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Abstract. The prediction of posttraumatic stress disorder (PTSD) has gained a lot of inter
est in clinical studies. Identifying patients with a high risk of PTSD can guide mental 
healthcare workers when making treatment decisions. The main goal of this paper is to 
propose several Bayesian network (BN) models to assess the probability that a veteran has 
PTSD when first visiting a U.S. Department of Veteran Affairs (VA) facility seeking medi
cal care. The current practice is to use a five-question test called PC-PTSD-5. We aim to use 
the PC-PTSD-5 test, which is currently administered to most incoming new patients, and 
demographic information, military service history, and medical history. We construct a 
Bayes information criterion score-based BN, a group L2-regularized BN (GL2-regularized 
BN), and a naïve Bayes BN to assess the probability that a patient has PTSD. The GL2-regu
larized BN is a new method for constructing a BN motivated by some of the challenges of 
analyzing this data set. A secondary goal is to identify which features are important in pre
dicting PTSD. We discover that the following features help compute the probability of 
PTSD: PC-PTSD-5, service-connected flag, combat flag, agent orange flag, military sexual 
trauma flag, traumatic brain injury, and age.

History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. 
Supplemental Material: The software that supports the findings of this study is available within the paper 

and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021. 
0174) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/ 
2021.0174). The complete IJOC Software and Data Repository is available at https://informsjoc. 
github.io/. 
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1. Introduction
Posttraumatic stress disorder (PTSD) is a prevalent and seriously impairing disorder, especially for veterans. Pre
diction of PTSD is a research domain that has attracted significant attention in the last two decades. Many studies 
focus on seeking the risk factors of PTSD (Brewin et al. 2000, Gaviria et al. 2016) that provide critical guidance for 
making individual mental healthcare decisions and help the U.S. Department of Veteran Affairs (VA) or other 
healthcare organizations to identify high-risk populations for PTSD. In recent years, machine learning techniques 
have been applied to PTSD prediction to fill in the gap between the scientific discovery of risk factors for PTSD 
and practical application in making accurate predictions of PTSD in individuals. Commonly used methods 
include support vector machine (SVM) (Galatzer-Levy et al. 2014), random forest (Schalinski et al. 2016), logistic 
regression (Holeva and Tarrier 2001), and naïve Bayes (Omurca and Ekinci 2015).1

VA facilities can use a PTSD prediction model as a screening tool to detect PTSD at an early stage. Given their 
experiences of combat and military sexual trauma, military veterans are at a higher risk for suffering from PTSD 
compared with their civilian counterparts (Norris and Slone 2013). Early detection of PTSD reduces the possible 
risk of untreated PTSD and makes the treatment more efficient. Traditional mental disorder screening relies 
mainly on psychological tests. The most commonly adopted screening instrument in VA hospitals since 2015 is 
the Primary Care PTSD Screen (PC-PTSD-5) from the fifth edition of the Diagnostic and Statistical Manual of 
Mental Disorders. Motivated by the need to predict PTSD for veterans more accurately at an early stage, we 
examine the construction of several Bayesian network (BN) models that incorporate the PC-PTSD-5 score and 
some other readily available information about a veteran, including demographic information, military service 
information, and the veteran’s medical record.

1 
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BNs have been widely used in the medical domain because of their remarkable ability to handle uncertainty in 
the diagnostic process of diseases. Such models provide a natural way to handle missing data, allow data integra
tion with domain knowledge, and facilitate learning about causal relationships between variables (Koller and 
Friedman 2009). Sun et al. (2011) presents a diagnostic system that assists doctors in diagnosing and tracking the 
development of mild cognitive impairment (MCI). Specifically, they deal with the problem of learning BN from 
incomplete data sets by introducing the mutual information and Newton interpolation Bayesian network (MNBN) 
algorithm. To characterize the functional relationships among symptoms of obsessive-compulsive disorder (OCD) 
and depression in patients with primary OCD, McNally et al. (2017a) estimate two networks (a regularized partial 
correlation network and a BN) using archival admission data from a hospital in Wisconsin. Using the same two 
approaches, McNally et al. (2017b) analyzes the PTSD symptoms in adults reporting childhood sexual abuse. Com
pared with the regularized partial correlation network, the BN can disclose potentially causal influence among 
symptoms. However, in practice, such influence between two symptoms can happen bidirectionally. One limita
tion of BN is that it disallows cycles whereby a symptom activates other symptoms that then loop back to influence 
the initial symptom. This paper proposes a screening tool to facilitate early detection and treatment of PTSD, 
where we do not have access to that advanced symptoms-related information. Instead, we consider using veterans’ 
demographic information, military service, and medical records to see how this readily available information will 
affect the model’s predictive power.

There are several methods for learning BN models from observational data. A BN model encodes conditional 
independence relations among the variables. One class of models, constraint-based methods, learns BNs by iden
tifying conditional independence relations in a data set (Spirtes and Glymour 1991, Cheng et al. 2002). A feature 
of constraint-based methods is that they do not always result in a unique directed acyclic graph. More than one 
directed acyclic graph (DAG) may encode the same set of conditional independence relations in a data set. Typi
cally these Markov equivalent DAGs are grouped and represented by a maximally partially acyclic graph 
(MPDAG), which contains both directed and undirected edges. As per Scutari et al. (2018), score-based algo
rithms (discussed next) are as accurate and computationally more efficient than constraint-based algorithms 
with large samples. Given a sample of more than 1 million veterans in our study, we did not construct a BN 
using constraint-based algorithms.

Another class of models, called score-based methods, learn BNs by optimizing scores such as Akaike informa
tion criterion (AIC), Bayes information criterion (BIC), and so on (Glover 1989, Tsamardinos et al. 2006). In this 
paper, first, we construct a BIC score-based BN. Next, we adopt a group L2-regularized (GL2-regularized) method 
to learn a BN model. Least absolute shrinkage and selection operator (LASSO) was first proposed by Tibshirani 
(1996) as a method that simultaneously performs feature selection and parameter estimation. We adapt a group 
version of LASSO to learn a BN model structure for predicting PTSD by using logistic regression to estimate the 
conditional probability distribution of each node. When fitting the model, we use known causal relationships to 
restrict directed arcs from causes to effects, which helps to improve our structure learning efficiency. For instance, 
we can rule out that PTSD causes a particular ethnicity. However, we do not interpret the relationships identified 
using the resulting model as causal discoveries. Besides, the group L2 penalty is applied to guarantee the consis
tency of edge selection across multiple imputed data sets. Finally, we construct a naïve Bayes BN using only fea
tures identified as important from a feature importance study of the GL2-regularized and the BIC score-based BNs.

We evaluate the prediction accuracies of all three BNs using a data set obtained from the Corporate Data 
Warehouse production domains of the VA Informatics and Computing Infrastructure (VINCI), which is a VA 
Health Services Research & Development (HSR&D) Resource Center that provides researchers with a nation
wide view of detailed VA patient medical record data (U.S. Department of Veterans Affairs 2014). The data set 
consisting of patient-visit records of veterans has many missing values. A BN models the joint distribution for all 
variables in the data set. Fitting a BN model with missing data are as challenging as fitting a discriminative 
model, such as logistic regression, which directly models the conditional distribution of the response given the 
predictors. In our study, we deal with this issue by imputing missing values using Rubin’s multiple imputation 
method (Rubin 1987). However, unlike discriminative models, a BN can easily make predictions even when we 
have missing predictors in the test set. Thus, making predictions from a BN will be more straightforward for the 
VA, where it is common for patients to have incomplete information. Out-of-sample testing shows that all three 
BN models are substantially better than using only the PC-PTSD-5 test.

Next, we explore the risk factors for PTSD among veterans. One advantage of using a BN model is that we 
have a transparent model of the linkages between features associated with PTSD. First, we identify the key fea
tures that directly influence the occurrence of PTSD in veterans using the Markov boundary of PTSD.2 Second, 
we conduct a feature importance analysis to quantify how informative each feature is in predicting PTSD. The 
results from both studies suggest the same seven features important in predicting PTSD for military veterans.

Tan et al.: Bayesian Network Models for PTSD Prediction 
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1.1. Contributions of Our Study
The main contribution is a BN constructed by the GL2-regularized method for predicting PTSD during the initial 
screening of veterans at a VA facility. The implementation code for our proposed method is available from the 
IJOC GitHub software repository (Tan et al. 2023). We also construct two other BNs—the BIC score-based BN 
and the naive Bayes BN—using existing methods to compare the accuracy of the GL2-regularized BN. Second, 
our models can be used as a screening tool to detect PTSD at an early stage. Early detection of PTSD reduces its 
impact/risk and makes the treatment more efficient and less expensive. Our model substantially improves VA 
hospitals’ prediction accuracy of the currently adopted PC-PTSD-5 test. Third, the BIC score-based and GL2-regu
larized BNs identify important features in PTSD screening for military veterans. Identifying such important fea
tures of PTSD is helpful to the U.S. military in finding ways to avoid the problem and guide diagnosis, therapy, 
and disease control for VA hospitals. This also contributes to the literature by providing the first set of analyses 
on the modifying effect of patient demographic characteristics, military experience, and other comorbidities on 
the performance of screening tools in the primary care setting. Fourth, our paper introduces a new feature impor
tance assessment method for BN models. We believe this method is cleaner than the commonly used 
permutation-based method.

The remainder of the paper is organized as follows. Section 2 discusses the primary motivation of this 
project—constructing a model to predict PTSD as a screening tool for patients. Section 3 describes the data set 
from VINCI and some of the challenges faced in constructing a BN. Section 4 describes a BIC score-based BN for 
PTSD screening. Section 5 describes the method we use to construct a GL2-regularized BN. Section 6 presents the 
empirical evaluation of our proposed BN models and the corresponding feature importance analysis results. 
Finally, in Section 7, we summarize our findings and state some conclusions.

2. PTSD Screening Instrument
2.1. Background
PTSD occurs in people who have experienced or witnessed a traumatic event. It has been recognized as one of 
the most disabling psychopathological conditions affecting the U.S. veteran population. Veterans have a much 
higher prevalence of PTSD than nonveterans because of their increased exposure to life-threatening events. 
According to the National Center for PTSD, most PTSD in veterans varies by service era: between 11% and 20% 
for Operation Iraqi Freedom and Enduring Freedom, about 12% for the Gulf War, and about 15% for the Viet
nam War. These numbers are significantly higher than U.S. civilians (about 7%–8%).

PTSD can disturb individual and family functioning, causing significant medical, financial, and social pro
blems. Veterans with PTSD are more susceptible to sleep disorders, mood changes, reckless behavior, substance 
use disorder, and isolation. Traditional detection of veterans with PTSD relies to a large extent on primary care 
doctors.3 Specifically, primary care doctors will refer to a mental health provider when they recognize symptoms 
of PTSD in a veteran. However, this procedure may delay the diagnosis and treatment due to the wait to see a 
primary care provider, followed by a wait to see a mental health provider. As per Penn et al. (2019), the average 
2017 VA primary care wait time was 20 days. Also, doctors in primary care often prioritize physical health condi
tions and thus may overlook significant mental disorders, including PTSD, in the veterans they treat.

Early detection of PTSD reduces its risk, alleviates the related symptoms, and makes the treatment more effi
cient and less expensive. Numerous screening tests have been developed and adopted to assist clinicians in iden
tifying the high risk for PTSD in VA hospitals. The screening was more commonly implemented first in primary 
care clinics. However, the VA has increasingly allowed veterans to go directly to mental health providers with
out being evaluated by a primary care doctor in recent years. A good screening test consisting of reasonable 
questions is easy for veterans to complete and has high sensitivity and specificity.

2.2. PC-PTSD-5
There are two steps in the PC-PTSD-5 screening test. First, subjects are asked if they have been exposed to a trau
matic event. If the answer is no, the screening ends, and the subject receives a score of zero. If the answer is yes, 
they complete five additional yes/no questions about the traumatic event’s impact on their life. The final score is 
the number of times the veteran responded yes to these five questions.

PTSD screening is currently required for all veterans receiving care in the VA. The VA started using PC-PTSD- 
5 in 2015. To facilitate early detection and treatment of PTSD veterans, the cutoff score in practice is determined 
as 3, which optimizes the test’s sensitivity while maintaining the specificity at a minimum level of 0.8 (Prins et al. 
2016). The PC-PTSD-5 is the most commonly used screening tool because it is brief and can be administered by a 
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primary care clinic staff; patients can easily understand and complete the questions. As a result, the PC-PTSD-5 
exhibits very little sample selection bias.

One limitation of PC-PTSD-5 as a screening tool for PTSD is that it only focuses on the PTSD symptoms and 
disregards other factors, such as demographic characteristics and military experience. In this paper, using several 
BN models, we improve the screening power of PC-PTSD-5 with veterans’ demographic information, historical 
military records, and traumatic brain injury (TBI) diagnosis. To the best of our knowledge, little work has been 
done to investigate the modifying effect of patient demographic characteristics, military experience, and other 
comorbidities on the performance of any screening tools in the primary care setting. Our study provides the first 
set of analyses on how much these factors contribute to improving the predictive power of PC-PTSD-5.

3. Data and Challenges
We use medical record data accessed through VINCI. We start by searching for veterans who have taken the PC- 
PTSD-5 test at least once by the end of 2019. Veterans’ individual-level information is obtained by aggregating 
their lifetime visits to a VA facility. Our search identifies 1,113,676 distinct veterans.

3.1. Variable Definition and Miscellaneous Issues
Multiple descriptive epidemiological studies have been conducted to examine the patterns of PTSD in associa
tion with a range of demographic factors (Adams and Boscarino 2005, Gaviria et al. 2016). Following the litera
ture, we start by collecting the veterans’ Age, Gender, MaritalStatus, Ethnicity, Religion, and Race. Combat 
experience is a significant risk factor for the development of PTSD, whereas its impact varies depending on veter
ans’ service era and if they have ever experienced any traumas. We also include military service variables, which 
can serve as indicators of veterans’ combat status. Specifically, we include military exposures reported to the VA 
(AgentOrangeFlag, IonizingRadiationFlag, SWAsiaConditionsFlag); whether the veteran was treated for military 
service–related conditions including mental health disorders, musculoskeletal disorders, or other concerns (Servi
ceConnectedFlag); and the trauma types that they have experienced (MilitarySexualTraumaFlag, CombatFlag). These 
military experience–related variables will take the value of “yes” if a VA healthcare provider has selected this 
option to indicate that care was related to the relevant condition, exposure, or potential trauma. “No” is repre
sented in the data set when a flag is relevant to the veteran (i.e., the veteran does have a condition, exposure, 
or experience that activates the flag in the medical record). However, no visits have ever been associated with 
treatment for that specified condition, exposure, or experience. There is a large number of empty values for these 
variables. For example, the proportion of empty values is 94.88% for SWAsiaConditionsFlag and 94.88% for 
MilitarySexualTraumaFlag. This is because these variables are irrelevant to most veterans. Thus, providers do not 
need to select either “Yes” or “No” associated with the veterans’ care during their visits. For example, the Com
batFlag is irrelevant and will always be empty for veterans who have never served in a combat theater or have 
not done so in the last several years. In this situation, the absence of a military service record is informative: A 
veteran is less likely to suffer from PTSD if the military experience information is missing than if the information 
has been collected. Accordingly, we treat the empty values as a separate value, called “unknown,” for veterans’ 
military service variables, instead of considering them as missing data.

Next, we collect the lifetime PC-PTSD-5 test results. We use the highest scores for veterans who have taken the 
test multiple times. This is because PTSD is commonly a chronic disorder, and our goal is to predict whether a 
veteran has ever experienced PTSD in their lifetime. Finally, we investigate veterans’ historical diagnosis of 
PTSD, our primary variable of interest, and traumatic brain injury (TBI), which has been widely recognized as a 
correlate of PTSD (Bryant 2011). These two variables will take the value “yes” if the veteran has been diagnosed 
with PTSD (or TBI respectively), and “no” otherwise.

Other data-collecting issues are discussed here. 
• Inconsistent Records: For demographic information, we occasionally find inconsistent responses across differ

ent visits to the VA. In such situations, we treat the corresponding variables as missing.
• Numeric Variables: BN models work best with categorical variables. The most common way of addressing 

numeric variables in a BN is to assume that the conditional distribution of a numeric variable given its parents is 
normal (Lauritzen and Jensen 2001). However, this introduces bias when the normality assumption is violated. To 
handle numeric variables, such as Age and PC-PTSD-5, we discretize the variables using supervised discretization 
with a decision tree model (Kohavi and Sahami 1996). Specifically, we train a decision tree using Age (or PC-PTSD- 
5) to predict PTSD and use the splitting nodes in the fitted tree model as cutoff points for discretization. As a result, 
Age is discretized into three states: young (<53), middle (53–76), and old (>76), and PC-PTSD-5 is discretized into 

Tan et al.: Bayesian Network Models for PTSD Prediction 
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

71
.2

26
.1

27
.7

8]
 o

n 
14

 D
ec

em
be

r 
20

23
, a

t 1
3:

30
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



two states: Low (<3) and High (≥3). This result for PC-PTSD-5 is consistent with the optimally sensitive cutoff score 
identified in previous research and used by the VA.

3.2. Summary Statistics
Table 1 provides the summary statistics of our variables. Given the sample of 1,113,676 veterans, 23.09% have 
been diagnosed with PTSD, and only 2.73% have been diagnosed with TBI. Most of the veterans are male 
(91.82%), white (71.38%), married (54.33%), not Hispanic or Latino (90.01%), and middle-aged (61.27%). It is 
worth noting that 23.39% of the data for religion is missing.

We show the prevalence of PTSD for our sample for different categories of other variables in Figure 1. The bar 
plots show that young, female, and Black veterans are more likely to suffer from PTSD. Also, being in combat, 
experiencing military sexual trauma, and service-connected trauma are associated with an increased risk of 
PTSD. Finally, a high score on the PC-PTSD-5 test is a strong indicator of PTSD.

Table 1. Summary Statistics for Key Variables

Features States Frequencies Proportions (in %)

Age Young 227,641 20.44
Middle 682,393 61.27

Old 203,642 18.29
Gender Female 91,098 8.18

Male 1,022,578 91.82
MaritalStatus Divorced 350,143 31.44

Married 605,050 54.33
Single 152,772 13.72

NA 5,711 0.51
Ethnicity Hispanic/Latino 72,362 6.50

Non-Hispanic/Latino 1,002,472 90.01
NA 38,842 3.49

Race Black 209,196 18.78
Other 85,398 7.67
White 794,939 71.38

NA 24,143 2.17
Religion Christian 801,801 72.00

Other 51,382 4.61
NA 260,493 23.39

CombatFlag No 15,582 1.40
Yes 126,059 11.32

Unknown 972,035 87.28
AgentOrangeFlag No 290,080 26.05

Yes 120,519 10.82
Unknown 703,077 63.13

IonizingRadiationFlag No 308,323 27.69
Yes 2,229 0.20

Unknown 803,124 72.11
SWAsiaConditionsFlag No 29,496 2.65

Yes 27,552 2.47
Unknown 1,056,628 94.88

MilitarySexualTraumaFlag No 17,461 1.57
Yes 39,517 3.55

Unknown 1,056,698 94.88
ServiceConnectedFlag No 32,027 2.88

Yes 644,294 57.85
Unknown 437,355 39.27

PC-PTSD-5 Low 932,380 83.72
High 181,296 16.28

TBI No 1,083,282 97.27
Yes 30,394 2.73

PTSD No 856,552 76.91
Yes 257,124 23.09

Notes. We report the category values with corresponding frequencies and proportions. The category NA 
denotes missing data.
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3.3. Some Challenges
We propose a supervised predictive model to bridge the gap between academic/clinical knowledge about PTSD 
and veterans’ individual-level PTSD diagnosis. We identify four practical challenges and discuss how we plan to 
address them.

3.3.1. Challenge 1: Probabilistic Classification. The proposed model should be a probabilistic classifier that can 
predict the posterior probability of PTSD given states of some (or all) features. In this study, such probability 
represents a veteran’s risk of suffering from PTSD. By changing the cutoff probability, our proposed method bal
ances the tradeoff between sensitivity and specificity for different purposes, populations, or settings where a 
PTSD screening is conducted. For example, controlling the false-negative rate in primary care screening may be 
more important because it aims to facilitate early detection and treatment of PTSD cases that would otherwise go 
unrecognized. Support vector machines (SVMs) (Galatzer-Levy et al. 2014) are one popular machine learning 
technique used to predict the presence of PTSD. However, it is a deterministic approach that returns the class 
(PTSD � Yes=No) for each patient characteristic. The resulting model will have low adaptability to the varying 
PTSD screening purposes, populations, or settings. Other commonly used techniques include random forest 
(Schalinski et al. 2016), logistic regression (Holeva and Tarrier 2001), and naïve Bayes (Omurca and Ekinci 2015). 
In this paper, we explore BNs, which can predict the posterior probability of PTSD given observed values 
of features.

3.3.2. Challenge 2: Missing Data. A distinct advantage of a BN is that it can predict after only observing a subset 
of features. Specifically, some demographic information about veterans may be missing either because the infor
mation is not collected or not recorded in the medical record or the recorded data are inconsistent. For example, 
the information on Religion is missing for 23.39% of the veterans. Many other discriminative probabilistic classi
fiers, for example, (regularized) logistic regression, cannot predict from missing data without imputing them. 

Figure 1. Prevalence of PTSD for Different States of Variables 

Note. The height of a (white) black bar corresponds to the probability of (no) PTSD.
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However, imputing the missing values biases the predicted probability, making it an unreliable measurement of 
the risk of PTSD. On the other hand, missing values in the training data are still an issue when learning a BN 
model, similar to learning discriminative models.

3.3.3. Challenge 3: Highly Skewed Features. In addition to missing data, highly skewed features are another 
issue that may reduce the sample’s representativeness and bias the effect of PTSD screening, especially for 
minority groups.

This study addresses Challenges 2 and 3 by adopting a GL2-regularized BN learning algorithm to reduce the 
model complexity. The multiple imputations (MI) method handles missing data in the training set for model 
learning.

3.3.4. Challenge 4: Large Search Space of Network Structures. Learning a BN structure from data are NP-hard 
because the network structure has to be a DAG. As our task is to construct a BN with 15 nodes from more than 1 
million data instances, many commonly used methods are computationally intractable. In this study, we adopt 
an ordering-based search strategy and integrate it with domain knowledge to improve our structure learning 
algorithm efficiency.

4. Bayes Information Criterion Score-Based BN
In this section, we investigate the construction of a BN model using the Bayes information criterion (BIC) score- 
based technique (Schwarz 1978).4 The BIC score consists of a log-likelihood term that depends on the observed 
data and a penalty term that depends on the complexity of a BN model. Because each edge added to the BN 
increases the complexity of the model, this score-based term favors sparser network structures (with fewer edges 
for each node). Specifically, we minimize the BIC score using a hill-climbing greedy search and handle missing 
data with the structural expectation-maximization (EM) algorithm (Friedman 1998). Also, to prevent the strong 
influence of zero probabilities, parameters are estimated using the Laplace correction (Niblett 1987). We con
struct a BIC score-based BN using the bnlearn R package (Scutari 2010).

Figure 2 displays the resulting BIC score-based BN structure. As shown, the structure is relatively sparse with 
eight variables, Age, AgentOrangeFlag, CombatFlag, MilitarySexualTraumaFlag, Race, ServiceConnectedFlag, TBI, and 
PC-PTSD-5, in the Markov boundary of PTSD, and thus these variables provide the most direct predictive power.

Because our data set is quite large, typically we would expect to be able to fit BN models with even denser 
structures. However, in this study, because of missing data and highly skewed features, the observed training 
instances for estimating conditional probability tables are sometimes limited, making the corresponding estimation 

Figure 2. Structure of the BN Model Constructed Using the BIC Score-Based Technique 
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unreliable. For example, to estimate the conditional probability table of PTSD, the number of veterans with Combat
Flag � yes, MilitarySexualTrauma � yes, TBI � yes, and Age � old is zero. Also, the BIC score-based BN gives us no 
insight into the relative importance of features.

5. New Method for Constructing a GL2-Regularized BN Model
Our proposed model is a regularized BN, built to address Challenges 1–4 described in Section 3. A BN is a 
directed acyclic graphical model with a set of m nodes {X1, : : : , Xm}. We define Pa(Xj) as the vector of dummy 
variables corresponding to the variables that are the mj parents of a node Xj. Given categorical data, we use a 
symmetric parametrization of the multinomial logistic regression for the conditional probability distribution of 
each node following Zhu and Hastie (2004):

P(Xj � xj, k | Pa(Xj), b̃j) �
exp(Pa(Xj)

′b̃j, k)
PK

l�1 exp(Pa(Xj)
′b̃j, l)

, 

where b̃j � (b̃
T
j, 1, b̃

T
j, 2, : : : , b̃

T
j, K)

T is the vector of unknown parameters to be estimated from data. Here K is the 
number categories for node Xj, and b̃j, k � (b̃j, k, 0, b̃

T
j, k, 1, : : : , b̃

T
j, k, mj
)
T corresponds to the kth category.

To tackle the challenge of structural learning of BN from high-dimensional data, Huang et al. (2012) proposed 
a sparse BN (SBN) structure learning algorithm. Given fully observed data X � [x1, : : : ,xm] where xj is a N × dfj 
matrix of N observations and dfj degree of freedom for node Xj, we define X�j as the set of all nodes excluding 
Xj. Assuming all these nodes are candidate parents of node Xj, we have mj �m� 1. The model parameters can be 
reorganized as bj � (b

T
j, 0, bT

j, 1, : : : , bT
j, j�1, bT

j, j+1, : : : , bT
j, m)

T, where bj, 0 ∈ Rdfj0 is the vector of intercepts and bj, i ∈ Rdfji 

is the vector of regression coefficients of parent node Xi. Then the problem is formulated as obtaining a sparse 
estimate of bj’s under the constraint that the estimated BN structure G must be a DAG. The nonzero element of 
bjs indicates the presence of edges in the structure G. Specifically, the estimate of bj’s is obtained by minimizing 
the negative log-likelihood (NLL) of each node, with the sparsity enforcing l1 penalty as

min
bj

1
N
Xm

j�1
NLL(xj, x�j, bj) +λ

Xm

j�1

X

i≠j
‖bj, i‖1 s:t: G ∈DAG: (1) 

Given the estimate of bjs, the set of parents for node Xj can be found as Pa(Xj) � {Xi | ‖bj, i‖1 ≠ 0}. Tuning parame
ter λ denotes the strength of regularization and can be determined by out-of-sample prediction performance in a 
validation set.

5.1. Multiple Imputation
This section describes MIs used to address the training set’s missing data. MI was first proposed by Rubin (1987) 
and has been widely used in large-scale healthcare/medical studies (Rubin and Schenker 1991, Van Buuren 2007). 
It has the practical advantages of preserving sample size and statistical power and allowing standard complete- 
data methods of analysis to be used. Multiple imputations provide unbiased parameter estimates if the missing 
structure is missing completely at random or missing at random; whether an observation is missing or not does 
not depend on the value of the missing data. MI has three basic steps: (1) create D different data sets by imputa
tion; (2) analyze each of the D completed data sets; and (3) integrate the D analysis results into a final result.

We conduct D � 4 imputations in this study.5 Specifically, we compute the posterior probability for each node 
with missing values using BIC score-based BN as shown in Figure 2. Then the missing entries are imputed by 
randomly generating new data from the corresponding posterior probability distribution.

When multilevel features and responses are present, the LASSO penalty may not be satisfactory as it only 
selects individual variables instead of whole factors. The LASSO solution also depends on how the dummies are 
encoded. Yuan and Lin (2006) propose group LASSO to overcome these issues. Chen and Wang (2013) extend 
this idea to multiple-imputed data to ensure consistency in variable selection across different imputed datasets. 
In this paper, we denote b̂1

j , : : : , b̂D
j as the vectors of estimated regression parameters for child node Xj on the D 

imputed data sets, where b̂d
j � (b̂

dT

j, 0, b̂dT

j, 1, : : : , b̂dT

j, j�1, b̂dT

j, j+1, : : : , b̂dT

j, m)
T. Then, the model parameters are extended as 

b(D)j, i � (b
1T

j, i , : : : , bDT

j, i )
T
∈ Rdfji·D. If Xi is important for predicting Xj, b̂d

j, is should be all nonzero, and if Xi is not 
important for predicting Xj, b̂d

j, is should be all zero for any given imputed data set d. Thus, we estimate the 
model by minimizing

min
bd

j, i

1
N ·D

Xm

j�1

XD

d�1
NLL(xd

j ,xd
�j, bd

j, i) +λ
Xm

j�1

X

i≠j

ffiffiffiffiffiffipj, i
√
‖b(D)j, i‖2 s:t: G ∈DAG: (2) 
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The L2 norm ‖b(D)j, i‖2 is called the group LASSO penalty, and pj, i � dfji ·D is the varying group size. The penalty 
function is adjusted by ffiffiffiffiffiffipj, i

√ to apply the same penalization to large and small groups. The group LASSO penalty 
guarantees the consistency of edge selection concerning all different predictor levels, response levels, and 
imputed data sets. The consistency in edge selection ensures the same network structure across different 
imputed data sets. The final estimation of b̂j, i is calculated based on Rubin’s rule as b̂j, i � 1=D ∗

PD
d�1 b̂d

j, i.

5.2. Ordering-Based Search
Solving the optimization in Equation (2) is a challenge, given the constraint that the estimated BN structure G 
must be a DAG because of the vast search space of network structures. Much work has been done to address this 
problem, but only a few outperform the baseline of greedy hill-climbing with tabu lists.6 In this paper, we adopt 
an ordering-based search strategy (Teyssier and Koller 2005) and use the greedy hill-climbing search with a tabu 
list. Determining an appropriate ordering is a complex problem. However, our causality-based clinical knowl
edge helps significantly reduce our search space.

We conduct an ordering-based search by seeking the best ordering ⋏
 over X1, : : : , Xm, such that if Xi is a poten

tial candidate for Pa(Xj), then Xi ⋏ Xj. Once the ordering ⋏
 is determined, finding the optimal BN consistent with 

⋏
 is no longer NP-hard because we can easily implement group LASSO on each node separately. We use hill- 

climbing to find ⋏, that is, only consider swapping a pair of adjacent nodes in the ordering for each move until 
the value of Objective Function (2) does not decrease:

(: : : , Xi�1, Xi, Xi+1, Xi+2, : : : ) → (: : : , Xi�1, Xi+1, Xi, Xi+2, : : : ):

There are only two new neighborhoods generated, (Xi�1, Xi+1) and (Xi, Xi+2), for each move. We use a tabu list to 
prevent the algorithm from reversing a swap executed recently in the search.

We use domain knowledge to reduce the search space of possible ordering ⋏. Specifically, based on causal 
domain knowledge, we divide the nodes into five layers, illustrated in Figure (3). For example, individual charac
teristics at the first layer are attributes the other nodes cannot cause. As TBI is usually present before PTSD, we 
constrain TBI to precede PTSD. If a node Xi is at the preceding layer of node Xj, then Xi should always precede 
Xj in ⋏. Given the ordering, define xi ⋏ j as the set of potential parents for node j. In this way, we restrict our order
ing search space only within the second layer.

With a predetermined ordering ⋏, Equation (2) can be transformed as

min
bd

j, i

Xm

j�1

1
N ·D

XD

d�1
NLL(xd

j ,xd
i ⋏j

, bd
j, i) +λ

X

i ⋏j

ffiffiffiffiffiffipj, i
√
‖b(D)j, i‖2

2

4

3

5: (3) 

Then our task becomes solving m optimization problems independently. This allows us to easily apply the sparse 
group LASSO algorithm proposed by Vincent and Hansen (2014). Online Appendix D summarizes our model 
training procedure with a given value of regularization parameter λ.

6. Empirical Results of BN Models
This section presents the proposed BN models’ prediction performance and feature importance. All the experi
ments were performed on the VINCI Workspace, using R. Because the original data are confidential, we provide 
a synthetic data set along with the R scripts that were used for all numerical experiments presented in this sec
tion on the IJOC GitHub software repository (Tan et al. 2023).

Figure 3. (Color online) Ordering-Based Search 

Notes. Arrows represent constraints on directed edges. There can be no edges from a variable in the next level to a variable in the preceding level. 
All variables preceding PTSD can be potential parents of PTSD.
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The overall performance is evaluated in terms of mean squared error (MSE), defined as follows:

MSE � 1
N
XN

i�1
{P̂(PTSDi � “Yes”)� 1(PTSDi � “Yes”)}2:

Here N is the testing sample size, PTSDi is the observed PTSD status for the ith testing observation, P̂(PTSDi �

“Yes”) is the predicted probability that the ith testing observation is suffering from PTSD, and 1() is an indicator 
function for the condition in the parentheses.

In practice, the use of screening tools is dependent on their cutoff point. An optimal cutoff point will provide a 
good balance of sensitivity–specificity tradeoffs concerning different screening purposes, populations, or set
tings. Accordingly, we also investigate false-negative (FN) and false-positive (FP) rates as follows:

FN � 1�
PN

i�1 1(PTSDi � “Yes”) · 1(PT̂SDi � “Yes”)
PN

i�1 1(PTSDi � “Yes”)
, 

and

FP � 1�
PN

i�1 1(PTSDi � “No”) · 1(PT̂SDi � “No”)
PN

i�1 1(PTSDi � “No”)
, 

where PT̂SDi is the predicted PTSD status for testing observation i.
We randomly divide our data set into three parts, a training set with 913,676 instances, a validation set with 

100,000 instances, and a test set with the remaining 100,000 instances. In the training set, the method described in 
Section 5 (with a prespecified sequence of tuning parameter values) is used to train the model. For variables with 
missing values, we impute them four times using the BIC score-based BN model. As our goal is to measure veter
ans’ risk of suffering PTSD, we compare the MSE of models trained with different values of λ in the validation 
set and determine the optimal value of λ based on it. Finally, we assess the predictive accuracy of the resulting 
model using data in the test set.

Table 2 summarizes the variables in the Markov boundary of PTSD given models generated with different λ 
values. As the value of λ increases, Ethnicity, Religion, and Gender are the nodes that leave the Markov boundary 
of PTSD early and tend to have the least significant predictive power. Conversely, PC-PTSD-5, ServiceConnected
Flag, and CombatFlag are still in the Markov boundary with λ � 0:03 and therefore contribute the most in predict
ing PTSD.

To optimize the prediction accuracy, we pick λmin � 0:00005, which is associated with the smallest MSE in the 
validation set.7 The resulting BN structure is shown in Figure 4(a). This model exhibits a very dense structure, 
probably due to our large training data set. As shown in Table 2, all 14 variables are in the Markov boundary of 
PTSD, indicating that they are informative in predicting PTSD.

Table 2. Summary of the Variables in the Markov Boundary of PTSD Given Models with Different Values of the Turning 
Parameter

λ

0.00001 0.00003 0.00005 0.0001 0.0003 0.0005 0.001 0.002 0.003 0.005 0.01 0.03

PC-PTSD-5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ServiceConnectedFlag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CombatFlag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Age ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TBI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AgentOrangeFlag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MilitarySexualTraumaFlag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SWAsiaConditionsFlag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Race ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MaritalStatus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IonizingRadiationFlag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓

Religion ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ethnicity ✓ ✓ ✓ ✓ ✓ ✓

Tan et al.: Bayesian Network Models for PTSD Prediction 
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A comparison of our proposed GL2-regularized BN with BIC score-based BN in terms of MSE is reported in 
Table 3. The results show that the GL2-regularized BN with λmin performs slightly better than the BIC score- 
based BN, although the difference may not be significant.

6.1. Cutoff Value of Probability of PTSD
The practical use of a PTSD screening tool is highly dependent on its cutoff value. Therefore, we investigate the 
optimal cutoff value for PTSD prediction by striking a proper balance between sensitivity and specificity. A com
monly used technique for deciding the cutoff point in primary care screening is to maximize the sensitivity score 
while maintaining the specificity at a prespecified level, ensuring that the screening tool will not capture too 
many false positives. We first set the minimum specificity in this study to be 0.80 (Prins et al. 2016). As a conse
quence, the optimal cutoff for our proposed GL2-regularized BN with λmin is identified to be 0.2616 with the cor
responding sensitivity as 0.7039, specificity as 0.8000.8 Compared with BIC score-based BN, the sensitivity of 
GL2-regularized BN with λmin is 1.08% higher. We also investigate the sensitivity and specificity using only 
PC-PTSD-5 with a cutoff of three. The PC-PTSD-5 test provides a sensitivity of 0.4599 and a specificity of 0.9243. 
Suppose VA wants to maintain the same level of specificity. In that case, the optimal cutoff for our proposed 
GL2-regularized BN is 0.4154, which results in a sensitivity of 0.4971 and a specificity of 0.9247. This indicates a 
3.72% increase in screening sensitivity compared with the PC-PTSD-5 test. As the number of new VA enrollees is 
at least around 160,000 each year (FY 2017), this translates to 1374 more successfully detected PTSD veterans per 
year.9 Also, GL2-regularized BN’s sensitivity is 0.13% higher than that for BIC score-based BN, which translates 
to almost 50 more successfully detected PTSD veterans per year.10 Accordingly, our proposed GL2-regularized 
BN consistently performs better in these metrics. A 0.13% (almost 50 veterans per year) difference does not 
appear significant, but it is a noticeable improvement over a long period.

6.2. Feature Importance
One disadvantage of the model with λmin is that it lacks interpretability given such a complicated network struc
ture. To provide a better interpretation of how each of these variables affects the risk of PTSD, we also report the 
BN model with λ1se � 0:002, which is the largest λ value with its MSE � 0.1271 within one standard error of λmin. 
The main idea of this “one-standard-error” rule is to choose the simplest model whose accuracy is comparable 
with the best one. The model structure for λ1se is shown in Figure 4(b), which is much sparser than that for λmin. 

Figure 4. Structure of the GL2-Regularized BN Model at (a) λmin � 0:00005 and (b) λ1se � 0:002 

Table 3. Summary of Results

BNGL2�λmin BNGL2�λ1se BNBIC NB

MSE 0.1263 0.1268 0.1265 0.1337
FNspec�0:8 0.2961 (0.2000) 0.2994 (0.1988) 0.3069 (0.1922) 0.3121 (0.1911)
FNspec�pc5 0.5029 (0.0753) 0.5041 (0.0757) 0.5042 (0.0756) 0.5381 (0.0664)

Note. The corresponding FP for FNspec�0:8 and FNspec�pc5 are in parentheses.
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Eleven variables, Age, AgentOrange, Combat, IonizingRadiation, MaritalStatus, MilitarySexualTrauma, Race, ServiceCon
nected, SWAsiaConditions, TBI, and PC5, are still in the Markov boundary of PTSD. Besides, as shown in Table 3, the 
prediction performance of this model is comparable with GL2-regularized BN model with λ � λmin, and BIC score- 
based BN.

To better understand the usefulness of features in PTSD screening, we check the importance of each feature 
based on the GL2-regularized BN model with λ � λ1se. Precisely, we measure the importance of a feature as the 
increase in MSE when the feature values are removed from the test set. This provides a numerical measure of 
how much each variable contributes to predicting PTSD.

Typically, given a model, the importance of a feature is assessed by a random permutation of the feature 
values in the test set (Altmann et al. 2010). This is done because most machine learning methods cannot be used 
with missing feature values. Because BN models can, we propose a new approach to calculate a feature’s impor
tance by removing the feature column from the test set. This is cleaner than permuting the values of the feature, 
which may introduce noise in the prediction process. Earlier in the paper, we used multiple imputations to train 
a BN model with missing variables. In this section, we consider a missing variable for prediction purposes to test 
a feature’s importance. Although BN models can make predictions with missing values, prediction performance 
will suffer if missing an important feature.

Making exact inferences with BN is computationally inefficient, especially given such a large data set. Instead 
of evaluating the increase of MSE using the entire test set, we analyze it with random sampling. Specifically, we 
randomly sample 100 veterans from the test set with replacement, calculate the increase of MSE for each predic
tor assuming its value is missing, and repeat these two steps 500 times. The feature importance for the proposed 
GL2-regularized BN model with λ1se is shown in Figure 5. Unsurprisingly, PC-PTSD-5 has the highest feature 
importance among all 14 features. Also, ServiceConnectedFlag, CombatFlag, AgentOrangeFlag, MilitarySexualTrau
maFlag, TBI, and Age are all important features that help to predict PTSD. Following the same procedure, we 
evaluate the feature importance based on the BIC score-based BN. The results are presented in Figure 6. We get 
fairly consistent results between the GL2-regularized BN and the BIC score-based BN, especially providing the 
same seven important features. These results are consistent with what we got based on the Markov boundary 
analysis in Table 2.

6.3. Naïve Bayes Model
Finally, we construct a naïve Bayes (NB) model for predicting PTSD. NB is a probabilistic model that is based on 
the Bayes rule. It assumes that the features are mutually conditional independent given the class variable. In 
practice, because of its simplicity (small number of parameters), NB models predict well even when the assump
tion on which it is based is violated (Rish 2001). Additionally, NB exhibits considerable tolerance to missing data 
(Juhola and Laurikkala 2013).

In this study, we construct the NB model using the e1071 R-package (Meyer et al. 2019). According to the feature 
importance results for both GL2-regularized BN and the BIC score-based BN, some features do not contribute 

Figure 5. Feature Importance Box Plots Based on the GL2-Regularized BN Model with λ � λ1se 

Note. The features are sorted by decreasing values of the median.
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much to predicting PTSD. Adding those features may bias the model estimation and make the resulting model pre
dict poorly. Accordingly, we construct the NB model with seven important features specified in our feature impor
tance analysis.11 Like the BIC score-based method, the NB model parameters were estimated using Laplace 
correction. We report the prediction performance of the resulting NB model in Table 3. The NB model performs 
the worst among the four BN models. However, it still improves the screening sensitivity of the currently used PC- 
PTSD-5 test by 0.2% and the specificity by 0.9%.

7. Summary and Conclusion
In this paper, we propose a BIC score-based BN, a GL2-regularized BN using a new method based on group 
LASSO and a naïve Bayes BN. We build the GL2-regularized BN to address four challenges: probabilistic classifi
cation, missing data, highly skewed features, and an extensive search space of network structure.

In our GL2-regularized BN model, the conditional probability distribution of each node is defined using multi
nomial logistic regression. We use the group LASSO penalty, which yields a sparse model, making the model 
estimation more stable with missing data and highly skewed features. An ordering-based search algorithm with 
strong causality-based clinical knowledge is adopted to search for the network structure. As a result, our pro
posed GL2-regularized BN-based model is highly competitive with the BIC score-based BN in predicting veter
ans’ likelihood of suffering from PTSD. The GL2-regularized BN and the BIC score-based BN predict better than 
naïve Bayes BN. One advantage of the GL2-regularized BN over the BIC score-based BN is that the construction 
process yields some information about the relative importance of the features in predicting PTSD. We conjecture 
that our new method can also be used in other domains, but this is not the focus of our study. The task of explor
ing the strengths and weaknesses of the GL2-regularized BN construction method in general domains remains to 
be done.

With the primary goal of predicting PTSD, the proposed BNs are generative models that estimate the joint dis
tribution of all the observed variables. This joint distribution can then be used to estimate the probability of 
PTSD given the values of other variables. The advantages of this approach are it can easily make predictions if 
some variables are missing and provide a graph of the relationship between all variables. An alternative 
approach would be to directly model the conditional distribution of PTSD given the variables using a parametric 
method, such as (regularized) logistic regression or random forest. One challenge for these models is how to pre
dict with missing data. Deriving a discriminative model that correctly addresses some of the difficulties in this 
data set, such as making predictions with missing values, would be an exciting extension of this work.

Our study contributes to the Veterans Health Administration in two ways. First, our proposed models could 
serve as a screening tool for identifying veterans with probable PTSD. Specifically, they improve the screening 
efficiency of an existing PTSD screening test, PC-PTSD-5, by incorporating veterans’ demographic information, 
military service records, and comorbidity (TBI) diagnostic history. Second, we investigate how much the pro
posed models rely on each feature by considering the estimated feature importance. Feature importance provides 
a numerical measure of how informative each part is in diagnosing PTSD. The important features for predicting 

Figure 6. Feature Importance Box Plots Based on the BIC Score-Based BN Model 

Note. The features are sorted by decreasing values of the median.
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PTSD are (in decreasing order of importance): PC-PTSD-5, service-connected flag, combat flag, agent orange flag, 
military sexual trauma flag, traumatic brain injury, and age.
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Endnotes
1 A more thorough review of the literature about the latest research of PTSD using machine learning techniques is provided in Online Appen
dix A.
2 The Markov boundary of a variable in a BN consists of its parents, its children, and other parents of its children. Given values of all vari
ables in the Markov boundary of a variable, all other variables are irrelevant for the variable.
3 A graphical description of conventional PTSD diagnostic and treatment referral process for a VA hospital is provided in Online Appendix 
B.
4 A primer on BNs and causal models is given in Online Appendix C.
5 A traditional rule of thumb is that 3 to 10 imputations typically suffice (Rubin 1987).
6 Tabu list refers to the set of solutions that have been visited in the recent past.
7 A graphical display of MSE score for the proposed GL2-regularized BN model with prespecified sequence values of penalty parameter λ is 
provided in Online Appendix E.
8 As our data are categorical, the change of sensitivity/specificity for the cutoff value of PTSD probability is not continuous. As a result, the 
real specificity of our model can be higher than 0.8.
9 The increase of successfully detected PTSD veterans per year is calculated as 160,000 × 23.09% × 3.72% � 1,374. In our sample, the propor
tion of PTSD-diagnosed veterans is 23.09%.
10 The difference of successfully detected PTSD veterans per year between GL2-regularized BN and BIC score-based BN is calculated as 
160,000 × 23.09% × 0.13% �48.
11 In unreported results, we experiment by constructing the NB model with all 14 predictors. The prediction performance gets significantly 
worse concerning all three metrics.
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