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Abstract. Valuation-based systems (VBS) can be considered as a
generic uncertainty framework that has many uncertainty calculi, such
as probability theory, a version of possibility theory where combination
is the product t-norm, Spohn’s epistemic belief theory, and Dempster-
Shafer belief function theory, as special cases. In this paper, we focus
our attention on conditioning, which is defined using the combination,
marginalization, and removal operators of VBS. We show that condi-
tioning can be expressed using the composition operator. We define de-
composable compositional models in the VBS framework. Finally, we
show that conditioning in decomposable compositional models can be
done using local computation. Since all results are obtained in the VBS
framework, they hold in all calculi that fit in the VBS framework.
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1 Introduction to Valuation-Based Systems

Valuation-based systems (VBS) were introduced in [J] as a generic uncertainty
calculus that has many uncertainty calculi, such as probability theory, a version
of possibility theory [2] with the product t-norm, Spohn’s epistemic belief theory
[11], and D-S belief function theory [II§], as special cases. In this section, we
formally introduce the VBS framework. Most of the material is in this section
is taken from [9].

VBS consists of two parts — a static part that is concerned with represen-
tation of knowledge, and a dynamic part that is concerned with reasoning with
knowledge.

The static part consists of objects called variables and valuations. Let @ denote
a finite set whose elements are called variables. Elements of @ are denoted by
upper-case Roman alphabets such as X, Y, Z, etc. Subsets of @ are denoted by
lower-case Roman alphabets such as r, s, t, etc.
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Let ¥ denote a set whose elements are called valuations. Elements of ¥ are
denoted by lower-case Greek alphabets such as p, o, 7, etc. Each valuation is
associated with a subset of variables, and represents some knowledge about the
variables in the subset. Thus, we will say that p is a valuation for r, where r C &.

We can depict VBS graphically by graphs called valuation networks. Consider
a finite set of valuations A C ¥ defining a valuation-based system. A correspond-
ing valuation network (VN) is a bi-partite graph with variables and valuations
as nodes, and there is an edge between each valuation and the variables in the
subset associated with it. An example is shown in Figure [l In this example,
¢ ={D,G,B}, A ={6,v,5}, where ¢ is a valuation for {D}, v is a valuation
for {D,G}, and B is a valuation for {D, B}.

Fig. 1. A valuation network

We will identify a subset of valuations ¥,, C ¥, whose elements are called
normal valuations. Normal valuations are valuations that are coherent in some
sense. In probability theory, normal valuations are probability potentials whose
values add to one. In D-S belief function theory, normal valuations are basic
probability assignment potentials whose values for non-empty subsets add to
one (or their corresponding commonality potentials).

The dynamic part of VBS consists of several operators that are used to make
inferences from the knowledge encoded in a VBS. We will define three basic
operators: combination, marginalization, and removal, and their properties.

Combination. The first operator is the combination operator ®: ¥ x ¥ — ¥,,,
which represents aggregation of knowledge. It has the following properties.

1. (Domain) If p is a valuation for r, and o is a valuation for s, then p @ o is
a normal valuation for r U s.

2. (Commutativity) p® o = o @ p.

3. (Associativity) p® (c® 1) =(p Do) DT.

The domain property expresses the fact that if p represents some knowledge
about variables in 7, and o represents some knowledge about variables in s,



678 R. Jirougek and P.P. Shenoy

then p @ o represents the aggregated knowledge about variables in r U s. The
commutativity and associativity properties reflect the fact that the sequence
in which knowledge is aggregated makes no difference in the aggregated result.
In probability theory, combination of two valuations is pointwise multiplication
followed by normalization assuming normalization is possible. If normalization is
not possible, this means that the knowledge encoded in p and ¢ are completely
inconsistent. Henceforth, for the sake of simplicity, we will assume that we don’t
have inconsistent valuations.

The set of all normal valuations with the combination operator @ forms a
commutative semigroup. We will let ¢y denote the (unique) identity valuation of
this semigroup. Thus, for any normal valuation p, p @ ¢y = p. It is easy to see
that the domain of ¢y is (J, hence the notation.

The set of all normal valuations for s with the combination operator & also
forms a commutative semigroup (which is different from the semigroup discussed
in the previous paragraph). Let ¢s denote the (unique) identity for this semi-
group. Thus, for any normal valuation o for s, 0 @ty = 0.

It is important to note that in most uncertainty calculi, in general, p & p # p.
Thus, it is important to ensure that we do not double count knowledge when
double counting matters, i.e., it is okay to double count knowledge p that is
idempotent, i.e., p @ p = p. In representing our knowledge as valuations from ¥,
we have to ensure that there is no double counting of non-idempotent knowledge.

Marginalization. Another operator is marginalization —X: ¥ — ¥, which
allows us to coarsen knowledge by marginalizing X out of the domain of a
valuation. It has the following properties.

X

1. (Domain) If p is a valuation for r, and X € r, then p~* is a valuation for

r\ {X}.

(Normal) p~* is normal if and only if p is normal.

3. (Order does not matter) If p is a valuation for r, X € r, and Y € r, then
(p~X)7Y = (p~Y)~X, which we will denote by p~{X¥},

4. (Local computation) If p and o are valuations for r and s, respectively, X € r,
and X ¢ s, then (p@ o)X = (pX)do.

X

[\

The domain property is self-explanatory. Marginalization preserves normal (and
non-normal) property of valuations. The order does not matter property dictates
that when we coarsen knowledge by marginalizing out several variables, the order
in which the variables are marginalized does not matter in the final result. Thus,
if p is a normal valuation for r, then p~" = ¢, which is the only normal valuation
for . Sometimes, we will let p*" XY} denote p~1XY} . Thus, the “—” notation is
useful when we wish to emphasize the variables being marginalized, whereas the
“}” notation is useful when we wish to emphasize the variables that remain after
the marginalization operation. In probability theory, marginalization of variable
X corresponds to addition over the state space of X.

Making inferences in VBS means finding the (posterior) marginal of the joint
valuation for some variables of interest, i.e., computing (EBA)HZ }. where A in-
cludes valuations that represent observations and independent pieces of evidence,
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and Z denotes an unobserved variable of interest. When we have many variables
in @, it may be computationally intractable to compute explicitly the joint valu-
ation (®A). The local computation property allows us to compute the marginal
(p ® 0)~* without having to explicitly compute p @ o. Notice that the combi-
nation in (p~%X) @ o is on a smaller set of variables (r U s\ {X}) compared to
p®o (which is on rUs). By repeatedly using this property for all variables being
marginalized in some sequence, we get the so-called variable elimination algo-
rithm for computing marginals. Also, if we wish to compute several marginals,
then it is useful to cache the intermediate results in the computation of one
marginal so that these can be re-used in the computation of other marginals. A
binary join tree is a data structure that is useful for this purpose. For details,
see [10].

While the combination and marginalization operators suffice for the problem
of making inferences, there is yet another operator, called removal, that is useful
for defining conditionals, and for defining the composition operator.

Removal. The removal operator ©: ¥ X ¥,, — ¥, represents removing knowl-
edge in the second valuation from the knowledge in the first valuation. The
properties of the removal operator are as follows.

1. (Domain): Suppose o is a valuation for s and p is a normal valuation for r.
Then o © p is a normal valuation for r U s.

2. (Identity): For each normal valuation p for r, p@® p S p = p. Thus, pS p acts
as an identity for p, and we denote p © p by ¢,. Thus, p @ ¢, = p.

3. (Combination and Removal): Suppose 7 and 6 are valuations, and suppose
p is a normal valuation. Then, (1 ®0) S p=nm® (0 S p).

We call ¢ & p the valuation resulting after removing p from o. Notice that the
removal operator cannot be extended as an operator © : ¥ x ¥ — ¥, because
of the identity property, which defines the removal operator as an inverse of
the combination operator. In probability theory removal is pointwise division
followed by normalization (here, division of any real number by zero results in
zero, by definition).

It is important to note that given a normal valuation p for r, we have a number
of (may be different) identity valuations ¢ such that p ® ¢ = p. So far we have
explicitly mentioned ¢y, ¢, and ¢,. However, and it will be shown in Lemma [I]
for any s C r, 1,15 acts also as an identity valuation for p, i.e.,

PDLps = p.
We reproduce some important results about the removal operator from [9].

Proposition 1. Suppose w, o, 8 are valuations, and p is a normal valuation for
r and X ¢ r. Then,
(r@bd)op=(rep &b, (1)
and
(cop) ™ =c%ocp. (2)
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Domination. As defined in the identity property, p @ ¢, = p. In general, if p’
is a normal valuation for r that is distinct from p, then p’ & ¢, may not equal
p'. However, there may exist a class of normal valuations for r such that if p’
is in this class, then p’ @ ¢, = p’. Following the terminology in [5], we will call
this class of normal valuations as valuations that are dominated by p. Thus, if
p dominates p’, written as p > p’, then p’ @ 1, = p’. In probability theory, if p
and p’ are normal probability potentials for r such that p(x) = 0 = p'(x) = 0,
then p > p.

Composition. A general definition of the composition operator is as follows.
Suppose p and o are normal valuations for r and s, respectively, and, to avoid
composition of conflicting valuations, suppose that o+ > pt™™_ The compo-
sition of p and o, written as p > o, is defined as follows:

pro=pHooat (3)

Unlike the combination operator, the valuations p and o being composed do
not have to be distinct. Intuitively, we adjust for the double-counting of the
knowledge in p and o by removing the knowledge that is double counted.

The most important properties of the composition operator that were proved
in [6] are summarized in the following proposition.

Proposition 2. Suppose p and o are normal valuations for r and s, respectively,
and suppose that o+ > pt"™s . Then the following statement hold.

1. Domain: p > o is a normal valuation for r U s.

2. Composition preserves first marginal: (p > o)V = p.

3. Non-commutativity: In general, p > o # o > p.

4. Commutativity under consistency: If p and o have a common marginal for
rNs, e, p" % =gV then p> o =0 > p.

Non-associativity: Suppose 7 is a normal valuation for t, and suppose
THIUINt s (p > o) KU Then, in general,

(po)>T#p> (c>T).

&

6. Associativity under a special condition: Suppose T is a normal valuation for
t, suppose THUIM > (p > g ) HIUIN and suppose s O (rNt). Then,

(po)ypT=p> (0>7).
7. Composition of marginals: Suppose t is such that (rNs) Ct Cs. Then
(protY>o=p>o.

2 Conditionals

Suppose 7 is a normal valuation for ¢, and suppose r and s are disjoint subsets
of t. We call 7+("Y9) o 74" the conditional for s given r with respect to 7. To
simplify notation, we will let 7(s|r) denote 7+"Y*) & 77, Also, if r = (), let 7(s)
denote 7(s|0).

The following proposition is taken from [9].
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Proposition 3. Suppose 7 is a normal valuation for t, and suppose r, s, and u
are disjoint subsets of t. Then the following statements hold.

7(s) = 7.

T(r)y®7(slr) =7(rus).

7(s|r) ® T(ulrUs) = (s Uulr).

Suppose X € s. Then, 7(s|r)~% = 1(s\ {X}|r).
7(r) @ (r(s|r)™*) = 7(r).

T(s|r) is a normal valuation for r U s.

S Guds oo~

Lemma 1. Suppose 7 is a normal valuation for t, and suppose r C t. Then
TOlrry =T.

Proof. In the following equations, we use only the associativity and commuta-
tivity properties of combination, and property 2 of Proposition [3l

T@ ey = (T(r) @ TENT|T)) @ tr(ry = (TN 7|1) ©T(1)) D Lr(r)
=7t \7r) ®(1(r) ® tr(ry) = T(t\ 7|r) ©T(1r) = 7.

O

Lemma [ will help us to prove the following lemma, which expresses conditioning
using the composition operator.

Lemma 2. Suppose T is a normal valuation for t, and suppose r and s are
nonempty disjoint subsets of t such that rUs =1t. Then

T(8]r) = tr(r) > T.

Proof.
Lr() DT = Lr(ry BT O ™ =10 =1(s|r).

O

Conditional Independence for Variables. Suppose 7 is a normal valuation
for ¢, and suppose 7, s, and v are disjoint subsets of t. We say r is conditionally
independent of s given v with respect to T, written as rll s | v, if THrUsUv)
factors into valuations o for r Uv and B for sUw, i.e., 7YY = o @ B.

Some observations. First, while 7 has to be necessarily normal, valuations
« and [ do not have to be normal. Second, the definition of conditional in-
dependence does not involve the removal operator, only the combination and
marginalization operators. However, we can characterize conditional indepen-
dence in terms of conditionals, which are defined using the removal operator.
This is done in Proposition F below. Third, if s = @), then r1 .0 | v since we
can let o = 749 and B = 1,. This property is called trivial independence by
Geiger and Pearl [3]. Fourth, if v = (), then we say r and s are independent with
respect to 7, written as L, s, if 7+"Y%) = o @ B, where «a is a valuation for r
and B is a valuation for s. Thus, independence is a special case of conditional
independence.

The following result is proved in [9].
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Proposition 4. Suppose 7 is a normal valuation for t, and suppose r, s, and v
are disjoint subsets of t. The following statements are equivalent.

T(r|s Uv) = 7(r|v) © tr(su0)-
T(rlsUv) =a® Lr(suv), Where o is a valuation for r Uwv.

1. rl;s]w.

2. T(rUsuUo) =7(v) & 7(rlv) & 7(slv)

3. 7(rUslv) = 7(rjv) @ 7(s|v).

4. T(rUsUv)®71(v) =7(rUv) ®r(sUw)
5. [v) ®7(sUw).

6.

7.

(
(
T(rusuv) =7(r
(
(

3 Decomposable Compositional Models in VBS

In probability theory, inference with Bayesian networks is usually based on the
idea of local computation of Lauritzen and Spiegelhalter [7]. This idea can be
briefly expressed as follows. A Bayesian network is first transformed into a de-
composable model (using well-known operations moralization and triangulation
of a directed graph), and the required posterior marginal is then computed by a
process exploiting the “tree” structure of decomposable models. Therefore, it is
not surprising that we speak about decomposable compositional models in the
VBS framework.

The tree structure of decomposable models is expressed as a running inter-
section property. We say that a sequence of sets si,so,...,s, meets running
intersection property (RIP) if for each j = 2,3,...,n there exists a k < j such
that

Sjﬂ(slU...USj_l) =5, M Sk.

Decomposable compositional models are formed by multiple applications of the
composition operator. Since it is not always associative (property 5 of Propo-
sition [2]), we use the following convention. If we do not specify an order us-
ing brackets, the operators will always be performed from left to right, i.e.,
Thip pbszp pbss s denotes (L (7Y b TES2) p ks ) s b)),

Definition 1. Suppose 7 is a normal valuation for t. We say T is decomposable
if there exists a sequence (s1,Sa,...,Sn) of subsets of t such that it meets RIP

and
T=T¥p b opbee,

In this case we also say that T is decomposable with respect to the sequence
(81,82, ., 8n).

It is well-known that if a sequence (s1, s2, ..., s,) meets RIP, then we can find
another sequence starting with, say s;, that also meets RIP. More precisely, for
each j = 1,2,...,n there exists (at least one) permutation (sg, , S¢,, - - -, 8¢, ) that
meets RIP and such that s;, = s;. Therefore, the following assertion is of great
importance.
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Theorem 1. If 7 is decomposable with respect to (s1, S2,...,Sn), and
(Sj1s8jas- -+ S5,) 1 a permutation of (s1, Sz, ..., sn) such that it meets RIP, then
T is decomposable with respect to (Sj,,8jy,--,85,), i-€.,

=¥ s p b = i pSia s ¥

Proof. The proof of this assertion is based on an important result concern-
ing decomposable graphs, which follows from the results of S. Haberman ([4],
Lemma 2.8) saying that the system of subsets (more exactly, multiset)

{52ﬁ81,$3ﬁ(51 U82)784m(51USQUSg),...,Snm(SlU...Usnfl)}

does not depend on the selected RIP ordering of the sequence (s, S, ..., Sn).
Taking into account the running intersection property, we know that each ele-
ment of this multiset is an intersection of two sets from the sequence (s1, s2, ...,
$n). Therefore, the above mentioned property can be expressed as follows: For
any pair of distinct sets s;,s; from a system {s1, s2,...,s,}, which can be or-
dered to meet RIP, the number of times the set s; N s; appears in the sequence

Sja M 815845 M (85, U Sjy), 85 N (85, Usjp Usjs), vy 85, N(s; U...Usj, )

n

does not depend on the RIP ordering (s;,, Sj,,---,5;,)-
Suppose 7 is decomposable with respect to (s1, $2, . - . , $n). Using the definition
of composition, we have:

T=r g (et g (HSS S r¢53”<slus2>> @...

@ (Tisn o Tisnﬂ(sw---Uan))

which can be reorganized independently of the RIP ordering (using the properties
of combination and removal and Proposition [I]) as follows:

T = (Tisl @ Tt @”.@745”)
eTJ,SQQsl 5 T¢53ﬂ(51U52) e...6 T¢snm(slu...uSn,1) 0

4 Conditioning in Decomposable Compositional Models

In this section, we assume that 7 is a normal valuation for ¢, and that it is

decomposable with respect to (s1, 82, ..., s,). Suppose we wish to compute the
conditional 7(¢ \ {X}{X}).
First, we have to find an ordering of s1, so, ..., s, such that it meets RIP, and

such that the first set from this ordering contains X. We know from Theorem [I]
that 7 is decomposable also with respect to this new sequence. Therefore, without
loss of generality we can assume that it is (s, s2, ..., s,), which means that we
assume X € s1. Thus, using Lemma [2] we compute

T \{XI{XD =) b 7=t > (Tisl >V DTJ’S"),
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However, due to property 6 (associativity under a special condition) of Proposi-
tion 2] we have

Lr(x) > ((HSl brYz bt I>TJ’S")

= (trooy b (T o b2 s b)) e, (4)

because s1, and thus even more $; U...U s,_1, contains {X} N s,,. Notice that
also the other assumption of associativity under a special condition is fulfilled
because

AU Usn1)Nsn (L > (7_¢sl sy T\Lsn71))\L(SlU...USn—l)mSn .

7(X)
Repeating the idea behind equality {@), we get

Ly B (P b2 s ez pben)

= (Lrxy > (T > PRacl B rtEn=2)) p et
Thus, eventually, after repeating this step (n — 1) times we get
TA\AXIH{X}) = trx) > 7 = (br(x) > T oty pden

from which we see that 7(¢ \ {X}|{X}) is again a decomposable model with
respect to (s1,S2,...,8pn). Let 7 denote 7(¢ \ {X}/{X}). We can compute the
marginal valuations of 7 (that are necessary to represent this multidimensional
valuation as a compositional model) as follows:

Fls1 81

lr(x)>T
72~L82 _ 7A.¢82081 > TiSz

7A.J,Sn — %isnﬂ(slunusnfl) > T\LSn.

Notice that this computation is tractable because, thanks to RIP, at each step
#sin(s1U..Usi-1) g easily computable since s;N(s1U...Us;_1) must be contained
in some s for k < 1.

5 Summary and Conclusions

We have described the abstract VBS framework including the composition oper-
ator. We have shown that conditioning, which is defined using the combination,
marginalization, and removal operators of VBS, can be expressed in terms of the
composition operator. We have defined a decomposable compositional model as
a special type of a compositional model in the VBS framework. We have shown
that for decomposable compositional models, conditional valuations can be com-
puted efficiently using local computation. All of this is done in the abstract VBS
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framework. Since the VBS framework applies to many different uncertainty cal-
culi, we have effectively defined decomposable compositional models, and effi-
cient computation of conditionals in decomposable compositional models, for any
calculi that fits in the VBS framework. For example, because Spohn’s epistemic
theory fits in the VBS framework, all results described in this paper applies to
this calculus.
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