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QUALITATIVE MARKOV NETWORKS

by
Khaled Mellouli, Glenn Shafer and Prakash P. Shenoy

L _Introduction

A lot of interest on the subject of management of uncertainty in expert systems has been
devoted to propagation of belief functions and probabilities in networks (see, for example, Gordon
and Shortliffe (1985), Shafer and Logan (1985), Pearl (1985)). In Shafer, Shenoy and Mellouli
(1986), a scheme for propagating belief functions in "qualitative Markov trees” is presented. This
scheme is a generalization of both the Shafer and Logan's scheme for hierarchical trees and Pearl's
scheme for Bayesian causal trees (Shenoy and Shafer (1986)). In this paper, we concentrate on
qualitative Markov trees and their properties. We start with a definition of conditional qualitative
independence (g-independence) for partitions. We treat partitions as qualitative descriptions of
belief functions and random variables. Using the concept of conditional g-independence, we define
a qualitative Markov (q-Markov) network analogous to a Markov network (see, for example,
Griffeath (1976), Darroch, Lauritzen and Speed (1980)). We then introduce the concept of a
K-pattern for a collection of partitions (see, e.g., Kong (1986)) and prove that a tree of partitions is
a g-Markov tree if and only if its edges form a K-pattern. For more general networks, we show
that if a set of complete subsets of vertices of the network form a K-pattern, then the network is
q-Markov. The paper ends with some comments on Shafer, Shenoy and Mellouli's (1986)
propagation scheme for belief functions in g-Markov trees. |

II itative In iti

In this paper, we will be concerned with a finite indexed collection of partitions
ﬁﬁj |j & J} of afinite nonempty set Q ={w;[i & I}. Such partitions can serve as qualitative
descriptions of random variables or belief functions. To a random variable X: Q—R, we associate

the partition By={Pe2 Q |P= X'l(a) for some a € X(Q) } and to a belief function on a frame

of discemnment Q, we associate the partition generated by taking intersections of the belief
function's focal elements (Shafer (1976)).
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Let B; and B, be two distinct partitions. We say that B, is coarser than B, ( | (

equivalently that 3, is finer than ), written as P ;< 1y, if for each Py € By, there cxxs
P; € B, such that P; 2 P,. We call 1 a coarsening of P, and B, a refinement of

1. We write 1 < B, to indicate that B is coarser than or equal to 5. The relation <
is a partial order and the set of all partitions is a lattice with respect to this partial order (Birkh

(1967)).The coarsest common refinement of B 1» = » B, or the least upper bounq of
B1, ..., P, with respect to <, denoted by v {33]- li=1,..,n}orby B;v..vP,, 1s
partition {Pjn..NP, | Pj € P;,forj=1,..,n, andPin..NnP, # T}

We say that B, .., P, are qualitatively independent (q-independéizt
written as [ By, ..., ¥,] —], if for any P; e iﬂj forj=1,..,n, wehave PN ..NP, # ‘

Furthermore, we say that B, ..., B, are conditionally g-independent given P, writt
(B1,..., Byl —I B, if whenever we select Pe P , Pie Bjfori=1,..,n sucix
PAP;# @ fori=1,..,n, then PAP|N...N P, # @ . Notice that stochastic condig
independence implies qualitative conditional independence. If Q = { o, |i e I} represents af
sample space, and Pr: 22 [0, 1] represent a probability distribution on Q such’ ‘
Pr({a)i}) >0forallie I, and X, Y, Z are random variables such that X and Y are conditio

independent given Z (written as X L Y | Z ), then [$,, By 1— B, where B, Py and P.
the partitions associated with X, Y, and Z, respectively.
IIL__O-Markov Networks

We now consider networks where the nodes represents partitions and the
represent certain conditional q-independence restrictions on the partitions . Consider a netwes



- 33 -

(I, E), where J is a finite set of partitions thought of as the vertices of the network, and
E c J x T is a set of unordered pairs of distinct elements of J, thought of as the edges of the

network. We say that i e Jand j e Jare adjacent or neighbors if (i,j) € E.IfJ{c]J, the

boundary of Iy, written as 9]y, is the set of vertices in J\ J; that are adjacent to some vertex in

J1. The closure of Jj isJy U dJ; and is denoted by J;. A complete subset (of vertices) is a

subset J € J where all elements are mutual neighbors. A cligue is a maximal (w.r.t. inclusion )

complete subset.

A g-Markov network for {iﬁj |j € I} is a network (J, E) such that given any three

mutually disjoint subsets J, Jp, and J3 of J, if J; and I, are separated by J3 (in the sense that

any path from a vertex in J; to a vertex in J) goes via some vertex in J3), then

[v{Blie I} viBlj e I} —v{Bslie I3t
If (J, E) is a g-markov network for {3§3j |j € J}and the network (J, E) is a tree, then we say that
(J, E) is a g-markov tree for {3?1- lje T}

Theorem (J, E) is g-Markov for {iﬁjlj € J}ifandonlyifforall]; € J,

[viB;lie T viBjlie T\ I vi®jlje g

Let {iﬂi | i e J} be an indexed collection of partitions. Let E < 2J. Eissaidtobea

K-pattern for {P;| i e I} if whenever we select an element P; from B; foreachie J such
that N{P;lie I}#Dforallle E, then n{P;|ie ]} = @. Notice that if the elements of
{B;lie J} are g-independent , thenevery E < 2J (including the empty set ) is a K-pattern for

{}; |ie I}. Also the singleton {J} is always a K- pattern for {#; i e J}. It can be shown that if
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E is a K-pattern for {3ﬁi |ie J} then (J, E) is a g-Markov network. (In fact, if a set of complete
subsets of vertices in (J, E) is a K-pattern for { 3Bi | i€ J}, then (J, E) is a q-Markov network for

{iﬁi | 1€ J}.The converse of this result is not valid for networks in general, i.e., neither the set of

all edges nor the set of all complete subsets of vertices of a g-Markov network necessarily form a
K-pattern.

IV, O-Markov Trees
We now turn our attention to the case of q-Markov trees . Two characterizations of
q-Markov trees are as follows.

Theorem Let {iﬁj [j € I} be a finite collection of partitions and let (J, E) be a tree. Then

(, E) is g-markov for {ﬁj [j € J}if and only if forevery j e J, [v{QBi |1 e al(j) ey
v{P;li e ak(i) 114 iﬁj where 0‘10): . ak(i) are separated by { j } in the tree (J, E).

Theorem (J, E) is a g-Markov tree for {%i |1 J}if and only if E is a K-pattern for {B;lieJ}.

Y. _Conclusion

In this paper, we focused on characterizing q-Markov trees. Q-Markov trees are in fact
the kind of trees for which we have developed a scheme for propagating belief functions with only
"local computations" (see Shafer, Shenoy and Mellouli (1986) and Shenoy and Shafer (1986)). -
The local computation aspect of the scheme results in a reduction in the computational complexity
associated with Dempster's rule of combination for belief functions and also makes possible an
implementation in parallel that further reduces the time required for the computation. This
computation scheme is a generalization of both Shafer and Logan's scheme for hierarchical trees

and Pearl's scheme for Bayesian causal trees.
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