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On Coalition Formation in Simple Games: A Mathematical 

Analysis of Caplow’s and Gamson’s Theories1 
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Mathenlatics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706 

In this paper, we propose a theory of coalition formation in simple games. The process 
of coalition formation is modeled as an abstract game. Two solutions of abstract games, 
the core and the dynamic solution, are used as the predictions of our model. Two classical 
theories of coalitions in sociology due to Caplow and Gamson are reformulated in a more 
general and mathematical setting. These theories are then analyzed using the techniques 
of our theory. 

1. IIvTR~DOCTI~~V 

This paper deals with the question of coalition formation in simple games. Coalition 
formation has been the subject of many empirical and theoretical studies in the social 
sciences. There are a number of simple theories which essentially consist of a hypothesis 

concerning the player’s goals or motives, a premise concerning their payoffs and an 
inference which singles out the coalitions most likely to form. Some of these theories are 
reviewed in Shenoy (I 977a). 

Regarding simple games, the main thrust of the research in game theory has been in 
determining an index which measures the power of each player and very little has been 
done regarding coalition formation. Here, assuming we have a “power index,” i.e., a rule 

governing the distribution of power to each player in each coalition structure, we model 
the process of coalition formation as an abstract game. The core and the dynamic solution 
of the abstract game are then used as the predictions of our model. Thus, the proposed 
theory only accounts for coalition structures and this is achieved by assuming that a 

payoff allocation rule is given. 
Two classical theories of coalition formation due to Caplow and Gamson are reformu- 

lated in a slightly more general and mathematical setting. These theories are then analyzed 
using the techniques of our theory. 

1 This research was supported in part by the Office of Naval Research under Contract N00014- 
75-C-0678 and the National Science Foundation under Grants MPS75-02024 and MCS77-03984 
at Cornell University and also by the United States Army under Contract No. DAAG-29-75-C-0024 
and the National Science Foundation under Grant No. MCS75-17385 A01 at the University of 
Wisconsin. The author is grateful to Professor William F. Lucas for his guidance and to Philip D. 
Straffin for many useful discussions. The author alone is responsible, however, for errors or short- 
comings contained herein. 
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In Section 2, we review the core and the dynamic solution of abstract games. Simple 
games are introduced in Section 3. Our model of coalition formation is presented in 
Section 4. Section 5 contains a representation of our model by means of directed graphs. 
The predictions of our model are then described in graph theoretic terminology. The 

mathematical analysis of Caplow’s and Gamson’s theories are presented in Section 6 and 7, 
respectively. Finally, Section 8 contains some concluding remarks. 

2. THE CORE AND THE DYNAMIC SOLUTION OF ABSTRACT GAMES 

An abstract game is a pair (X, dom) where X is an arbitrary set whose members are 
called outcomes of the game, and dom is an arbitrary binary relation defined on X and 

is called domination. An outcome x E X is said to be accessible from an outcome y  E 9, 
denoted by x t y  (or y  + x), if there exists outcomes z0 = 3c, zr , za ,..., zz,,!- r , a,, = y, 
where m is a positive integer such that 

x = x0 dom z1 dom za dom ... dom .z+r dom z,,~ = y. 

Also assume x t x, i.e., an outcome is accessible from itself. Clearly the binary relation 
accessible is transitive. 

An interpretation of the relation accessible is as follows: If  the players are considering 
an outcome y  at some stage, then an outcome they will consider next will be a z E X 
such that z domy. If  x + y  and if the players are considering outcome y  at some time, 
then it is possible that they will consider outcome x at some future time, i.e., one may 
interpret the relation as a possible succession of transitions from one outcome to another. 

Two outcomes x and y  which are accessible to each other are said to communicate 
and we write this as x ts y. Since the relation accessible is transitive and reflexive it 
follows that communication is an equivalence relation. We can now partition the set X 
into equivalence classes. Two outcomes are in the same equivalence class if they communi- 
cate with each other. 

The core C (due to Gillies (1959) and Shapley) of an abstract game is defined to be 
the set of undominated outcomes. We can rewrite the definition of the core in terms of 

the relation accessible as follows. 

C = (x E X : For all y  E S, y  f  x, we have y  tf x]. 

In the terminology of Markov chains, the core is the set of all absorbing outcomes. 
Note that each outcome in the core (if nonempty) is an equivalence class by itself. 

We define an elementuvy dynamic solution (elem. d-solution) of an abstract game 
(X, dom) as a set S C X such that 

if xfz S, y  E x - s, then y  + .2: and (1) 

if x, y  E S, then x ++y. (2) 
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Condition (1) requires S to be ‘externally stable’ in a dynamic sense, i.e., if the players are 

considering x E 5’ at some time, then they will never consider any outcome that is not in 
S in the future. We can think of Condition (2) as ‘internal stability’ in a dynamic sense, 
i.e., if the players make a transition (in the consideration of outcomes) from x to y, 
then it is possible that the players will again reconsider the outcome x in the future. 

Note that an elem. d-solution is an equivalence class. The converse, however, is not 
always true, i.e., an equivalence class need not be an elem. d-solution. Condition (1) 

requires S to be (in the terminology of Markov chains) a nontransient equivalence class. 
Also note that each outcome in the core is an elem. d-solution. 

The dynanzic soktion (d-solution) P of an abstract game is the union of all distinct 

elementary dynamic solutions, i.e., 

P=~{SCX:S is an elem. d-solution). 

The following are easy consequence of the definition. 

PROPOSITION 2.1. Let r = (X, dom) be any abstract game. Then C C P. 

THEOREM 2.2. If Xis afinite set, then the dynamic solution of the abstractgame (X, dom) 
is always nonempt-y and is a unique set. 

Proof. See Shenoy (1977b). 
The dynamic solution has also been defined independently by Kalai, Pazner, and 

Schmeidler (I 976). 
In Section 5, abstract games are represented in terms of directed graphs. The core 

and the dynamic solution are then described in terms of certain properties of directed 

graphs. This may help illustrate some of the concepts presented in this section. 

3. SIMPLE GAMES 

Simple games form a certain class of n-person cooperative games in which each coalition 
that might form is either all powerful or completely ineffectual. Let N = { I,..., n} denote 

the set of all players indexed by the first n natural numbers. Nonempty subsets of N 
are called coalitions. A simple game can be represented by a pair (iV, %+‘J, where V is the 
set of all winning coalitions. All coalitions that are not in the set YY are called losing 
coalitions. A simple game is said to be monotonic if any coalition that contains a winning 

coalition is winning; and proper if the complement of every winning coalition is losing. 
A winning coalition R is called minimal winning if every proper subset of R is losing. 
A monotonic simple game can also be represented by the pair (N, YVm), where wn8 is 
the set of all minimal winning coalitions. Note that the set YF is the set of all supersets 

of the elements of Wm. 
If k $ lJ w”, then player k is said to be a dummy. If %Q’?ll = {{i}}, then player i is 

called a dictator and all other players are of course dummies. If  j E n YYn2 rf 4, then 
player j is said to be a veto pla-ver. 
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A weighted majority game is a monotonic simple game that can be represented by the 
symbol 

[4; aI ,..., 4, (3) 

where q 3 0 is called the quota, a, > 0 is the weight associated with the ith player and 
R E w dxiER ai >, q. Note that the weighted majority game represented by (3) is 
proper if q > (a, + ... -+ aJ2. 

See Shapley (1962) f  or a detailed description of simple games. Also Lucas (1976) 

presents several real-life examples of organizations, committees, and legislatures modeled 
as simple games. 

4. A MODEL OF COALITION FORMATION 

Let r be a n-person simple game. Let 2 y  denote the set of all nonempty subsets 

(coalitions) of N and I7 denote the set of all partitions (coalition structures) of N. Let 
O: 17 --+ En be a power index (p.i.), where En denotes the n-dimensional Euclidean space. 

Intuitively, given that players in N align themselves into coalitions in the coalition 

structure (c.s.) B E U, we interpret Y(Y) as a vector in E” whose ith component Y(P)(i) 
is a numerical measure of player i’s power, e.g., Y may denote the Shapley-Shubik 
power index, the Banzhaf-Coleman power index, the nucleolus, etc. 

We can regard fl as the set of outcomes of an abstract game. We define a binary relation 

on II as follows. 
Let PI , Pz E 17, and Y be a p.i. Then 9, dominates 8, with respect to p.i. .Y’, denoted 

by 8, dom(Y)ga , i f f  

3 a nonempty R E 4, such that Y(P,)(i) > “(a,)(i) Vi E R. 

Intuitively, if Pi dom(Y) then the players in some coalition R in C.S. .Yi prefer 

.Yr to Ya . We require the players in subset R to be together in a coalition in C.S. .Pr so 
that there is no conflict of interest between these players’ preference for .Y, and their 
allegiance to the other players in their coalition. 

The dominance relation as defined above may be neither asymmetric nor transitive. 

We now have an abstract game (n, dam(Y)), w h ere n is the set of outcomes and dom(Y’) 
is a binary relation on li’. Let J&(Y) and K,(Y) denote the core and the dynamic solution 
respectively of this abstract game. By Proposition 2.1, we have K,(Y) C K,(Y). It is 
conceivable that Ka(Y) may sometimes be empty. However, since N is a finite set, 17 is 
a finite set and hence by Theorem 2.2 we have K,(Y) # O. K,(Y) and K,(Y) can be 
considered as the predictions of our modef. 

In Section 6, several examples of abstract games (17, dam(Y)) are exhibited where Y 
is replaced by K, the Caplow power index defined in that section. These examples help 
illustrate the model presented in this section. 
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5. REPRESENTATION BY DIGRAPHS 

Since the number of coalition structures is finite, we can represent the abstract game 
(n, dam(Y)) by means of a directed graph (or digraph). Let D be a digraph whose 
vertex set V(D) = II and whose arc set A(D) is given by 

A(D) = {(.Vl , L/pa) E II x 17 : 8, dom(Y).qlj. 

We call such a digraph D the tvansition &graph of the abstract game (U, dam(Y)). 
Let (.P’, , YJ E A(D). Then we say 8, is adjacent to Ypz and 8, is adjacent from 9, . 

The outdegree, od(9), for B E II is the number of c.s.‘s adjacent from it and the indegree, 

id(g), for 9 E n is the number adjacent to it. Then in terms of this terminology, the core 
of the abstract game (n, dam(Y)) is given by 

&(cY) = (9 E II : od(8) = O}. 

To define the dynamic solution in terms of the transition digraph, we need a few more 
basic definitions from graph theory (cf. Harary (1969)). A (directed) walk in a digraph 
is an alternating sequence of vertices and arcs 8, , e, , P1 ,..., e, , 9, in which each 
arc ei is (BiV1 , Pi). A closed walk has the same first and last vertex. A path is a walk in 
which all vertices are distinct; a cycle is a nontrivial closed walk with all vertices distinct 
(except the first and the last). If there is a path from Y1 to 8, , then gp3 is said to be 
accessible from 8, . A digraph is strongly connexted or strong if any two vertices are mutually 
accessible. A strong component of a digraph is a maximal strong subgraph. Let Tl, T, , . . . , T, 

be the strong components of D. The condensation D* of D has the strong components of D 
as its vertices, with an arc from Ti to Tj whenever there is at least one arc in D from a 
vertex of Ti to a vertex of Tj (see Fig. 1). It follows from the maximality of strong com- 
ponents that the condensation D* of any graph has no cycles. The dynamic solution of 
the abstract game (n, dam(Y)) is given by 

k;(Y) = u (Ti : od(T,) = 0 in the condensation D*}. 

D”: V 
T2 

FIG. 1. A digraph and its condensation. 



182 PRAKASH P. SHENOY 

6. A MATHEMATICAL ANALYSIS OF CAPLOW'S THEORY OF COALITIONS IN THE TRIAD 

Much of the recent research on coalition formation in sociology and psychology was 
generated by a paper by Caplow (1956). Caplow proposes that the formation of coalitions 

depends upon the initial distribution of power, and other things being equal, may be 
predicted under certain assumptions when the initial distribution of power is known. 
(Caplow (1956)) 

Caplow’s four assumptions are: 

A.l. Members of a triad may differ in strength. A stronger member can control 
a weaker member and will seek to do so. 

A.2. Each member of the triad seeks control over the others. Control over two 

others is preferred to control over one other. Control over one other is preferred to control 
over none. 

A.3. Strength is additive. The strength of a coalition is equal to the sum of the 
strengths of its two members. 

A.4. The formation of coalitions takes place in an existing triadic situation, SO 

that there is a precoalition condition in every triad. Any attempt by a stronger member 
to coerce a weaker member into joining a nonadvantageous coalition will provoke the 
formation of an advantageous coalition to oppose the coercion. 

Caplow enumerates six different triadic power structures and, based on his assumpt- 
tions, makes predictions as to which coalitions will form in each type of triad. In a sub- 
sequent paper, Caplow (1959) lists two more types of triads that were overlooked in the 
original presentation along with his predictions. The predictions are listed in Table 1. 
Before we compare our theories with Caplow’s theory, we will restate Caplow’s theory 
in a mathematical setting.2 

Let Y be an n-person weighted majority game 

[4; a1 ,..*, %I, where 4 > (a, + ... + aJ2, 

and let %‘” denote the set of all winning coalitions in r. Let i andj be two distinct players. 
We say that player i controls player j in coalition structure .ZJ’ iff either 

Ui > Uj j and i,jEREW, RE9, or iEREW,j$R,RE.Y. 

Let p(P)(i) denote the number of players player i controls in C.S. 9. The Caplow Power 
Index, denoted by K, is defined as follows: 

4Wi) =z WV)/ C W?(i) if 1 BPM i 0 
jeN jEN 

=o otherwise 

2 The author assumes full responsibility for the ensuing formulation, which, though never 
formally stated, is implicit in Caplow (1956). 
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for all i E N and all B E 17. Intuitively, ,(P)(i) d enotes the relative power of player i 

when the players are aligned as in C.S. LY’.~ 
We are now in a position to compare Caplow’s predictions with the predictions of our 

theory. Examples l-8 deal with the eight different types of triads analyzed by Caplow. 
At the end of each example, we quote Caplow’s analysis of the triad, partly to justify 

our definition of the Caplow power index. 

EXAMPLE 1. Consider the Type 1 triad [2; >&?I. Then the Caplow power index, 

K, is given by 

K(:!) = (0, 0, 0) if 8 =: (A)(B)(C) 

= (Q, 8, 0) if 9 = (AB)(C) 

= (4, 0, $) if .P = (AC)(B) 

= (0, g, 4) if B = (A)(K) 

= (0, 0, 0) if .P = (ABC). 

(A)(B)(C) 

(AB)(C) (ABC) 

(A)(K) 

FIG. 2. The transition digraph of Type 1 triad. 

The transition digraph is as in Fig. 2. &(K) = ((LB)(C), (AC)(B), (A)(BC)). Caplow 
argues: 

. . . each member strives to enter a coalition within which he is equal to his ally and 
stronger (by virtue of the coalition) than the isolate. (Caplow, 1956.) 

EXAMPLE 2. Consider the Type 2 triad [4; ii:]. Then the Caplow power index, 
K, is given by 

K(<?) = (0, 0, 0) if d = (A)(B)(C) 

== ($, +, 0) if 9 = (M)(C) 

= (;f, 0, 4) if .9 = (AC)(B) 

_1 (0, +, .i) if 3 = (-4)(BC) 

= (1, 0, 0) if 9 = (ABC). 

3 Note that, although Caplow stated his theory only for the restricted caseof triads, our formulation 
of Caplow’s theory holds for the more general case of n-person proper weighted majority games. 
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(A)(B)(C) 

W)(C) (ABC) 

(AC)(B) 

FIG. 3. The transition digraph of Type 2 triad. 

The transition digraph is shown in Fig. 3. K,,(K) = {(A)(BC)). Caplow argues: 

. . . Consider the position of B. If he forms a coalition with A, he will (by virtue of the 
coalition) be stronger than C, but within the coalition he will be weaker than A. If, on the 
other hand, he forms a coalition with C, he will be equal to C within the coalition and 
stronger than A by virtue of the coalition. The position of C is identical with that of B. 
(Caplow, 1956.) 

EXAMPLE 3. Consider the Type 3 triad [3; ?;:I. Then the Caplow power index, 
K, is given by 

K(g) = (0, 0, 0) if 9 = (A)(B)(C) 

= (f, % 0) if B = (&3)(C) 

= (3, 0, 8) if B = (AC)(B) 

= (0, 9, 4) if 9 = (A)(BC) 

= (0, 4, ii) if B = (ABC). 

(A)(B)(C) 

CAB)(C) (ABC) 

(AC)(B) (A)(W) 

FIG. 4. The transition digraph of Type 3 triad. 
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The transition digraph is shown in Fig. 4. K,,(K) = {(A@(C), (AC)(B)). Caplow argues: 

. . . A may strengthen his position by forming a coalition with either B or C, and will be 

welcomed as an ally by either B or C. On the other hand, if B joins C, he does not improve 
his pre-coalition position of equality with C and superiority to A. His only motive to enter 
a coalition with C is to block AC. However, C’s position is identical with B and he, too, 
will prefer A to B as an ally. (Caplow, 1956.) 

EXAMPLE 4. Consider the Type 4 triad [3; 2j$]. Then the Caplow power index, 
K, is given by 

K(p) = (1, 0, 0) if 9 = (A)(B)(C) 

= (%, 4, 0) if 9 = (&I)(C) 

= GO, 4) if B = (AC)(B) 

= (LO, 0) if 9 = (A)(E) 

= u,o, 0) if 9 = (ABC). 

CAB)(C) 
0 (ABC) 

(AC)(B) 

FIG. 5. The transition digraph of Type 4 triad. 

The transition digraph is shown in Fig. 5. K,,(K) = {(A)(B)(C), (A)(BC), (ABC)}. 
Caplow argues: 

. . . B and C have no motive to enter a coalition with each other. Once formed, the coalition 
would still be weaker than A and they would still be equal within it. A on the other hand, 
has no motive to form a coalition with B or C, since he is stronger than each of them and 
is not threatened by their coalition. No coalition will be formed, unless B or C can find 
some extraneous means of inducing A to join them. (Caplow, 1956.) 

EXAMPLE 5. Consider the Type 5 triad [5; ?ig]. Then the Caplow power index, 
K, is given by 

K(.“p) = (0, 0, 0) if B = (A)(B)(C) 

= ($9 6, 0) if 9 = (LIB)(C) 

= (Q, 0, 8) if 9 = (AC)(B) 

= (0, 6, i) if B = (A)(BC) 

= (f, 8, 0) if B = (ABC). 
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(A)(B)(C) 

(AB)(C (ABC) 

(AC)(B) (A)(BC) 

FIG. 6. The transition digraph of Type 5 triad. 

The transition digraph is shown in Fig. 6. &(K) = {(AC)(B), (A)(BC)}. Caplow argues: 

. . . A seeks to join both B and C and C seeks to join both A and B but B has no incentive 
to enter a coalition with A and has a very strong incentive to enter a coalition with C. 
Whether the differential strength of A and B will make them differentially attractive to C 
lies outside the scope of our present assumptions. (Caplow, 1956.) 

EXAMPLE 6. Consider the Type 6 triad [4; >$!I. Then the Caplow power index, 

K, is given by 

K(g) = (I, 0, 0) if 9 = (A)(B)(C) 

= (f, Q, 0) if .9 = (D)(C) 

= ($9 0, 3) if 9 = (AC)(B) 

= (l,O, 0) if B = (A)(BC) 

= (8, 8, 0) if 9 = (ABC). 

(A)(B)(C) 

(AB)(C) 
(ABC) 

. (A)(BC) 
(AC)(B) 

FIG. 7. The transition digraph of Type 6 triad. 
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The transition digraph is as in Fig. 7. K,,(K) = {(A)(B)(C), (A)(BC)}. Caplow argues: 

. . . A is stronger than B and C combined and has no motive to form a coalition. As in 
Type 4, true coalition is impossible. However, while in Type 4 both of the weaker members 
seek to join the stronger member, only C can improve his position by finding some 
extraneous means of inducing A to join him. (Caplow, 1956.) 

By claiming that only C can improve his position by joining A, Caplow seems to imply 
that B controls C in the C.S. (A)(B)(C). S UC h an assumption seems unreasonable to us and 
we resolve this small discrepancy by suggesting that Caplow has erred in making such 
a claim. Note that a similar discrepancy arises in Caplow’s analysis of the Type 3 triad 
where he claims that B is superior to A in C.S. (A)(B)(C). 

EXAMPLE 7. Consider the Type 7 triad [4; >$,!I. Then the Caplow power index, 
K, is given by 

K(g) = (0, 0, 0) if B = (A)(B)(C) 

= (9, &, 0) if 9 = (AB)(C) 

= (% 0, 4) if B = (AC)(B) 

= (0, 0, 0) if ~9’ = (A)(BC) 

= (3, g, 0) if B = (ABC). 

(A)(B)(C) 

(A)(BC) 

FIG. 8. The transition digraph of. Types 7 and 8 triads. 

The transition digraph is shown in Fig. 8. Hence, K,(K) = {(AB)(C), (AC)(B), (ABC)}. 

EXAMPLE 8. Consider the Type 8 triad [3; 2&?]. Then the Caplow power index, 
K, is given by 

‘@) = (0, 0, 0) if 9 = (A)(B)(C) 

= ($9 g, 0) if 9 = (LIB)(C) 

= ($7 0, f) if B = (AC)(B) 

= (0, 0, 0) if B 2 (A)(BC) 

= (l,O, 0) if S = (ABC). 
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The transition digraph is as in Fig. 8. Hence, &(K) = {(M)(C), (-4C)(B), (ABC)}. For 
the Type 7 and 8 triads, Caplow argues: 

. . . the combined strength of B and C is exactly equal to A, so that no effective coalition 
of B and C is strategically possible. In other words, although a coalition of B and C can 
block the dominance of A, it is not sufficient to control the situation, and, therefore, the 
probable coalitions under the standard assumptions are AB or AC. (Caplow, 1959.) 

This completes our analysis of the eight different triads. The results are summarized 
in Table 1. A comparison reveals almost total agreement. All the c.s.‘s predicted by 
Caplow are predicted by our theory. The only disagreements are in Types 4, 6, 7, 8, 
where our theory predicts more c.s.‘s than predicted by Caplow. However, this can easily 
be explained. Caplow implicitly assumes that in every triad, bargaining for coalitions 

start from the C.S. (A)(B)(C). A quick look at Figs. 2-8, will reveal that with this additional 
assumption, our theory gives exactly the same predictions as Caplow’s. 

Vinacke and Arkoff conducted experiments to test Caplow’s theory.4 Their results, 
shown in Table 2, tend to support Caplow’s theory in general with a few disagreements 

TABLE 2 

Coalition Structures Formed in the Six Types of Triads in the Vinacke-Arkoff Experiments 

Type and equivalent weighted majority representation 

Coalition structures [2; 1t1, l] [4; 322,2] [3; 112,2, [3; 341, 11 [5; 4t3,21 [4; 4P2, 11 
.__-. _ -~- .____~--- -- 

(A)(B)(C) 8 1 II 62 2 60 

VW(C) 33 13 24 11 9 9 

W’)(B) 17 12 40 10 20 13 

(‘4H3C) 30 64 15 7 59 8 

(ABC) 2 0 0 0 0 0 

Total 90 90 90 90 90 90 

I See Vinacke and Arkoff (1957) for a detailed description of their experiments. We briefly sketch 
their method here. The subjects of the experiment played a game on a modified pachisi board in 
which only the external lanes of the board were used. The object of the game was to reach “home” 
first and the winner was awarded a prize of 100 points. In the event a coalition formed, the prize 
was shared between the allies in a manner agreed upon by all the allies. A single die, cast by the 
experimenter was used. Each player was entitled to move forward the number of spaces equal to 
his weight times the number shown by the die. All the players started from the home base and 
moved simultaneously. At anytime during the game, any player, in return for a promise of a specified 
portion of the prize, could form an alliance with any other player. In this case, the allies immediately 
pooled their strengths and proceeded to a position equal to their combined acquired spaces; in 
future throws they moved forward according to their combined weights (times the die). Once an 
alliance was formed it was considered permanent for that game. (We have quoted Vinacke and 
Arkoff (1957) almost verbatim here.) 
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especially in the case of Type 3 and Type 5 triads. In the Type 3 triad, Caplow predicts 
coalition structures (AB)(C) and (AC)(B) without any reference to their relative frequency 
of occurrence. However Vinacke and Arkoff note that in the Type 3 triad, C.S. (AC)(B) 
occurs more frequently than C.S. (AB)(C). In the Type 5 triad, Caplow predicts coalition 
structures (AC)(B) and (A)(BC) with the reservation that 

. . whether the differential strength of A and B will make them differentially attractive 
to C lies outside the scope of our present assumptions. (Caplow, 1956.) 

The results of the Vinacke-Arkoff experiments indicate that in the Type 5 triad, C.S. 
(A)(BC) occurs more often than C.S. (AC)(B). 

Chertkoff (1967) makes an additional assumption which leads to the conclusion that in 
the Type 5 triad, C.S. (A)(K) occurs twice as frequently as (AC)(B) and that C.S. (AB)(C) 
does not occur at all. Also, the same assumption when applied to the case of Type 3 triad 
leads to the conclusion that c.s.‘s (AB)(C) and (AC)(B) are equally likely and C.S. (A)(W) 
does not occur at all. 

Let us assume that all transitions from each coalition structure are equally likely. 
Then given an initial probability distribution on the set of all coalition structures, we 
can compute the probability of formation of each coalition structure in K,(Y), e.g., 
in the Type 5 triad, given that players start (with probability I) from C.S. (A)(B)(C), 
we observe that (Fig 9) C.S. (AB)(C) f orms with probability $, C.S. (AC)(B) forms with 
probability $ and C.S. (A)(K) forms with probability +. However, once C.S. (/M?)(C) 
is formed, C.S. (A)(BC) occurs with probability 1. The net result is that C.S. (A)(K) 
occurs with probability $ and C.S. (AC)(B) occurs with probability 4. Coalition structure 
(M?)(C) also forms with probability Q but only as an intermediate c.s., i.e., only tempo- 
rarily. 

(A)(B)(C) 

(AC)(B) 

FIG. 9. The transition digraph of Type 5 triad with the probabilities of transitions under the 
assumption of equiprobable transitions. 

A similar analysis of the Type 3 triad (Fig. 10) indicates that, starting from C.S. 
(A)(B)(C) (with probability l), C.S. (AB)(C) occurs with probability & and C.S. (AC)(B) 
ocicurs wth probability 4. Coalition structure (A)(BC) occurs only as an intermediate 
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coalition structure with probability 4. A summary of the predictions of our theories under 
the assumption of equiprobable transitions is shown in Table 3. Note that these pre- 
dictions agree quite well with the Vinacke-Arkoff experimental results. 

(A)(B)(C) 

(is)(C) (ABC) 

(AC)(B) l/2 (A)(BC) 

FIG. IO. The transition digraph of Type 3 triad with the probabilities of transitions under the 
assumption of equiprobable transitions. 

TABLE 3 

A Summary of the Predictions of the Coalition Structure Model under the Assumption of 
Equiprobable Transitions 

Equivalent Starting Final 

weighted coalition Intermediate coalition 

Triad majority structure coalition structures 

type representation (assumed) Probability structures Probability K,(K) Probability 
___ ~~ ~ .- ~~ 

I r2; 1, 1, 11 (4(B)(C) 1 WVC) 1 3 
(AC)(B) 11 J 
(AWC) -; 

2 [4; 3, 2, 21 (A)(B)(C) 1 (AB)(C) i (AXBC) 1 
(AC)@) 1 3 

3 [3; 1, 2, 21 (A)(B)(C) 1 (A)@0 1 3 VW(C) 1_ 2 
(AC)(B) g 

4 [3; 3, 1, 11 (4(B)(C) 1 (A)(B)(C) 1 
5 [5; 4, 3, 21 W(B)(C) 1 (AB)(C) 1 3 W’)(B) ;: 

(A)(BC) 5 

6 [4; 4, 2, I] (A)(B)(C) I (A)(B)(C) 1 

7 14; 3, 2, 11 W)(B)(C) 1 (AB)(C) a 
(AC)(B) _ pi 

8 13; 2, 1, 11 (A)(B)(C) 1 (AB)(C) i! 
(AC)(B) - i 

480/18/z-7 
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7. A MATHEMATICAL ANALYSIS OF GAMSON'S THEORY OF COALITION FORMATION 

Following Caplow, Gamson formulated a slightly more general theory of coalition 

formation in proper weighted majority games without dictators or veto players. Before 
we present Gamson’s theory, we need a definition. Let r be a weighted majority game. 
A cheapest winning coalition is a winning coalition whose total weight is a minimum 
among all winning coalitions. Gamson’s main hypothesis is as follows: 

Any participant will expect others to demand from a coalition a share of the payoff propor- 
tional to the amount of resources which they contribute to a coalition. (Gamson, 1961.) 

Here, a participant refers to a player, and his resources refers to his weight in the weighted 
majority game. Based on his main hypothesis, Gamson makes the following predictions 
about coalition formation. 

(i) A player will favor a cheapest winning coalition. 

(ii) A coalition of two distinct players {i, j} will form if and only if there are 
reciprocal strategy choices between the two players, i.e., both player i and player J’ prefer 
coalition (i, j}. 

(iii) The process of coalition formation is a step-by-step process where two players 

merge together into a coalition at a time. 

(iv) Once a two-person coalition forms, the situation becomes a new one-the 
two players in the coalition are replaced by one player whose weight equals the sum of 
the weights of the two players in the coalition. 

Implicit in Gamson’s main hypothesis is a definition of a power index. Let r = 

k; al ,..., a,] be a proper weighted majority game without a dictator or veto players. Then 
the Gamson power index, denoted by y, is given by 

y(.Y)(i) = al/z aj if 1 ai += OandREYc 
icR iER 

-0 if zR ai = 0 or R 6 3”, 

where R E :Y is such that i E R, for all .Y E n and all i E N. Let 

(7.1) 

and 

n, = {.“P E II : .Y contains a cheapest winning coalition]. 

Then Theorem 7.1 tells us what our model predicts. 

THEOREM 7.1. Let I’ be a proper weighted majority game. Then K,(y) = Ill!, . 
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Proof. Let Y1 E 17,. Suppose 9, E 17 such that :Ye dom,(y)Yp, for some R E :Y2 
with R E W. Then y(.P&i) > r(.Y1)(i) f  or all iE R. Let T E 8, such that T E YY and 
Cipr ai = g. Since r is proper, R n T + D. Let j E R n T. Then r(.Yl)( j) = aj/g. 
Since j E R, y(.Y,)( j) = a&3& ui) > uj/g; i.e., x:i.R a, < g and a contradiction (from 
the definition of g) results. Hence K,(y) 1 n, . 

Let .P, E n, and .Y2 E 17 such that .P2 6 n, . Then d, dom,(y)Y2 , where T E 9, such 

that T E W and xitT ai = g, because r(.YJ;;) = q/g for all i E T and ,(S,)(j) < ai/g 
for all i E T. Hence K,,(y) C nV . 1 

It can be easily shown that Gamson’s predictions (i)-(iv) about coalition formation 
> . lead to C.S. s m n7, . However Gamson assumes that players begin forming coalitions 

starting from one player coalitions. So if we choose only those c.s.‘s in fl, that are acces- 
sible from the C.S. consisting of only one-player coalitions, our model reaches the same 
conclusions as Gamson’s predictions. 

8. CONCLUSION 

Under the same assumptions, our theory of coalition formation makes the same pre- 

dictions as Caplow’s and Gamson’s theories. This, however, should not be misinterpreted 
as an endorsement of these two theories. Both Caplow’s and Gamson’s theories are 
descriptive and depend heavily on their (implicit) definition of a power index. From a 

normative point of view these power indices have many shortcomings. Several power 
indices have been defined for simple games. Two of these, the Shapley-Shubik index 
(Shapley & Shubik, 1954) and the Banzhaf-Coleman index (Banzhaf, 1965, 1966, 1968a, 
1968; Coleman, 1971) have been extensively used and studied. Hence it is most appropriate 
to study the predictions of our model with respect to these power indices. A detailed 

analysis of the predictions of our theory with respect to the Shapley-Shubik power index 
is presented by Shenoy (1977~). 
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