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In this paper, we investigate the use of reciprocative strategy to induce 
cooperative behavior in non-zero-sum games. Reciprocative behavior is defined 
mathematically in the context of a two-person non-zero-sum game in which both 
the players have a common set of pure strategies. Conditions under which mutual 
cooperative behavior results when one of the players responds optimally to 
reciprocative behavior by the other player are described. Also, the desirability of 
playing the reciprocative strategy is investigated by stating conditions under which 
reciprocative strategy by one of the players or by both the players leading to 
mutual cooperative behavior is a Nash equilibrium outcome. 

1. INTRODUCTION 

It is frequently observed in real life that people tend to reciprocate their 
dealings with other people (Ref. [ 11, for instance). How you feel about a 
person or how you act towards a person depends to a large extent on how 
the other person feels about you or how he acts towards you. We shall call 
this the principle of reciprocation. Such behavior is considered by some as 
good wisdom, e.g., “Do unto others as you expect others to do unto you” is 
a familiar clichi: that echoes this principle. Here we shall study the 
implications of reciprocative behavior in a situation characterized by partial 
conflict and partial cooperation. 

Most conflict situations involving two parties can be characterized as 
having a cooperative and a competitive component. Familiar examples of 
such conflict situations are the arms race between USA and USSR, inter- 
national trade, military conflicts between two nations. On a smaller scale, we 
have competition between business firms producing similar products, 
competition between different divisions of an organization, etc. Such 
situations involving partial conflict and partial cooperation can be modeled 
as a two-person non-zero-sum game that is played repeatedly over time. 
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In this paper, we shall analyze the use of reciprocative behavior as a 
strategy to be used in a repeated non-zero-sum game. We shall indicate 
conditions under which reciprocative behavior by one of the players leads to 
a cooperative equilibrium point when the second player perceives such 
behavior by the first player as a fact that he cannot change. 

In the next section, we shall formally describe a non-zero-sum game 
formulation of a partial competitive and partial cooperative game in which 
each player has two pure strategies-cooperate, and do not cooperate (with 
the other player). Reciprocative behavior is then defined rigorously as a 
particular kind of strategy in this two-person non-zero-sum game. In 
Section 3, we indicate the conditions under which reciprocative behavior by 
one player leads to an equilibrium point where both players choose the 
cooperative strategy on each play of the game. The desirability of playing 
the reciprocative strategy is examined in Section 4 and Section 5 summarizes 
the findings in this paper. 

2. RECIPROCATIVE BEHAVIOR IN A NON-ZERO-GUM GAME 

Consider a two-person non-zero-sum game in which each player has two 
pure strategies-cooperate and do not cooperate. Such a game will be 
denoted by the matrix as shown below. 

Player II 

0 1 

Player I 

The Q’S are player I’s payoffs and the b,‘s are player II’s payoffs. The 
relation between the aii’s and bii’s will determine the nature of the game. For 
example, in the prisoner’s dilemma game, we have 

and 

a01 > a,1 > a00 > a10 (1) 

b,o > b,, > boo > bo, (2) 

in which case (a,,, boo) becomes the unique Nash equilibrium point if the 
game is played exactly once [2]. Let +?t denote the mixed strategy used by 
player I in time period t. A mixed strategy is a probability distribution on the 
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set of pure strategies. The probability distribution zl can be specified by x,, 
where 0 < x, < 1 and 

P($= l)‘Xl, P(Tt=O)= 1 -x,. (3) 

Without confusion, x1 will simply be called a mixed strategy. Similarly let y, 
denote the mixed strategy used by player II in time period t. Let X= {x,} 
and Y = { y,} denote the infinite sequences of mixed strategies used by player 
I and II, respectively, over an infinite time horizon. Let 6, denote the (prior) 
history of the strategies used by the players up to and including time period 
t, i.e., 

(4) 

Let h, denote the observed value of /?,, i.e., 

ht = {(Pl, s,>, (P2, q*L (Pt, S,>l? (5) 

where pI E (0, 1 } is an observed value of Zf and qr E (0, 1) is an observed 
value of Ft. 

To incorporate the concept of the human learning process, we will assume 
that the mixed strategy used by a player at time t will be a function of the 
observed value of F;,-, . One such strategy is called reciprocative behavior. 
We say player II exhibits perfect reciprocative behavior iff 

(t- 1) for all t = 2,..., co. (6) 

Note that reciprocative behavior implies that a player uses the entire history 
at any time t and that he gives equal weight to all the past actions of his 
opponent in forming his strategy at time t. 

We can relax both these assumptions for greater flexibility as follows. 
First, we will assume that a player will consider only the past k observed 
actions of his opponent. Second, we will assume that a player will give more 
weight to the more recent actions of his opponent compared to the distant 
past. There are several ways of doing this. In particular, we will assume that 
a player will “discount the history” at discount rate y, 0 < y < 1, i.e., 

Y(h- )=Pt-l+‘i1Pt-2+“‘+L.X-‘Pt-x 

t t 1 1 +y,+y2+.*. +yk-’ 
if t > k, 

(7) 

I+$+ . . . + y’-’ if t < k, 

i.e.. 

j+(h,,)=+ ‘<:’ y’?‘-n-1, 
G-0 

(8) 
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where t, = mm{ t, k} and [ = 1 + y’ + + I. + y’O- ‘. We will refer to this type of 
behavior as reciprocative behavior with k-step memory and memory discount 
rate y, i.e., (k, y)-reciprocative behavior in short. Note that perfect 
reciprocative behavior is a special case of (k, y)-reciprocative behavior with 
k = co and y = 1. In Section 3, assuming that player II will play the (k, y)- 
reciprocative strategy as defined in (8), we determine the optimal response 
for player I. Since y( is defined in terms of p,,..., ptPl (the observed 
(“posterior”) values of A?, ,..., x”,- J, and our analysis in Section 3 is before 
the actual play of the game (a “pre-posterior” analysis), we shall substitute 
y1 defined in (8) with 

(9) 

in devising the optimal response strategy. 

3. OPTIMAL RESPONSE TO RECIPROCATIVE STRATEGY 

Consider the two-person non-zero-sum game discussed in the previous 
section. Let A, and B, denote the expected payoff to players I and II, respec- 
tively, in the tth play if I plays mixed strategy x, and II plays mixed strategy 
y,. Then 

A,k, Y,> = (1 -x,)(1 - Yf)aoo + (1 -4yfaol 
+x,(1 - Yfho +-wal,~ (10) 

B,(x,, Y,) = (1 -x,)(1 - y,)b,, + (1 - xJy,b,, 
+x,(1 - yt)b,o +xtytb,l (11) 

Now, there are several different ways in which a player may evaluate a 
stream of payoffs. Two possible evaluations of the stream (A i, A,,...) are 

where p, 0 < /I < 1, is called the (payoff) discount factor; and 

X(X, Y) = lim T o. +Y i A,(+ YJ 
f-1 

(12) 

(13) 

Expression (12) is called the discounted sum and expression (13) is called 
the long run average expected payoff per play. The discounted sum is more 
sensitive to the payoffs in the immediate future than the distant future 
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whereas the long run average payoff per play is more sensitive to the steady- 
state payoffs. 

Consider the case in which player II plays (k, y)-reciprocative strategy as 
defined in (9). Player I perceives such behavior by player II as a fact that he 
is unable to change and proceeds to respond to such a strategy so as to 
maximize his payoff as given by expressions (12) or (13). To determine 
player I’s optimal responding strategy, we shall first consider the case where 
player I restricts himself to playing a stationary strategy, i.e., playing the 
same mixed strategy at all plays of the game, i.e., 

XI = x for all t. 

Then player II’s (k, y) strategy yt as given by (9) is 

Y, =x for all t. 

Hence, from (lo), we have 

A,(&, Y,) =A,@) =X2% + 41 - xho 

+ (1 - x)xa,, + (1 - x)*a,O. 

For national convenience, let 

a01 -a ,1=&l, 

a,,-ua,,=E*, 

(14) 
a,, - a,, = &j. 

Then A,(x) = (E, - ci)x* + (cl + c2 - E~)X + (E, + a,,). Note that A(X, Y) 
and x(X, Y) will be maximized at the same strategy which maximizes A,(x). 
To find the max A,(x), note that for 0 < x < 1 

-&A,(x) = 2(&j - E,)X + (El + E, -EJ, (15) 

&A’(X) = 2(&x - &I), (16) 

and A,(l) = a,,, A,(O) =a,,. 
Throughout the paper, we shall assume that mutual cooperative behavior 

results in a better outcome for both the players as compared to mutual non- 
cooperative behavior, i.e., 

a11 > aoo, (17) 

b,, > boo. (18) 
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We have 

LEMMA 1. 

(i) If E, < ej, A,(x) achieves its maximum at x = 1. 

(ii) If E, > e3 and e2 > E, - .e3, A,(x) achieves its maximum at x = 1. 

(iii) If E, > E, and Ed < E, - e3, A,(x) achieves its maximum at 

x = E2 + (6, - %I 
WI - %I (<l)* 

Proof See the Appendix. 

THEOREM 1. If 

(i) player II is committed to playing the (k, y)-reciprocative strategy 
regardless of what player I does, 

(ii) player I is aware and is convinced of this commitment, 

(iii) player I is restricted to playing a stationary strategy, and 

(iv) player I wishes to maximize either the discounted sum of payoffs 
or the long run average payoff per play, then player I will play the 
cooperative strategy at all plays of the game tf and only if either 

(4 El < E3 

or 

(b) s1 > cj and e2 > E, - e3. 

Proof The proof is a direct consequence of Lemma 1. 

Theorem 1 gives conditions on the payoffs of player I for reciprocative 
behavior by player II to lead to mutual cooperative behavior by both the 
players. Note that the conditions indicated by Theorem 1 are independent of 
k and y (a result of the assumption that player I is restricted to playing a 
stationary strategy). 

Next, consider the case in which player I is not restricted to playing a 
stationary strategy. In this case, we have the following result: 

THEOREM 2. If 

(i) player II is committed to playing the (k, y)-reciprocative strategy 
regardless of what player I does, 

(ii) player I is aware and is convinced of this commitment, and 
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(iii) player I wishes to m aximize the discounted sum of payoffs, then a 
sufficient condition for player I to play the cooperative strategy all the time is 
either 

or 

(a) E, < sj and @y” + ... +pkyk-l)/(~O + .e. + yk-‘) > E~/(E, + q) 

(b) E, > sj and (py” + ... +pkyk-l)/(yo + -.. + yk-‘) > E,/(E~ + Q). 

Proof: See the Appendix. 

Note that Theorems 1 and 2 are “consistent” since 

Q3y” + . . * +P”y”-‘)/(yO t *.* t yk-‘) < 1. 

Theorems 1 and 2 give suffkient conditions for player I to play the 
cooperative strategy on all plays of the game (leading to-mutual cooperative 
behavior on all plays of the game) assuming that 

(i) player II is committed to playing (k, y)-reciprocative strategy 
regardless of what player I does and 

(ii) player I is aware and is convinced of this commitment. 

In other words, player II (by announcing his intention to play the 
reciprocative strategy regardless of what player I does) can induce player I 
to play the cooperative strategy all the time (assuming player I is convinced 
about player II’s intentions) if the conditions in Theorem 1 or 2 are satisfied. 

In the above analysis, the roles of players I and II were chosen arbitrarily. 
Similar results can be derived if the roles of players I and II are 
interchanged. 

4. RECIPROCATIVE BEHAVIOR AS A NASH EQUILIBRIUM STRATEGY 

In the last section, we determined some sufficient conditions that enabled, 
say, player II to induce cooperative behavior by player I in all plays of the 
game leading to mutual cooperative behavior on all plays of the game. 
However, if mutual cooperative behavior does not yield the best payoff to, 
say, player II, then player II may not have the motivation to play the (k, r)- 
reciprocative strategy. However, if mutual cooperative behavior results in the 
best outcome for, say, player II, then there is a strong motivation for 
player II to announce that he is committed to playing the (k, y)-reciprocative 
strategy regardless of what player I does. If player I is indeed convinced of 
player II’s intentions then under the conditions indicated in Theorem 1 or 2, 
player I will respond by playing the cooperative strategy on all plays even 
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though mutual cooperative behavior may not yield the best outcome for him 
(player I). Thus we have: 

COROLLARY 1. Given the conditions of Theorem 1 or 2 and zf mutual 
reciprocative behavior results in the best outcome for player II, i.e., 

b,, = max b,, 
iJ 

then the optimal response by player I to player IZ’s (k, y)-reciprocative 
strategy leading to mutual cooperative behavior on all plays will be a Nash 
equilibrium point of the game. 

A similar result will hold if we interchange the roles of players I and II. 
Next, we may ask the question: when is (k, y)-reciprocative behavior by both 
players a Nash equilibrium point ? The answer clearly follows from 
Theorem 2 and is stated explicitly in Corollary 2 below. 

COROLLARY 2. If player I plays the (k,, y,)-reciprocative behavior 
strategy with x, = 1 (i.e., cooperative pure strategy on the first play) and 
player II plays the (k2, y,)-reciprocative behavior strategy with y, = 1, then 
this pair of strategies will be a Nash equilibrium point tf 

(i) the payoffs a,is of player Z satisfy either condition (a) or (b) of 
Theorem 2 with k = k,, y = yz, p = p, = payoff discount rate for player Z; 
and 

(ii) the payoffs b,‘s of player II satisfy conditions similar to those 
given for player Z above with k = k,, y = y, and ,b = pz = payoff discount 
rate for player II. 

CONCLUSIONS 

Reciprocative behavior was defined rigorously in the context of a two- 
person non-cooperative non-zero-sum game situation, a situation charac- 
terized by partial conflict and partial cooperation. In some games, a player 
can employ the reciprocative strategy to induce the other player to play the 
cooperative strategy in all plays of the game. Also conditions for 
reciprocative behavior to lead to a Nash equilibrium outcome were given. 
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6. APPENDIX 

Proof of Lemma 1. 

(i) If E, < E,, then (d2/dx2)A,(x) > 0 for all 0 <x < 1, i.e., .4,(x) is 
concave downward (U) everywhere. Hence A,(x) achieves its maximum at 
one of the endpoints of the interval [0, 1 J. Since A,( 1) > A,(O), the 
conclusion follows. 

If E, = E, then A,(x) = c,x + E, + a,,. Since E, > 0, the result follows. 
(ii) and (iii) If E, > sj, then (d2/dx2)A,(x) < 0 for all 0 <x :< 1, i.e., 

A,(x) is concave upwards (n) everywhere. The maximum of A,(x) occurs at 
the point where (d/dx) A,(x) = 0, i.e., at 

x* = Ez + (61 - %I 

2651 - 4 . 

Hence if E, a&, - ~3, then x* > 1, and the result in (ii) follows, If 
E* < E, - E3. then x* < 1 and the assertion in (iii) is proved. 1 

Proof of Theorem 2. 

A,(-% Y,) = Xr Ytk, - 81) -XI&3 + Yt(&, + 5) + -53 + a,, 

and from (12), we have 

A(X, Y) = 2 /?‘[A,(+ YJl* 
(=I 

Substituting for y, by Pt, from (9), we get 

A(kl)= f P' 
[ 
x, 

Es%ti-1) (E3 -E,)-X,E3 

I=1 r 

+ ez~ YnXt-n-l) (El + E,) + E3 + a 

r 
. 

I 
00 ) 

where<=l+y+y’+*..+y”-‘andt,=min{&k).Then 

where t, = min(m, k). 
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Case (i): cl > e,. In this case &I({x,})/~x, will take a minimum value 
when 

X m-1, 
= . . . =x 

m-2 = X m-1= X m+1= ..* = X m+k =o 

At these values of x, we have 

aA({x,l) yi” pym-‘(&, + &*) 
&?I 

=-p&j + I 
t=m+1 r * 

Hence 

if 

i.e., 

i.e., 

aA > o 

axm min 

7:” /3y-‘(E1 + El) 
c > P&j, 

t=m+ I 

pro t P2y’ + .‘* t bkyk-’ E3 
f + y” + . . . + f- 1 >- E, t E2 . 

Case (ii): E, < E,. In this case (a/ax,) A({x,}) is minimum when 

X m-11 = *.. = X m-2= X m-1= X m+1= X m+2= . . . ZXrnikX 1. 

At these values of x. we have 

$ y p' [ V-k -r"' t e, + E2) ] 
t=m+ 1 

(19) 
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Hence, (at these values of x) 

aA > o if Ply0 +P2y1 + *.* +py > E, 

axm min 
f+y’+... +$-I -. 

&2 + E3 
(20) 

In view of (19) and (20) we see that under the conditions of the theorem, 

aA({x,l) > o 

%?I 

for all x, E [0, 1 ] 

and hence player I can maximize his discounted sum of payoffs only if he 
plays the cooperative strategy (i.e., x, = 1) on the mth play. Since m was 
picked arbitrarily, the result in Theorem 2 follows. 1 
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