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Valuation networks have been proposed as graphical representations of valuation-
based systems. The axiomatic framework of valuation-based systems is able to cap-
ture many uncertainty calculi including probability theory, Dempster-Shafer's belief-
function theory, Spohn’s epistemic belief theory, and Zadeh's possibility theory. In
this paper, we show how valuation networks encode conditional independence rela-
tions. For the probabilistic case, the class of probability models encoded by valua-
tion networks includes undirected graph models, directed acyclic graph models, di-
rected balloon graph models, and recursive causal graph models.
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1. Introduction

Recently, we proposed valuation networks as a graphical representation of valuation-based
systems [1, 2]. The axiomatic framework of valuation-based systems (VBS) is able to
represent many different uncertainty calculi such as probability theory [2], Dempster-
Shafer’s belief-function theory [3], Spohn’s epistemic belief theory [2, 4], and Zadeh’s
possibility theory [5]. The VBS framework is also flexible enough to include proposi-
tional logic [6, 7], discrete optimization [8], Bayesian decision analysis [9, 10], and con-
straint satisfaction [11]. The valuation network representation and solution techniques for
Bayesian decision analysis are more expressive and computationally more efficient than
influence diagram representation and solution techniques [12]. In this paper, we explore
the use of valuation networks for representing conditional independence relations in prob-
ability theory and in other uncertainty theories that fit in the VBS framework.

143



144 P. P. Shenoy

Conditional independence has been widely studied in probability and statistics [see,
for example, 13—-18]. Pearl and Paz [19] have stated some basic properties of the condi-
tional independence relation. (These properties are similar to those stated first by Dawid
[13] for probabilistic conditional independence, those stated by Spohn [14] for causal in-
dependence, and those stated by Smith [17] for generalized conditional independence.)
Pearl and Paz call these properties ‘graphoid axioms,’ and they call any ternary relation
that satisfies these properties a ‘graphoid.’ The graphoid axioms are satisfied not only by
conditional independence in probability theory, but also by vertex separation in undirected
graphs (hence the term graphoids) [19], by d-separation in directed acyclic graphs [20], by
partial correlation [19], by embedded multi-valued dependency models in relational
databases [21], by conditional independence in Spohn’s theory of epistemic beliefs [22,
23], and by qualitative conditional independence [24]. Shenoy [25] has defined conditional
independence in VBSs and shown that it satisfies the graphoid axioms. Thus the graphoid
axioms are also satisfied by the conditional independence relations in all uncertainty theo-
ries that fit in the VBS framework including Dempster-Shafer’s belief-function theory and
Zadeh’s possibility theory.

The use of undirected graphs and the use of directed acyclic graphs to represent condi-
tional independence relations in probability theory have been extensively studied [see, for
example, 15, 19, 26-36]. The use of graphs to represent conditional independence rela-
tions is useful since an exponential number of conditional independence statements can be
represented by a graph with a polynomial number of vertices.

In undirected graphs (UGs), vertices represent variables, and edges between variables
represent dependencies in the following sense. Suppose a, b, and ¢ are disjoint subsets of
variables. The conditional independence statement ‘a is conditionally independent of b
given ¢,” denoted by a L bl ¢, is represented in an UG if every path from a variable in a to
a variable i1l b contains a variable in ¢, i.e., if ¢ is a cut-set separating a and b. One can
also represent a conditional independence relation by a set of UGs [37]. A conditional in-
dependence relation is represented by a set of UGs if each independence statement in the
relation is represented in one of the UGs in the set. In general, one may not be able to
represent a conditional independence relation that holds in a probability distribution by
one UG. Some probability distributions may require an exponential number of UGs to
represent the conditional independence relation that holds in it [38].

In directed acyclic graphs (DAGs), vertices represent variables, and arcs represent de-
pendencies in the following sense. Pearl [39] has defined d-separation of two sets of vari-
ables by a third. Suppose a, b, and ¢ are disjoint subsets of variables. We say c d-separates
a and b iff there is no path from a variable in a to a variable in b along which (1) every
vertex with an outgoing arc is not in ¢, and (2) every vertex with incoming arcs is either
in ¢ or has a descendant in ¢. The definition of d-separation takes into account the direc-
tion of the arcs in a DAG. The conditional independence statement @ L bl c is represented
in a DAG if ¢ d-separates a and b. One can also represent conditional independence rela-
tions by a set of DAGs [40]. A conditional independence relation is represented by a set of
DAGs if it is represented in one of the DAGs in the set. As in the case of UGs, one may
not be able to represent a conditional independence relation that holds in a probability dis-
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tribution by one DAG. Some probability distributions may require an exponential num-
ber of DAGs to represent the conditional independence relations that hold in it [38].

Shafer [41] has defined directed balloon graphs (DBGs) that generalize DAGs. A DBG
includes a partition of the set of all variables. Each element of the partition is called a bal-
loon. Each balloon has a set of variables as its parents. The parents of a balloon are
shown by directed arcs pointing to the balloon. A DBG is acyclic in the same sense that
DAGs are acyclic. A DBG implies a probability model consisting of a conditional for
each balloon given its parents. A DAG may be considered as a DBG in which each bal-
loon is a singleton subset. Independence properties of DBGs are studied in [42].

UGs and DAGs represent conditional independence relations in fundamentally differ-
ent ways. There are UGs such that the conditional independence relation represented in an
UG cannot be represented by one DAG. And there are DAGs such that the conditional in-
dependence relation represented in a DAG cannot be represented by one UG. In fact, Ur
and Paz [43] have shown that there is an UG such that to represent the conditional inde-
pendence relation in it requires an exponential number of DAGs. And there is a DAG such
that to represent the conditional independence relation in it requires an exponential number
of UGs.

In valuation networks (VNs), there are two types of vertices. One set of vertices rep-
resents variables, and the other set represents valuations. Valuations are functions defined
on variables. In probability theory, for example, a valuation is a factor of the joint proba-
bility distribution. In VN, there are edges only between variables and valuations. There
is an edge between a variable and a valuation if and only if the variable is in the domain
of the valuation. If a valuation is a conditional for r given ¢, then we represent this by
making the edges between the conditional and variables in r directed (pointed toward the
variables). (Conditionals are defined in Section 2 and correspond to conditional probability
distributions in probability theory.) Thus VNs explicitly depict a factorization of the joint
valuation. Since there is a one-to-one correspondence between a factorization of the joint
valuation and the conditional independence relation that holds in it, VNs also explicitly
represent conditional independence relations.

The class of probability models included by VNs include UGs, DAGs and DBGs.
Given a UG, there is a corresponding VN such that the conditional independence relation
represented in the UG is represented in the VN, Given a DAG, there is a corresponding
VN such that the conditional independence relation represented in the DAG is represented
in the corresponding VN. And given a DBG, there is a corresponding VN such that the
conditional independence relation represented in the DBG is represented in the correspond-
ing VN.

Besides UGs, DAGs, and DBGs, there are other graphical models of probability dis-
tributions. Kiiveri, Speed, and Carlin [31] have defined recursive causal graphs (RCGs)
that generalize DAGs and UGs. Recursive causal graphs have two components, an UG on
one subset of variables (exogenous), and a DAG on another subset of variables
(endogenous). Given a RCG, there is a corresponding VN such that the conditional inde-
pendence relation represented in the UG is represented in the VN.
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Lauritzen and Wermuth [33] and Wermuth and Lauritzen [30] have defined chain
graphs that generalize recursive causal graphs. Conditional independence properties of
chain graphs have been studied by Frydenberg [34]. It is not clear to this author whether
VNG include the class of probability models captured by chain graphs.

Jirousek [44] has defined decision tree models of probability distributions. These
models are particularly expressive for asymmetric conditional independence relations, i.e.,
relations that only hold for some configurations of the given variables, and not true for
others. VN, as defined here, do not include the class of models captured by decision trees.

Heckerman [45] has defined similarity networks as a tool for knowledge acquisition.
Like Jirousek's decision tree models, similarity networks allow representations of asym-
metric conditional independence relations. VNs, as defined here, do not include the class of
models captured by similarity networks.

An outline of this paper is as follows. Section 2 describes the axiomatic framework
of valuation-based systems and the general definition of conditional independence in
VBSs. The definition of conditional independence in VBS is a generalization of the defini-
tion of conditional independence in probability theory. Most of the material in this sec-
tion is a summary of [25]. Section 3 describes the valuation network representation and
shows how conditional independence relations are encoded in valuation networks. Section
4 compares valuation networks to undirected graphs, directed acyclic graphs, balloon
graphs, and recursive causal graphs. Finally, Section 5 contains some concluding re-
marks.

2. Valuation-Based Systems and Conditional Independence

In this section, we describe the axiomatic framework of valuation-based systems (VBSs).
Most of the material in this section is taken from [25]. A similar axiomatic framework is
defined by Cano, Delgado and Moral [46]. To help the reader follow the abstract exposi-
tion, we will illustrate all definitions using probability theory as an example. In [25],
there are other examples given such as Dempster-Shafer’s belief-function theory, Spohn’s
epistemic beliefs theory, and Zadeh’s possibility theory.

In the VBS framework, we represent knowledge by entities called variables and valua-
tions. We infer conditional independence relations using three operations called combina-
tion, marginalization, and removal. We use these operations on valuations.

Variables. We assume there is a finite set % whose elements are called variables.
Variables are denoted by upper-case Latin alphabets, X, Y, Z, etc. Subsets of % are de-
noted by lower-case Latin alphabelts, r, s, ¢, etc.

Valuations. For each s ¢ %, there is a set V' ;. We call the elements of V ; valua-
tions for s. Let V' denote U{ V' ;| s € % }, the set of all valuations. If 6 € V g, then we
say s is the domain of ©. Valuations are denoted by lower-case Greek alphabets, p, G, T,
etc.

Valuations are primitives in our abstract framework and, as such, require no defini-
tion. But as we shall see shortly, they are entities that can be combined, marginalized, and
removed. Intuitively, a valuation for s represents some knowledge about variables in s.
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In probability theory, with each variable X, we associate a finite set W 4 called the
frame of X. For each s € %, we let denote W , = x{W x| X € 5} and we call W, the frame
of 5. We call elements of W | configurations of s, and we use lower-case bold-faced letters
such as x, y, etc., to denote configurations. A valuation ¢ for s is a function 6: W , -
[0,1].

Zero Valuations. For each s ¢ %, there is at most one valuation {; e U ; called
the zero valuation for s. Let Z denote ({; | s < %}, the set of all zero valuations. Notice
that we are not assuming zero valuations always exist. If zero valuations do not exist, Z
= (. We call valuations in V' —Z nonzero valuations.

Intuitively, a zero valuation represents knowledge that is internally inconsistent, i.e.,
knowledge that is a contradiction, or knowledge whose truth value is always false. The
concept of zero valuations is important in the theory of consistent knowledge-based sys-
tems [7].

In probability theory, a zero valuation is a valuation whose values are identically
zero, i.e., {(x) =0forallxe W .

Proper Valuations. For each s ¢ %, there is a subset ®; of V' ~{{,}. We call the
elements of P proper valuations for 5. Let ® denote U{® ;| s < %}, the set of all proper
valuations. Intuitively, a proper valuation represents knowledge that is partially coherent.
By coherent knowledge, we mean knowledge that has well-defined semantics.

The concept of proper valuations has substance (i.e., ¥ is a proper subset of V' o~
(&) only in Dempster-Shafer’s belief-function theory. In Dempster-Shafer’s belief-func-
tion theory, a valuation for s is a function from the power set of the frame for s to the
unit interval [0, 1], and a proper valuation is an unnormalized commonality function. In
probability theory, Spohn’s epistemic-belief theory, and Zadeh’s possibility theory, P =
V~(C,). Proper valuations play no role either in the definition, or in the char-
acterizations, or in the properties of conditional independence. The only role of proper
valuations is in the semantics of knowledge.

Normal Valuations. For each s ¢ %, there is another subset N ; of V' —({,}. We
call the elements of T\ ; normal valuations for s. Let T\ denote U{ N | s < %}, the set of
all normal valuations. Intuitively, a normal valuation represents knowledge that is also
partially coherent, but in a sense that is different from proper valuations. Normal valua-
tions play an important role in the definition and characterization of conditional indepen-
dence.

In probability theory, normal valuations are valuations whose values add to 1,i.e., a
valuation ¢ for s is normal iff Z{o(x) [xe W ,} =1.

We call the elements of PN\ proper normal valuations. Intuitively, a proper nor-
mal valuation represents knowledge that is completely coherent, i.e., knowledge that has
well-defined semantics. In probability theory, proper normal valuations correspond to
probability mass functions.

Combination. We assume there is a mapping @:V xV — N UZ, called combi-
nation, that satisfies the following four axioms:
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Axiom C1 (Domain): fpeV ,and 6€ Vg, then p@ce V s

Axiom C2 (Associative): p@(c®1) = (p@o)®T;

Axiom C3 (Commutative): p®c = c@p; and

Axiom C4 (Zero): Suppose zero valuations exist, and suppose 6 € V 5. Then

£,®00 =Ly s

If p@a, read as p plus o, is a zero valuation, then we say that p and © are inconsistent. If
p®a is a normal valuation, then we say that p and © are consistent.

Intuitively, combination corresponds to aggregation of knowledge. If p and © are val-
uations for  and s representing knowledge about variables in r and s, respectively, then
p@a represents the aggregated knowledge about variables in rus.

In probability theory, combination is pointwise multiplication followed by normal-
ization (if normalization is possible). If xe W ,_;, let x7 denote the projection of x to r,
where projection simply means dropping extra coordinates. Suppose p € V,andoe V.
Let K = Z{p(x}"o(x¥s) | x e W s} . The combination of p and o is the valuation for
rus given by

K pxinoxlsy ifK>0
(p@o)(x) =
0 ifK=0

for all xe W p_s. f K = 0, p®0 =, 5. If K > 0, then K is a normalization constant
that ensures p@®oc is a normal valuation, It is easy to see that this definition satisfies
Axioms C1-C4.

An implication of Axiom C2 is that when we have multiple combinations of valua-
tions, we can write it without using parenthesis. For example,
(..{(0,©0,)®03)®...0, ) can be written simply as 619...00y, without parenthesis.
Further, by Axiom C3, we can write 61®...00,, simply as ®{0y, ..., O}, i.¢., not
only do we not need parenthesis, we need not indicate the order in which the valuations
are combined.

An implication of Axioms C1, C2, and C3 is that the set T (U{L;]} together with
the combination operation @ is a commutative semigroup [47]. (If zero valuations do not
exist, then T\ ;U{{;} = N ;) If zero valuations exist, then Axiom C4 defines the valua-
tion ¢ as the zero of the semigroup T U {L}.

Identity Valuations. We assume the following identity axiom.

Axiom C5 (Identity): For each s ¢ %, the commutative semigroup T\ JU{s)
has an identity denoted by 1.

In other words, Axiom C5 assumes there exists ;€ T\ qU () such that for each
ceN (L), 0®1, = 6. Notice that a commutative semigroup may have at most one
identity. From Axiom C4, it follows that 1, # {;, therefore 1;€ \ ;. Intuitively, identity
valuations represent knowledge that is completely vacuous, i.e., they have no substantive
content. In probability theory, the identity s for T (U{&;} is given by 1,(x) = /1wl
forall xe W ;.
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It follows from Axiom CS5 that for each s € %, and for each o e N g (&), there ex-
ists at least one identity for it, i.e., there exists a 85 € N\ yU{{,} such that 6®§ = ©. For
example, 1, is an identity for each element of N\, (U{{,}. A valuation may have more than
one identity. For example, Axiom C4 states that every element of N\ ;U{{,} is an identity
for §;. Notice that if 6 € N\ , then 85 € N ;. Also, notice that 1; has only one identity,
namely itself.

Positive Normal Valuations. Let U ; denote the subset of \ ; consisting of all
valuations in J\ ; that have unique identities. We call elements of U ; positive normal
valuations for s. Let U, denote U{U ;| s %}, the set of all positive normal valuations.
The concept of positive normal valuations is important because the intersection property
of conditional independence holds only for positive normal valuations. Positive normal
valuations correspond to strictly positive probability distributions in probability theory.
Figure 1 shows the relation between different types of valuations.

Figure 1. The relation between different types of valuations.

We assume the following axiom regarding the normal valuation for the empty set.

Axiom C6 (Normal Valuations for the Empty Set): The set @ consists of
exactly one element.

Axiom C6 implies that U 3= N g = {15} where 1 is the identity valuation for the
semigroup N g {C}.

Marginalization. We assume that for each nonempty s < %, and for each X € s,
there is a mapping L(s-({X}): V>V s-(X)» called marginalization to s-{X}, that satis-
fies the following six axioms:

Axiom M1 (Order of Deletion): Suppose 6 € U g, and suppose X, Y € s. Then

(oUs= (XM Us=(X, Y)) = (oHs-(YDyUs-(X, Y)).

Axiom M2 (Zero): If zero valuations exist, then {Hs-(X)) = Co—(X)s

Axiom M3 (Normal): o¥(s-(X)) e 9\, if and only if 6e N ;
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Axiom M4 (Positive Normal). If 6 € U, then oUs-XDewy,;

Axiom CM1 (Combination and Marginalization 1): Suppose p€ V , and
GeV . Suppose X ¢ r, and X € 5. Then (p@c)Urws)-(X)) = p®(cUs-(XD); and
Axiom CM2 (Combination and Marginalization 2): Suppose G € L. 5, suppose
rc s, and suppose 80 1, is an identity for oV in N\ 7 Then acl' is an identity for
o,ie., o@ﬁcl, =0.

We call 646-(X)) the marginal of o for s—{X}.

Intuitively, marginalization corresponds to coarsening of knowledge. If ¢ is a valua-
tion for s representing some knowledge about variables in s, and X € s, then oUs-(X))
represents the knowledge about variables in s—{ X} implied by o if we disregard variable
X.

In probability theory, marginalization is addition. Suppose 6 € Vs, and X € 5. The
marginal of o for s—{X} is the valuation for s—{ X} defined as follows:

Gl(é‘—[x])(y) = E{G(Y, X)|xeW X]

forall ye W o_(X)-

If we regard marginalization as a coarsening of a valuation by deleting variables, then
Axiom M2 says that the order in which the variables are deleted does not matter. One im-
plication of this axiom is that (o¥(s=(X1))4s=(X, Y]) can be written simply as
oUs-(X.Y)), je., we need not indicate the order in which the variables are deleted.

Axioms M2, M3 and M4 state that marginalization preserves the coherence of
knowledge. An implication of Axiom M4 is that a valuation ¢ for s is normal if and only
if 612 = 1.

Axiom CMI states that the computation of (p@c)¥*("$)~(X}) can be accomplished
without having to compute p@c. The combination p@o is a valuation for rUs whereas

the combination p@®(c¥s-(XD) is a valuation for (rus)-{X}. Axiom CM2 states an im-
portant property of identity valuations. It follows from Axiom CM2 that @1, =1, s

Also, if r s, then 1} = 1, [25].

Axioms C1, C2, C3, M1, and CM1 make local computation of marginals possible.
Suppose {0y, ..., O} is a collection of valuations, and suppose ; € v s Suppose % =
§1U...Usy, and suppose X € %. Suppose we wish to compute (0163...690,“)“"}. We

can do so by successively deleting all variables but X from the collection of valuation
{61, .y Oy} - Each time we delete a variable, we do a fusion operation defined as follows.

Consider a set of k valuations py, ..., pi. Suppose p; € V .. Let Fusy{py, ..., px} denote
1

the collection of valuations after fusing the valuations in the set {pj, ..., py} with respect
to variable Y € rqu...ury. Then

Fusy (p1, - i) = (pY-0YNU{p;| Y 1y}

where p =@ (p; | Ye r;}, and r = U{r; | Y € r;}. After fusion, the set of valuations is
changed as follows. All valuations whose domains include Y are combined, and the result-
ing valuation is marginalized such that Y is eliminated from its domain. The valuations
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whose domains do not include Y remain unchanged. The following lemma describes an
important consequence of the fusion operation, and it follows directly from Axiom CM1.

Lemma 2.1 [2]. Suppose {p1, ... px} is a collection of valuations such that
p;€ V. Suppose Axioms Cl, C2, C3, and CM1 hold. Let % denote
rqU...ury. Suppose Y € %. Then @Fusy (p1, ..., pi) = (p10...0py ) HZ-(YD),

Next, we define another binary operation called removal. The removal operation is an
inverse of the combination operation.

Removal. We assume there is a mapping ©:V x (N uZ) = (N UZ), called re-
moval, that satisfies the following three axioms:

Axiom R1 (Domain): Suppose 6 € Vg, and pe N\ ,uZ,. Then
6 Ope N usVZrus;

Axiom CRI1 (Combination and Removal I): For each p e . UZ, there exists
an identity for p, denoted by, say, 1, such that p©p =1,; and

Axiom CR2 (Combination and Removal 2): Suppose m, 0 € VY, and
pe NUZ. Then, (1®O) Op = @8 Op).

We call 6 ©p, read as ¢ minus p, the valuation resulting after removing p from o.
Intuitively, 6 ©p can be interpreted as follows. If ¢ and p represent some knowledge, and
if we remove the knowledge represented by p from o, then 6 © p describes the knowledge
that remains.

In probability theory, removal is division followed by normalization (if normaliza-
tion is possible). Division by zero can be defined arbitrarily. For example, we define divi-
sion of any real number by zero as resulting in zero. Suppose 6 € V' g, and pe N, ,UZ,.

Let K = Z{o(x')/p(x*") | x € W s such that p(x*") >0}. Then the valuation resulting
from the removal of p from o is the valuation for rus given by

Ko /o) ifK >0 and p(x¥r) > 0

(cOp)(x) =
0 ifK=Oorp(x¢")=0

forallxe W, ;.

Axioms CR1 and CR2 define the removal operation as an “inverse” of the combina-
tion operation in the sense that arithmetic division is inverse of arithmetic multiplication,
and in the sense that arithmetic subtraction is inverse of arithmetic multiplication.

Conditionals. Suppose G € N\ 5, and suppose a and b are disjoint subsets of s. The
valuation 0+@“%) © g2 for aub plays an important role in the theory of conditional in-
dependence. Borrowing terminology from probability theory, we call 64@b) @gi2 the
conditional for b given a with respect to o. Let 6(b|a) denote oHaur) Ol We call b
the head of the domain of 6(b| a), and we call a the tail of the domain of 6(b | a). Also, if
a =@, let 6(b) denote (b | D). The following theorem states some important properties

of conditionals.
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Theorem 2.1 [25]. Suppose G € N\ ;, and suppose a, b, and c are disjoint sub-
sets of 5.

@i). o(a) = ota.

(ii). o(@)®o(b | a) = olaub).

(ii). o(b | @)@0(c| aub) = o(buc| a).

(iv). Suppose b' < b. Then 6(b | a)Ha) = 6(b'| a).

). (o(b| a)@o(c | aub)) e = o(c| a)

vi). 6(b 1 @)@ = 15,-

(vii). o(bla)e T gup-

Conditional Independence. Suppose T € L , and suppose r, s, and v are disjoint
subsets of w. We say r and s are conditionally independent given v with respect to T, writ-
ten as r Ly s | v, if and only if T(rusUV) = 0,y @0y, Where o, € U oy, and
Oy € Vsuv-

When it is clear that all conditional independence statements are with respect to T, we
simply say ‘r and s are conditionally independent given v’ instead of ‘r and s are condi-
tionally independent given v with respect to t," and use the simpler notation r L s|v in-
stead of r Ly s |v. Also, if v= @, we say ‘r and 5 are independent’ instead of ‘r and s are
conditionally independent given @’ and use the simpler notation r L s instead of 7 L s|D.

Shenoy [25] shows that the conditional independence relation generalizes the condi-
tional independence relation in probability theory. In particular, all characterizations of it
given by Dawid [13] (including the graphoid axioms) follow from the above definition.

3. Valuation Networks

In this section, we define a valuation network representation of a VBS and explain how a
valuation network encodes conditional independence statements.

A valuation network (VN) consists of a four-tuple I'= {%, ¥, €, @ } such that

(i) % =D,

(i) V # 3,

(iii) & c Ux%,

(iv) 4 € Ux%,

W) ul{al(e, X) e &ul for some Xe %} =V, and

i) u{X | (o, X) e U for some e V } = %.
We call the elements of % vertices and they represent variables. We call the elements of
U nodes and they represent valuations. We call the elements of & edges, and they denote
either domains of valuations, or tails of domains of conditionals. We call the elements of
€ arcs and they denote the heads of domains of conditionals. Condition (v) requires each
valuation ace U to have at least one variable in its domain. Condition (vi) requires each
variable X € % to be in the domain of at least one valuation in V'. The six conditions
that define a VN are quite weak, but is necessarily so since, as we will see, the class of
VNs includes a wide class of models.
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In VNs, vertices are denoted by circles, nodes by diamonds, edges by lines joining the
respective nodes and vertices, and arcs by a directed edge pointing to the corresponding
vertex. When a VN contains conditionals, we assume that all conditionals are with respect
to the valuation 7 obtained by combining all valuations in the network, i.e., T= @V .

Example 1. Consider a VBS consisting of variables W, X, Y, and Z, and valua-
tions a for (W, X}, B for (X, Y}, y for (Y, Z}, and & for {W, Z). Figure 2 shows the
VN for this VBS. Vertices (variables) are depicted by circles, nodes (valuations) are de-
picted by diamonds, and edges are depicted by lines. The edges (o, W) and (a, X) incident
to node a indicate that {W, X} is the domain of a.

Figure 2. The VN for the VBS of Example 1.

Example 2. Consider a VBS consisting of variables V, W, X, Y, and Z, and condi-
tionals o for {V}, B for (W} given {V}, y for (X} given {V}, & for (Y} given (W, X},
and € for {Z) given (Y}. Figure 3 shows the VN for this VBS. The arc (5, Y) incident to
d indicates that Y is the head of the domain of §, and the edges (5, W) and (5, X) incident
to & indicate that {W, X} is the tail of the domain of §. Further, if © denotes
aDPBYDIDe, then o =t(V), B=t(W[V), y=1(X|V), § =1(Y W, X), e =1(Z| Y).!

Example 3. Consider a VBS consisting of variables Xj, ..., X1, and conditionals
oy for X, given @, oy for {X,, X3} given Xy, a3 for X4 given X,, a4 for
(X5, X6, X7) given X, a5 for Xg given X3, ag for Xg given Xs, and g for Xy
given {Xg, X7). Figure 4 shows the VN for this VBS. If T denotes 0;®...0ay, then o
=1(Xq), 0p = ‘T.'(Xz, X3 | X1 a3 =1(Xy | X9), Oy = ‘t(Xs, X6' X7 | XZ)’ o5 =
’I:(XS t Xg), Og = ‘I:(XQ | Xs), Q7 = T(XIU | XG' X'}).

! For simplicity, we drop braces around subsets in conditional valuations. Thus we write (V)
instead of ©({V}), 1(Y | W, X) instead of T({ Y} | {W, X}), ete.
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Figure 3. The VN for the VBS of Example 2.

Figure 4. The VN for the VBS of Example 3.
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Example 4. Consider a VBS consisting of variables V, W, X, Y and Z, valuations
a for (V, W}, and B for (V, X}, and conditionals y for Y given {W, X}, and & for Z given
X. Figure 5 shows the VN for this VBS. If T denotes a@®@B@Y®3, then a.®f =
wV,W,X), y=1Y|W,X), and § =1(Z| X).

Figure 5. The VN for the VBS of Example 4.

Fusion in Valuation Networks. Next, we will illustrate fusion in VNs.
Consider the VBS described in Example 1. If we fuse the valuations in the set (o, B, ¥,
8} with respect to X, we get Fusx (a, B, v, 8) = ((a®B)H(Y.Z), y, §). Figure 6 illustrates
this fusion operation. Lemma 2.1 tells us that (a®B)V(Y.Zl@y@®s =
(a®BOYDE)HY.ZW],

Before fusion After fusion w.r.t. X

Figure 6. Fusion in VNs.

Next, we will illustrate fusion in VNs when we have conditionals. The various
statements of Theorem 2.1 are useful here. Consider a VBS consisting of four variables
W, X, Y, and Z, and three conditionals, o for W given @, B for X given W, and 7y for
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(Y, Z) given X. Figure 7 shows the corresponding VN. Suppose T = a®B@&y. Then o =
(W), B=2(X|W), and y=1(Y, Z| X). After fusion with respect to X, we have two con-
ditionals & = T(W), and (B@y)*W. Y. 2] = 1(Y, Z | W). This result is justified by state-
ment (v) of Theorem 2.1. After further fusion with respect to Z, we only have two condi-
tionals o = 7(X), and (B@®y)+(W: Y} = (Y | W). This result is justified by statement (iv)
of Theorem 2.1. Finally after further fusion with respect to Y, we have only one condi-
tional o = T(W). This is because from statement (vi) of Theorem 2.1, T(Y | W) (W] is an

identity for (W), and this identity can be absorbed in any conditional that has W in the
head of its domain.

9

BoY) WY

©
<&
o
(r2
® @

Initial VN After fusion w.r.t. X After fusion w.r.t. Z After fusion w.rt. Y

Figure 7. Fusion in VNs with conditionals.

Conditional Independence in Valuation Networks. How is conditional in-
dependence encoded in VNs? Let us examine the definition of conditional independence
graphically. Suppose r, 5, and v are disjoint subsets of variables, and suppose 7 is a nor-
mal valuation for rusuv. Our definition of conditional independence states that T =
o@Dy iff r Ly s|v, where o, ,,€ V ,,, and o, ,, € V., ,. Suppose T =
o,y®0 L, is a normal valuation for rusUv, where o, € V . and 0t , € V 5y

Figure 8 shows the VN representation of this situation. Notice that all paths from a vari-
able in r to a variable in s go through a variable in v, i.e., v is a cut-set separating r from
s. This suggests the following theorem.
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Figure 8. The VN representation of Ly s | v, where T = o, @0t .

Theorem 3.1. Suppose 7, s, and v are disjoint subsets of w. Suppose 7€ N\, ,,.

Consider the VN representation of T(nUsuv) after marginalizing all variables in
w— (rusuv) out of . Suppose v is a cut-set separating r and s. Then r L 5| v.

Proof. Suppose r, s, and v are disjoint subsets of w. Suppose t€ \ ,,. Consider the VN
representation of T(rusuv) after marginalizing all variables in w — (rusuUv) out of 7.
Suppose v is a cut-set separating r and s. Then there is no valuation that contains a vari-
able in r and a variable in s. Consider all valuations whose domain includes a variable in
r. Let p denote the combination of these valuations. Notice that the domain of p does not
contain a variable in s. Now consider all valuations whose domain includes a variable in
5. Let ¢ denote the combination of these valuations. Notice that the domain of ¢ does not
include a variable in 7. Finally let 6 denote the combination of all valuations not included
in either p or ©. Clearly, the domain of 6 does not contain variables in either 7 or s. Since
T(rusuv) = p@®c @0, it follows from the definition of conditional independence that
rloslv. Q
A special case of the definition of conditional independence is when v = @. In this
case, r Ly s iff T = o, @arg, where o€ VU | and o€ VU ;. Suppose T = o, @0,, where
o€V and age V. Figure 9 illustrates this situation. Notice that there is no path from
a variable in r to a variable in s. As in the case of conditional independence, it is easy to
show that if we have a VN for variables in rUs such that there is no path from a variable
in  to a variable in s, then r L s, where 1 is the combination of all valuation in the VN.

Figure 9. The VN representation of r L s, where T = o, Do,
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To summarize, suppose we are given a VN representation of 1€ I\ w. Suppose v is 2
cut-set separating r and s in the marginalized network for variables in rUsUv. Then
rloslv.

4. Comparison with UGs, DAGs, DBGs, and RCGs

In this section, we briefly compare VNs with UGs, DAGs, DBGs, and RCGs. We start
with UGs.

In UGs, the cliques of the graph (maximal completely connected vertices) denote the
factors of the joint valuation. For example, consider the UG shown in Figure 10. This
graph has 4 cliques, {W, X}, (X, Y}, (Y, Z), and {Z, X). This undirected graph models a
joint probability distribution for (W, X, Y, Z} that factors (multiplicatively) into 4 com-
ponents, o with domain {W, X}, B with domain (X, Y}, y with domain (Y, Z}, and )
with domain {Z, W). The VN representation of this distribution is also shown in Figure
10. Notice that for this distribution, {X} L {Z} | {Y, W), and (Y} L (W} | (X, Z}.

s

Figure 10. An UG and a corresponding VN.

Figure 11 shows another example of an undirected graph model of a probability dis-
tribution. In this UG, there is one clique consisting of {X, Y, Z}. The joint probability
distribution corresponding to this UG does not decompose. The VN representation of this
probability model is also shown in Figure 11. Notice that there are no non-trivial condi-
tional independence relations in this distribution (the trivial ones being of the form

A L8
Y 009

Figure 11. An UG and a corresponding VN.
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Next, we consider DAGs. A DAG model of a probability distribution consists of an
ordering of the variables, and a conditional for each variable given a subset of the vari-
ables that precede it in the given ordering. Figure 12 shows an example of a DAG with 5
variables. An ordering consistent with this DAG is VWXYZ. The DAG implies we have
a conditional for V given (J, a conditional for W given V, a conditional for X given V, a
conditional for Y given {W, X}, and a conditional for Z given Y. The VN representation
of the DAG model is also shown in Figure 12. Suppose T denotes the joint probability
distribution. Then a2 = 1(V), B=t(W|V), y=1(XIV), d =1(YIW, X), and e = 7(Z| Y).

0
7] [

QRO

Figure 12. A DAG and a corresponding VN.

In the DAG of Figure 12, using Pearl’s definition of d-separation, we cannot con-
clude, for example, that W L. X | {V, Z}. However, we can conclude that W L X | V. We
can draw the same conclusion using separation in VNs. If we fuse the VN with respect to
Y, the resulting VN is shown in the left-hand side of Figure 13, and {V, Z} is not a cut-
set separating W and X. Therefore we cannot conclude that W L, X | {V, Z}. If we further
fuse the VN with respect to Z, the resulting VN is shown in the right-hand side of Figure
13, and V is a cut-set separating W and X. Therefore, W L X | V.
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Figure 13. Left: After fusion with respect to Y (of the VN of Figure 12).
Right: After further fusion with respect to Z.

The technique we have proposed for checking for conditional independence in VNs is
an alternative to the d-separation method proposed by Pearl [39] for DAGs. Whether we
have conditionals or not, checking a conditional independence statement in a VN is a mat-
ter of first fusing the VN to remove variables not in the conditional independence state-
ment and then checking for separation in the fused VN. The information about condition-
als is used in the fusion operation,

Lauritzen ef al. [48] describe yet another method for checking for conditional indepen-
dence in DAGs. Their method consists of converting a DAG to an equivalent UG and then
checking for conditional independence in the UG using separation. In short, their method
consists of examining a subgraph of the DAG (after eliminating the variables that succeed
all variables in the conditional independence statement in an ordering consistent with the
DAG), moralizing the graph, dropping directions, and then checking for separation.

Next, let us compare VNs and DBGs. DBGs are defined in [41]. A DBG includes a
partition of the set of all variables. Each element of the partition is called a balloon. Non-
singleton balloons-are shown as ellipses encircling the corresponding variables. Each bal-
loon has a set of variables as its parents. The parents of a balloon are shown by directed
arcs pointing to the balloon. A DBG is acyclic in the same sense that DAGs are acyclic.
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A DBG implies a probability model consisting of a conditional for each balloon given its
parents. A DAG may be considered as a DBG in which each balloon is a singleton subset.

Figure 14 shows a DBG with 10 variables, X1, ..., Xjo. There are two non-single-
ton balloons, {X3, X3}, and (X5, Xg, X7}. All other balloons are singleton subsets. The
DBG of Figure 14 implies a conditional for X; given &, a conditional for {X;, X3}
given X, a conditional for X4 given X5, a conditional for {Xs, Xg, X7) given X, 2
conditional for Xg given X3, a conditional for Xg given X5, and a conditional for X
given {Xg, X4}. The corresponding VN is also shown in Figure 14,

(%)
TRY
6‘®@

Figure 14. A DBG and a corresponding VN.

The conditional independence theory of DBGs is described in [42], and is analogous
to the conditional independence theory of DAGs. In the DBG and VN of Figure 14, we
have, for example, {Xs, Xg, X7} L {Xy, X3, X4} | {X5]).
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Finally, we compare VNs to RCGs. RCGs are defined in [31]. A RCG consists of
two kinds of vertices (variables)}—exogenous and endogenous, and two kinds of edges—
undirected and directed. An undirected edge always connects two exogenous variables, and
a directed edge always points to an endogenous variable. RCGs generalize DAGs in the
sense that a DAG is a RCG with at most one exogenous variable.

Figure 15 shows a RCG with five variables, V, W, X, Y, Z. Variables V, W, and X
are exogenous, and variables Y and Z are endogenous. The cliques {V, W} and {V, X}
imply valuations for {V, W} and {V, X} respectively. The directed edges pointing to Y
imply a conditional for Y given {W, X}, and the directed edge pointing to Z implies a
conditional for Z given X. The corresponding VN is also shown in Figure 15.

Conditional independence properties of RCG are given in [31]. Briefly, if we look at
the subgraph of a RCG restricted to the exogenous variables, the subgraph is an UG and
its conditional independence properties are the same as those given by the UG models. On
the other hand, the conditional independence relation in the complete RCG is given by the
d-separation relation of DAGs. Since the basis of the conditional independence relations in
RCGs is the underlying factorization and the additional information about conditionals,
and since this information is encoded in VNS, a corresponding VN encodes the same con-
ditional independence relation as a RCG. For example, in the RCG and VN of Figure 15,
we have (W) L {X}|{V},and (Z} L {V,W, Y} | (X]}.

O OanO0202:0

Figure 15. A RCG and a corresponding VN.
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5. Conclusion

We have described valuation networks and how they encode conditional independence.
Given a valuation network, r L 5| v if v is a cut-set separating r from s in the marginal-
ized valuation network for rusuUv. We have compared valuation networks to undirected
graphs, directed acyclic graphs, directed balloon graphs, and recursive causal graphs. All
probability models encoded by one of these graphs can be represented by corresponding
valuation networks.

Factorization is fundamental to conditional independence. The power of the valuation
network representation arises from the fact that it represents factorization explicitly. Also
notice that valuation networks encode conditional independence not only in probabilistic
models, but also in all uncertainty theories that fit in the VBS framework. This includes
Dempster-Shafer’s belief-function theory, Spohn’s epistemic belief theory, and Zadeh’s
possibility theory [25].

We have not compared valuation networks to chain graphs [30, 33], decision trees
[44], and similarity networks [45)]. This remains to be done.
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