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logic, and in particular, LITE may be used for some existing automated theorem
prover.

LITE has an implementation in the LINCKS system in the sense that a LINCKS
database is a structure in LITE, This strong correlation is a promising start-point for
developing and implementing an explicit LITE reasoner.
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4
This paper describes a valuation-based system for propositional logic. The solution method of
valuation-based systems can efficiently check for inconsistencies in a knowledge-based sys-
tem. This method is capable of detecting all contradictions that can be detected using the ex-
pressive power of propositional logic. The computational complexity of this method depends
on the sizes of the valuations and on the graphical structure of the valuation-based system.
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1. INTRODUCTION

This paper presents a new efficient computational technique for checking for inconsis-
tencies in valuation-based systems. (We use the word inconsistency in the logical sense: a set
of propositions is inconsistent if contradiction is entailed). This technique is capable of detect-
ing all contradictioris that can be detected using the expressive power of propositional logic.
The computational complexity of this technique depends on the sizes of the valuations and on
the graphical structure of the valuation-based system.

The problem of consistency is NP-complete in the worst case. Hence there are no guar-
antees that the method will always work. However, this does not mean that real-world valua-
tion-based systems always conform to the worst case. In such cases, it is desirable to have an
efficient method for detecting inconsistencies. If each valuation relates only a small number of
variables and the subsets of variables thus telated can be arranged in a Markov tree without
adding large subsets, then consistency can be checked using only local computation, The

computational complexity of this local computational scheme is O((n+k)s) where n is number
of variables, k is the number of valuations, and s is the cardinality of the frame of the largest
subset of variables in the Markov tree.

The issue of consistency in valuation-based systems is an important one. Most commer-
cial rule-based languages do not check whether the rule-base is consistent or not. For example,
in Texas Instruments’ PERSONAL CONSULTANT system, if two rules such as If X=x then
Y=y, and If X=x then Y=~y are entered with variable Y as the goal, the system will first ask
the user for the value of X.” If the user responds by stating that X=x, the system then responds

by concluding either Y=y or Y=~y depending on the order in which the rules were entered in
the rule-base!

bit simpler. We do not attempt to detect potential inconsistencies. The method we present
detects actual inconsistencies. Thus, two rules such as If X=x then Y=y, and If X=x then
Y=~y are not inconsistent until X=x is posited. The method described here is derived from the
valuation-based system for discrete opumization described in Shenoy [1990b).

If a knowledge-based system is inconsistent, the solution method of valuation-based sys-

tem also is capable of isolating a minimal set of inconsistent valuations. Furthermore, if 2

© 1990 by Elsevier Science Publishing Co.. Inc.
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An outline of this paper is as follows. In Section 2, we define valuations and proper val-
uations which are used to represent knowledge. In Section 3, we define two operations on val-
uations called combination and marginalization. These operations are used to make inferences
from the knowledge-base. In Section 4, we give a formal definition of a consistent valuation-
based system. In Section 5, we describe a method for checking consistency of a valuation-

based system and describe its computational complexity. In section 6 we make some conclud-
ing remarks.

2. KNOWLEDGE REPRESENTATION

We will represent knowledge by functions, called valuations, from the space of configurations
to the space of values.

Consider a variable X. We use the symbol W for the set of possible values of X. We

assume that one and only one of the elements of W x can be the true value of X. We call Wy
the frame for X.

Let % denote the set of all variables. In this paper we will be concerned only with the
case where % is finite. We will also assume that all the variables in % have finite frames.

We will often deal with non-empty subsets of variables in %. Given a non-empty subset
hof %, let W, denote the Cartesian product of W for X in h, i.e., W, = X{Wy | Xeh). We
can think of the set W, as the set of possible values of the joint variable h. Accordingly, we
call Wy, the frame for h. Also, we will refer to elements of W, as configurations of h. We
will use this terminology even when h consists of a single variable, say X. Thus we will refer
to elements of Wy as configurations of X. We will use lower-case, bold-faced letters such as
X, ¥, etc. to denote configurations. Also, if x is a configuration of g and y is a configuration of
hand gnh = @, then (x,y) will denote a configuration of guUh.

In (categorical) rule-based systems, knowledge is represented by rules. For example, we
may have a rule relating two variables X and Y: If X=x then Y=y. In our framework, we will
represent knowledge using functions called valuations,

Suppose hg%. A valuation for his a function H: Wy, — (1,0). We will refer to the
clements of the set {1, 0) as values. The value | represents truth and the value 0 represents

falsechood. Thus a valuation for h is a function from the set of configurations of h to the set of )

truth values. For example, the rule If X=x then Y=y that relates two variables X and Y whose
frames are, respectively, Wy = (x, ~x} and Wy =(y,~y), canbe represented by the valua-
tion V for (X, Y) defined as follows: V(x,y) =1, V(x,~y) =0, V(~x,y) =1, V(~x,~y) = 1.
Note that this is basically the truth-table representation of the rule interpreted as a conditional.
In order to represent the notion of consistent knowledge, we will define proper valua-
tions. Suppose hc®%. A valuation H for h is said to be proper if there exists a configuration x

of h such that H(x) = 1, and improper otherwise. Thus a proper valuation cannot be identically
equal to O for all configurations.

The motivation behind the above definition is clear. Earlier, we had defined a frame as a

set of configurations exactly one of which is true. Thus it should not be possible for a consis-
tent piece of knowledge to rule out all configurations.

3. COMBINATION AND MARGINALIZATION

In this section, we define two basic operations for valuations called combination and marginal-
ization. Combination corresponds to logical conjunction and represents aggregation of knowl-
edge. Marginalization is less familiar and represents crystallization of knowledge.

Before we define the two operations, we need to introduce some notation. Projection of
configurations simply means dropping extra coordinates; if (w,x,y,2) is a configuration of
(W.X,Y,Z), for example, then the projection of (w.x,y,z) to {W,X) is simply (w,x), which is a
configuration of {W,X}. Formally, if g and h are sets of variables, hcg, and x is a configura-
tion of g, then we will let x*h denote the projection of x to h. The projection x'h is always a
configuration of h.

Combination. Suppose G and H are valuations for g and h, respectively. The valuation
G®H for guh is defined as follows:

o
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(G®H)(x) = G(x'8) H(x‘h)
for all xe W . If GBH is not a proper valuation then we shall say that G and H are not
combinable. If G®H is a proper valuation, then we shall say that G and H are combinable and
that G®H is the combination of G and H.
Note that if either G or H is improl;;pr, then G®H is improper. However, if both G and H

are proper, then G®H may be proper or itnproper. Whether G®H is proper or not depends on
if the knowledge represented by G and H are consistent or not when aggregated. Intuitively,
combination corresponds to aggregation of knowledge.

Note that the combination operator is commutative and associative; G®H = H®G, and
(G®H)®K = G®(H®K). Thus, when we combine several valuations Gy, ..., Gy, we can write

G1®...8Gx or simply ®(G; | i=1,.. .k} without indicating the order in which the combination is
carried out.

Consider two variables X and Y whose frames are, respectively, Wy = {x, ~x) and Wy
={y, ~y). Let Gy, G,, and Gj be three valuations for (X}, (X,Y}, and (X,Y) respectively,
given as follows:

Gi(x) =1, Gy(~x) =0
Ga(x,y) = 1, Ga(x,~y) = 0, Ga(~x.y) = 1.Ga(~x.~y) = 1;
GJ(X.)’) =0, G](X-"'Y) =1, GJ(*"»Y) = lvGS("’L')’) =1
G represents the proposition X=x; G represents the conditional: If X=x then Y=y; and G;
represents the conditional: If X=x then Y=~y. Table 1 shows that G1®G,®Gj is an improper
valuation. Therefore the set of valuations {Gy, Gz, G3) is inconsistent.

Table 1. The combination of Gy, G, and G;.

w 16| G,w) | Gyw) (G18G,®G3)(w)
(x,y) 1 1 0 G, (x)Gy(x,y)G 3(x,y)=0
(x,~y) 1 0 1 G,(x)Gz(x,~y)G3(x,~y) =0
(~x.y) 0 1 1 G (=x)Ga(~%,y)G3(~x,y) = 0
(~x,~y 0 1 1 G,(~x)Gq(~x,~y)G1(~x.~y) =0

Marginalization. Suppose G is a valuation for g and suppose hcg. Then the marginal

of G for h, denoted by G+h, is the valuation for h defined as follows:
Gihx) = MAX(G(x.y) | ye W)
for all xe Wy,

It follows from the above definition that G is proper if and only if G is proper.
Intitively, marginalization corresponds to crystallization of knowledge. If G is a valuation for
8 representing some knowledge about variables in g, and hcg, then Gt represenits knowledge
about variables in h implied by G if we disregard variables in g—h.

Note that if kchcg, and G is a valuation on G, then Gl =gl [y words, the order
of deletion of variables in the marginalization operation does not matter.

Consider the valuations G, and G; as defined above representing proposition X=x and
conditional If X=x then Y=y, respectively. If we combine G, and G and marginalize the

combination for (Y}, the resulting valuation (G|®GZ)UY' is given by (G|®Gz)“w(y) =1and
(G|®Gz)““(-y) =0,i.e., (Gi®G)!Y! represents the proposition Y=y (see Table 2). Thus
combination and marginalization to (Y} gives the same result as the modus ponens form of in-
ference in propositional logic (X=x, and If X=x then Y=y, .- Y=y).
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Table 2. Modus ponens represented as combination and marginalization, G, repre-

sents proposition X=x and G, represents conditional If X=x then Y=y. (G|®Gz)“”
represents the conclusion Y=y.

w_1G6,w'™) | G,m) |(Gi8Gy)w)
(x,y) 1 1 1 .
(x~y) 1 0 0 w (G1®Gy)* Vhiw)
(~x,y) 0 1 0 MAX {(G,®G,)(x.y), G1®Gy)(~xy)] =1
(~x,~y) 0 1 0 =yl MAX{(G,®G,)(x.~y), (G18Gy)(~x,~y)) =0

Similarly, other forms of logical inference such as modus tollens (Y=~y, and If X=x then
Y=y, . X=~x), disjunctive syllogism (X=x or Y=y, and X=~x, .. Y=y), and disjunctive elimi.
nation (X=x or Y=y, If X=x then Z=z, and If Y=y then Z=z, .-, Z=z) are shown to be special

cases of combination and marginalization (for the appropriate variable) in Tables 3,4and>s,
respectively.

4. CONSISTENT VALUATION-BASED SYSTEMS
In this section, we will formally define what we mean by a consistent valuation-based systemn,

A valuation-based system consists of a finite set of variables %, a finite frame Wy for
cach variable X in %, and a finite collection of valuations (V1, ..., Vi) where each valuation V;
is for some subset h of %.

Let 36 denote the set of subsets of % for which valuations exist in the valuation-based
system. For simplicity of exposition, we will assume that each variable in % is included in
some element of %, i.e., U = % (if not, we can always disregard such variables). Note that
there could be more than one valuation defined for a subset of variables. Using the language of

graph theory, the set % is called a hypergraph on % and each of its elements is called a hyper-
edge.

Thus, a valuation-based system (VBS) can be denoted formally by the quadruple

{ %, ['IJIX}XE o (Vi Vi), % } representing variables, frames, valuations, and hyper-
graph, respectively.

Suppose p = {'L, (WX}Xe'r.' (Vi, s Vi), % } is a valuation-based system. We shall
say that p is consistent if ® | V1....Vi] is a proper valuation and inconsistent otherwise. We

will refer to ®(Vy,...,Vy } as the joine valuarion. Note that the joint valuation is a valuation for
%.

If a valuation-based system has, say, 50 variables, and each variable has, say, 2 configu-
rations then the frame of the joint variable % will have 250 configurations. Thus, in this case,
it will be computationally infeasible to explicitly compute the joint valuation in order to verify
whether it is consistent or not. In the next section, we describe an efficient method for verify-
ing if a VBS is consistent or not without explicitly computing the joint valuation.”

5. A METHOD FOR CHECKING FOR CONSISTENCY

In Section 3, we stated that a marginal G!h js proper if and only if G is proper. Thus, one way
of checking whether or not a VBS is proper is to verify whether the marginal of the joint valua-
tion for some subset of joint variables is proper or not. In this section, we describe a method

for computing exactly the marginal of the joint valuation for some subset without explicitly
computing the joint valuation.
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Table 3. Modus tollens represented as combination and marginalization. G, represents
proposition Y=~y and G, represents conditional If X=x then Y=y. (G4®Gy)X) repre-
sents the conclusion X=~x.

w_|Gyw!™) | Gw) [(Ga®Gy)(w)

(x.y) 0 1 0

x| 1 0 0 w_| (G®Gy!¥hw)
(~x.y) 0 1 0 x 0
(~x,~y 1 1 1 ~X 1

Table 4. Disjunctive syllogism represented as combination and marginalization. G
represents proposition X=~x and Gg represents disjunction X=x or Y=y. (Gs®Gg)*Y!
represents the conclusion Y=y,

w_[Gswi™ | Gew) |(Gs®Gg)w)
(x,y) 0 1 0
xy] 0 1 0 w_| (Gs®Ge)t Miw)
(~x.y) 1 1 1 y 1
(~x.~y 1 0 0 ~y 0

Table 5. Disjunctive elimination represented as combination and marginalization. Gg
represents disjunction X=x or Y=y. G, represents conditional If X=x then Z=z, Gy
represents the conditional If Y=y then Z=z. (Gs®G7®Gg) 42! represents the conclu-
sion Z=z,

w G (wUXYhiG. (wi (XZ) Go( w2 (648G, BGg)(w)
(x,y.z) 1 1 1 1
(x,y,~2) 1 0 0 0
(x,~y.z) 1 1 1 1
X,~Y,~Z) 1 0 1 0
it IR ! : : w | (Gs®G19Gg)* Z(w)
~X.Y,~z) 1 1 0 0 =
~X.~y.z) 0 1 1 0 z e |
~X,~Y,~Z) 0 1 1 0 ~Z 0

Suppose p = { %, {(Wx)yeq (Vi, o Vi), % } is a valuation-based system. Let h, de-
note some element of %. We will now describe a method for computing the marginal
it
(®(Vy,.... i)™ -
The computation of the marginal proceeds in two phases. In the first phase, we arrange
the subsets of variables in % in a “Markov tree”. In the second phase, we “propagate” the val-

uations ( V1, ..., Vi} in the Markov tree using a local message-passing scheme resulting in the
computation of the desired marginal.
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5.1. Finding a Markov Tree Arrangement

A Markov tree is a topological tree whose vertices are subsets of variables with the property
that when a variable belon gs to two distinct vertices, then every vertex lying on the path be-
tween these two vertices contains the variable.

First, the only information we need in this phase is the set 36 of subsets of variables for
which we have valuations in the VBS. Second, in the process of arranging a set of subsets in a
Markov tree, we may have to add some subsets to the hypergraph %. Third, in general, there

are many Markov tree arrangements of a hypergraph. Figure 1 shows two Markov tree ar- .
rangements of the subsets {A,B}, (B,C}, (C,D], (AD).

Figure 1. Two Markov tree arrangements of the subsets (A,B}, (B,C), {C.D}, (A,D}.

qaBD )
@8 )—(ACDD
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The computational efficiency of the second phase depends on the sizes of the frames of
the vertices of the Markov tree constructed in the first phase. However, finding an optimal
Markov tree (a Markov tree whose largest frame is as small as possible) has been shown to be
an NP-complete problem (Amborg er al. [1987]). Thus we have to balance the computational
efforts in the two phases. We should emphasize, however, that this is strictly a computational
effort question. If computational effort is not an issue, then it does not matter which Markov
tree is used for propagating the valuations. All Markov trees give the same final answer, i.c.,
the marginal of the joint valuation for some subset.

The method described below for amanging a hypergraph in a Markov wree is due to Kong

[1986] and Mellouli [1987].

Suppose % is a hypergraph on %. To arrange the subsets in % in a Markov tree, we first
pick a sequence of variables in %. As we shall see, each sequence of the variables gives rise to
a Markov tree arrangement. Melloul (1987] has shown that an optimal Markov tree arrange-
ment can be found by picking some sequence. Of course, since there are an exponential num-

ber of sequences (n! to be exact), finding an optimal sequence is, in general, a difficult prob-
lem.

Consider the following set of instructions in pseudo-basic:
INITIALIZATION: u « %, KoK,V 0,80,
FORi=1ltwnby1;

Pick a variable in set u and call it X;

u—u- (X;j)
g f—U{hE %i—l lxieh].
fi &g - (X;).

V& Vulhe %, I Xeh}u{f}u(g)
€ 86U {(gyh) Ihe iy, heg, Xieh) U ((f,g))
%i — (hE '}Gi—l | Xieh] v {f.}

IF 3; consists only one subset THEN GOTO STOP
ENDFOR

STOP
After the execution of the above set of instructions, it is easily seen that the pair (V, 6)
is be a Markov tree arrangement of 36 where U’ denotes the set of vertices of the Markov tree
and € denotes the set of undirected edges. Note that at each iteration of the above sequence of
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instructions, subsets g; and f; are added to the set of subsets if they are not already members of
%.
We shall say that in the ih iteration of the FOR-loop in the above set of instructions, the

variable X; that is picked from set u is marked. Note that the subsets in %6; only contain un-
marked variables.

A heuristic called one-step-look-akitad has been suggested by Kong [1986] for finding a
good Markov tree. This heuristic tells us’which variable to mark next. As the name of the
heuristic suggests, the variable that should be marked next is an unmarked variable X; such that
the cardinality of '\lf,i is the smallest. Thus the heuristic attempts to keep the sizes of the

frames of the added vertices as small as possible by focussing only on the next subset added.
See Zhang [1988] for other heuristics for efficient Markoy tree construction.

5.2. Propagating Valuations in Markov Trees

Suppose we have arranged the hypergraph % in a Markov tree. Let %’ denote the set of all
subsets in the Markov tree. Clearly %'2%. To simplify the exposition, we will assume that
there is exactly one valuation for each subset he %' (If h is a subset that was added during the
Markov tree construction process, then we can associate the vacuous valuation (the valuation
whose values are all 1) with it. On the other hand, if subset h had more than one valuation de-
fined for it, then we can combine all of these valuations to obtain one valuation).

First, note that the Markov tree defines a neighborhood structure for each subset hie 36",
Subset h; is a neighbor of h; if there is an edge (hi.h;) in the Markov tree. Let N(h) denote the
set of subsets in %" that are neighbors of h. Second, let us designate hy (the subset for which
the marginal is desired) as the roor of the Markov tree. Thus for each subset h=hy in the
Markov tree, there will be a unique neighbor of h that will lie on the path from h to hy. We
will refer to this neighbor as h's parent and denote it by n(h), and we will refer to h’s other
neighbors (if any) as its children. ‘ )

In the propagation process, each subset (except the root hy) transmits a valuation to its

parent. We shall refer to the valuation transmitted by subset h; to its parent n(h;) as a message

and denote it by Mfi—mh), Suppose %' = (hy, ..., h_} and let H; denote the valuation associ-
ated with subset h;. Then, the message transmitted by a subset h; to its parent is given by

M0 = (@ (M™% he (N(hy)-(n(hy)) ) @kt) k) )
In words, the message transmitted by a subset to its parent consists of the combination of all
the messages it receives from its children plus its own valuation suitably marginalized. Note
that the combination operation that is performed in (1) is on the frame W,

Expression (1) is a recursive formula. We need to start the recursion somewhere. Note
that if subset h; has only one neighbor (its parent), then (N(h;}~(n(h;)}) = @ and the expression
in (1) reduces to

: MRty (Hi)l(hinn(hi))
Thus the leaves of the Markov tree (the subsets that have no children) can send messages to

their parents right away. The others wait until they have heard from all their children before
they send a message to their parent.

After the root hy has received a message from each of its children, it combines all the
messages it receives from its children with it own valuation, i.e., it computes

(®(M""1 he N(hy)} )@H,. 3

The following theorem states that the result of the computation in (3) is indeed the desired
marginal.

2)

Theorem 1. The marginal of the Joint valuation of p for hy can be computed as in
Gic., (®(Vili=l...k])"™ = (@(M"™™ | he Neh,)))@H,.

The essence of the propagation method described above is to perform combinations of
valuations on smaller frames instead of combining all valuations on the global frame associ-
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ated with %. To ensure that this method gives us the correct answers, the smaller frames have
to be arranged in a Markov tree.

If the VBS p is consistent, then the marginal of the joint for h, is of course proper. If pis
inconsistent, then this will be manifested by the marginal of the joint for h, being improper.
Depending on which subsets of valuations are inconsistent, inconsistency may be detected ear-
lier during the combination operation (in expression (1)) at some vertex h;.

Shenoy [1990] describes an example in detail illustrating the construction of a Markov
tree and illustrating the propagation of valuations.

6. CONCLUSIONS
We have described an efficient method for checking whether a knowledge-base is consistent or
not.

In the propagation scheme described in Section 5.2, messages were only sent one way
towards the root. If messages are sent back down from the root to the leaves, we could com-
pute the marginals for every subset in the tree [Shenoy and Shafer, 1990]. And if we included
all singleton subsets in the Markov tree, then we wouid have marginals of the joint valuation
for each variable in the system. As we explained earlier in Section 3, finding the marginal of
the joint valuation is a form of logical inference. Thus the method we have described can also
be used to make inferences from a valuation-based system. Shenoy [1989] describes such a
language that uses valuations to encode knowledge and uses the combination and marginaliza-
tion operations to make inferences from the knowledge-base.
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Abstract

‘This Paper proposes a formulation of hierarchical
action structures. The problem of coordinating abstr
dressed. Action lazonomues, ch

planning using action taxonomies and

action levels and planning | i

rd rac ¢ levels is ad-

oiroigln: poon -u:actcnz‘mg :ecomposmon and inheritance relations between
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et o, S Present the abstraction levels of
i planning levels are represented i ] ]

ol n In terms of hierarchical q t
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choose the specification of an inheritance abstraction during the plan refinement

1 Introduction

+ their planning Jevel d
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gy p Sekivii es, asstl))cnatez.i with temporal constraints between actions, Planning is
Progeep? et 1o i:rocesls; y which Wecan synchronize the abstraction and planring levels.
Eeneraten o e an abstract .actxon based on a behavior description, Refinement then
ctmeen pucrr) Staptes s ui;ngl an action taxonomy. Actiong are described ag transformations
i act e es, and plans are represented using action Structures. The coheren f

cture implies the validity of the abstract plan. The evolution of the absf:a:t
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