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Abstract—In this paper we analyze the use of hybrid Bayesian
networks in domains that include deterministic conditionals for
continuous variables. We show how exact inference can become
infeasible even for small networks, due to the difficulty in
handling functional relationships. We compare two strategies for
carrying out the inference task, using mixtures of polynomials
(MOPs) and mixtures of truncated exponentials (MTEs).

Index Terms—hybrid Bayesian networks; mixtures of polyno-
mials; mixtures of truncated exponentials; deterministic condi-
tionals;

I. INTRODUCTION

Hybrid Bayesian networks are Bayesian networks that in-
clude discrete and continuous random variables. The first
proposal of an efficient algorithm for handling this kind
of Bayesian networks was proposed for the case in which
the joint distribution is mixture of Gaussians (MoG) [1],
[2]. Some limitations of the MoG model are that it is not
compatible with network topologies in which discrete variables
have continuous parents, and all conditionals for continuous
variables have to be conditional linear Gaussians.

A more general inference procedure, based on the use of
mixtures of truncated exponentials (MTEs), was proposed in
[3]. The MTE model does not impose any structural restriction
to its corresponding networks, and is compatible with any
efficient algorithm for exact inference that requires only the
combination and marginalization operations, as the Shenoy-
Shafer [4] and variable elimination methods [5]. Furthermore,
MTEs have shown a remarkable ability for fitting many
commonly used univariate probability distributions [6], [7].

The most recent proposal for dealing with hybrid Bayesian
networks is based on the use of mixtures of polynomials
(MOPs) [8]. Like MTEs, MOPs have high expressive power,
but the latter are superior in dealing with deterministic condi-
tionals for continuous variables [9], [10].

In this paper we discuss some practical issues that have to
be addressed in order to make inference in hybrid Bayesian
networks feasible when deterministic conditionals are present.
We compare the performance of MOPs and MTEs in this
context, through an example consisting of a stochastic PERT
network [11].

II. MTES AND MOPS

In this section we formally define the MTE and MOP
models, which will be used throughout the paper. We will
use uppercase letters to denote random variables, and bold-
faced uppercase letters to denote random vectors, e.g. X =
{X1, . . . , Xn}, and its domain will be written as ΩX. By
lowercase letters x (or x) we denote some element of ΩX

(or ΩX). The MTE model [3] is defined as follows.
Definition 1: Let X be a mixed n-dimensional random

vector. Let Y = (Y1, . . . , Yd)
T and Z = (Z1, . . . , Zc)

T be
the discrete and continuous parts of X, respectively, with
c + d = n. We say that a function f : ΩX �→ R

+
0 is a mixture

of truncated exponentials (MTE) potential if for each fixed
value y ∈ ΩY of the discrete variables Y, the potential over
the continuous variables Z is defined as:

f(z) = a0 +
m∑

i=1

ai exp
{
bT

i z
}

, (1)

for all z ∈ ΩZ, where ai ∈ R and bi ∈ R
c, i = 1, . . . , m.

We also say that f is an MTE potential if there is a partition
D1, . . . , Dk of ΩZ into hypercubes and in each one of them,
f is defined as in Eq. (1). In this case, we say f is a k-piece,
m-term MTE potential.

Mixtures of polynomials (MOPs) were initially proposed
as modeling tools for hybrid Bayesian networks in [8]. The
original definition is similar to MTEs, in the sense that they
are piecewise functions defined on hypercubes. A more general
definition was given in [10], where the hypercube condition is
relaxed. The details are as follows.

Definition 2: Let X,Y and Z be as in Def. 1. We say
that a function f : ΩX �→ R

+
0 is a mixture of polynomials

(MOP) potential if for each fixed value y ∈ ΩY of the discrete
variables Y, the potential over the continuous variables Z is
defined as:

f(z) = P (z), (2)

for all z ∈ ΩZ, where P (z) is a multivariate polynomial in
variables Z = (Z1, . . . , Zc)

T. We also say that f is a MOP
potential if there is a partition D1, . . . , Dk of ΩZ into hyper-
rhombuses and in each one of them, f is defined as in Eq. (2).
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Fig. 1. A PERT network with five activities

The fact that the elements in the partition are hyper-
rhombuses, means that for any order of the variables
Z1, . . . , Zc, for each Di it holds that

l1i ≤ z1 ≤ u1i,

l2i(z1) ≤ z2 ≤ u2i(z1),

...

lci(z1, . . . , zc−1) ≤ zc ≤ uci(z1, . . . , zc−1),

where l1i and u1i are constants, and lji(z1, . . . , zj−1) and
uji(z1, . . . , zj−1) are linear functions of z1, . . . , zj−1 for
j = 2, . . . , c, and i = 1, . . . , k.

MTEs and MOPs are closed under multiplication, addition,
and integration. However, integrating over hyper-rhombuses is
in general more complex than over hypercubes. The advantage
is that using hyper-rhombuses, it is easier to represent models
like the conditional linear Gaussian, where the domain of a
variable may depend on the value of its parents in the network.
Unfortunately, MTEs cannot be defined on hyper-rhombuses,
as the integration operation would not remain closed for that
class.

III. A PERT HYBRID BAYESIAN NETWORK

We will illustrate the inference process in hybrid Bayesian
networks using a stochastic PERT network [11]. PERT stands
for Program Evaluation and Review Technique, and is one
of the commonly used project management techniques [12].
PERT networks are directed acyclic networks where the nodes
represent duration of activities and the arcs represent prece-
dence constraints in the sense that before we can start any
activity, all the parent activities have to be completed. The
term stochastic refers to the fact that the duration of activities
are modeled as continuous random variables.

Fig. 1 shows a PERT network with 5 activities (A1, . . . , A5).
Nodes S and F represent the start and finish times of the
project. The links among activities mean that an activity cannot

Fig. 2. A Bayesian network representing the PERT network in Fig. 1

be started until after all its predecessors have been completed.
Assume we are informed that the durations of A1 and A3 are
positively correlated, and the same is true with A2 and A4.
Then, this PERT network can be transformed into a Bayesian
network as follows.

Let Di and Ci denote the duration and the completion time
of the activity i, respectively. The activity nodes in the PERT
network are replaced with activity completion times in the BN.
Next, activity durations are added with a link from Di to Ci, so
that each activity will be represented by two nodes, its duration
Di and its completion time Ci. Notice that the completion
times of the activities which do not have any predecessors
will be the same as their durations. Hence, activities A1 and
A2 will be represented just by their durations, D1 and D2.
As A3 and A1 have positively correlated durations, a link will
connect D1 and D3 in the Bayesian network. For the same
reason, another link will connect D2 and D4. The completion
time of A3 is C3 = D1+D3. Let C23 = max{D2, C3} denote
the completion time of activities A2 and A3. The completion
time of activity A5 is C5 = D1 + D5, and for activity A4, it
is C4 = C23 + D4.

We assume that the project start time is zero and each
activity is started as soon as all the preceding activities are
completed. Accordingly, F represents the completion time of
the project, which is the maximum of C5 and C4. The resulting
PERT Bayesian network is given in Fig. 2.

Notice that the conditionals for the variables
C3, C23, C4, C5 and F are deterministic, in the sense
that their conditional distributions given their parents
have zero variances. On the other hand, variables
D1, . . . , D5 are continuous random variables, and their
corresponding conditional distributions are depicted next to
their corresponding nodes in Fig. 2. The parameters μ and σ2

of the Normal distribution are in units of days and days2,
respectively. The parameter μ of the exponential distribution
is in units of days.

The problem of inference in hybrid BNs with deterministic
conditionals has been studied in [9]. The first problem we
find when attempting to carry out inference in the network
in Fig. 2 is concerned with variables C23 and F , as their
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Fig. 3. A max conditional

Fig. 4. Transformation of a max conditional

Fig. 5. A hybrid Bayesian network representing the PERT network in Fig. 1

deterministic conditional is the max function, which is not
easy to use directly in probabilistic inference. However, we
can convert the max deterministic function to a linear function
[9]. Consider the situation in Fig. 3. We can remove the max
by introducing a discrete indicator variable A with two states
a and na, which denote whether D2 ≥ C3 or D2 < C3,
respectively, obtaining the equivalent representation displayed
in Fig. 4. After applying this transformation to C23 and F
in Fig. 2, we obtain the hybrid Bayesian network shown in
Fig. 5. Notice that it is hybrid because now there are both
discrete and continuous variables in the same network.

Fig. 6. A sum conditional

A. MTE representation of conditionals

MTEs can be used to accurately approximate several uni-
variate distributions, including the ones in the PERT hybrid
BN [6]. The approximation of conditional densities using
MTEs is more difficult, as it was recently shown [13] that
the value of any conditional MTE density has to be constant
with respect to the value of the parent variables. Therefore, it
means that a conditional density is approximated by MTEs by
partitioning the domain of the parent variables into hypercubes
and then fitting a univariate MTE in each hypercube. The
resulting conditional MTE density is called a mixed tree [14].

An additional problem is found when attempting to deal
with deterministic conditionals. MTEs are not closed with
respect to the convolution operation required by the sum
conditional. Consider the situation depicted in Fig. 6. The
marginal PDF of Y is Gamma[r = 2, μ = 1], which is not an
MTE function. The reason is that such a marginal is obtained
through the so-called convolution operation as follows:

fY (y) =

∫ ∞

−∞

fX1
(x1) fX2

(y − x1) dx1

=

∫ y

0

e−x1 e−(y−x1) dx1 (3)

= y e−y if y > 0,

which is not an MTE as y appears outside the exponent of e,
thus violating Def. 1. This is a consequence of the fact that
even though fX2

(x2) is defined on hypercubes, fX2
(y − x1)

is no longer defined on hypercubes, and therefore, the limits
of integration in Eq. 3 are not all constants.

One solution to this problem is to approximate the function
fX2

(y − x1) on hypercubes using a mixed tree approach
as described in [14]. If Z ∼ N(0, 1), f(·) is an MTE
approximation of the PDF of Z , and Y = σZ + μ, where
σ and μ are real constants, then Y ∼ N(μ, σ2), and an MTE
approximation of the PDF of Y is given by g(y) = 1

|σ|f(y−μ
σ

).
For example, suppose X1 ∼ N(3, 1), X2|x1 ∼ N(6 + 2x1, 4)
and Y = X1 +X2. Suppose f(·) is an MTE approximation of
the PDF of N(0, 1) on the domain (−3, 3) (see [6], [7]). Then,
g1(x1) = f(x1 − 3) is an MTE approximation of the PDF
of X1 ∼ N(3, 1) on the domain (0, 6). Finally, g2(x1, x2),
as described in Eq. (4), is an MTE approximation of the
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conditional PDF of X2 | x1:

g2(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

f(x2−8
2 )/2 if 0 ≤ x1 < 2,

f(x2−12
2 )/2 if 2 ≤ x1 < 4,

f(x2−16
2 )/2 if 4 ≤ x1 ≤ 6.

(4)

Notice that this mixed-tree method can also be used with
MOPs.

B. MOP representation of conditionals

The problem of fitting univariate density functions using
MOPs was studied in [8]. Also, a procedure for approximating
conditionals was given in that same work. More recently, the
ability of MOPs to fit conditional distributions was signifi-
cantly improved by means of allowing the functions to be
defined into hyper-rhombuses rather than into hypercubes [10].

To illustrate this improvement, consider three random vari-
ables D1, D3, and C3, with D1 ∼ N(3, 1), D3|d1 ∼
N(6 + 2d1, 4), and C3 = D1 + D3. Suppose f(·) is a
MOP approximation of the PDF of N(0, 1) on the domain
(−3, 3). Then, g1(d1) = f(d1 − 3) is a MOP approximation
of the PDF of D1 ∼ N(3, 1) on the domain (0, 6). Finally,
g′2(d1, d3) = f(d3−6−2d1

2 )/2 is a MOP approximation of the
conditional PDF of D3 given d1. Notice that g′2(d1, d3) is
defined on hyper-rhombuses, i.e. 0 ≤ d3−6−2d1

2 < 3, etc.
Unlike MTEs, MOPs are closed under the operations re-

quired for sum conditionals. Thus, after the elimination of
D3, g4(d1, c3) = g′2(d1, c3 − d1) is a MOP, and after the
elimination of D1,

g5(c3) =

∫ ∞

−∞

g1(d1)g4(d1, c3) dd1

is also a MOP.
In order to compare the hyper-rhombus and the hypercube

approaches, we will model the same problem using MOPs
defined on hypercubes. Thus, assume f(z) is a 2-piece,
3-degree MOP approximation of the PDF of N(0, 1) [8].
Then as before, g1(d1) = f(d1 − 3) is a 2-piece, 3-degree
MOP approximation of the PDF of N(3, 1) on (0, 6), and
g2(d1, d3) as defined in Equation (4) is a 6-piece 3-degree
MOP approximation of the conditional PDF of D3 given D1.

The combination of g1(d1) and g2(d1, d3) results in a 8-
piece, 6-degree joint PDF of D1, D3. Computing g6(d3) =∫ 3

−3
g1(d1) g2(d1, d3) dd1 takes about 1.8 seconds in Math-

ematica R© v. 8.0.1, and results in a 8-piece, 3-degree MOP
approximation of the PDF of D3 on the interval (0, 24).
The computation of such density following the hyper-rhombus
approach takes 4 seconds in the same platform. Therefore,
computations using hypercubes are faster, as the integration
operation is easier. However, the hypercube approximation (us-
ing mixed trees [14]) of the conditional PDF of D3 has more
pieces (6) than the hyper-rhombus approximation (2). Also, the
hypercube approximation of the joint PDF of D1 and D3 has
more pieces (8) than the hyper-rhombus approximation (4),
and both have the same degree. The hypercube approximation

of the marginal PDF of D3 has more pieces (8) than the hyper-
rhombus approximation (4), but smaller degree (3 vs. 7). In
both cases, after integration, the number of pieces remains
unchanged. For hypercubes, after integration, the degree goes
down from 6 to 3, whereas for hyper-rhombuses, the degree
goes up from 6 to 7.

IV. SOLVING THE PERT HYBRID BAYESIAN NETWORK

A. Solution using MOPs

We start with a 2-piece, 3-degree MOP f1(·) as an approx-
imation of the PDF of the standard normal. Using f1(·), we
define a 2-piece, 3-degree MOP approximation of the PDFs of
D1 and D2. Using mixed trees, we define a 6-piece, 3-degree
MOP of the conditional PDFs of D3 and D4. We used a 2-
piece, 3-degree MOP approximation of the Exp(25) density
for D5.

The initial potentials in the PERT hybrid BN in Fig. 5
are denoted as follows. The conditionals for D1, . . . , D5 are
fD1

, . . . , fD5
respectively. The deterministic conditional for

C3 is fC3
(d1, d3, c3) = δ(c3 − d1 − d3), where δ stands

for the Dirac’s delta function. The deterministic conditional
for C23 is fC23a

(d2, c3, c23) = δ(c23 − d2) if A = a, and
fC23na

(d2, c3, c23) = δ(c23 − c3) if A = na. For C4, we
have fC4

(c23, c4, d4) = δ(c4 − c23 − d4). For the discrete
variable A, we have pAa(d2, c3) denoting P (A = a|d2, c3) and
pAna(d2, c3) for P (A = na|d2, c3). The conditional for C5 is
denoted as fC5

(d1, d5, c5) = δ(c5 − d1 − d5). For the discrete
variable B, we have pBb(c4, c5) meaning P (B = b|c4, c5)
and pBnb(c4, c5) meaning P (B = nb|c4, c5). Finally, the
conditional for F is denoted as fFb(c4, c5, f) = δ(f − c4)
if B = b and as fFnb(c4, c5, f) = δ(f − c5) if B = nb.

The goal is to compute the marginal density for
F . To that end, we choose an elimination order
of the remaining variables in the network, namely
D5, D3, D1, D4, D2, C23, A, C3, C4, C5, and B.

The deletion of D5 is carried out by computing

f2(d1, c5) =

∫
fD5

(d5) fC5
(d1, d5, c5) dd5 = fD5

(c5 − d1).

Next we remove D3 and D1 by computing

f3(d1, c3) =

∫
fD3

(d1, d3) fC3
(d1, d3, c3) dd3

= fD3
(d1, c3 − d1),

f4(c3, c5) =

∫
fD1

(d1) f2(d1, c5) dd1,

where f4 is computed as a 24-piece, 6-degree MOP f4, and
takes 6.6 seconds to be calculated. Next, we re-approximate
f4 by a 8-piece, 3-degree MOP using Lagrange interpolating
polynomials [15], in order to reduce the complexity (number
of pieces and degree).

The next step is to delete D4:

f5(c23, d2, c4) =

∫
fD4

(d2, d4) fC4
(c23, c4, d4) dd4 =

fD4
(d2, c4 − c23).
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Next, the deletion of D2 yields the following functions:

f6a(c3, c23, c4) =∫
fD2

(d2) fC23a
(d2, c3, c23) f5(c23, d2, c4)pAa(d2, c3) dd2

= fD2
(c23) f5(c23, c23, c4) pAa(c23, c3)

f6na(c3, c23, c4) =

fC23na
(d2, c3, c23)

∫
fD2

(d2) f5(c23, d2, c4) pAna(d2, c3) dd2

= fC23na
(d2, c3, c23)

∫ c3

−∞

fD2
(d2) f5(c23, d2, c4) dd2.

Next we marginalize out C23 as follows:

f7a(c3, c4) =

∫
f6a(c3, c23, c4) dc23 =

∫
fD2

(c23) f5(c23, c23, c4) pAa(c23, c3) dc23 =
∫ ∞

c3

fD2
(c23) f5(c23, c23, c4) dc23.

f7na(c3, c4) =

∫
f6na(c3, c23, c4) dc23 =

∫ c3

−∞

fD2
(d2) f5(c3, d2, c4) dd2.

For deleting A, we compute f7(c3, c4) = f7a(c3, c4) +
f7na(c3, c4). f7 is computed as a 30-piece, 6-degree MOP and
it requires 54 seconds to be computed. Given the large number
of pieces, we re-approximate f7 by a 8-piece, 5-degree MOP
using Lagrange interpolating polynomials [15].

After further elimination of C3, f8 is computed as
a 45-piece, 8-degree MOP in 16 seconds: f8(c4, c5) =∫

f4(c3, c5) f7(c3, c4) dc3.
The elimination of C4 takes 24.7 seconds, and consists of

computing

f9b(c5, f) =

∫
pBb(c4, c5) fFb(c4, c5, f) f8(c4, c5) dc4

= pBb(f, c5) f8(f, c5)

and

f9nb(c5, f) = fFnb(c4, c5, f)

∫
pBnb(c4, c5) f8(c4, c5) dc4

= fFnb(c4, c5, f)

∫ c5

−∞

f8(c4, c5) dc4.

The deletion of C5 takes 57.8 seconds, required to calculate
f10b(f) =

∫
f9b(c5, f) dc5 and f10nb(f) =

∫
f9nb(c5, f) dc5.

Finally, by deleting B, we obtain f11(f) = f10b(f) +
f10nb(f), which is a 14-piece, 9-degree MOP representation
of the PDF of F . Using f11, we compute the expectation and
standard deviation of F : E(F ) = 51.98 days and σF = 22.7

Fig. 7. MOP approximation of the marginal for F

days, respectively. A plot of f11 is shown in Fig. 7. Evalu-
ation of the entire Mathematica notebook (all computations
including re-approximation) takes about 180 seconds.

Re-approximation of f4 and f7 is crucial to solving the
PERT hybrid BN. Without re-approximation of these two
functions, computing f8 results in “lack of memory” warning
message even though the computer is equipped with 8GB of
RAM.

B. Solution using MTEs

We start with a 1-piece, 6-terms MTE, f1(·), as an approx-
imation of the PDF of the standard normal density [7]. Using
f1(·), we define a 1-piece, 6-terms MTE approximation of
the PDF of D1 and also of the PDF of D2. Using mixed
trees, we define a 2-piece, 6-terms MTE approximation of
the conditional PDFs of D3 and D4. Since the PDF of the
exponential distribution is already a 1-piece, 1-term MTE
function, no approximation is needed for the PDF of D5.

In order to compute the marginal for F , we use the
same elimination order as for the case of MOPs. After the
elimination of D5, D3, and D1, we compute a 4-piece, 6-terms
MTE f4(c3, c5) in 8.02 seconds. After further elimination of
D4, D2, C23 and A, we compute a 16-piece, 72-terms MTE
f7(c3, c5) in 65 seconds. We did not re-approximate either
f4 or f7, as Lagrange interpolating polynomials cannot be
applied in this case. We are currently looking for a method
to do similar re-approximations with MTEs as we did with
MOPs.

After further elimination of C3, we obtain a 20-piece, 6-
terms MTE f8(c4, c5) in 1,460 seconds. Then we delete C4

(need 47 seconds) and C5 (need 35 seconds), and B, obtaining
a 8-piece, 17-terms MTE approximation of the marginal PDF
of F . A graph of it is displayed in Fig. 8. We compute the
expectation and standard deviation: E(F ) = 44.17 days and
σF = 16.32 days, respectively. The evaluation of the entire
Mathematica notebook (all computations) takes about 1,600
seconds (about 27 minutes).

C. Solution using simulation

In order to have a clearer idea of the true marginal for
F , we compute an estimation of it by simulating a sample
of size 1, 000, 000 of D1, . . . , D5 and then computing the
corresponding values of C3, C23, C4, C5 and F for each record
in the sample, according to their definition. Then, we fitted a
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Fig. 8. MTE approximation of the marginal for F

Fig. 9. Kernel approximation of the marginal PDF of F

Gaussian kernel density to the values obtained for F . The
result is displayed in Fig. 9. In this case, point estimates of
the expectation and standard deviation of F are Ê(F ) = 36.19
and σ̂F = 20.28 days, respectively.

V. SUMMARY AND CONCLUSIONS

We have described some practical issues in solving hybrid
BNs that include deterministic conditionals using MTEs and
MOPs, and have solved a PERT hybrid BN consisting of 2
discrete and 10 continuous variables, 5 of which have linear
deterministic conditionals.

One key observation is that in the process of solving the
PERT hybrid BN, some of the intermediate potentials have
a large number of pieces, some of which are defined on
lower dimensions and which have no useful information. One
solution to this is to re-approximate these potentials with a
smaller number of pieces and fewer degrees/terms. In the case
of MOPs, this can be done using Lagrange interpolating poly-
nomials. In the case of MTEs, a method for re-approximation
needs to be devised.

We plan to solve the PERT hybrid BN using MOPs defined
on hyper-rhombuses to keep the number of pieces to a min-
imum, and compare the running time and accuracy with the
corresponding results using hypercubes. Shenoy [15] describes
the use of Lagrange interpolating polynomials with Chebyshev
points for approximating univariate functions by MOPs. How-
ever, more work needs to be done in re-approximating high-

dimensional joint and conditional functions by MOP using
Lagrange interpolating polynomials.

In large networks with several deterministic condition-
als, the inference process can be too costly even using re-
approximation. We plan to explore approaches that keep the
complexity (degree and # pieces) below some specified thresh-
old. One way can be to consider fixed-size potentials and re-
approximation after each marginalization operation. Another
approach is to use a simulation method that is adapted for
presence of deterministic conditionals.
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