dr Jens Damgaard Andersen (University of Copenhagen): I recognise the importance of establishing
 a solid probabilistic foundation for expert systems and welcome the thorough analysis and the innovative
 approach taken in the paper.

 The expert knowledge is stated as conditional probability tables (see Table 1) which implicitly define
 the structure of the casual network. The node marginals, which are really of interest to assess the
 probabilities of hypotheses, can be calculated directly in one pass without the need to go through the
 two passes (forwards and backwards) described in Section 5.1.

 The binary relation v -* w (w is a child of v) is antisymmetric and transitive. If we include a reflexivity
 property the set (V, -+) is a partially ordered set (poset). Thus Fig. 2 may be redrawn as the Hasse
 diagram Fig. 13.

 The unconditionally specified states correspond to the minimal elements of the poset (a and a in
 Table 1). Given the structure of the poset it is possible to implement calculation of node marginals in
 one pass based directly on the table representations after the nodes have been sorted in antichains.
 Sorting in disjoint antichains requires fewer than mnp comparisons between node numbers, where m is
 the number of nodes, n the number of disjoint antichains and p the number of elements in the largest

 ( t3 X 6 8 )

 "N

 c1 cr 5 J  .01

 Fig. 13. Hasse diagram corresponding to Fig. 2 with arbitrary numbering of nodes and a partitioning into four
 disjoint antichains {a, a}, {r, A, ,8}, {e}, {5, 5}
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 antichain. The poset (V, --) can be partitioned into n disjoint antichains if the length of the longest
 chain in Vis n (the dual of Dillworth's theorem, see Liu (1987)). It is easy to implement a program for
 sorting in antichains. After the sorting procedure node marginals can be calculated directly from the
 covered node marginals and conditional probabilities for the states of the covering node given the states
 of the covered nodes.

 Professor R. E. Barlow (University of California at Berkeley): Lauritzen and Spiegelhalter present a
 general method for computing conditional probabilities based on probabilistic influence diagrams. Their
 influence diagrams are probabilistic because they do not consider decision nodes.

 Fault trees (or, more precisely, logic networks, since they are not trees in the graph theory sense) used
 in engineering reliability analysis are special cases of probabilistic influence diagrams. In a fault tree all
 probability nodes are root nodes and binary. All other nodes are deterministic logic nodes. It was pointed
 out by Rosenthal (1975) that for general fault trees the computation time for computing the probability
 of the top event will be exponential in the size of the fault tree. Even determining whether the fault tree
 top event can occur is non-polynomial (NP) difficult. In a fault tree a cut set is a minimal set of events
 which will cause the occurrence of the top event. Even finding the size of the smallest cut set is NP
 difficult. The point is that there can be no general efficient algorithm for even many easy sounding
 problems.

 In discussing a general method, most authors including Lauritzen and Spiegelhalter consider some
 method for first finding modules (called cliques by the authors). This was also considered by Chatterjee
 (1975) for fault trees. However, this does not alter the basic fact that the problem is NP hard. Another
 general method is that of pivoting. This method has been used recently by Wood and McCullers (1988)
 who have also developed a computer program for fault trees.

 The fact that no general algorithm can be devised which is efficient does not mean that efficient
 algorithms should not be sought for special structures. This has been the computational approach taken
 with respect to connectivity in network reliability problems and it has been quite successful. Therefore,
 I suggest that this is the approach that should be taken with respect to probabilistic influence diagrams,
 i.e. we should seek and define classes of influence diagrams of special structure for which efficient
 algorithms can be devised. Certainly such special structures will be at least in part defined by the graph
 structure. In a sense that is what the authors are doing.

 Professor C. Berzuini and Professor M. Stefanelli (University of Pavia): Probabilistic coherence is of
 primary importance in the therapeutic decision field, but is it always important in diagnostic applications?
 Many recent efforts in the field of medical diagnostic expert systems have concentrated on modelling
 reasoning strategies in terms of abstract cognitive tasks and represent them in the system separately
 from medical facts and relations, so that the expert system could reflect the cognitive nature of the
 problem. If the diagnostic problem is very complex, exclusively worrying about probabilistic coherence
 may lead to an underestimation of the importance of the cognitive tasks, and this may result in a
 'shallow' expert system. Typically, diagnostic reasoning proceeds by 'abduction-deduction-induction'
 cycles. Abduction takes initial observed manifestations as input and sets an initial belief scenario by
 outputting a list of admitted hypotheses; subsequently, conditionally on admitted hypotheses, 'deduction'
 produces a list of expected manifestations, indicating relevant additional tests to be performed on the
 patient. Iteration of such a cycle ought, on suitable monotonicity assumptions, to converge to the 'best'
 diagnostic explanation.

 In the light of the global architecture of diagnostic reasoning, do we always require input-output
 from individual abduction-deduction steps to be of probabilistic type, or is it sometimes computationally
 and/or psychologically advantageous to use standard logical rules providing a categorical output?

 The solution to this question perhaps relies on the notion of utility: in an individual abduction or
 deduction step there may be little utility in embarking in coherent probabilistic assessment if conclusions
 are only temporary. Since diagnosis is not deliberated in a single abduction step, we can pragmatically
 accept that at each abduction step all hypotheses surviving exclusion criteria are equally true, because
 they can have this status revoked at a later step, in the light of new evidence on the patient, perhaps
 containing pathognomonic signs. At each abduction step probabilities are temporarily 'crystallised' to
 0, 1 values. The main effort is not in mediating the relationship between evidence and hypotheses by
 numerical probabilities, but in reproducing the global abduction-deduction architecture of reasoning
 followed by diagnosticians.

 Perhaps an outstanding improvement would follow from combining the logistic and the probabilistic
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 paradigms. For example, if the behaviour of the system in a certain subproblem is unsatisfactory, we
 could translate the relevant portion of knowledge-base into a 'moral' network representation and,
 provided that relevant data are available, use the network representation to optimise the extraction of
 probabilistic parameters from the data and/or test hypotheses about the qualitative structure of the
 system.

 We agree with the authors that the semantics of the network would be significantly enriched by
 symmetric links. For example, concepts of mutual exclusion or complementarity between diagnoses
 imply symmetric relationships, which are useful in reducing the space of probabilistic parameters since
 they imply zero conditional probabilities for certain disease combinations.

 Dr Peter Cheeseman (RIACS, Moffett Field): I wish to call attention to the question: 'where are all
 the numbers coming from?'. The obvious answer is: 'from the expert', and the authors refer to Andreassen
 et al. (1987) for details of the assessment procedure. This raises the question: 'where did the expert get
 the numbers?' Again, the obvious answer is: 'from experience'. However, this answer raises a more
 fundamental question: 'does the expert have sufficient experience to justify all those numbers, or is he
 making them up?'.

 For a rough quantitative grasp of this problem, consider the fragment of MUNIN shown in Fig. 1.
 As the authors show, the 'FORCE' node alone requires 270 values to be specified. Not only is this a
 lot of information to ask of the expert, it is not clear that the expert has this information to give. From
 my research on automatic induction of expert systems from data it is clear that there must be at least
 an order of magnitude more data (cases) than the number of parameters to be assessed-otherwise there
 are not sufficient data to distinguish real effects from noise. In this example, this implies about 3000 cases
 for the FORCE node alone. In some domains the ratio required is much higher. This is just a restatement
 of the well-known result in pattern recognition that a given amount of data will only justify induction
 of a limited number of parameters.

 These rough estimates are assuming that the induction is done optimally (e.g. a Bayesian estimate
 with reasonable priors), but there Is considerable psychological evidence that people (including experts)
 are not very good at estimating values. This poor estimation is especially clear when the signal is mixed
 with much irrelevant information, stretched over a long time period and in a numerical form, as in this
 case. Typically what happens is that the expert is unduly influenced by recent cases and ignores all but
 a handful of the strongest effects.

 Since I do not know the experience of the expert used, or the strength of the effects captured in the
 causal tree, I can only speculate whether the expert went beyond his experience; however, the numbers
 suggest that he did. The only escape from this conclusion is the following.

 (a) The expert used much more than his own knowledge: this is possible because text-books, papers,
 journals, teachers, collegues etc. potentially represent a much larger pool of knowledge than the
 expert's own experience. If this is a new domain, this loophole does not apply.

 (b) Prior knowledge: in addition to observation, the expert knows a great deal about anatomy,
 physiology, pathology etc. This prior knowledge can contribute to the assessment of numbers
 beyond direct observation.

 (c) It is not important anyway: the only point of a system like MUNIN is to aid clinical decision
 making. If the decision is not very sensitive to the numbers, then accurate assessment of the
 numbers is unnecessary-it depends on the problem.

 Finally, I would plead that researchers drop the term 'causal' from graphical representations unless
 they mean it. The authors were careful to point out that they give the term a broad interpretation that
 includes 'logical, physical, temporal' etc., but in the rest of the paper the directed arcs are interpreted
 as conditional probability statements only. The usual meaning of the term causal can be given a directed
 graph representation that may or may not correspond to a given set of conditional probabilities. It only
 confuses the issue to use the same representation to express conditional probability information and
 causal influence.

 Gregory F. Cooper (Stanford University): The authors' primary goal is the development of an efficient
 algorithm for probabilistic inference using causal networks. Thus, I shall direct my remarks to
 computational efficiency issues. Without loss of generality, I use the term probabilistic inference to mean
 the global propagation of a single piece of evidence over a set of binary variables. For a causal network
 of size m (equal to the sum of the sizes of n nodes, d directed links and p prior and conditional probabilities),
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 the computational time complexity of probabilistic inference using the authors' algorithm has an upper

 bound of 3K + gO elementary arithmetic operations, where K is the total size of the state space, g
 is the number of cliques and 0 is the size of the largest state space of a clique. In the worst case,
 when a clique has a state space of size 2' the time complexity of probabilistic inference using their
 algorithm is also an exponential function of n. Consider an extreme case in which a causal network has
 a link between every node in the network. This network has a size m that is an exponential function of
 n. In this case, the authors' algorithm will produce only one clique of size 2', and the algorithm will
 have a time complexity of probabilistic inference that is an exponential function of n. This example only
 demonstrates that large causal networks require large amounts of computation. Of more interest is
 whether there are relatively small causal networks that require large amounts of computation. More
 specifically are there causal networks of size m for which the time complexity of probabilistic inference
 is an exponential function of m? This might be the case when the authors apply their algorithm to causal
 networks that have a lattice structure, as they suggest.

 Cooper (1987) shows that probabilistic inference using causal networks is NP hard. This proof strongly
 suggests that, for all probabilistic inference algorithms, there are causal networks of size m for which
 the time complexity of probabilistic inference is an exponential function of m. The proof rests on showing
 that probabilistic inference using causal networks is at least as hard to compute as NP-complete problems,
 which have all eluded efficient algorithmic solutions. Knowing that a problem is NP hard is important
 because it suggests that any attempt at an exact, efficient solution is unlikely. Thus, expending a great
 deal of effort to develop such an algorithm should be given low priority.

 The NP-hard proof for causal networks is a theoretical result that makes a statement about the
 infeasibility of efficient probabilistic inference over all possible causal networks. It does not address the
 extent to which an algorithm can perform probabilistic inference in a feasible amount of time on causal
 networks of real applications. The authors suggest that their approach might be practical for many
 applications because causal networks are often sparse and irregular; MUNIN is given as an example.
 However, MUNIN captures only a small portion of medical knowledge. Currently available probabilistic
 inference algorithms may not be sufficiently efficient for causal networks that represent a large amount
 of medical knowledge. Therefore, it will be important to characterise the types of causal networks
 encountered in large, complex real domains. If no current algorithm is adequately efficient when applied
 to large real networks, then perhaps some combination of current algorithms will be adequate; it also
 may be necessary to develop new exact or approximate algorithms. There is hope that we can eventually
 design a set of pragmatic algorithms for performing probabilistic inference on most real causal networks
 of interest.

 A. P. Dawid (University College London): I have been collaborating with the authors on the
 problem of Bayesian learning about unknown probabilities in the kind of structure which they have
 described, and we have obtained some elegant results on the characterisation of 'conjugate' prior
 distributions. As a very simple illustration, consider three binary variables (X1, X2, X3), with an
 unknown joint probability structure constrained to have X1 independent of X3, conditional on X2. The
 (undirected) graphical representation is thus

 1 2 3

 The cliques of this graph are

 C1: . *andC2:e
 1 2 2 3

 and consequently the full structure is determined by the clique marginal probabilities Oi = Pr(X1 = i,
 X2= j) and 4jk = Pr(X2 =j, X3 = k) (i, j, k = 0, 1), which are subject to the obvious consistency
 constraint Yi2Oj = 2kljk = j say (j = 0, 1). We can thus describe a prior distribution for the unknown
 overall probability structure in terms of a joint distribution for (0, +) over this constrained parameter
 space. For any specification of marginal prior distributions H 1 for 0 and r2 for +, satisfying the necessary
 compatibility condition that both induce the same distribution for j, there will be a unique joint
 distribution for (0, O), over the constrained space, such that 0 and + have respective distributions
 H 1 and n2 and, moreover, 0 and + are conditionally independent given V. This conditional
 independence property will be preserved in the posterior distribution given a random sample of
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 observations on (X1, X2, X3). If Hll and jl2 are, furthermore, Dirichlet distributions, then the posterior
 is obtained by simply updating nIl (112) using only the data on (X1, X2) ((X2, X3)).

 All these results generalise to an unknown Markov probability structure over a given triangulated
 undirected graph. There is a unique prior distribution having any assigned set of (compatible) distributions
 for the various clique marginals, and satisfying the additional requirement that, whenever {A, B} is a
 decomposition of the full graph G, the marginal probability structures over the subgraphs A and B are
 conditionally independent, given that over their intersection C. (Here {A, B} is a decomposition of G
 means that, as subsets, A u B = G, while C = A n B is a complete subgraph of G which separates A
 from B in G: Lauritzen and Wermuth (1984).) Again, this conditional independence property is preserved
 under sampling, and, when the clique marginals have Dirichlet priors, each of these can be updated
 using only the relevant marginal data table. Such a prior distribution can be interpreted as an 'equivalent
 prior sample', to be combined additively with the data to yield an equivalent posterior sample, and, for this
 purpose, it is only necessary to store and update the relevant marginal tables for cliques.

 Arthur P. Dempster and Russell G. Almond (Harvard University): Lauritzen and Spiegelhalter
 have presented an admirable exposition of a striking and important new branch of statistical technology
 to which they have made basic contributions. We have been independently developing a theory of belief
 functions on networks that closely parallels, and generalises, the Bayesian theory of Lauritzen and
 Spiegelhalter (Kong, 1986a, b; Dempster and Kong, 1986). Sometimes a more general mathematical
 viewpoint leads to simpler ways to understand and express a theory. We believe this to be so in this case.

 For us, the basic representation is the natural belief function generalisation of evidence potentials
 (Section 7.2). A belief function is assigned to the states of each A E A, and these are combined by the product
 intersection rule which essentially multiplies probabilities, thus embodying independence or conditional
 independence assumptions, and intersects subsets, thus embodying logical conjunctions. When all
 component belief functions are simple distributions we recover Bayesian theory, but a belief function
 may also be a purely logical relation (including an observation), or a more general uncertainty
 representation as described in Shafer (1976). The rules for local computation by propagation and fusion
 described in Dempster and Kong (1986) are expressible in a simple and unified way via the language
 of belief functions.

 A concept that we regard as central is left implicit by Lauritzen and Spiegelhalter, namely the idea
 of a tree of cliques. In the example in Section 4, after marrying and filling in, the tree of cliques is as
 shown in Fig. 14.

 Edges indicate common nodes of the original network, and common nodes are always joined, at least
 indirectly via a sequence of cliques containing the node. The tree of cliques captures the fundamental
 Markov field structure of the model.

 Directed graph representations of the original network are not especially fundamental to us, since
 they represent more-or-less arbitrary 'set chain' representations for constructing 'potentials'. However,
 a different type of arrow on the edges of the tree of cliques can be helpful for explaining the basic
 propagation and fusion algorithms that permit passage from potentials to marginals on the tree nodes
 (as are typically the basic outputs required in practice). Specifically, one can propagate from 'potentials

 Fig. 14. Tree of cliques for dyspnoea diagnosis
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 to set chains' (Section 9.2) to flow through the tree in one direction ending at a preselected node, then
 from 'set chains to marginals' (Section 9.3) reversing all arrows to compute all margins simultaneously.
 Space limitations preclude numerical illustrations with flexible belief function potentials which are capable
 of representing a wide range of sensible uncertain knowledge.

 Dr Didier Dubois and Dr Henri Prade (Universite Paul Sabatier): Since symptoms and diseases are
 not exchangeable, links in causal networks attached to diagnosis problems are directed, whereas logic
 formulae are not. The meaning of so-called 'rules' of the form 'if A then B' is ambiguous, and part of
 the controversy between probabilists and logicians in artificial intelligence is related to this. To a logician,
 'if A then B' means that 'either not A is true or B is true' and is expressed in a non-directed disjunctive
 form (- A v B). Interpreting 'if A then B' as 'A causes B' may lead to consider the conditional probability
 P(B I A) (rather than P(1IA v B)) as given by the expert, and to assume that the network obtained is acyclic.
 However, the statement 'if A then B' sometimes does not refer to causality, and P(B I A) only reflects
 the amount of As that are Bs, as in 'most students are young'. In this case, the expert may wish to

 express knowledge about both P(B I A) and P(A I B) (adding that 'about 20 % of young people are students')
 without being inconsistent. This type of situation introduces cycles in directed graphical representations,
 and the Bayesian methodology and the techniques described in the paper can no longer be applied.
 Especially if the a priori probability P(A) is to be known, there is no longer any degree of freedom in

 the system since P(B I A), P(A I B) and P(A) determine P(B). A similar problem would occur if P(A I B),
 P(BI C) and P(CI A) are the available data (without any causal interpretation). How would a joint
 probability distribution P(A, B, C) be defined on such a basis? Only the causal interpretation of the
 network built from the expert knowledge can forbid this situation as being self-contradictory.

 Only approaches based on upper and lower probabilities (Quinlan's (1983) INFERNO or Paass
 (1986)) can deal with cycles in knowledge networks, because these approaches assume that the degrees
 of probability provided by the experts define constraints on an unknown probability distribution, while
 Bayesian techniques always assume that the available knowledge is sufficient to define a joint probability
 distribution uniquely, as do Lauritzen and Spiegelhalter. To comply with this, additional assumptions
 such as conditional independence are extensively used. The justification, proposed by Bayesians, is
 strange. It seems as if they interpret it on a causal network. For instance knowing that C causes A
 (P(A I C)) and B (P(B I C)) leads us to consider P(A n B I C) = P(A I C) P(B I C) as being natural, and
 that a joint distribution P(A I C) P(B I C) P(C) follows. However, strictly P(A r) B I C) can be any number
 between max(0, P(A I C) + P(B I C) -1) and min(P(A I C), P(B I C)) and it is incautious to assume conditional
 independence because the expert has not yet said anything about the links between A and B. The authors
 consider that underspecification is a common flaw in current artificial intelligence techniques for
 uncertainty handling. In contrast we believe that a Bayesian representation is often implicitly
 overspecified. The requirement for a unique joint probability distribution leads to replacing missing
 information by strong default assumptions which ensure this unicity. Hence while it is true that Bayesian
 techniques are well fitted to absorb new evidence pertaining to the situation under study, they do not
 comply in a consistent way with the arrival of new links in the network, except by modifying the joint
 probability distribution in a non-monotonic way. In contrast, techniques based on upper and lower
 probabilities accommodate new knowledge by monotonically shrinking the probability intervals of
 derived conclusions. Bayesian techniques bear some similarities to default logics (e.g. Reiter (1980))
 which are non-monotonic: a priori probabilities play the role of default values, and conditional
 independence assumptions stand as default rules. While upper and lower probability techniques provide
 safe responses that may be too imprecise to be useful, Bayesian techniques always provide default
 conclusions because adding new links to a causal network can completely change these conclusions.

 Stephen E. Fienberg and Michael M. Meyer (Carnegie Mellon University): The paper combines
 and extends material in two different domains in which we have interest: the use of graphical
 representations for discrete probability structures and the application of (subjective) probability to expert
 system problems.

 In the original work on graphical representations of Darroch et al. (1980), there were parallel structures
 for the class of 'graphical' log-linear models and the Markov random fields defined by graphs. In this
 parallel structure, the class of decomposable log-linear models (first described by Bishop (1971) and by
 Goodman (1970), and later extended by Haberman (1974)) played a very special role, and the graphical
 representation gave new insights into a variety of contingency table problems. In the present paper,
 these parallels lie primarily in the background, except for some indirect references in Sections 7-9.
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 Indeed, the principal role of the graphical structure is to develop computationally feasible approaches
 to expert systems problems. We believe that the ideas developed in this paper might have some important
 uses if they were translated back into the notation and language of log-linear models and contingency
 tables. For example, many asymptotic calculations involving Taylor series expansions for contingency
 table problems can be implemented only for decomposable log-linear moels (e.g. Lee (1977) and Bedrick
 (1983)). Perhaps ideas from this paper might be of use in deriving bounds for the related problems
 involving non-decomposable models. If the parallel is pursued in the other direction, then the structure
 of decomposable and graphical log-linear models may suggest a new approach to the expert system
 problem as well.

 In a very different class of categorical data problems, Holland and Leinhardt (1981) developed log-linear
 representations for networks or directed graphs. We hope that the authors will comment on possible
 linkages of the ideas in the present paper with those of Holland and Leinhardt. Moreover, Fienberg et
 al. (1985) offer extensions of the log-linear representations to multivariate directed graphs. Have the
 authors explored analogous extensions?

 I. J. Good (Virginia Polytechnic Institute and State University): Good (1984), among other
 things, drew attention to

 (a) the idea of ignoring high order 'unexpectated' interactions between weights of evidence, as defined
 by Good (1960), and more needs to be done: this is a topic to which I returned in Good (1986),

 (b) the weight of evidence provided by uncertain evidence (Good, 1981) and
 (c) the probabilistic interpretation of a doctor's five-star representation of 'degrees of certainty'.

 Causal networks cani be used, as in the paper by Lauritzen and Spiegelhalter, for the estimation
 of the probabilities of disease states, or for more general hypotheses, and also for trying to assign a
 quantitative meaning to the degree to which one event tends to cause another. In the former activity it
 is sometimes convenient to consider hypotheses in pairs, as in a differential diagnosis, and to think in

 terms of the weight of evidence in favour of a hypothesis. But for the latter activity (exemplified by 'path
 analysis') the explanation that I support (e.g. Good (1961, 1988)) for the tendency of a disease F to cause
 a symptom E is the weight of evidence against F if E does not occur, given the state of the world just
 before F occurs.

 During the last ten years or so there has been a revival of interest in the use of 'artificial neural
 networks' in research on artificial intelligence, the new name for this approach being 'connectionism'.
 It may be that real neural networks, even infra-human ones, embody unconscious iterative calculations

 both when we recognise an object and when we meditate on a problem, and when a non-mathematical
 doctor does a diagnosis. Some of my writing on such topics are more speculative than others, see my
 publication numbers 169, 183, 185, 243, 368, 397, 521, 525, 592, 615, 666, 753, 777, 938, 1212 and 1235.
 The meanings of these numbers may be found in Good (1983).

 Dr Tomas Havranek (Czechoslovak Academy of Science): Some questions arise if we leave the authors'
 probabilistic framework for some reason. I cannot agree with the view that probabilistic structuring
 provides a good model for human understanding and memory and hence is appropriate in expert system
 construction. The main support for this approach comes from statistics by considering cases in which
 we are able to base our knowledge on some statistical observations in addition to a fragment of a
 structural knowledge of an expert, as in the MUNIN example.

 Human experts are rarely able to express their knowledge (uncertainty) in a numerical form respecting
 the nature of real numbers of probabilities fully. Relying on numbers can lead to great misunderstanding
 in constructing expert systems even if there is clearly a great temptation to use a numerical representation
 for its computational advantages. In this connection there is the algebraic theory of uncertainty. Hajek
 and Valdes (1987) apply finitely generated ordered Abelian groups as closely as possible to human expert
 understanding of uncertainties. This approach respects fully the fact that experts and users of a
 consultation system use only a small finite number of values for expressing the uncertainty. In this
 framework, for example, questions of stability of decisions of an expert system under changes of the
 designated values can be investigated. Such an approach restricts the expressive power of a knowledge
 representation, but as can be seen from the paper in the probabilistic approach the expressive power
 has to be restricted as well-from the computability point of view. The question is whether this restriction
 (triangulated graphs etc.) respects the nature of knowledge expressed by human experts. The answer is
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 yes for reliably established structural knowledge. We can consider incorporating logical links into
 probabilistic knowledge questionable, particularly in some 'second-order' unreliable cases.

 Even if we only consider statistically generated knowledge, perhaps with some a priori structural
 expert knowledge, then some open questions remain: first, a non-Bayesian method using confidence region
 estimates of probabilities should be more realistic in many cases and secondly there is a question of
 establishing structural models (dependency graphs) from statistical data; data can support a great number
 of concurrent structural models (Edwards and Havrianek, 1985, 1987) and some further research in
 model choice is indispensable.

 In general, linking expert knowledge with knowledge obtained from data can be very dangerous.

 Max Henrion (Carnegie Mellon University): The development of coherent and tractable inference
 methods for large causal or belief networks is an important goal. Its achievement is crucial for building
 diagnostic expert systems that are both practical and trustworthy. Lauritzen and Spiegelhalter present
 an elegant formulation and ingenious techniques, which constitute a major step towards this goal. The
 question is how much further do we have to go?

 The authors point out that the computational complexity of their algorithm is exponential in y, the
 size of the largest clique in the network. How large this is will depend on the degree of connectedness
 of the graph, and they cite Pearl (1986a), who argues that nets are often sparse. They illustrate this with
 MUNIN, whose largest clique has only four nodes. It can achieve this by treating the possible diseases
 as a single node with 11 mutually exclusive states. This may be entirely appropriate for MUNIN's
 domain, but in other domains more than one disease may be present simultaneously. This means that
 each disease must be treated as a separate node, and considerably increases the complexity of the net.
 For example, the medical expert system QMR, a descendant of INTERNIST-1 (Miller et al., 1982), has
 almost 600 diseases and 4000 manifestations (symptoms, findings etc.). Some manifestations have as many
 as 150 possible causes. To 'moralise' the causal graph in such a case would require marriages among
 all the 150 parent nodes (ignoring the issue of the morality of group marriage on this scale !). Together
 these would form a single clique with their common child, producing a factor of 2151 and a
 computational impasse.

 Such difficulties should not be too surprising: Cooper (1987) has shown that, in the general case, exact
 inference in a belief net is NP hard. This suggests that we will have to resort to approximate methods
 if our goal is to develop coherent methods for expert systems of the scale of QMR. While I believe that
 this paper will stand as an important landmark along the way, we still have some distance to go.

 Dr F. V. Jensen (Judex Datasystemer, Aalborg): I see two major achievements in this work:
 initialisation and global propagation of evidence. I shall only comment on global propagation. The
 points made are reported in Jensen (1988).

 Let U be the universe, and let G be a covering of U consisting of pairwise incomparable sets, each
 having a probability table. G is consistent if for any c, d e G, the marginals for c n d in the two tables
 coincide. As stated by Lauritzen and Spiegelhalter, it holds that if G is a decomposable hypergraph
 then there exists a probability function for U with the tables from G as marginals. This function is
 unique if maximal entropy is required. Now, they use that G is decomposable if and only if G can be
 ordered with a running intersection property (RIP). However, more flexible and efficient methods can
 be achieved using a tree ordering of G rather than the linear RIP.

 Fig. 15. Junction graph for the example in the report
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 Fig. 16. Junction tree for the example

 Definition. The junction graph, J(G) for G has the elements from G as vertices. For each pair c, d E G
 with c n d 0 0 there is an edge with weight c nd (Fig. 15).

 A junction tree, T' for G is a spanning tree for J(G) such that for any c, d e G, all vertices on the path
 in Tbetween c and d contain c nd (Fig. 16).

 Theorem. G is decomposable if and only if G has a junction tree.

 Using junction trees, the existence of a probability function for U is fairly easy to prove. Furthermore,
 global propagation of evidence is straightforward: any vertex in the junction tree can be used as a root
 for a propagation. A change in the table is propagated by simply successively calibrating the neighbours
 in the tree to the recently calibrated vertices.

 Since any maximal spanning tree is a junction tree (if they exist), effective algorithms for constructing
 junction trees exist, such that they can be established at run time if needed.

 All methods based on junction trees are local: communication with neighbours in the junction tree
 only is sufficient. Therefore an object-orientated style of implementation is supported.

 Finally I emphasise that, although junction trees might be a conceptual simplification and might form
 a basis for more flexible and efficient methods, the bulk of the theoretical work is contained in this paper.

 Augustine Kong (University of Chicago): My comments will focus on some technical issues concerning
 marginalisation of potentials and fill-in algorithms.

 In Section 8.3, Lauritzen and Spiegelhalter consider how to find a potential representation (A, W) of the
 marginal of the nodes D given the potential representation (A, T) of the joint distribution over the nodes
 D u E of a network. The suggested approach is natural if I E l = 1. However, when I E l > 1, it would
 often be important to proceed recursively through subsets of E. For example, suppose E = {v1,
 v2}. A recursive procedure could first marginalise over v1, using the algorithm described in the paper,
 to derive (A', T'), and then apply the same algorithm to marginalise over v2 and obtain (A", T").
 Compared with the one-step procedure, the recursive procedure in general leads to potentials that involve
 smaller sets of nodes. For example, if D = {2, 3, 4}, E = {1, 5} and A = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}, then
 using the one-step procedure we obtain A = {{2, 4}, {2, 3}, {3, 4}}. Using the recursive approach,
 A' = {{2}, {2, 3}, {3, 4}, {4, 5}} and A" = {{2}, {2, 3}, {3, 4}, {4}}. The representation (A", T"') is more
 informative since A" indicates that 2 and 4 are conditionally independent given 3. This recursive
 procedure is proposed in Kong (1986) as a fast algorithm for computing any joint marginal belief function
 that may be of interest.

 In Section 6, the authors define minimum fill-in and note that computing a minimum fill-in is NP
 complete. This may give the impression that a minimum fill-in is preferred, and the only reason that it
 is not used is that it is expensive to compute. By contrast, Kong (1986) proposes searching for a fill-in
 that minimises the maximal clique state size. This proposal is supported by the comment of Lauritzen
 and Spiegelhalter that the maximal clique state size is vital to computational cost. Unfortunately, even
 in the simple case where the state sizes of individual nodes are all the same, Arnborg et al. (1987) show
 that finding such a fill-in is also NP complete. Hence, for applications, we do need fast fill-in algorithms
 such as the maximal cardinality search and the lexicographic search suggested by the authors, or a
 one-step look-ahead algorithm suggested in Kong (1986). We plan to report elsewhere on empirical tests
 of fast fill-in algorithms on different graphs with evaluations based on computation time and the maximal
 clique state size produced.
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 Professor K. V. Mardia (University of Leeds): I believe that the discussion in Sections 4 and 5 could
 be a simple result of obtaining the minimum Markov random field (MRF) through Brook's expansion.
 Have the authors tried this approach? In the case of a slightly more difficult situation, the approach
 works well (Mardia, 1988). For Section 11.4, we could use a prior for probabilities themselves using a
 Gaussian MRF either on a hyperplane or of the appropriate log-ratios (Kent and Mardia, 1988). These
 priors have some nice properties.

 In the paper, it would have been nice to have seen how Geman's (1985) approach works for the
 given example. Also, a few more examples would have been helpful.

 Dr Mary McLeish (University of Guelph): The paper sheds further light on the difficult and
 controversial problem of how to model uncertainty in expert systems. The authors provide a
 computationally feasible solution to a probabilistic approach which could also be applied to domains
 beyond the medical applications.

 The computational complexity issue has benefited by the existence of an O(nodes + edges) solution
 to the required graph problem. The other quantities which enter into the time factor are y, the maximum
 number of nodes in a clique, K, the total state space, 0, the largest state of a clique and g, the number
 of cliques. In the sample problems given here, these quantities are all fairly small and thus an expression
 like (2y + 1)K + gO is not very large. At Guelph, we are working on computerised diagnostic aids for
 veterinary medicine involving discrete variables with usually five or six outcomes and sometimes as
 many as 50 (especially when continuous variables have been discretised). One project involves the
 diagnosis of liver disease in small animals and 100 test results are relevant to the diagnostic process.
 The maximum clique size could easily become large and the base of the exponential term would be
 greater than two. Thus, for certain applications, the exponential term in the complexity expressions
 could become significant.

 A comment in the paper suggests how the use of object-oriented programming can reduce the time
 complexity. Another approach would be to investigate different machine architectures. New machines
 (SEQUENT, HYPERCUBE, etc.) offer parallelism with powerful central processor units (CPUs) at each
 node. The connection machine provides a massively parallel environment with minimal node capacity.
 There has already been considerable work on developing parallel graph algorithms (e.g. Quinn and Deo
 (1984)) and there is recent work related to medical diagnosis by Pearl (1987b). A recent implementation
 on a GAPP (parallel systolic array processor) assigns each rule in an inference net to a processor in the
 array, which performs a 'fuzzy' inference operation (Eshera and Lewis, 1987). Depending on the type
 of parallel machine, each node or clique of the graph in a probabilistic inference net could
 be assigned to a separate processor to do local computations. In larger applications, where the diagnosis
 of many related problems is being undertaken, each disease type could be handled by individual CPUs.
 Neural net architectures would also be worth investigating for Bayesian networks.

 Judea Pearl (University of California, Los Angeles): The paper brings together two themes: the role
 of structural models in statistical analysis and the role of probabilistic analysis in expert reasoning.
 These carry a doubly important message to on-going work in artificial intelligence (Al).

 Ever since McCarthy and Hayes (1969) proclaimed probabilities to be 'epistemologically inadequate',
 Al researchers have shunned probabilities. A few researchers have been trying to convince Al researchers
 that abandoning probability theory altogether might be premature (Spiegelhalter, 1986; Pearl, 1988).
 We have tried to communicate the understanding that 'Probability is not really about numbers; it is
 about the structure of reasoning' (a quote from G. Shafer). For example, the statement P(B I A) = p is
 not so concerned with the precise magnitude of p as it is with specifying the permissible ways in which
 the conditioning context A can be transformed if p is to remain unchanged, and that the information
 needed for such transformations can be represented by graphs of no lesser stature than those networks of
 pointers and indices that decorate 'symbolic' programs in Al.

 These arguments have remained tarnished by the realisation that the statistics community itself does
 not practice what we claim is the essence of statistical inference. For example, the statistical literature
 still treats graphical models as a mnemonic curiosity. This is attested by the observation that most
 text-books and journals in probability and statistics have hardly any diagrams in them or only depict
 shapes of density functions, not relationships between random entities.

 This paper demonstrates to the AT community that local representations of probabilistic models are
 capable of meeting the computational demands of expert systems technology. Secondly, it establishes
 graphical models on sound theoretical foundations and, finally, it shows that such models are
 indispensable for inference tasks involving many variables.
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 The message to statistics is of no less value than that given to Al. Statisticians should rejoice that
 both directed and undirected graphs conform to the axiomatic structure that governs conditional
 independence (Dawid, 1979; Pearl and Verma, 1987), which renders graphical representation a useful
 tool in statistical analysis; graphs permit the statistician to verify swiftly whether one dependency follows
 from others, and they serve as communication to pass structural information economically and naturally.

 I have two questions. The first relates to presentation. I have found it useful to explain the technique
 in the following manner:

 (a) triangulate the graph;
 (b) identify the maximal cliques of the triangulated graph;
 (c) organise these cliques in a tree structure (i.e. a join-tree) and direct its links along the order used in

 the triangulation phase;
 (d) treat each clique as a single compound variable and identify the conditional probabilities of the

 inter-clique links in terms of the conditional probabilities of the original network;
 (e) update probabilities using the familiar method of propagation in causal trees (e.g. Pearl (1986a,

 1988))

 Is there a flaw in this or is there any advantage in keeping the join-tree undirected? One advantage
 in the directed tree approach is that the causal relationships used in the construction of the original
 network are kept explicit.

 My second question raises the option of viewing the technique in the wider context of clustering
 methods. For example, consider Fig. 17(a): it can be organised into six overlapping clusters by the
 clique-decomposition method (Fig. 17(b)), but it can also be organised into a chain of five non-overlapping
 clusters (Fig. 17(c)). Moreover, the non-overlapping structure has the slight advantage that the largest
 cluster contains only two variables. Is it worth exploring the space of all singly connected clusterings,
 or can the authors' method now provide a systematic way of identifying the most useful structures in that
 vast space?

 0

 (a) (b) (c)
 Fig. 17

 Dr Lawrence D. Phillips (London School of Economics and Political Science): Any scheme that will
 simplify the potentially unmanageable computations required by a large inference structure is to be
 welcomed, and the contribution by Lauritzen and Spiegelhalter is particularly notable for its
 comprehensiveness and potential usefulness. A complementary approach has been taken in the pioneering
 work of psychologists Schum and Martin (1981) who have produced a 14-category taxonomy of possible
 patterns of data which may or may not interact in an inferential argument. Discussing the implications
 of this work, von Winterfeldt and Edwards (1986) speculate that

 '... these 14 categories of evidence structures can be thought of as the building blocks of a very general
 theory of evidence. In other words, we speculate that any inferential structure, no matter how
 complex, can be decomposed into various combinations of these 14 elements. Moreover, since these
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 14 patterns include all kinds of dependencies among items of evidence, each block should be
 conditionally independent of every other block. In that sense (if our speculation is correct), Schum and
 Martin have accomplished the extraordinary feat of providing a comprehensive taxonomy of
 inferential structures applicable to all possible instances of human (or machine) inference.'

 (In his more recent work, Schum (1988) has reduced the taxonomy to 12 categories.) It appears that the
 computational schemes of Lauritzen and Speigelhalter are applicable to all these 12 evidence structures
 since each can be represented as a causal network. It is not clear to me whether the schemes can handle
 the subtle dependency issues raised by Schum and Martin (1981, 1982). If they can it would suggest that
 the next major development in causal networks might come about by marrying efficient and flexible
 computational schemes with generic structures so that combinations of these structures could usefully
 represent very complex inference structures in expert systems.

 Dr B. T. Porteous (University of Durham): The idea of expressing a causal probability distribution
 as an equivalent distribution defined on a decomposable graph and then exploiting the special properties
 of decomposable graphs is, in my view, extremely ingenious.

 Although the authors state that, for the purposes of their paper, they are concerned only with a fixed
 model, which is completely specified, this model would seem to be of crucial importance in the subsequent
 probability manipulations, and several questions seem worthy of future research. For example, what
 are the implications of misspecifying the initial causal network and how much effect do misspecifications
 of the conditional probability tables have on absorption and propagation?

 Although the authors state that they interpret probabilities as subjective Bayesians, I feel that the
 frequentist approach, other than for initialisation perhaps, has many attractive features. Assuming that
 one is willing to work within the class of sparse decomposable graphs, model estimation, verification
 and updating or learning could all, in principle, be achieved locally using low dimensional margins of
 the data.

 Finally, I would like to make some remarks on collapsibility. Collapsibility for the covariance selection
 models of Dempster (1972) has been studied in Porteous (1985). This and related studies, Lauritzen
 (1982), Asmussen and Edwards (1983), are useful not only for understanding the conditional independence
 structure of marginal models, but for constructing models capable of handling data consisting
 of both response and explanatory random variables.

 Dr Ian Pratt (University of Manchester): Lauritzen and Spiegelhalter's method for performing
 probabilistic inference using causal networks assumes that effects of a single common cause in the
 network are probabilistically independent given that cause. I wish here to question the extent to which
 this assumption can be expected to hold.

 The events and states referred to in the authors' examples admit of continuous variation in degree,
 size, intensity etc. Thus, headaches can occur with greater or less severity, smoking can be more or less
 heavy and prolonged, and growths can be larger or smaller. This variability generates problems for the
 assumption that joint effects will be independent given their causes.

 Consider Fig. 2 of the paper. This tells us that smoking can cause both lung cancer and bronchitis.
 The question before us is: if we already know that the patient smokes (exact extent unspecified), does
 the additional information that he has lung cancer affect the likelihood that he has bronchitis? If so, we
 do not have the conditional independence claimed by the authors.

 Let it be given that the patient smokes. This means that he has smoked a certain number of cigarettes
 for a certain time; but a wide variation in the rate and history of the patient's smoking is still possible.
 The crucial observation is that, if he has lung cancer, it is more likely that his smoking will be towards
 the heavy end of the spectrum. But if his smoking is heavy, it is more likely that he will have bronchitis
 than it would be if his smoking were light. Therefore, the observation of lung cancer increases the
 probability of bronchitis given only that the patient smokes (extent unspecified). If so, lung cancer and
 bronchitis are not independent given only that the patient smokes.

 More generally, the problem is that most medical conditions are more-or-less affairs. You can smoke
 more or less heavily, have more or less exposure to radiation, be incubating more or fewer dread bacteria
 D, etc. Many of the propositions in the examples given in the paper concern conditions and circumstances
 which exhibit just such variability-variability which affects the probability with which various effects
 are brought about. This being so, the independence assumptions made by the authors will seldom hold
 in their chosen domain.
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 Dr A. L. Rector (University of Manchester): The models described require very large numbers of
 conditional probabilities. It is therefore important to determine their sensitivity to variations in the
 conditional probabilities and their behaviour under plausible approximations. Not all the conditional
 probabilities will be equally reliable or sensitive to local conditions. In general, probabilities of symptoms
 given diseases-those probabilities following the direction of the original directed graph-are reasonably
 well defined. However, probabilities of the symptoms given the absence of a disease depend heavily on
 the population from which the sample is drawn. For example, hospital clinic populations are often
 heavily preselected so that the probability of symptoms given the absence of disease is much lower than
 in the general population. Similarly, the probabilities of co-occurrence of common causes required for
 the 'moral graph' are likely to vary between populations. Some of the variation in the probability of
 co-occurrence is simply the effect of scaling of the overall probabilities-e.g. older people tend to have
 more diseases than do young people and it may be possible to compensate for these factors.

 These models are interesting candidates for parallel implementation, since the propagation is essentially
 local. The discussion of 'object-orientated' programming in the text really applies to any parallel or
 pseudoparallel technique. The 'tuning' techniques discussed by Spiegelhalter (1986b) have obvious
 analogies with parallel distributed processing methods.

 There are many cases where the causal graph is not naturally acyclic and some feedback is difficult
 to avoid. Whether a parallel processing approach might provide sufficient power to allow iterative
 solutions in these cases is a question worth pursuing.

 The assumption of the causal Markov property corresponds to the closed world assumption in logic
 programming. The effect described, whereby evidence for one of two competing causes for a single
 manifestation decreases the probability of the other, is closely related to 'negation as failure' in logic
 programming, whereby any statement which cannot be proven is taken as false. It should therefore be
 emphasised that these techniques require a closed problem space. Many problems for medical expert
 systems are less well defined than those in the MUNIN system. Extension to systems in which possible
 causes for symptoms are added incrementally would be an important development.

 Dr Ross D. Shachter (Stanford University): The algorithms in the paper can be viewed as a
 generalisation of algorithms for analysing singly connected directed graphs (Kim and Pearl, 1983; Pearl,
 1986a). If we construct a 'supergraph' in which each clique is a node, then the running intersection
 property (enforced through triangulation) guarantees that we can build a singly connected directed graph
 to represent the dependence relationships among the cliques. When revising our distribution for a clique,
 we can use this supergraph to propagate the changes efficiently throughout the model while maintaining
 the original supergraph topology. This interpretation of the algorithm accounts for many of its desirable
 properties.

 As an alternative approach, it is possible to perform all the required operations (with the possible
 exception of 'retraction' of evidence) within the directed graph representation (Howard and Matheson,
 1981; Olmsted, 1983; Shachter; 1986a, b). Using influence diagram reductions, for example, global
 propagation can be performed through a combination of arc reversals and instantiation. In the process,
 the topology of the graph would be revised. This has the advantage of staying within the natural
 representation for the model builder, especially when the model is constructed and analysed dynamically.
 However, when the model can be precompiled we would expect the method presented in this paper to
 be more efficient, since it exploits the single connectedness of the supergraph.

 The implicit reliance on causality in the network is unnecessary and potentially misleading. It is true
 that an expert's subjective model can incorporate causality and that this can be an invaluable paradigm
 in the elicitation of that expert's model. However, the construction of the original directed network
 merely expresses beliefs about conditional probability distributions and conditional independence; the
 directed arcs are not necessarily causal (Howard and Matheson, 1981; Shachter and Heckerman, 1987).

 The use of an entropy measure such as Kullback-Leibler distance might be a useful criterion in some
 planning problems, but it does not indicate 'which questions will most provide relevant information'
 as the authors state. Such a measure might select a test which distinguishes between disorders for which
 the treatment decision would be the same. In general, the value of sample information, based on expected
 utility, is a more appropriate criterion for comparison. It also allows consideration of the differences in
 cost, pain and risk that might be associated with different test procedures.

 The approach developed in this research will be useful in building expert systems under uncertainty,
 in concert with other methods for analysing and manipulating graphical probabilistic models. It seems
 most appropriate to domains (such as MUNIN) for which a detailed model can be constructed in advance.
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 In general, a combination of approaches is needed to provide a user with timely understandable support
 when a decision must be made.

 Glenn Shafer and Prakash Shenoy (University of Kansas): The ideas on which Lauritzen and
 Spiegelhalter are working are of great importance not only for expert systems but also for our general
 understanding of probability.

 A central lesson of the paper is that we can exploit for combining evidence the same conditional
 independence structure that we use in thinking about causation. This lesson is widely relevant. It applies
 not only to situations where sensible full probability distributions are available, but also to situations
 where the data are more fragmentary and we must make do with partial or qualitative judgements.

 The conditional independence structure is more important than the probability numbers or the rules
 of calculation. We can replace the numbers by a verbal scale (likely, very likely, etc.), and we can replace
 Bayes's theorem by other rules (as we do in the theory of belief functions), but we cannot dispense with
 a structure that tells us what evidence bears on what propositions.

 It is disturbing to note that a student must study probability for a long time before he or she will see
 this importance of structure. Markov trees and fields are topics for an advanced course in probability,
 and path analysis will usually appear only in a fourth or fifth course in statistical inference. Lauritzen
 and Spiegelhalter's paper suggests that we must change this if we want, as statisticians, to retain
 intellectual leadership in the area of probability. We must emphasise the importance of structure in our
 elementary teaching. One way of doing this is to recognise the need for structure to justify the rule of
 conditioning (Shafer, 1985).

 Would the authors clarify further the relation between their work and the work of Pearl (1986a)? It
 is obvious from Fig. 2 that we can successively calculate the clique marginals for the cliques {a, z}, {A,
 B, a}, {?, z, 4, A}, fi, ,B}, {} , { , ?i} and {?, (} in one just pass through the graph. This natural ordering
 of the cliques can also be used for propagating new evidence efficiently, as Pearl has shown. The authors
 show us a more flexible approach, one which can use any triangulation and any ordering with the running
 intersection property. But what is gained by this flexibility?

 Professor Philippe Smets (Universite Libre de Bruxelles): Although the authors did not intend to
 compare the pros and cons of the various models they propose to handle uncertainty in a coherent
 manner, it is questionable whether their proposed Bayesian model is as meaningful as they claim. Once
 applicable, probabilities are perfect, but are they really applicable for medical diagnosis? For instance,
 can one defend the p value in P(MU.loss = other I disease = other) = p?

 To simplify, suppose B _ bronchitis and D _ dyspnoea. I know what P(D I B) is but what about
 P(D I B)? The difference is due to the 'well-defined' nature of the set B and the 'ill-defined' nature of the
 set B. The causal relation between diseases and symptoms is usually clear and its translation into a
 conditional probability can be defended, but what about P(D I B)? Let the set of diseases be defined by
 the family of mutually exclusive and exhaustive diseases B1B2 ... Bn (B = BJ). For each Bi, I can define
 P(D I Bi) but to define P(D I Bi) I need the a priori distribution of the Bis. If I have it, as in a well-defined
 population, then P(D I B) is well defined. But medical diagnosis is not performed in a well-defined context.

 In reality, the population is poorly defined. P(D I Bi) can be used as essentially it does not depend on time
 and space, but the prior repartition P(Bi) is not so constant. It varies in time and space. B is an
 every-varying hotchpotch of people. It is in practice unknown; therefore P(D I B) is also unknown.

 If P(D I B) cannot be estimated the algorithm breaks down. We could accept the unavailability of
 P(D I B), compute the limits between which P(D I B) must be ... and derive upper and lower probabilities, or
 we could use the transferable belief model, which allocates parts of a total unitary belief to some subsets
 (as with probabilities) without requiring additivity (Smets, 1988). The part of belief assigned to a subset
 quantifies the amount of belief that supports that subset and does not support any strict subset due to
 lack of relevant information. If new relevant pieces of evidence become available, that amount of belief
 could be allocated to some subsets. This model implies implicitly the use of belief functions and Dempster's
 rules of conditioning and combination. This transferable belief model looks similar to Dempster and
 Shafer's model (Shafer, 1976) except that it does not require any underlying concept of probability and
 Dempster's rules are not arbitrary. In that model, bel(D I B) is defined as in the Bayesian model but
 bel(D I B) can be described by a vacuous belief function that describes adequately a state of total ignorance
 (which can hardly be done within the Bayesian framework). The use of the transferable belief model
 requires fewer conditional probabilities than the Bayesian model and the computation will be even easier
 than that needed within the Bayesian framework.
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 Dr Alun Thomas (University of Bath): As a mathematical geneticist I feel deeply concerned that
 the authors have failed to mention the method of 'joint-peeling' developed by Cannings et al. (1976,
 1978) for the exact calculation of probability functions on arbitrarily complex pedigrees. This method
 has been used routinely for many years for efficient calculation of likelihoods and probabilities on large
 highly looped graphs, and user friendly computer programs for its application exist. The authors'
 statement that intermarriage is dealt with by decomposing the graph into trees, making repeated
 calculations and averaging the results is quite wrong.

 There are many ideas presented in this paper which are already very familiar to anyone with experience
 of peeling. The efficient method of summation given in equation (4.2) is the very essence of peeling. The
 / functions introduced in equation (4.3) are the R functions of Cannings et al. The conditional probability
 tables of Section 7.1 are transmission probabilities, which in pedigree analysis would usually express
 Mendel's laws of inheritance. There are also clear links between the set chain with the 'running intersection
 property' and the cut set sequence which defines the order of calculation when peeling.

 The notion of triangulating a graph is new to me, however, and while it is not necessary for calculating
 probabilities it may have a contribution to make in terms of efficiency, particularly in the case where
 repeated calculations are required in the face of new data.

 The peeling method has been used exclusively in pedigree analysis, so it is extremely interesting that
 the authors have displayed its potential for applications in expert systems, but due recognition should
 be given to those who originally developed it.

 Dr D. L. Tritchler (Ontario Cancer Institute, Toronto): The relationship of probability to frequency
 data seems a great advantage when such data are available. The 'Feigenbaum bottle-neck' or knowledge
 engineering problem is often mentioned as an obstacle to the construction of expert systems. Eliciting
 expert knowledge by dialogue is laborious, and research in computer induction of expert knowledge is
 aimed at automating this process (Michie, 1985). The statistical work cited on graphical models for
 contingency tables bears directly on estimating the networks treated in this paper. The triangulated
 model suggested by the authors is especially attractive since its parameters can be estimated
 without iteration and could be merged with a database which provided constantly updated probabilities.
 Some of the work on computer induction aims to formalise what a 'meaningful' relationship is (Michalski
 and Stepp, 1983) and might suggest useful ideas for evaluating and selecting statistical models.

 I commend the authors' emphasis on explanation and feel that it is critical to prove the explanatory
 power of their approach in applications. For the example described by Table 4, the fact that propagating
 - = t from clique {r, A, r} to {,, P, fl} implies that E and A are logically equivalent is clearly expressed
 by the update ratios of zero, but not by the ratios 1.0401 and 1.0964, suggesting that we can define
 principles for interpreting the update ratio. The flow of evidence between and through cliques seems
 more complex to me than the flow between nodes in a tree structure; perhaps explanation subtrees
 could be derived as a simplified representation for communicating explanations. The mutual information
 and the influence seem promising for providing higher levels of explanation.

 The observation that the cliques can be programmed as communicating objects is important, because
 it means that the model lends itself to parallel computing, which promises to be widely used for artificial
 intelligence applications in the future.

 Professor Nanny Wermuth (University of Mainz): The authors do not only achieve their main goal,
 to show that 'exact probabilistic methods are computationally feasible' to perform inference in expert
 systems, but, more importantly, their lucid presentation of concepts will bridge gaps between different
 fields of specialisation, between graph theory, probability theory, statistics and expert systems. Thereby
 they open the road for discussion, criticism and contributions to the proposed methods in a much
 broader community of scientists.

 The importance of decomposable (or multiplicative) structures for multivariate statistical models had
 been recognised before connections to graph theoretic concepts were known (Goodman, 1970; Haberman,
 1974; Andersen, 1974; Sundberg, 1975; Wermuth, 1976a). It is fascinating to see that decomposable
 structures have now found another, different application. It is a pity though that the late G. A. Dirac,
 who seems to have been the first to have studied decomposability of graphs, cannot witness the
 applications of his 'rigid circuits' as they appear now in expert systems, in multivariate statistical analyses
 and in efficient retrieval of information from databanks.

 Two formulations in the paper are potentially misleading. There is no advantage in attaching the
 term causal to the described networks if-as is stated in Section 2-'causality' is to mean nothing but
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 a directed relation. Conversely, it would have been helpful to attach a qualifier like 'revised' each time
 the names 'marginal distribution' or 'marginals on all cliques' or on nodes are used in Sections 5.2-5.4.
 This would have alerted the reader that at this stage the authors are no longer concerned with marginal
 distributions implied by the joint distribution, as in Section 5.1, but with revised marginals that result
 from a conditional distribution of a subset of nodes given that responses to the remaining nodes are known.

 The usefulness of the proposed metbods will depend on how well the effects of changes in specifications
 will be understood and integrated into analyses. This comprises not only effects of different assessments
 of probabilities or of directions of influence and of added edges, but also of nodes not yet included in
 the graph. Problems analogous to effects of omitted nodes in a graph have been discussed by social
 scientists as 'moderating effects' of variables (Zedeck, 1971). A general statistical treatment of such effects
 is still awaited and will be important for expert systems, as well.

 J. Whittaker (University of Lancaster): I should like to make one or two points more explicit
 from the perspective of log-linear modelling.

 The initial specification of probabilities as conditional probabilities on the causal diagram is only one
 way to initialise the system. In the paper, it becomes clear that the joint distribution specified in terms
 of conditional independences and evidence potentials is more fundamental and these could be initialised
 directly. This is natural for the log-linear modeller because (apart from taking logarithms) the evidence
 potentials are just the interaction terms in the standard log-linear expansion.

 That decomposable log-linear models have the runnning intersection property was used by Haberman
 (1974) to define decomposability, though he did not give an algorithm to generate the cliques in the
 correct order. That class is of great importance because it is the one for which maximum likelihood
 estimators have direct estimates (and similarly perform efficient probability calculations).

 I am interested in the author's application of the Kullback-Leibler information divergence. In log-linear
 modelling, generalised log-likelihood ratio tests for testing certain interactions are zero, have the same
 mathematical structure as this divergence, and a more systematic treatment of the issues of planning
 and influence may be possible through evaluating the additive elements of the entropy. Such an approach
 for log-linear modelling has been briefly suggested by Whittaker (1984a, b).

 The authors replied later, in writing, as follows.

 We are extremely gratified both by the vigour of the argument concerning our paper and the positive
 nature with which it has been expressed.

 We note that, despite our efforts, the reference list was clearly deficient, particularly with regard to
 the genetics literature. The fact that only around half of the contributors would label themselves as
 statisticians is indicative of the interdisciplinary nature of this area, and the similarity of many of the
 points raised by discussants bears witness to the concurrent international research effort. It is to be
 hoped that one side-effect of such a pooling of comments will be to help to prevent too much parallel
 processing of ideas.

 We shall first cover the issues most commonly raised and then make necessarily brief replies to
 questions asked by particular discussants. The first general point concerns terminology.

 What do we mean by 'causal'?
 Our use of 'causal' has been criticised (Cheeseman, Shachter and Wermuth), and we agree that it will

 generally be interpreted too literally. Thus our first revision of opinion is to begin to use the term 'influence
 diagram' in place of 'causal network', in the hope that this will clarify our interpretation of the directed
 links. Since study of influence diagrams is not restricted to probabilistic interpretations (J. Q. Smith),
 we also obtain a stronger connection with the work of Dempster and Almond, Kong, and Shafer and
 Shenoy, who use a different calculus on the same qualitative structure.

 Are the conditional independence properties expressed in our influence diagrams appropriate?
 Drs Dubois and Prade consider that our representation may be overspecified through making

 independence assumptions by default and consider it strange that a point probability may well change
 after an adjustment to the structure. Dr Pratt correctly points out that conditional independence is lost
 if categories of a parent variable, say corresponding to the extent of a phenomenon, are combined, while
 Dr Rector points out that we assume exhaustive categorisation, and our use of 'not disease' and
 MUNIN's 'other disease' may lead, at a minimum, to problems in probability specification (see also
 Professor Smets's comments).
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 We can only re-emphasise our comments in Section 1; our approach is model based, in that we make
 no claim that either the qualitative structure or the quantitative probabilities are in any sense 'true'. The
 predictions made by the system, however, are logical consequences of our explicit assumptions, and
 hence those assumptions may be called into question by inadequacies in performance. This may lead
 to finer categorisation of variables, additional or fewer links, or revised probabilities, and afterwards
 the predictions will inevitably change. If B is a 'hotchpotch' (Smets) and it matters, then it can be refined
 either in construction or in response to errors. In a sense, Dubois and Prade are correct in viewing our
 predictions as defaults which hold unless something questions our assumptions, but these assumptions
 are not 'read off' the graph-they are the basis for constructing the graph and should be explicitly justified.

 Where do the numbers comefrom, and how can we cope with their imprecision?
 Drs Critchley, Cheeseman and Rector point out the large number of quantities that will need to be

 specified in a realistic system, and that available data cannot be expected to dominate the initial prior
 specification. As Critchley emphasises, this makes it all the more important not only to make explicit
 the imprecision in the assessments but also to allow them to improve as data accumulate. Fortunately,
 the hyper-Markov distribution described by Professor Dawid provides a conjugate prior on decom-
 posable models that promises a firm theoretical foundation for future developments in this area, and
 our current thinking is to set up a particular type of hyper-Markov distribution as follows.

 Above the qualitative 'core' of the influence diagram, which represents the independence assumptions,
 we place a graph termed the 'experience', which contains the quantitative specification. At its simplest,
 this extension consists of an additional parent node for each variable v in the core, which specifies belief

 about p(v 1 [IV), which is considered a random quantity. At initialisation, the expectation of the current
 belief concerning p(v Ill,) is dropped down into the core, and the operations described in our paper
 take place. When data on the patient are exhausted, the beliefs in p(v I I,,) are updated using standard
 Bayesian revision and retained for the next case. If full data are available, for example in a training set,
 or only particular configurations of missing data are allowed, then initial Dirichlet priors on the tables
 provide an exact, fully conjugate analysis in which all quantitative knowledge may be expressed in terms
 of counts on clique marginals (Porteous and Tritchler), and the operations are a simple extension of
 those in our paper.

 The crucial point is that the strict probabilistic approach enables each of the conditional probabilities
 to be modelled with standard parametric techniques and allows us to use the full body of statistical
 methods. In particular, introducing quantitative nodes and using models such as described by Lauritzen
 and Wermuth (1987) make techniques of linear and logit regression available.

 Several problems remain to be investigated in detail. Firstly, Professor A. F. M. Smith points out

 that, unless we assume initial marginal independence between the p(v I Hl,)s, the structure of the extended
 influence diagram may become extremely complex. Secondly, for many patterns of missing data, our
 continuing assumption of marginal independence becomes unfounded and needs to be monitored.
 Thirdly, Rector and Smets' observation that particular quantities may be rather tenuous and very
 sensitive to context is very important, and emphasises the need for precise specification of sources of
 training data. However, we would strongly deny Professor Smets' assertion that probabilities may be
 'completely unknown' and believe that the dangers posed by data from an inappropriate context may
 be reduced by careful monitoring of any systematic deviation of updated probabilities from prior
 specifications, which could lead to questioning of the structure, the prior specification or the source of data.

 In reply to Dr Cheeseman, the probabilities in MUNIN were largely based on physiological and
 anatomical knowledge.

 How should we initialise, criticise and elaborate qualitative structure?
 This is probably the most difficult issue and the one least amenable to technical solution. Both A. F.

 M. Smith and J. Q. Smith query when functional nodes should be introduced, while Professor Hand is
 concerned with both initial structuring and whether extensions will be smoothly accommodated. Both
 Professor Hand and Dr Kendall recognise the need for checking whether a simpler structure might
 suffice; Dr Porteous asks how much effect 'wrong' structure has, and Critchley, Havranek, A. F. M.
 Smith, Tritchler and Wermuth all emphasise formal mechanisms for model criticism and selection.

 Our views on these crucial tasks are decidedly ill structured, and we consider this a vital area for
 future research. Data-based choice among graphical models has been studied by, for example, Wermuth
 (1976b) and Edwards and Havranek (1985, 1987) while the existence of proper priors supports the use
 of Bayes factors to compare models of differing dimensionality (Spiegelhalter and Smith, 1982).
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 Dr Cheeseman has also been investigating the use of stochastic complexity techniques (Cheeseman,
 1984; Rissanen, 1987). However, we do not believe that structural initialisation or change should ever
 be based solely on statistical criteria, and hence cannot be fully automated. It is certainly advisable to
 have an independent store of full patient data and not to rely on just counting events on the cliques of an
 early representation.

 For what kind of influence diagram is our approach appropriate?
 Professor Hand and Professor Henrion point to applications in which a child may have a large

 number of parents and hence cliques become unmanageable, while Professors Barlow, Cooper and
 Shachter all identify the inefficiency of our technique in some diagrams, such as when two parents of a
 common child have a distant common ancestor. We can only agree with their universal opinion that it
 is fruitless to search for a single computational technique for handling all probabilistic influence diagrams.
 Other loop breaking techniques such as sketched by Pearl, Kelly and Cooper might be more appropriate
 for parts of a structure, and we hope that future years will generate sufficient experience to provide some
 reliable heuristics for matching techniques, both exact and approximate, to structure. We are grateful
 to Professor Barlow for providing a link to the fault diagram literature, and since our approach can
 happily handle logical links it will be interesting to make comparisons. Professor Henrion's nodes with
 150 parents need careful consideration and presumably arise from trying to convert a network of
 propositions into a network of variables. Can the variables really be marginally independent, or could
 they be combined into a single node with a large number of states? Our heuristic is that, if it is
 unreasonable to think of the necessary quantities, then the structure is probably inappropriate.

 How does our approach relate to trees of cliques?
 Professors Pearl, Shachter, and Shafer and Shenoy all query whether we can consider our approach

 as just Kim and Pearl's (1983) algorithm on a tree of cliques. While this could be considered the case
 for propagation of single items of evidence (Section 8.2), the absorption then global propagation of
 multiple items requires a double pass with a varying root node and hence an undirected tree structure
 appears more appropriate. Drs Olesen and Andersen and Jensen briefly describe the process of absorbing
 and distributing evidence in a junction tree of cliques, and it is illuminating to find Professors Dempster
 and Almond putting forward an apparently identical scheme using the language of belief functions. We
 agree that the junction/join-tree formulation is more flexible than a linear structure with the running
 intersection property and see local propagation schemes in junction trees as the basic tool for efficient
 implementation. It has been particularly instructive for us to see the work of Olesen, Andersen and
 Jensen, which has clarified and simplified our original suggestions and fed back to provide new insight.

 However, there are several reasons why it is advantageous to keep both the influence diagram and
 the clique trees. Firstly, the clique tree (i.e. the corresponding marginal representation) contains
 considerable redundancy. When introducing imprecision (see earlier), it is more natural and more efficient
 to do so on the original 'non-redundant' influence diagram, and this also holds when modifying and
 criticising the model. In addition, observations, or the lack of these, may occasionally break loops in
 the influence diagram and fill-ins can be avoided; in Fig. 8 the fill-in between A and ,B is really unnecessary,
 because the loop is broken by revealing smoking history. It is also not completely true, such as hinted
 by Dempster and Almond, that the tree captures the Markov structure, since there are conditional
 independencies that cannot be read off the clique tree.

 How can we express irrelevance?
 Professor Hand raises the question about 'relevance', which leads to another reason for retaining

 explicit memory of the original directed graph. Suppose nodes E are observed and we want to give
 statements about nodes in F (and no other nodes): one situation in which this naturally occurs is when
 that data structure is 'nested' rather than 'crossed'; for example, in cervical cancer screening the part
 of the diagram relating to a smear result is irrelevant if no smear was taken. Then it is favourable first
 to reduce the diagram to involve only nodes in the smallest 'initial segment' containing E and F, where
 an initial segment is a subset A of V such that if v e A then all v's ancestors are in A. Then after this
 reduction of the diagram (which potentially could be dramatic) the triangulation and fill-in could be
 made and the clique tree constructed. In this clique tree we then only have to make a partial propagation,
 essentially moving evidence through the tree from cliques intersecting E to cliques intersecting F. The
 observation of Hilden that the update ratio is a martingale can also be used to stop propagation when
 information dies out.
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 Is our scheme restricted to a probabilistic interpretation?
 Professors Dempster and Almond, Havranek, Kong, Shafer and Shenoy and Smets all consider our

 use of probabilities as a restrictive expression of uncertainty. Professors Pearl and Shafer and Shenoy
 have expressed very clearly that the influence diagram is the crucial reasoning tool and, although we
 have a strong bias towards probability, it is perfectly feasible to manipulate other measures of uncertainty
 using the tools described in our paper.

 How is our approach related to connectionist models and parallel processing?
 Drs McCleish, Rector and Tritchler all suggest implementation in parallel processing environments,

 and the computational structure of Olesen, Andersen and Jensen lends itself to local message passing
 between autonomous processors. As Dr Kelly points out, parallel processing would also be suitable for
 stochastic simulation approximations. Connectionist or neural network models (Good, McCleish, Rector)
 would generally be concerned with training a graph from scratch using data alone and no prior
 interpretation to internal nodes of the system. We might hypothesise that using expertise to initiate a
 structure, and then using parameter updating and model elaboration as described earlier, might be a
 more efficient means of developing a good multilevel classifier from limited training data. This remains
 to be investigated, but it is indisputable that the whole area of parallel distributed processing should
 be examined by statisticians, since graphical models form the natural link between radically different
 views on knowledge representation and learning.

 We now consider points raised by individual discussants in order, omitting those that have already
 been covered under the general topics.

 Dr Kelly questions whether the moral graph necessarily represents the minimal Markov field. Typically,
 this will be so, although it is not strictly necessary. Suppose, as Kelly hypothesises, that p(b I e, fi) = 4(4,
 e) V(6, fi) and p(g, f3) = p(v) p(fi) since they are unjoined parents. Then we have e AL # I as well as e 11 IA
 which together imply that either e 11 (fi, 3) or i IL (e, 3), which means a link could be removed from the
 original influence diagram. Thus, if the initial diagram is 'minimal', in the sense that no link may be
 removed without violating equation (7.1), then the moral graph will in most cases correspond to the
 minimal Markov field. In the area of approximations, Professors Henrion and Pearl are exploring
 stochastic simulation methods and it is clearly important to compare performance and computational
 efficiency, particularly in those diagrams with structures that will cause problems to exact methods.

 Professor Hand raises many important issues. We are encouraged by his suggestion that an influence
 diagram representation may be able to deal with ill-structured problems, although it may need to be
 embedded in a structure similar to that proposed by Professors Berzuini and Steffanelli; experience will
 tell. As the diagram grows, we feel that 'local' elaborations in structure can be smoothly accommodated,
 but we are unsure of robustness to sudden inclusion of long-range links forming dramatic short-cuts.
 Hand, and other discussants, raises the issue of statistical parsimony against modelling the perceived
 world. We feel there should be a compromise; several widely different representations can often give
 roughly the same predictive ability, and it is then reasonable to choose that which corresponds most
 closely to human perception, to allow explanation and ease of expert input in the light of failures of
 performance, but we are aware of the dangers of unwarranted complexity.

 Mr Thatcher's suggestion of eliminating structure altogether has been implemented in large medical
 databases such as ARAMIS (Fries, 1976). But, although computational complexity is low, data
 requirements are immense for even moderate dimensional problems. We feel that parsimonious modelling
 is essential, but the idea of only computing probabilities relevant to the particular case could be very
 important in implementing strategies for 'relevance' in our model-based approach.

 We agree with Dr J. Q. Smith that the structuring and the properties of influence diagrams are
 important areas of study in their own right. The issue of 'conditional conditional independence' is also
 raised by Dr Hilden, and again reflects the need for an efficient mechanism for dynamic diagram
 alteration. We are unsure of the appropriate circumstances to introduce logical nodes.

 We disagree with Professor A. F. M. Smith that 'planning' and 'influence', at least as described in
 our paper, will present challenging computational problems. Our planning suggestion merely involves
 a global propagation assuming each possible realisation of the node under scrutiny, and then possibly
 a use of Bayes theorem on each potentially observable node (see our reply to Dr Hilden). 'Influence'
 requires a propagation for each node to be removed, but, since only nodes on a certain path are
 relevant, computational short-cuts should be possible. Model comparison and probabilities as parameters
 have been previously covered, although we note that relevant references for exponential families on
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 influence diagrams include Wermuth and Lauritzen (1983, 1987), Lauritzen and Wermuth (1984, 1987)
 and Barndorff-Nielsen and Blisild (1988).

 Dr Hilden makes several important points. Introduction of decision nodes will further relate our work
 to classical influence diagrams, and we agree that a logarithmic scoring rule may be a misleading
 'pseudo-utility' (see also Professor Shachter's comments). The quadratic scoring rule is better, and we
 were wrong to think it substantially more complex to calculate. However, as Dr Whittaker points out,
 monitoring influence through Kullback-Leibler distances should have a relationship to classic likelihood
 ratio statistics for model choice. Once again the issue of dynamic restructuring comes up, and we feel
 sure that Dr Hilden will be as full of novel ideas and critical suggestions as he has always been in the past.

 Dr Kendall's suggestion of computer algebra relates to Hilden's (1970, 1982) work in manipulation
 of algebraic expressions in complex pedigrees, and we agree with the educational value' of these
 manipulations. The suggestion of the Ito calculus is certainly novel.

 The collaboration between Drs Gammerman and, Aitken on applications in forensic science presents
 the methodology with an extremely challenging but important area of problems and will no doubt give
 rise to unforeseen difficulties. However, the papers by Schum and Martin (1981, 1982) referred to by Dr
 Phillips strongly suggests that legal reasoning is a feasible application.

 The use of partially ordered sets by Dr J. D. Andersen is certainly an extremely elegant means of
 rapidly obtaining node marginals from the original probability tables, but we require more than just
 the node marginals for evidence propagation, and the technique does not appear to be repeatable once
 evidence has come in, since our beliefs are no longer causal Markov on the original graph.

 Professors Berzuini and Steffanelli suggest a composite logical-probabilistic structure in which the
 influence diagram model may be embedded. Some kind of synthesis must be inevitable, and the use of
 logic in the abduction-hypothesis formation step, and probabilistic reasoning in the deduction-induction
 phases, echoes Szolovits and Pauker's (1978) view that 'categorical proposes, probability disposes'. We
 could perhaps view the logical 'abduction' step as simply the means of dynamically focusing on 'relevant'
 parts of the graph, which has repeatedly been stressed as a crucial task. The important question is
 whether the 'relevance' manipulations can be carried out locally within the influence diagram-junction
 tree representation, or whether a higher level of control is necessary. We hope that experiments on
 Berzuini and Steffanelli's excellent ANAEMIA project will provide insight into this.

 We have already discussed Drs Dubois and Prade's comments on our independence assumptions,
 and we acknowledge their careful study of alternative representations of uncertainty. We definitely see
 a link A -+ B as meaning that it makes sense for an expert to think of p(B I A). We do have a problem
 if an expert wishes to provide cyclical assessments, but we feel that these can be dealt with by thinking
 of the expert as directly providing a joint distribution on the clique A, B, C. If his probability assessments
 are not coherent, then this should be pointed out and they should be revised-an expert's assessments
 are not God given and revealing his incoherence should improve understanding, and may lead to
 revisions in structure. As other discussants have pointed out, our conditional probability tables are not
 the only way of initialising the system, although we hope it would usually be adequate as we would
 usually see, as J. Q. Smith recommends, the qualitative influence diagram being elicited before the
 quantitative 'experience' is assessed.

 Professors Fienberg and Meyer suggest translation back into log-linear modelling, and we would also
 claim these techniques may be useful in developing efficient programs for the analysis of large contingency
 tables. Such work is in progress, see Badsberg (1986). Indeed, we hope that the future will see a breakdown
 in the distinction between 'statistics in artificial intelligence' and 'artificial intelligence in statistics', since
 a common set of techniques will exist for representing and manipulating complex multidimensional
 structures, combining the power of artificial intelligence representation with established statistical
 modelling. Although we do not see any direct linkage between our work and the sociological use of random
 networks to describe relationships between specific individuals, the possibility of using such models as
 prior distributions on the structure of the network deserves to be investigated; see also Frank and
 Strauss (1986).

 We are grateful to Professor Good for his references and feel that his work on hierarchical models
 in contingency tables may yet have an important role in this area.

 Professor Havrinek is right to emphasise the elegant algebraic work on general measures of
 uncertainty, and we reiterate that most of our proposals do not necessarily require a probabilistic
 interpretation for uncertainty. His work with Edwards will be vital in criticism and elaboration of
 graphical structure, but while we agree that linking expert knowledge with knowledge obtained from
 data can be very dangerous, we also feel that developing appropriate methodology to do so is one of
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 the most vital challenges for future statistical/artificial intelligence research. Not combining knowledge
 from both sources would be even more dangerous.

 We take note of Professor Kong's valuable point that potentials should be marginalised in connected
 subsets. If the junction tree representation of Jensen is used then this will occur automatically, again
 providing insight into the general theory. We agree that maximal clique state size is the crucial element
 in complexity and look forward to his recommendation for suitable algorithms.

 We see our method as an alternative to, rather than a result of, Brook's expansion mentioned by
 Professor Mardia. We are sorry that we did not have room for more examples.

 Professor Pearl's contribution is particularly welcome as he has consistently revealed astonishing
 insight into this subject area. We agree with both him and Hilden that structure between variables has
 received too little attention in statistics, although there is a non-negligible body of statistical literature
 on graphical models (see the references in the paper). His consideration of cut sets relates to the algorithms
 in pedigree analysis discussed in the following.

 Professor Shachter makes several important points, most of which have been covered previously. We
 should note that direct manipulation of the original influence diagram representation can be attractive
 in prototyping, and within 30 minutes of receiving Shachter's DAVID program we were analysing our
 dyspnoea example. But in larger examples the revisions in topology can be rather bewildering and
 inefficient for repeated belief revisions.

 We are apologetic for not referring to Schum's important work in the area of evidential reasoning
 and are grateful to Dr Phillips for the quote describing the taxonomy of generic structures. It certainly
 appears to us that all can be accommodated within an influence diagram framework, and we intend to
 explore examples in the hope that our graphical and computation scheme may illuminate legal issues.
 In particular such examples would seem to be good tests of any proposed automatic explanation facilities.

 We apologise to Dr Thomas and others in mathematical genetics for our inadequate background
 research, and it is unfortunate that we did not acknowledge the important work in this area; see
 Thompson (1986) for a simple introduction which features expressions very similar to our equation (4.2).
 Complex pedigrees of the kind discussed by Cannings et al. (1978) could be handled using our technique,
 although the graphs would be somewhat more complex, having a node for each individual's observed
 phenotype, each of which has a single parent (in our sense) node standing for the unobserved genotype;
 these genotypes form the pedigree with transition probabilities governed by Mendelian laws of
 inheritance, while the genotype-phenotype transition probabilities are the 'penetration functions'. The
 objective may be to marginalise over the unobserved genotypes to obtain an overall likelihood for what
 has been observed, or to calculate conditional probabilities on sets of genotypes, or, in the case of genetic
 counselling, future phenotypes. The procedures of Cannings et al. (1978) for unlooped pedigrees are
 extremely similar to Pearl's (1986) procedure for trees, while their suggestions for loops involve a
 succession of cut sets as suggested in Pearl's contribution.

 The R functions of Cannings et al. (1978) are the O functions we calculate on the clique intersections
 when absorbing evidence onto a potential representation with Z = 1. In particular, we note that the
 overall probability of the pedigree trivially falls out of our calculations: if we have obtained a potential
 representation with Z = 1, the probability of any particular configuration of states x* at nodes E can
 be calculated as the normalisation constant Z*, see equation (9.2), when conditioning on x* being observed
 and processing from potentials to set chain. This is because

 p(V\E I E*) = p(V, E*)/p(E*)

 and from Section 8.1

 p(V\E I E*) = p(V, E*)/Z*

 whereby

 p(E*) = Z*.

 This gives an alternative to the methods described in Section 11.2 and it would be of interest to see
 how our techniques compare in computational efficiency with those established in pedigree analysis.

 We hypothesise that our approach may have considerable advantages over peeling methods, in that
 for similar computational cost we obtain conditional probabilities for all currently unknown genotypes
 and phenotypes. Unknown penetrance probabilities could also be modelled as additional nodes, and
 Kong's contribution should be relevant to automatic search procedures for cut set sequences (Thomas,
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 1986) and vice versa. In return, the statistical techniques developed for criticising and revising the
 structure of pedigrees may well be adaptable to our general formulation.

 Dr Tritchler raises the important but difficult area of explanation. If we adopt the junction tree
 computation scheme then we do have a tree structure and flow of evidence could be graphically displayed
 on clique intersections of the full moral graph. If our structures can be broken down into the generic
 components of Schum, then perhaps condensed verbal explanation facilities may be more easily combined.
 In addition, when allowing imprecision in probabilities, it would be important to retain a description
 of the source of the experience to help to justify the conclusions. This remains a fascinating area to explore.

 We are grateful to Professor Wermuth for pointing out the relation to the notion of moderating effects
 and see this as yet another benefit of the cross-fertilisation between disciplines obtained by relating the
 expert system problems to statistical modelling, as also pointed out by Whittaker, and Fienberg and
 Meyer. A slight amendment to the history of decomposable graphs: they were certainly studied by
 Wagner (1937) although Dirac (1961) seems to give the first comprehensive treatment.

 In conclusion, the comments of the discussants show clearly that the issues that we have tackled only
 form a minor part of those that need to be eventually faced. We hope that the material collected here
 in the paper as well as in the discussion will stimulate statisticians to join in research efforts.
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