
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS
2020, VOL. 49, NO. 1, 112–141
https://doi.org/10.1080/03081079.2019.1658756

An expectation operator for belief functions in
the Dempster–Shafer theory∗

Prakash P. Shenoy

School of Business, University of Kansas, Lawrence, KS, USA

ABSTRACT
The main contribution of this paper is a new definition of expected
value of belief functions in the Dempster–Shafer (D–S) theory of
evidence. Our definition shares many of the properties of the
expectation operator in probability theory. Also, for Bayesian belief
functions, our definition provides the same expected value as the
probabilistic expectation operator. A traditional method of comput-
ing expected of real-valued functions is to first transform aD–S belief
function to a corresponding probability mass function, and then
use the expectation operator for probability mass functions. Trans-
forming a belief function to a probability function involves loss of
information. Our expectation operator works directly with D–S belief
functions. Another definition is using Choquet integration, which
assumes belief functions are credal sets, i.e. convex sets of proba-
bility mass functions. Credal sets semantics are incompatible with
Dempster’s combination rule, the center-piece of the D–S theory. In
general, our definition provides different expected values than, e.g.
if we use probabilistic expectation using the pignistic transform or
the plausibility transform of a belief function. Using our definition
of expectation, we provide new definitions of variance, covariance,
correlation, and other highermoments anddescribe their properties.
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1. Introduction

The main goal of this paper is to propose an expectation operator for belief functions in
the D–S theory of belief functions (Dempster 1967; Shafer 1976). The D–S theory of belief
functions consists of representation of knowledge and evidence, and two operators for
making inferences from the representations. Representations consist of basic probability
assignments, belief functions, plausibility functions, commonality functions, credal sets of
probability mass functions, etc. The two main operators are Dempster’s combination rule
for aggregating distinct knowledge and a marginalization rule for coarsening knowledge.

There are other theories of belief functions that use the same representations. For exam-
ple, in the imprecise probability community, a belief function is regarded as a lower bound
of a convex set of probability mass functions (PMFs) called a credal set. When we observe
an event, the PMFs in the credal set are all conditioned on the observed event, and the lower
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bound of the updated PMFs again forms a belief function. Such an updating rule, called the
Fagin–Halpern combination rule (Fagin and Halpern 1991), is different from Dempster’s
combination rule. In this paper, we are concerned only with the D–S theory of belief func-
tions and not with the various other theories that use belief functions. Although a credal set
representation of a belief function is mathematically equivalent to other representations,
credal set semantics of belief functions are incompatible with Dempster’s combination rule
(Shafer 1981, 1990, 1992; Halpern and Fagin 1992), the center-piece of the D–S theory.

In probability theory, for discrete real-valued random variables characterized by a prob-
ability mass function (PMF), the expected value ofX can be regarded as a weighted average
of the states of X where the weights are the probabilities associated with the values. Our
definition is similar. As we have probabilities associated with subsets of states, first we
define the value of a subset as the weighted average of the states of the subset where the
weights are the commonality values of the singleton states. Then the expected value of X
is defined to be the weighted average of the values of the subsets where the weights are the
commonality values of the subsets.

A traditional method of computing expectation of real-valued functions is to first
transform a D–S belief function to a corresponding PMF, and then use the expectation
operator for PMFs. Transforming a belief function to a probability function involves loss
of information. Our expectation operator works directly with D–S belief functions.

In the decision-making with sets of probability distributions literature, there is a
definition of expectation of a real-valued utility function called the Choquet integral
(Choquet 1953; Gilboa and Schmeidler 1994). The Choquet integral consists of using the
smallest value of a real-valued function over a subset as the value of the subset, and the
expected value of the real-valued function is defined as theweighted average of the values of
the subsets where the weights are the basic probability assignment values. Our definition of
the expectation operator is different from the Choquet integral and is specifically designed
for the D–S theory of belief functions. We believe that the Choquet integral is appropriate
for the other theories of belief functions, and not for the D–S belief function theory.

In general, our definition provides different expected values than, e.g. if we use the pig-
nistic transform or the plausibility transform, or if we use the Choquet integral. We use the
expectation operator to define variance, covariance, correlation, and other highermoments
and describe their properties. Most of the properties of these moments in probability
theory are also satisfied by our definitions.

Our definition of expectation ismotivated by a recent definition of entropy of D–S belief
functions in Jiroušek and Shenoy (2018c). If we define I(a) = log2(1/QmX (a)) as the infor-
mation content of observing subset a ∈ 2�X whose uncertainty is described by mX , then
similar to Shannon’s definition of entropy of PMFs (Shannon 1948), we can define entropy
of BPAmX for X as an expected value of the function I(X), i.e.H(mX) = EmX (I(X)). This
is what is proposed in Jiroušek and Shenoy (2018b, 2018c). This definition of entropy
has many nice properties. In particular, it satisfies the compound distributions prop-
erty: H(mX ⊕ mY|X) = H(mX) + H(mY|X), where mY|X is a BPA for (X,Y) obtained by
⊕{mx,Y : x ∈ �X},mx,Y is a BPA for (X,Y) obtained by conditional embedding of condi-
tional BPAmY|x for Y given X= x, and ⊕ is Dempster’s combination rule. The compound
distribution property of Shannon’s entropy of a PMF is one of the most important prop-
erties that characterizes Shannon’s definition (Shannon 1948). The definition of entropy
of belief functions in Jiroušek and Shenoy (2018b, 2018c) is the only one of the many
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definitions proposed in the literature (see (Jiroušek and Shenoy 2018a) for a review) that
satisfies the compound distributions property.

Our definition of expectation is using the commonality function representation of a
belief function, which does not have easy semantics. Thus, we are unable to provide an intu-
itive justification of our definition. This is compensated for by showing that our definition
satisfies many of the properties satisfied by the definition of expectation in probability
theory, and the proofs of these properties are all simple and straightforward.

An outline of the remainder of the paper is as follows. In Section 2, we review the rep-
resentations and operations of the D–S theory of belief functions. In Section 3, we provide
our definition of the expected value of a real-valued random variable characterized by a
commonality function. For a symbolic-valued randomvariableX, assumingwe have a real-
valued function gX from the set of all non-empty subsets of the states ofX, we also provide a
definition of the expected value of gX . Also, we show that our definition of expected value
shares many of the properties of the probabilistic expected value, and we compare our
definition with the probabilistic expectation using pignistic and plausibility transforms.
Also, we compare our definition of expected value with the Choquet integral definition. In
Section 4, we provide a new definition of variance and describe its properties. In Section 5,
we provide a new definition of covariance and correlation and describe their properties. In
Section 6, we provide a new definition of higher moments about the mean and about the
origin and describe their relationship. Finally, in Section 7, we summarize and conclude.

2. Basic definitions in the D–S belief functions theory

In this section, we review the basic definitions in the D–S belief functions theory. Like the
various uncertainty theories, D–S belief functions theory includes functional representa-
tions of uncertain knowledge, and operations for making inferences from such knowledge.
Most of this material is taken from Jiroušek and Shenoy (2018b).

2.1. Representations of belief functions

Belief functions can be represented in five different ways: basic probability assignments,
plausibility functions, belief functions, commonality functions, and credal sets. These are
briefly discussed below.

Definition 2.1 (Basic Probability Assignment): Suppose X is a random variable with
state space �X . Let 2�X denote the set of all non-empty subsets of �X . A basic probability
assignment (BPA)mX for X is a functionmX : 2�X → [0, 1] such that

∑
a∈2�X

mX(a) = 1.

The non-empty subsets a ∈ 2�X such that mX(a) > 0 are called focal elements of mX .
An example of a BPA for X is the vacuous BPA for X, denoted by ιX , such that ιX(�X) = 1.
We say mX is deterministic if mX has a single focal element (with probability 1). Thus,
the vacuous BPA for X is deterministic with focal element �X . We say mX is consonant if
the focal elements ofm are nested, i.e. if F1 ⊂ F2 ⊂ . . . ⊂ Fm, where {F1, . . . , Fm} denotes



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 115

the set of all focal elements of mX . Deterministic BPAs are trivially consonant. We say a
BPA is quasi-consonant if the intersection of all focal elements is non-empty. Consonant
BPA are quasi-consonant, but not vice-versa. Thus, a BPA with focal elements {x1, x2} and
{x1, x3} is quasi-consonant, but not consonant. If all focal elements of mX are singleton
subsets of �X , then we saym is Bayesian. In this case,mX is equivalent to the PMF PX for
X such that PX(x) = mX({x}) for each x ∈ �X .

Definition 2.2 (Plausibility Function): The information in a BPAmX can be represented
by a corresponding plausibility function PlmX that is defined as follows:

PlmX (a) =
∑

b∈2�X :b∩a�=∅
mX(b) for all a ∈ 2�X .

For an example, suppose�X = {x, x̄}. Then, the plausibility functionPlιX corresponding
to BPA ιX is given by PlιX ({x}) = 1, PlιX ({x̄}) = 1, and PlιX (�X) = 1.

Definition 2.3 (Belief Function): The information in a BPAm can also be represented by
a corresponding belief function BelmX that is defined as follows:

BelmX (a) =
∑

b∈2�X :b⊆a

mX(b) for all a ∈ 2�X .

For the example above with�X = {x, x̄}, the belief function BelιX corresponding to BPA
ιX is given by BelιX ({x}) = 0, BelιX ({x̄}) = 0, and BelιX (�X) = 1.

Definition 2.4 (Commonality Function): The information in a BPA mX can also be
represented by a corresponding commonality function QmX that is defined as follows:

QmX (a) =
∑

b∈2�X :b⊇a

mX(b) for all a ∈ 2�X .

For the example above with �X = {x, x̄}, the commonality functionQιX corresponding
to BPA ιX is given by QιX ({x}) = 1, QιX ({x̄}) = 1, and QιX (�X) = 1. If mX is a Bayesian
BPA for X, then QmX is such that QmX (a) = mX(a) if |a| = 1, and Qm(a) = 0 if |a| > 1.
Notice also that for singleton subsets a ∈ 2�X (|a| = 1),QmX (a) = PlmX (a). This is because
for singleton subsets a, the set of all subsets that have non-empty intersection with a coin-
cide with the set of all supersets of a. QmX is a non-increasing function in the sense that if
b ⊆ a, then QmX (b) ≥ QmX (a). Finally, QmX is a normalized function in the sense that:

∑
a∈2�X

(−1)|a|+1QmX (a) =
∑

a∈2�X

(−1)|a|+1

⎛
⎝ ∑

b∈2�X :b⊇a

mX(b)

⎞
⎠

=
∑

b∈2�X

mX(b)

⎛
⎝ ∑

a∈2�X : a⊆b

(−1)|a|+1

⎞
⎠

=
∑

b∈2�X

mX(b) = 1.

Finally, we will define a credal set representation of a belief function.
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Definition 2.5 (Credal Set): SupposemX is a BPA for X. LetP denote the set of all PMFs
for X. Then, the credal set CmX corresponding to BPAmX for X is defined as follows:

CmX =
⎧⎨
⎩P ∈ P :

∑
x∈a

P(x) ≥ BelmX (a) =
∑
b⊆a

m(b) for all a ∈ 2�X

⎫⎬
⎭

CmX is a convex set, i.e. if P,P′ ∈ CmX , then λP + (1 − λ)P′ ∈ CmX for all λ ∈ [0, 1].
If mX = ιX , then CιX = P . If mX is Bayesian, then CmX = {PX}, where PX is the PMF
corresponding to Bayesian BPAmX .

All five representations – BPA, plausibility, belief, commonality, and credal set – have
exactly the same information. Given any one, we can transform it to another (Shafer 1976).
For example, given a commonality function QmX , we can recovermX from QmX as follows
Shafer (1976):

mX(a) =
∑

b∈2�X :b⊇a

(−1)|b\a|QmX (b)

However, they have different semantics. Most importantly, credal set seman-
tics are incompatible with Dempster’s combination rule (to be described next)
(Shafer 1981, 1990, 1992; Halpern and Fagin 1992).

2.2. Basic operations in the D–S theory

There are two main operations in the D–S theory – Dempster’s combination rule and
marginalization.

Dempster’s Combination Rule In the D–S theory, we can combine two BPAsm1 andm2
representing distinct pieces of evidence byDempster’s rule (Dempster 1967) and obtain the
BPAm1 ⊕ m2, which represents the combined evidence. Dempster referred to this rule as
the product-intersection rule, as the product of the BPA values are assigned to the intersec-
tion of the focal elements, followed by normalization. Normalization consists of discarding
the probability assigned to ∅, and normalizing the remaining values so that they add to 1.
In general, Dempster’s rule of combination can be used to combine two BPAs for arbitrary
sets of variables.

Let X denote a finite set of variables. The state space of X is ×X∈X�X . Thus, if X =
{X,Y} then the state space of {X,Y} is �X × �Y .

Projection of states simply means dropping extra coordinates; for example, if (x, y) is a
state of {X,Y}, then the projection of (x, y) to X, denoted by (x, y)↓X , is simply x, which is
a state of X.

Projection of subsets of states is achieved by projecting every state in the subset. Suppose
b ∈ 2�{X,Y} . Then b↓X = {x ∈ �X : (x, y) ∈ b}. Notice that b↓X ∈ 2�X .

Vacuous extension of a subset of states ofX1 to a subset of states ofX2, whereX2 ⊇ X1,
is a cylinder set extension, i.e. if a ∈ 2X1 , then a↑X2 = a × �X2\X1 . Thus, if a ∈ 2�X , then
a↑{X,Y} = a × �Y .
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Definition 2.6 (Dempster’s rule using BPAs): Suppose m1 and m2 are BPAs for X1 and
X2, respectively. Thenm1 ⊕ m2 is a BPA for X1 ∪ X2 = X , say, given by

(m1 ⊕ m2)(a) = K−1
∑

b1,b2∈2�X :b1∩b2=a

m1(b
↓X1
1 )m2(b

↓X2
2 ),

for all a ∈ 2�X , where K is a normalization constant given by

K = 1 −
∑

b1,b2∈2�X :b1∩b2=∅
m1(b

↓X1
1 )m2(b

↓X2
2 ). (1)

The definition of Dempster’s rule assumes that the normalization constant K is non-
zero. If K = 0, then the two BPAs m1 and m2 are said to be in total conflict and cannot be
combined. If K = 1, we saym1 andm2 are non-conflicting.

Dempster’s rule can also be defined in terms of commonality functions (Shafer 1976).

Definition 2.7 (Dempster’s rule using commonality functions): Suppose Qm1 and Qm2

are commonality functions corresponding to BPAsm1 andm2, respectively. The common-
ality function Qm1⊕m2 corresponding to BPAm1 ⊕ m2 is as follows:

Qm1⊕m2(a) = K−1Qm1(a
↓X1)Qm2(a

↓X2),

for all a ∈ 2�X , where the normalization constant K is as follows:

K =
∑

a∈2�X

(−1)|a|+1Qm1(a
↓X1)Qm2(a

↓X2). (2)

It is shown in Shafer (1976) that the normalization constant K in Equation (2) is
exactly the same as in Equation (1). In terms of commonality functions, Dempster’s rule is
pointwise multiplication of commonality functions followed by normalization.

MarginalizationMarginalization in D–S theory is addition of values of BPAs.

Definition 2.8 (Marginalization): Supposem is a BPA forX . Then, the marginal ofm for
X1, where X1 ⊂ X , denoted bym↓X1 , is a BPA for X1 such that for each a ∈ 2�X1 ,

m↓X1(a) =
∑

b∈2�X :b↓X1= a

m(b).

Marginalization can also be described using commonality functions. Suppose m is a
BPA for X , and suppose X1 ⊂ X . Then, for all a ∈ 2�X1 ,

Qm↓X1 (a) =
∑

b∈2�X :b↓X1=a

(−1)(|b|−|a|) Qm(b).
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2.3. Conditional belief functions

In probability theory, it is common to construct joint probability mass functions for a set
of discrete variables by using conditional probability distributions. For example, we can
construct joint PMF for (X,Y) by first assessing PMF PX of X, and conditional PMFs PY|x
for each x ∈ �X such that PX(x) > 0. The pointwisemultiplication of PY|x for all x ∈ �X is
called a CPT, and denoted by PY|X . Then, PX,Y = PX ⊗ PY|X . We can construct joint BPA
for {X,Y} in a similar manner.

Consider a BPA mX for X such that mX({x}) > 0. Suppose that there is a BPA for Y
expressing our belief about Y if we know that X = x, and denote it by mY|x. Notice that
mY|x : 2�Y → [0, 1] is such that

∑
b∈2�Y mY|x(b) = 1.We can embed this conditional BPA

for Y into a conditional BPA for {X,Y}, which is denoted bymx,Y , such that the following
two conditions hold. First,mx,Y tells us nothing about X, i.e.m↓X

x,Y(�X) = 1. Second, if we
combine mx,Y with the deterministic BPA mX=x for X such mX=x({x}) = 1 using Demp-
ster’s rule, and marginalize the result to Y we obtain mY|x, i.e. (mx,Y ⊕ mX=x)

↓Y = mY|x.
One way to obtain such an embedding is suggested by Smets (1978) (see also Shafer 1982),
called conditional embedding, and it consists of taking each focal element b ∈ 2�Y ofmY|x,
and converting it to a corresponding focal element of mx,Y (with the same mass) as fol-
lows: ({x} × b) ∪ ((�X \ {x}) × �Y). It is easy to confirm that this method of embedding
satisfies the two conditions mentioned above.

Example 2.1 (Conditional embedding): Consider discrete variables X and Y, with�X =
{x, x̄} and �Y = {y, ȳ}. Suppose thatmX is a BPA for X such thatmX(x) > 0 andmX(x̄) >

0. If we have a conditional BPAmY|x for Y given X = x as follows:

mY|x(y) = 0.8, and

mY|x(�Y) = 0.2,

then its conditional embedding into BPAmx,Y for {X,Y} is as follows:

mx,Y({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8, and

mx,Y(�{X,Y}) = 0.2.

Similarly, if we have a conditional BPAmY|x̄ for Y given X = x̄ as follows:

mY|x̄(ȳ) = 0.3, and

mY|x̄(�Y) = 0.7,

then its conditional embedding into BPAmx̄,Y for {X,Y} is as follows:

mx̄,Y({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.3, and

mx̄,Y(�{X,Y}) = 0.7.

Assuming we have these two conditional BPAs, and their corresponding embeddings, it is
clear that the two BPA mx,Y and mx̄,Y are distinct and can be combined with Dempster’s
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rule of combination, resulting in the conditional BPA mY|X = mx,Y ⊕ mx̄,Y for {X,Y} as
follows:

mY|X({(x, y), (x̄, ȳ)}) = 0.24,

mY|X({(x, y), (x̄, y), (x̄, ȳ)}) = 0.56,

mY|X({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.06, and

mY|X(�{X,Y}) = 0.14.

mY|X is the belief function equivalent to CPT PY|X in probability theory. �

This completes our brief review of the D–S belief function theory. For further details,
the reader is referred to Shafer (1976).

3. Expected value of D–S belief functions

In this section, we provide a new definition of expected value of belief functions in the D–S
theory, and describe its properties.

In probability theory, the expected value of a PMF can be interpreted as a “central ten-
dency”, for example as a center of gravity if the probabilitymasses are interpreted asweights
on locations on the real line. It is neither a pessimistic value nor an optimistic value. Our
goal is to define expectation of BPA functions that has the semantics of central tendency.

As in the probabilistic case, we will assume that �X is a finite set of real numbers. In a
PMF, we have probabilities assigned to each state x ∈ �X . In a BPAmX for X and its equiv-
alent representations, we have probabilities assigned to subsets of states a ∈ 2�X . Before
we define expectation of X with respect to BPA mX , we will define a real-valued value
function vmX : 2�X → R for all subsets in 2�X . If a = {x} is a singleton subset, then it is
natural to assume vm({x}) = x. Remember that the elements of �X are real numbers. For
non-singleton subsets a ∈ 2�X , it makes sense to define vmX (a) such that the following
inequality holds:

min a ≤ vmX (a) ≤ max a. (3)

One way to satisfy the inequality in Equation (3) is to define vmX as follows:

vmX (a) =
∑

x∈a x · QmX ({x})∑
x∈a QmX ({x}) , for all a ∈ 2�X . (4)

In words, the value function vmX (a) is the weighted average of all x ∈ a, where the weights
are the commonality numbers QmX ({x}), which are also the plausibility values PlmX ({x}).
The rationale for this definition is similar to the rationale for the plausibility transformation
of a BPA to a corresponding probability distribution (Cobb and Shenoy 2006), namely the
plausibility transformation is the only transformation that is consistent with Dempster’s
rule in the following sense. Supposem is a BPA forX, supposeQm denotes the commonality
function corresponding to BPA m, and suppose PPlm denotes a probability mass function
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for X obtained from BPAm as follows:

PPlm(x) = Qm({x})∑
y∈�X

Qm({y})

Then, PPlm is the only probability transformation ofm that satisfies the following property:
Supposem1 andm2 are two distinct BPA functions for X. Then,

PPlm1⊕m2
= PPlm1

⊗ PPlm2
.

Here, ⊗ denotes the combination rule for probability mass functions, namely pointwise
multiplication followed by normalization.

3.1. Definition of expected value

Definition 3.1 (Expected Value ofX): SupposemX is a BPA for X with a real-valued state
space�X , and supposeQmX denotes the commonality function corresponding tomX . Then
the expected value of X with respect tomX , denoted by EmX (X), is defined as follows:

EmX (X) =
∑

a∈2�X

(−1)|a|+1vmX (a)QmX (a), (5)

where vmX (a) is as defined in Equation (4).

Example 3.1 (Vacuous BPA): Suppose �X = {1, 2, 3}, and suppose the uncertainty of
X is described by the vacuous BPA ιX for X. The commonality function QιX is identi-
cally 1 for all a ∈ 2�X . vιX (a) = (

∑{x : x ∈ a})/|a|, where |a| denotes cardinality of a (see
Table 1, empty cells in column 2 have 0 values). Thus, EιX (X) = 2. EιX (X) coincides with
the expected value of the pignistic and plausibility transforms.

Example 3.2 (Consonant BPA): Suppose �X = {1, 2, 3}, and suppose the uncertainty of
X is described by a consonant BPAmX as shown in Table 2 (empty cells in column 2 have
0 values). For this example, EmX (X) = 2.317, which is different from the expected value of
the pignistic transform: 2.495, and the expected value of the plausibility transform: 2.328.

Example 3.3 (Quasi-consonant BPA): Suppose �X = {1, 2, 3}, and suppose the uncer-
tainty of X is described by a quasi-consonant BPA mX as shown in Table 3 (empty cells in
columns 2–3 have 0 values). For this example, EmX (X) = 2.00, which is different from the

Table 1. Expected value of a vacuous BPA.

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) EBetPmX (X) EPlPmX
(X)

{1} 1 1 2 2 2
{2} 1 2
{3} 1 3
{1, 2} 1 1.5
{1, 3} 1 2
{2, 3} 1 2.5
{1, 2, 3} 1 1 2
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Table 2. Expected value of a consonant BPA.

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) EBetPmX (X) EPlPmX
(X)

{1} 0.34 1.00 2.317 2.495 2.328
{2} 0.67 2.00
{3} 0.33 1.00 3.00
{1, 2} 0.34 1.66
{1, 3} 0.34 2.49
{2, 3} 0.33 0.67 2.60
{1, 2, 3} 0.34 0.34 2.33

Table 3. Expected value of a quasi-consonant BPA.

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) EBetPmX (X) EPlPmX
(X)

{1} 1.0 1.00 2.00 1.75 1.75
{2} 0.5 2.00
{3} 0.5 3.00
{1, 2} 0.5 0.5 1.33
{1, 3} 0.5 0.5 1.67
{2, 3} 2.50
{1, 2, 3} 1.75

Table 4. Expected value of a general BPA.

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) EBetPmX (X) EPlPmX
(X)

{1} 0.5 0.5 1.00 1.75 1.75 2.00
{2} 0.5 2.00
{3} 0.5 3.00
{1, 2} 1.50
{1, 3} 2.00
{2, 3} 0.5 0.50 2.50
{1, 2, 3} 2.00

expected value of the pignistic transform: 1.75, and the expected value of the plausibility
transform: 1.75.

Example 3.4 (General BPA): Suppose �X = {1, 2, 3}, and suppose the uncertainty of X
is described by a BPA mX as shown in Table 4 (empty cells in columns 2–3 have 0 val-
ues). For this example, EmX (X) = 1.75, which is same as the expected value of the pignistic
transform: 1.75, but different from the expected value of the plausibility transform: 2.00.

3.2. Definition of expected value of real-valued functions

Definition 3.2 (Expected value of a real-valued function of real-valued variable X):
Suppose QmX is a commonality function for X corresponding to BPA mX for X, and
gX : R → R is a well-defined real-valued function of X, then we define expected value of
gX with respect tomX , denoted by EmX (gX) as follows:

EmX (gX) =
∑

a∈2�X

(−1)|a|+1 gX(vmX (a))QmX (a)
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The variable X in Definition 3.2 is assumed to have a real-valued frame �X . If �X consists
of categorical values, it suffices to have a real-valued function gX : 2�X → R, and we define
EmX (gX) as follows:

Definition3.3 (Expected value of a real-valued functionof symbolic-valued variableX):
SupposeQmX is a commonality function forX corresponding toBPAmX forX, and suppose
gX : 2�X → R is a well-defined real-valued function of X. Then, we define expected value
of gX with respect tomX , denoted by EmX (gX) as follows:

EmX (gX) =
∑

a∈2�X

(−1)|a|+1 gX(a)QmX (a)

Suppose we have a real-valued function hX : �X → R, whose domain is�X (compared
to 2�X in gX in Definition 3.3). Suppose our uncertainty ofX is defined by BPAmX .What is
the expected value of hX , EmX (hX)? Jiroušek and Kratochvíl (2018) suggest first extending
hX to ĥX : 2�X → R as follows:

ĥX(a) =
∑

x∈a hX(x)QmX ({x})∑
x∈a QmX ({x})

Notice that ĥX(a) satisfies minx∈a h(x) ≤ ĥX(a) ≤ maxx∈a h(x). Then, we can define
EmX (hX) = EmX (ĥX), where EmX (ĥX) is defined as in Definition 3.3, i.e.

EmX (hX) =
∑

a∈2�X

(−1)|a|+1 ĥX(a)QmX (a)

At this stage, it may be useful to define Choquet integral of a real-valued function that
has been used to describe a decision-making theory for lotteries that are described by belief
functions interpreted as credal sets of PMFs (Gilboa and Schmeidler 1989).

Definition 3.4: Suppose we have a real-valued function h : �X → R. The Choquet inte-
gral of hwith respect to BPAmX is defined as follows. First we extend h to hmin : 2�X → R

as follows:

hmin(a) = min
x∈a h(x) (6)

Then, we can define the Choquet integral of h with respect to BPA mX for X, denoted by
Emin
mX (h), as follows:

Emin
mX (h) =

∑
a∈2�

X

hmin(a)mX(a) (7)

It has been shown (see e.g. Gilboa and Schmeidler 1994) that:

Emin
mX (h) = min

P∈CmX

∑
x∈�X

h(x)P(x).

If we regard hX as a utility function for the states of X, then Equation (6) represents a pes-
simistic or ambiguity-averse attitude. Also, the definition of Emin

mX (hX) in Equation (7) is
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appropriate for belief functions interpreted as credal sets of PMFs, which are not compat-
ible with Dempster’s combination rule. For a vacuous belief function on �X = {1, 2, 3},
the Choquet integral Emin

mX (X) = 1, the smallest value in�X = {1, 2, 3}. Thus, the Choquet
integral is inconsistent with the central tendency semantics of probabilistic expectation.

Definition 3.2 can be generalized to a multivariate function.

Definition 3.5 (Expected value of a real-valued function of X and Y): Suppose QmX,Y

is a commonality function corresponding to BPA mX,Y for (X,Y), suppose mX and mY
are marginals ofmX,Y for X and Y, respectively, and suppose gX,Y : R × R → R is a well-
defined real-valued function ofX andY. Thenwe define expected value of gX,Y with respect
tomX,Y , denoted by EmX,Y (gX,Y) as follows:

EmX,Y (gX,Y) =
∑

a∈2�X,Y

(−1)|a|+1 gX,Y(vmX (a↓X), vmY (a↓Y))QmX,Y (a)

Similarly, we can extend Definition 3.3 to multivariate functions. We skip the details.

3.3. Properties of expected value

Some important properties of our definition in Equation (5) are as follows. Consider the
situation in Definition 3.1.

(1) (Consistency with probabilistic expectation) IfmX is a Bayesian BPA forX, and PX is the
PMF forX corresponding tomX , i.e. PX(x) = mX({x}) for all x ∈ �X , then EmX (X) =
EPX (X).

Proof: As mX is Bayesian, QmX (a) = mX(a) if |a| = 1, and QmX (a) = 0 if |a| > 1. Also,
vmX ({x}) = x. Thus, EmX (X) in Equation (5) reduces to probabilistic expectation. �

(2) (Expected value of a constant) If X is a constant, i.e. mX({a}) = 1, where a is a real
constant, then EmX (X) = a.

Proof: Notice that in this case,m is Bayesian, and as this property holds for the probabilis-
tic case, it also holds for theD–S theory from the consistencywith probabilistic expectation
property. �

(3) (Expected value of a linear function of X) Suppose Y = gX = aX + b, then EmY (Y)

can be computed as follows:

EmY (Y) = EmX (gX) = a EmX (X) + b. (8)

In probability theory, this property is valid for any well-defined function of X. Our
definition does not satisfy this property for any well-defined function (see Exam-
ples 3.5 and 3.6 that follow), but it is satisfied only for a linear function of X. This
property allows us to compute the expected value of Y = gX without first computing
its commonality function.
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Proof: Suppose a=0, then the result follows from the expected value of a constant prop-
erty. Suppose a �= 0. In this case, gX is a 1-1 function. Therefore, �Y = {gX(x) : x ∈ �X}.
Thus, the values of the commonality functionQmY forY are the same as the corresponding
values of the commonality function Qm for X, i.e. QmY (aY) = QmX (a), where aY ∈ 2�Y is
the subset that corresponds to subset a of �X , i.e. aY = {gX(x) : x ∈ a}. It suffices to show
that vmY (aY) = g(vm(a)) for all a ∈ 2�X . Suppose Y = gX = aX + b.

vmY (aY) =
∑

y∈aY y · QmY ({y})∑
y∈aY QmY ({y})

=
∑

x∈a(ax + b) · QmX ({x})∑
x∈a QmX ({x})

= a
∑

x∈a x · QmX ({x})∑
x∈a QmX ({x}) + b

= avmX (a) + b

= gX(vm(a)).

Thus, EmY (Y) = EmX (gX). Next, using Definition 3.2,

EmX (gX) =
∑

a∈2�X

(−1)|a|+1(avmX (a) + b)QmX (a)

= a
∑

a∈2�X

(−1)|a|+1vmX (a)QmX (a)

+ b
∑

a∈2�X

(−1)|a|+1QmX (a)

= a EmX (X) + b.

�

(4) (Expected value of a function of X and Y ) The law of the unconscious statisti-
cian does not generalize to the multidimensional case, even for linear functions.
Suppose X and Y are discrete random variables with state spaces �X and �Y , respec-
tively, with joint BPA mX,Y for (X,Y), whose marginals for X and Y are mX and
mY , respectively. If Z = gX,Y : R × R → R is a linear function of (X,Y), then, in
general,

EmZ(Z) �= EmX,Y (gX,Y),

where EmX,Y (gX,Y) is as defined in Definition 3.5. A counter-example is given in
Example 3.8.

(5) (Expected value of a linear function of X and Y ) If gX,Y = aX + b Y + c, where a, b,
and c are real constants, andmX,Y is a joint BPA for (X,Y), then

EmX,Y (gX,Y) = a EmX (X) + b EmY (Y) + c
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Proof: By Definition 3.5,

EmX,Y (gX,Y) =
∑

a∈2�X,Y

(−1)|a|+1
(
a vmX (a↓X) + b vmY (a↓Y) + c

)
QmX,Y (a)

= a
∑

a∈2�X,Y

(−1)|a|+1vmX (a↓X)QmX,Y (a)

+ b
∑

a∈2�X,Y

(−1)|a|+1vmY (a↓Y)QmX,Y (a) + c

= a
∑

aX∈2�X

(−1)|aX |+1 vmX (aX)
∑

b∈2�X,Y :b↓X=aX

(−1)b\aXQmX,Y (b)

+ b
∑

aY∈2�Y

(−1)|aY |+1 vmY (aY)
∑

b∈2�X,Y :b↓Y=aY

(−1)b\aYQmX,Y (b) + c

= a
∑

aX∈2�X

(−1)|aX |+1vmX (aX)QmX (aX)

+ b
∑

aY∈2�Y

(−1)|aY |+1vmY (aY)QmY (aY) + c

= a EmX (X) + b EmY (Y) + c

�

(6) (Bounds on expected value) min�X ≤ EmX (X) ≤ max�X .

Proof: Suppose |�X| = n. The expected value EmX (X) is a function of �X and mX . It
can be regarded as a function EmX (X) : Rn × [0, 1]2

n → R. From the expected value of
a linear function of X and Y property, it follows that EmX (X) is a convex function. Any
mX for X can be considered as a convex combination of {ma : a ∈ 2�X }, where ma is
a deterministic BPA for X such that ma(a) = 1, and where the weight associated with
ma is mX(a). Let xmin denote min�X and xmax denote max�X . Notice that if mX =
m{xmin}, then EmX (X) = xmin, and if mX = m{xmax}, then EmX (X) = xmax. For all other
ma, min�X ≤ Ema(X) ≤ max�X . From Jensen’s inequality (Rockafellar 1970), the result
follows. �

(7) (Expected value of a product of independent random variables) Suppose X and Y are
random variables with joint BPA mX,Y = mX ⊕ mY , where mX and mY are BPAs
for X and Y, respectively. SupposeW = gX,Y = X · Y . Then, EmX,Y (gX,Y) = EmX (X) ·
EmY (Y).

Proof: Notice that QmX,Y (a) = QmX (a↓X) · QmY (a↓Y) for all a ∈ 2�X,Y . Also, gX,Y
(vmX (a↓X), vmY (a↓Y)) = vmX (a↓X) · vmY (a↓Y) for all a ∈ 2�X,Y . Notice that for a given
aX ∈ 2�X and a given aY ∈ 2�Y ,

∑
a∈2�X,Y :a↓X=aX , a↓Y=aY

(−1)|a|+1 = (−1)|aX |+1
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(−1)|aY |+1. Thus,

EmX,Y (gX,Y) =
∑

a∈2�X,Y

(−1)|a|+1gX,Y(vmX (a↓X), vmY (a↓Y))QmX,Y (a)

=
∑

a∈2�X,Y

(−1)|a|+1
(
vmX (a↓X) · vmY (a↓Y)

) (
QmX (a↓X) · QmY (a↓Y)

)

=
⎛
⎝ ∑

aX∈2�X

vmX (aX)QmX (aX)

⎞
⎠

⎛
⎝ ∑

aY∈2�Y

vmY (aY)QmY (aY)

⎞
⎠

×
⎛
⎝ ∑

a∈2�X,Y :a↓X=aX , a↓Y=aY

(−1)|a|+1

⎞
⎠

=
⎛
⎝ ∑

a↓X∈2�X

(−1)|a
↓X |+1 vmX (a↓X)QmX (a↓X)

⎞
⎠

×
⎛
⎝ ∑

a↓Y∈2�Y

(−1)|a
↓Y |+1 vmY (a↓Y)QmY (a↓Y)

⎞
⎠

= EmX (X) · EmY (Y).

�

Example 3.5 (Non 1-1 function): Consider a real-valued variableXwith�X = {−1, 0, 1},
and supposemX is a BPA forX as shown in Table 5. Suppose Y = gX = X2. Notice that this
function is not 1-1. Then, �Y = {1, 0}, and mY is as shown in Table 5. For this example,
EmX (gX) = 1.188, and EmY (Y) = 0.576. Thus, Equation (8) does not hold. The Choquet
integral Emin

mX (g(X)) = 0.720, and Emin
mY (Y) = 0.30. Thus, Emin

mX (g(X)) �= Emin
mY (Y).

Example 3.6 (Nonlinear 1-1 function): Consider a real-valued variable X with �X =
{1, 2, 3}, and suppose mX is a BPA for X as shown in Table 6. Suppose Y = gX = log(X).
Then, �Y = {log(1), log(2), log(3)} ≈ {0, 0.30, 0.48}, and mY is as shown in Table 6.

Table 5. Expected value of a function Y = gX = X2 that is not 1-1.

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) (vmX (a))
2 EmX (gX ) Emin

mX
(gX )

{−1} 0.02 0.63 −1.00 0.059 1.00 1.188 0.720
{0} 0.05 0.70 0.00 0.00
{1} 0.09 0.81 1.00 1.00
{−1, 0} 0.12 0.42 −0.47 0.22
{−1, 1} 0.19 0.49 0.13 0.02
{0, 1} 0.23 0.53 0.54 0.29
{−1, 0, 1} 0.30 0.30 0.08 0.01

b ∈ 2�Y mY (b) QmY (b) vmY (b) EmY (Y) Emin
mY

(Y)

{1} 0.30 0.95 1.00 0.576 0.300
{0} 0.05 0.70 0.00
{1, 0} 0.65 0.65 0.58
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Table 6. Expected value of Y = gX = log(X), a nonlinear 1-1 function.

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) log(vmX (a)) EmX (gX ) Emin
mX

(gX )

{1} 0.02 0.63 1.00 2.059 0.00 0.241 0.127
{2} 0.05 0.70 2.00 0.30
{3} 0.09 0.81 3.00 0.48
{1, 2} 0.12 0.42 1.53 0.18
{1, 3} 0.19 0.49 2.12 0.33
{2, 3} 0.23 0.53 2.53 0.40
{1, 2, 3} 0.30 0.30 2.08 0.32

aY ∈ 2�Y mY (aY ) QmY (aY ) vmY (aY ) EmY (Y) Emin
mY

(Y)

{0} 0.02 0.63 0.00 0.273 0.127
{0.30} 0.05 0.70 0.30
{0.48} 0.09 0.81 0.48
{0, 0.30} 0.12 0.42 0.16
{0, 0.48} 0.19 0.49 0.27
{0.30, 048} 0.23 0.53 0.40
{0, 0.30, 0.48} 0.30 0.30 0.28

As the function is 1-1, the values of mY are the same as the values of mX . For this
example, EmY (Y) = 0.273, and EmX (log(X)) = 0.241. Thus, Equation (8) does not hold.
The Choquet integrals are as follows: Emin

mX (g(X)) = 0.127, and Emin
mY (Y) = 0.127. Thus,

Emin
mX (g(X)) = Emin

mY (Y). AsY = g(X) = log(X) is a 1-1 function,mX andmY have the same
values. Also hmin values are also the same.

Example 3.7 (Linear function of X): Consider a real-valued variable X with �X =
{−1, 0, 1}, and supposemX is a BPA forX as shown in Table 7. Suppose Y = gX = 2X + 1.
Then, �Y = {−1, 1, 3}, and mY is as shown in Table 7. Notice that as a linear function is
1-1, the values of mY are the same as the corresponding values of mX . Also, notice that
as the function gX is linear, g(vm(a)) = vmY (aY), where subset aY corresponds to sub-
set a. For this example, EmY (Y) = 1.117, and EmX (gX) = 1.117. Thus, Equation (8) holds.
Also notice that EmX (gX) = EmX (2X + 1) = 2EmX (X) + 1 = 2(0.059) + 1 = 1.117. The
Choquet integrals are as follows: Emin

mX (X) = −0.54 (not shown in Table 7, Emin
mX (g(X)) =

Table 7. Expected value of Y = gX = 2X + 1, a linear 1-1 function.

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) 2 vmX (a) + 1 EmX (gX ) Emin
mX

(gX )

{−1} 0.02 0.63 −1.00 0.059 −1.00 1.117 −0.080
{0} 0.05 0.70 0.00 1.00
{1} 0.09 0.81 1.00 3.00
{−1, 0} 0.12 0.42 −0.47 0.05
{−1, 1} 0.19 0.49 0.12 1.24
{0, 1} 0.23 0.53 0.53 2.07
{−1, 0, 1} 0.30 0.30 0.08 1.16

aY ∈ 2�Y mY (aY ) QmY (aY ) vmY (aY ) EmY (Y) Emin
mY

(Y)

{−1} 0.02 0.63 −1.00 1.117 −0.080
{1} 0.05 0.70 1.00
{3} 0.09 0.81 3.00
{−1, 1} 0.12 0.42 0.05
{−1, 3} 0.19 0.49 1.24
{1, 3} 0.23 0.53 2.07
{−1, 1, 3} 0.30 0.30 1.16
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−0.080, and Emin
mY (Y) = −0.080. As Y = 2X + 1 is a 1-1 function, Emin

mX (g(X)) = Emin
mY (Y).

Also, Emin
mX (g(X)) = 2Emin

mX (X) + 1 = 2(−0.54) + 1 = −0.080.

Example 3.8 (Linear Function ofX andY): Consider a real-valued variableX with�X =
{1, 3}, and a real-valued variableY with�Y = {2, 4}. SupposemX,Y is a BPA for (X,Y), with
marginal BPAs mX for X, and mY for Y, as shown in Table 8. Suppose Z = gX,Y = X +
3Y + 5. Then EmZ(Z) = 16.044 as shown in Table 9, and EmX,Y (gX,Y) = 16.046 as shown
in Table 8. Thus, EmZ(Z) �= EmX,Y (gX,Y). However, notice that EmX,Y (gX,Y) = EmX (X) +
3EmY (Y) + 5. This can be seen from Table 8 as 16.046 = 2.015 + 3(3.010) + 5.

Table 8. Expected value of gX ,Y = X + 3Y + 5.

a ∈ 2�X ,Y mX ,Y (a) QmX ,Y (a) gX ,Y (vmX (a
↓X ), vmY (a

↓Y )) EmX ,Y (gX ,Y)

{(1, 2)} 0.003 0.636 12.000 16.046
{(1, 4)} 0.009 0.673 18.000
{(3, 2)} 0.015 0.691 14.000
{(3, 4)} 0.021 0.703 20.000
{(1, 2), (1, 4)} 0.034 0.385 15.030
{(3, 2), (3, 4)} 0.040 0.440 17.030
{(1, 2), (3, 2)} 0.052 0.416 13.016
{(1, 4), (3, 4)} 0.058 0.446 19.016
{(1, 2), (3, 4)} 0.070 0.453 16.046
{(1, 4), (3, 2)} 0.089 0.459 16.046
{(1, 2), (1, 4), (3, 2)} 0.095 0.239 16.046
{(1, 2), (1, 4), (3, 4)} 0.113 0.257 16.046
{(1, 2), (3, 2), (3, 4)} 0.125 0.269 16.046
{(1, 2), (3, 2), (3, 4)} 0.131 0.275 16.046
�X ,Y 0.144 0.144 16.046

aX ∈ 2�X mX (aX ) QmX (aX ) vmX (aX ) EmX (X)

{1} 0.046 0.924 1.000 2.016
{3} 0.076 0.954 3.000
{1, 3} 0.878 0.878 2.016

aY ∈ 2�Y mY (aY ) QmY (aY ) vmY (aY ) EmY (Y)

{2} 0.070 0.911 2.000 3.010
{4} 0.089 0.930 4.000
{2, 4} 0.841 0.841 3.010

Table 9. Expected value EmZ (Z), where Z = gX ,Y = X +
3Y + 5, andmX ,Y is as in Table 8.

a ∈ 2�Z mZ(a) QmZ (a) vmZ (a) EmZ (Z)

{12} 0.003 0.636 12.000 16.044
{18} 0.009 0.673 18.000
{14} 0.015 0.691 14.000
{20} 0.021 0.703 20.000
{12, 18} 0.034 0.385 15.084
{14, 20} 0.040 0.440 17.026
{12, 14} 0.052 0.416 13.041
{18, 20} 0.058 0.446 19.022
{12, 20} 0.070 0.453 16.201
{18, 14} 0.089 0.459 15.973
{12, 18, 14} 0.095 0.239 14.709
{12, 18, 20} 0.113 0.257 16.802
{12, 14, 20} 0.125 0.269 15.452
{18, 14, 20} 0.131 0.275 17.343
�Z 0.144 0.144 16.086
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Table 10. Expected value EmX ,Y (Z), where Z = gX ,Y = X · Y .
aX ∈ 2�X mX (aX ) QmX (aX ) vmX (aX ) EmX (X)

{1} 0.11 0.67 1.00 2.143
{3} 0.33 0.89 3.00
{1, 3} 0.56 0.56 2.14

aY ∈ 2�Y mY (aY ) QmY (aY ) vmY (aY ) EmY (Y)

{2} 0.23 0.65 2.00 3.085
{4} 0.35 0.77 4.00
{2, 4} 0.42 0.42 3.08

a ∈ 2�X ,Y mX ,Y (a) QmX ,Y (a) gX ,Y (vmX (a
↓X ), vmY (a

↓Y )) EmX ,Y (gX ,Y)

{(1, 2)} 0.03 0.44 2.00 6.604
{(1, 4)} 0.04 0.52 4.00
{(3, 2)} 0.08 0.58 6.00
{(3, 4)} 0.12 0.69 12.00
{(1, 2), (1, 4)} 0.05 0.28 3.08
{(3, 2), (3, 4)} 0.14 0.37 9.25
{(1, 2), (3, 2)} 0.13 0.36 4.28
{(1, 4), (3, 4)} 0.20 0.43 8.56
{(1, 2), (3, 4)} 0.24 6.60
{(1, 4), (3, 2)} 0.24 6.60
{(1, 2), (1, 4), (3, 2)} 0.24 6.60
{(1, 2), (1, 4), (3, 4)} 0.24 6.60
{(1, 2), (3, 2), (3, 4)} 0.24 6.60
{(1, 2), (3, 2), (3, 4)} 0.24 6.60
�X ,Y 0.24 0.24 6.60

Example 3.9 (Product Function): Consider a real-valued variable X with �X = {1, 3},
and supposemX is a BPA for X as shown in Table 10. Expected value of X is ≈ 2.14. Con-
sider Y with �Y = {2, 4}, and supposemY is as shown in Table 10. Expected value of Y is
≈ 3.09. AssumingX andY are independent,mX,Y = mX ⊕ mY , as shown in Table 10. Sup-
pose Z = gX,Y = X · Y . Then, the computation of EmX,Y (Z) ≈ 6.62 = EmX (X) · EmY (Y).
Details of the computation of EmX,Y (Z) are shown in Table 10.

3.4. Comparisonwith expected values using pignistic and plausibility
transformations

As we said earlier, a traditional method of computing expectations of random variables
characterized by a D–S BPA is to first transform the BPA to a PMF, and then use the prob-
abilistic expectation operator. There are several methods of transforming a BPA to a PMF.
Here we focus on the pignistic (Smets 2002) and the plausibility (Cobb and Shenoy 2006)
transforms.

As D–S theory is a generalization of probability theory, there is, in general, more infor-
mation in a BPAm than in the corresponding transformofm to a PMF. Thus, by computing
expectation of X whose uncertainty is described by BPA m by first transforming m to a
pignistic PMF BetPm or to a plausibility PMF PlPm, there may be loss of information.

In general, the expected value defined in this paper will yield different values than the
probabilistic expectation using pignistic or plausibility transformation. Table 11 compares
the expectation defined in this paper with probabilistic expectation using pignistic and
plausibility transforms for the various BPAs described in Tables 1–7. Two observations.
First, although the three definitions yield different answers, they are all in the same range
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Table 11. A comparison of our expected value with probabilistic
expectation using pignistic and plausibility transforms.

BPAm Em(·) EBetPm (·) EPPlm (·)
mX in Table 1 (vacuous) 2.00 2.00 2.00
mX in Table 2 (consonant) 2.317 2.495 2.328
mX in Table 3 (quasi-consonant) 2.00 1.75 1.75
mX in Table 4 (general) 1.75 1.75 2.00
mX in Table 5 (X2) 0.059 0.125 0.084
mY in Table 5 (Y = X2) 0.576 0.625 0.576
mX in Table 6 (log(X)) 2.059 2.125 2.084
mY in Table 6 (Y = log(X)) 0.273 0.289 0.278
mY in Table 7 (Y = 2X + 1) 1.117 1.250 1.168

of values, [min�X , max�X]. Second, all three definitions satisfy the expected value of a
function of X property. Thus, BPAmZ in Table 6 can be obtained from BPAmX in Table 5
using the transformation Z=X+ 2. All three expected values satisfy the expected value of
a function of X property. Also, BPA mY in Table 7 is obtained from BPA mX in Table 5
using the transformation Y =2X+ 1. Again, all three expected values satisfy the expected
value of a linear function of X property.

A question is whether there exists a transformation from BPA to a PMF that provides
the same expected value as per our definition. We conjecture that such a transformation
does not exist, and we do not have a proof.

3.5. Comparisonwith Choquet integrals

In this section, we compare our definition of expected value with the Choquet integral
definition as given in Definition 3.4. Table 12 compares the expectation defined in this
paper with Choquet integrals for the various BPAs described in Tables 1–7. In general, the
expected value defined in this paper will yield different values than the Choquet integral.
First, the expected value defined in this paper is for the D–S theory, whereas the Choquet
integral is for the theory of belief functions interpreted as credal sets. Second, the expected
value defined in this paper is a “central tendency”, whereas the Choquet integral is a pes-
simistic (lower bound) value. In this respect, we conjecture thatEmin

mX (X) ≤ EmX (X), andwe
do not have a proof of this assertion. Some results in Coletti, Petturiti, and Vantaggi (2019)
may be useful in proving this conjecture if it is true.

Table 12. A comparison of our expected value
with Choquet integral.

BPAm Em(·) Emin
m (·)

mX in Table 1 (vacuous) 2.00 1.00
mX in Table 2 (consonant) 2.317 1.990
mX in Table 3 (quasi-consonant) 2.00 1.00
mX in Table 4 (general) 1.75 1.50
mX in Table 5 (X2) 1.188 0.720
mY in Table 5 (Y = X2) 0.576 0.300
mX in Table 6 (log(X)) 2.059 0.127
mY in Table 6 (Y = log(X)) 0.273 0.127
mX in Table 7 (2X + 1) 1.117 −0.080
mY in Table 7 (Y = 2X + 1) 1.117 −0.080
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ForBayesian belief functions, our expected valueEmX (X)will coincidewith theChoquet
integral for the function h(X) = X. In this case, the credal set consists of a single PMF
corresponding to the Bayesian BPA.

The Choquet integral has the nice property that for 1−1 functions Y = g(X),
Emin
mX (g(X)) = Emin

mY (Y) regardless of whether the function Y = g(X) is linear or not. Our
definition satisfies this property for linear functions only.

4. Variance of D–S belief functions

In probability theory, the variance of a random variable X whose uncertainty is described
by PMF PX is defined as VPX (X) = EPX ((X − EPX (X))2). Using the definition of expecta-
tion of a real-valued function in Definition 3.2, we can define variance of a belief function
in a similar manner.

4.1. Definition of variance

Definition 4.1 (Variance): Suppose X is a random variable with real-valued state space
�X , and whose uncertainty is described by BPA mX for X. Then, the variance of X with
respect to BPAmX , denoted by VmX (X), is defined as follows:

VmX (X) = EmX ((X − EmX (X))2) =
∑

a∈2�X

(−1)|a|+1(vmX (a) − EmX (X))2 QmX (a)

To simplify notation, when it is clear which BPA is used to compute the expected value and
variance, we will write v(a) instead of vmX (a), E(X) in place of EmX (X), and V(X) instead
of VmX (X).

Example 4.1 (Vacuous BPA): Consider Example 3.1 where we have X with real-valued
state space�X and with vacuous BPA ιX for X as shown in Table 1. Then,V(X) = 1.5. The
details of the computation are shown in Table 13 (empty cells in columns 2 and 6 have 0
values).

4.2. Properties of variance

Consider the situation in Definition 4.1.

(1) (Consistency with probabilistic variance) Suppose mX is Bayesian BPA for X. Let
PX denote the PMF corresponding to mX , i.e. PX(x) = mX({x}). Then, VmX (X) =
VPX (X).

Table 13. Variance of a vacuous BPA.

a ∈ 2�X mX (a) QmX (a) v(a) E(X) (v(a) − E(X))2 V(X)

{1} 1 1 2 1 1.5
{2} 1 2
{3} 1 3 1
{1, 2} 1 1.5 0.25
{1, 3} 1 2
{2, 3} 1 2.5 0.25
{1, 2, 3} 1 1 2
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Proof: AsmX is Bayesian, for singleton subsets {x} ∈ 2�X ,QmX ({x}) = mX({x}) = PX(x),
and vmX ({x}) = x. Also, from the consistency with probabilistic expectation property,
EmX (X) = EPX (X). Finally, for non-singleton subsets a ∈ 2�X , QmX (a) = 0. Thus, the
result follows from the definition of VmX (X). �

(2) (Computation of variance) As in the probabilistic case, we can compute the variance
as follows:

VmX (X) = EmX (X2) − (EmX (X))2

where EmX (X2) is as defined as follows:

EmX (X2) =
∑

a∈2�X

(−1)|a|+1(vmX (a))2QmX (a)

Proof:

VmX (X) =
∑

a∈2�X

(−1)|a|+1(vmX (a) − EmX (X))2QmX (a)

=
∑

a∈2�X

(−1)|a|+1 (
vmX (a)2 + (EmX (X))2 − 2 vmX (a)EmX (X)

)
QmX (a)

=
∑

a∈2�X

(−1)|a|+1(vmX (a))2 QmX (a) − (EmX (X))2

= EmX (X2) − (EmX (X))2

�

(3) (Variance of a constant) Suppose X is a constant, i.e. there exists a ∈ R such that
mX({a}) = 1. Then, VmX (X) = 0.

Proof: AsmX is Bayesian, VmX (X) = VPX (X) = 0. �

(4) (Variance of a linear function of X) If Y = aX + b, where a and b are real constants,
then VmY (Y) = a2VmX (X).

Proof: As Y is a linear function of X, vmY (aY) = a vmX (a) + b, EmY (Y) = aEmX (X) + b,
and QmY (aY) = QmX (a), where aY = {a x + b : x ∈ a}.

VmY (Y) =
∑

aY∈2�Y

(−1)|aY |+1(vmY (aY) − EmY (Y))2QmY (aY)

=
∑

a∈2�X

(−1)|a|+1((a vmX (a) + b) − (a EmX (X) + b))2QmX (a)
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Table 14. Variance of Y = 2 X + 1.

a ∈ 2�X mX (a) QmX (a) v(a) E(X) (v(a))2 E(X2) V(X)

{−1} 0.02 0.63 −1 0.059 1.00 1.188 1.184
{0} 0.05 0.70
{1} 0.09 0.81 1 1.00
{−1, 0} 0.12 0.42 −0.47 0.22
{−1, 1} 0.19 0.49 0.13 0.02
{0, 1} 0.23 0.53 0.54 0.29
{−1, 0, 1} 0.30 0.30 0.08 1.17

aY ∈ 2�Y mY (aY ) QmY (aY ) v(aY ) E(Y) (v(aY ))2 E(Y2) V(Y)

{−1} 0.02 0.63 −1.00 1.117 1.00 5.985 4.737
{1} 0.05 0.70 1.00 1.00
{3} 0.09 0.81 3.00 9.00
{−1, 1} 0.12 0.42 0.05 0.003
{−1, 3} 0.19 0.49 1.25 1.56
{1, 3} 0.23 0.53 2.07 4.30
{−1, 1, 3} 0.30 0.30 1.17 1.36

= a2
∑

a∈2�X

(−1)|a|+1((vmX (a) − EmX (X))2 QmX (a)

= a2 VmX (X) �

(5) (Non-negativity) VmX (X) ≥ 0.

Proof: VmX (X) = EmX (gX), where gX = (X − EmX )2 and as the smallest value of gX
is 0, it follows from the bounds on expected value property of expected values that
VmX (X) ≥ 0. �

Example 4.2 (Variance of linear function of X): Suppose �X = {−1, 0, 1}, mX is as in
Table 14, and suppose Y = 2X + 1. For this example, EmX (X) ≈ 0.059, EmX (X2) ≈ 1.188,
and VmX (X) = EmX (X2) − (EmX (X))2 ≈ 1.184. Details are shown in the upper half of
Table 14 (empty cells in columns 4 and 6 have 0 values). Also EmY (Y) ≈ 1.117, EmY (Y2) ≈
5.985, VmY (Y) = EmY (Y2) − (EmY (Y))2 ≈ 4.737. Details are shown in the lower half of
Table 14. Notice that VmY (Y) = 4VmX (X).

5. Covariance and correlation for the D–S theory

Using the definition of expectation of a real-valued function in Definition 3.2, we can
define covariance and correlation of a belief function in a manner similar to probability
theory.

5.1. Definitions of covariance and correlation

Definition 5.1 (Covariance): SupposemX,Y is a joint BPA for real-valued variables X and
Y with marginals mX and mY for X and Y, respectively. The covariance of X and Y with
respect tomX,Y , denoted by CmX,Y (X,Y), is defined as follows:

CmX,Y (X,Y) =
∑

a∈2�X,Y

(−1)|a|+1
(
vmX (a↓X) − EmX (X)

) (
vmY (a↓Y) − EmY (Y)

)
QmX,Y (a)
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If we consider gX,Y(vmX (a↓X), vmY (a↓Y)) = (vmX (a↓X) − EmX (X))(vmY (a↓Y) − EmY (Y)),
then CmX,Y (X,Y) = EmX,Y (gX,Y). CmX,Y (X,Y) can be regarded as a measure of linear
dependence between X and Y in joint BPAmX,Y .

We can define correlation for the D–S theory similar to the definition in probability.

Definition 5.2 (Correlation): SupposemX,Y is a joint BPA for real-valued variablesX and
Y with marginals mX and mY for X and Y, respectively. The correlation of X and Y with
respect to joint BPAmX,Y , denoted by ρmX,Y (X,Y), is defined as follows:

ρmX,Y (X,Y) = CmX,Y (X,Y)√
VmX (X)

√
VmY (Y)

5.2. Properties of covariance

Consider the situation in Definition 5.1.

(1) (Equivalence to the probabilistic case) If BPA mX,Y for (X,Y) is Bayesian, then
CmX,Y (X,Y) = CPX,Y (X,Y), where PX,Y corresponds to mX,Y , i.e. PX,Y(x, y) =
mX,Y({(x, y)}) for all (x, y) ∈ �X,Y .

Proof: As mX,Y is Bayesian, for singleton subsets {(x, y)} ∈ 2�X,Y , QmX,Y ({(x, y)}) =
mX,Y({(x, y)}) = PX,Y(x, y), vmX ({(x, y)↓X}) = x, and vmY ({(x, y)↓Y}) = y. Also, from the
consistency with probabilistic expectation property, EmX (X) = EPX (X), and EmY (Y) =
EPY (Y). Finally, for non-singleton subsets a ∈ 2�X , QmX (a) = 0. Thus, the result follows
from the definition of CmX,Y (X,Y). �

(2) (CmX (X,X) is VmX (X)) If mX,Y is such that mY|x({x}) = 1, i.e. Y = X, then
CmX,Y (X,Y) = VmX (X).

Proof: If Y = X, then the definition ofCmX,Y (X,Y) = CmX (X,X) reduces to the definition
of VmX (X). �

(3) (Computation of covariance) As in the probabilistic case, we can compute the covari-
ance as follows:

CmX,Y (X,Y) = EmX,Y (X · Y) − (
EmX (X)

) (
EmY (Y)

)
,

where EmX,Y (X · Y) = ∑
a∈2�X (−1)|a|+1vmX (a↓X) vmY (a↓Y)QmX,Y (a).
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Proof:

CmX,Y (X,Y) =
∑

a∈2�X,Y

(−1)|a|+1(vmX (a↓X) − EmX (X))(vmY (a↓Y)

− EmY (Y))QmX,Y (a)

=
∑

a∈2�X,Y

(−1)|a|+1 vmX (a↓X) vmY (a↓Y)QmX,Y (a)

− EmY (Y)
∑

a∈2�X,Y

(−1)|a|+1 vmX (a↓X)QmX,Y (a)

− EmX (X)
∑

a∈2�X,Y

(−1)|a|+1 vmY (a↓Y)QmX,Y (a) + EmX (X)EmY (Y)

(9)

Next, we will show that
∑

a∈2�X,Y (−1)|a|+1 vmX (a↓X)QmX,Y (a) = EmX (X). This is
because

∑
a∈2�X,Y

(−1)|a|+1 vmX (a↓X)QmX,Y (a) =
∑

aX∈2�X

vmX (aX)

×
∑

a∈2�X,Y :a↓X=aX

(−1)|a|+1QmX,Y (a)

=
∑

aX∈2�X

vmX (aX) (−1)|aX |+1 QmX (aX)

= EmX (X)

Similarly we can show that
∑

a∈2�X,Y (−1)|a|+1 vmY (a↓Y)QmX,Y (a) = EmY (Y). The
result then follows from Equation (9). �

(4) (Independence), If X and Y are independent1, i.e. mX,Y = mX ⊕ mY , then
CmX,Y (X,Y) = 0.

Proof: In the expected value of a product of independent variables property, it follows that
EmX,Y (X · Y) = EmX (X) · EmY (Y). From the computation of covariance property, it follows
that CmX,Y (X,Y) = 0. �

(5) (Bilinear) Ifm is a BPA for {X,Y ,Z}, and a, b, and c are real constants, then Cm(aX +
bY + c,Z) = aCm(X,Z) + bCm(Y ,Z).

Proof: It follows from the computation of covariance property that

Cm(aX + bY + c,Z) = Em((aX + bY + c)Z) − Em(aX + bY + c)Em(Z)

= Em(aX Z) + Em(b Y Z) + Em(c Z) − (a Em(X)Em(Z)

+ b Em(Y)Em(Z) + c Em(Z)
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= a(Em(X Z) − Em(X)Em(Z)) + b(Em(Y Z) − Em(Y)Em(Z))

= aCm(X,Z) + bCm(Y ,Z) �

(6) (Bounds on covariance) Supposem is a BPA for {X,Y}. Then,
−

√
Vm(X)

√
Vm(Y) ≤ Cm(X,Y) ≤

√
Vm(X)

√
Vm(Y)

Proof: This property follows from the corresponding property of correlation below. �

5.3. Properties of correlation

Consider the definition of correlation in Definition 5.2.

• (Equivalence to the probabilistic case) If BPA mX,Y for (X,Y) is Bayesian, then
ρmX,Y (X,Y) = ρPX,Y (X,Y), where PX,Y corresponds to mX,Y , i.e. PX,Y(x, y) = mX,Y
({(x, y)}) for all (x, y) ∈ �X,Y .

Proof: From the equivalence to the probabilistic case property of covariance,CmX,Y (X,Y) =
CPX,Y (X,Y), and from the equivalence to the probabilistic case property of variance,
VmX (X) = VPX (X) and VmY (Y) = VPY (Y). Therefore, the result follows. �

• (Bounds on correlation) Supposem is a BPA for {X,Y}. Then,
−1 ≤ ρm(X,Y) ≤ 1

Proof: Let X∗ = (X − Em(X))/
√
Vm(X), and let Y∗ = (Y − Em(Y))/

√
Vm(Y). Then, it

follows from properties of expected value and variance that Em(X∗) = Em(Y∗) = 0, and
Vm(X∗) = Vm(Y∗) = 1. Also, it follows from the bilinear property of covariance that
Cm(X∗,Y∗) = ρm(X,Y). Next,

0 ≤ Vm(X∗ ± Y∗) = Cm(X∗ ± Y∗,X∗ ± Y∗)

= Cm(X∗,X∗) ± 2Cm(X∗,Y∗) + Cm(Y∗,Y∗)

= 1 ± 2 ρm(X,Y) + 1

= 2[1 ± ρm(X,Y)]

Thus, 1 ± ρm(X,Y) ≥ 0 implies that −1 ≤ ρm(X,Y) ≤ 1. �

Example 5.1 (Covariance and correlation): Suppose �X = {1, 3}, and suppose �Y =
{2, 4}. SupposemX ,mY|x=1, andmY|x=3 are as follows:

mX({1}) = 0.56, mX({3}) = 0.33, mX({1, 3}) = 0.11,

mY|x=1({2}) = 0.42, mY|x=1({4}) = 0.23, mY|x=1({2, 4}) = 0.35,

mY|x=3({2}) = 0.29, mY|x=3({4}) = 0.39, mY|x=3({2, 4}) = 0.32.

If we conditionally embedBPAsmY|x=1, andmY|x=3 to BPAsmx=1,Y andmx=3,Y for (X,Y),
and combine these two BPAs withmX using Dempster’s rule, we obtain joint BPAmX,Y for
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Table 15. Covariance and Correlation of (X , Y).

a ∈ 2�X mX (a) QmX (a) vmX (a) EmX (X) VmX (X)

{1} 0.56 0.67 1.00 1.793 1.062
{3} 0.33 0.44 3.00
{1, 3} 0.11 0.11 1.79

a ∈ 2�X ,Y mX ,Y (a) QmX ,Y (a) vmX (a
↓X ) vmY (a

↓Y ) CmX ,Y (X , Y)

{(1, 2)} 0.24 0.52 1.00 2.00 0.153
{(1, 4)} 0.13 0.39 1.00 4.00
{(3, 2)} 0.10 0.27 3.00 2.00
{(3, 4)} 0.13 0.31 3.00 4.00
{(1, 2), (1, 4)} 0.20 0.23 1.00 2.94
{(1, 2), (3, 2)} 0.01 0.05 1.79 2.00
{(1, 2), (3, 4)} 0.02 0.06 1.79 2.94
{(1, 4), (3, 2)} 0.01 0.04 1.79 2.94
{(1, 4), (3, 4)} 0.01 0.05 1.79 4.00
{(3, 2), (3, 4)} 0.11 0.14 3.00 2.94
{(1, 2), (1, 4), (3, 2)} 0.01 0.02 1.79 2.94
{(1, 2), (1, 4), (3, 4)} 0.02 0.03 1.79 2.94
{(1, 2), (3, 2), (3, 4)} 0.01 0.03 1.79 2.94
{(1, 2), (3, 2), (3, 4)} 0.01 0.02 1.79 2.94
�X ,Y 0.01 0.01 1.79 2.94

a ∈ 2�Y mY (a) QmY (a) vmY (a) EmY (Y) VmY (Y)

{2} 0.34 0.73 2.00 3.085 1.384
{4} 0.27 0.66 4.00
{2, 4} 0.39 0.39 2.94

(X,Y) as shown in Table 15. The marginalm↓Y
X,Y is denoted bymY , which is also shown in

Table 15. CmX,Y (X,Y) is computed as EmX (X Y) − EmX (X)EmY (Y) = 0.153. Correlation
ρmX,Y (X,Y) = (CmX,Y (X,Y))/(

√
VmX (X)

√
VmY (Y)) = 0.126.

6. Higher moments

In this section, we define higher moments of D–S belief functions about the mean and
about the origin.

6.1. Definitions of highermoments

Definition 6.1: Suppose mX is a BPA for X. The rth moment of X about the mean μ =
EmX (X), denoted by EmX [(X − μ)r], is defined as follows:

EmX [(X − μ)r] =
∑

a∈2�X

(−1)|a|+1 (vmX (a) − μ)r QmX (a),

for all a ∈ 2�X .

Similarly, we can define higher moments about the origin as follows.
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Definition 6.2: SupposemX is a BPA forX. The rthmoment ofX about the origin, denoted
by EmX (Xr), is defined as follows:

EmX (Xr) =
∑

a∈2�X

(−1)|a|+1 vmX (a)r QmX (a),

for all a ∈ 2�X .

6.2. Property of highermoments

(1) (Computation of higher moments about the origin) The rth moment about the mean
can be computed using rth moment about the origin as follows:

EmX [(X − μ)r] =
r∑

j=0

(
r
j

)
EmX (Xj) (−μ)r−j

Proof:

EmX [(X − μ)r] =
∑

a∈2�X

(−1)|a|+1 (vmX (a) − μ)r QmX (a)

=
∑

a∈2�X

(−1)|a|+1
r∑

j=0

(
r
j

)
vmX (a)j (−μ)r−j QmX (a)

=
r∑

j=0

(
r
j

)
(−μ)r−j

∑
a∈2�X

(−1)|a|+1 vmX (a)j QmX (a)

=
r∑

j=0

(
r
j

)
(−μ)r−j EmX (Xj).

�

7. Summary and conclusions

Wepropose a new definition of expected value for variables whose uncertainty is described
by D–S belief functions defined on real-valued frames of discernment. Also, if we have a
symbolic frame of discernment, but a real-valued function defined on the set of all non-
empty subsets of the frame, thenwe propose a new definition of expectation of the function
in a similar manner.

Our new definition satisfies many of the properties satisfied by the probabilistic expec-
tation operator, which was first proposed by Huygens (1657) in the context of the problem
of points posed by Chevalier de Méré to Blaise Pascal. For Bayesian BPAs, our definition
of expected value coincides with the expected value of the corresponding PMF.

Analogous to the probabilistic case, we define variance of a BPAmX for X as EmX ((X −
EmX (X))2). We show that our definition of variance of a BPA has many of the proper-
ties of the variance in the probabilistic case. For Bayesian BPA, our definition of variance
coincides with the variance of the corresponding PMF.
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Analogous to the probabilistic case, we define covariance of X and Y with respect to
a joint BPA mX,Y for (X,Y) as EmX,Y ((X − EmX (X))(Y − EmY (Y))). We show that our
definition of covariance of a BPA has many of the properties of the covariance in the prob-
abilistic case. For Bayesian BPA, our definition of covariance coincides with the covariance
of the corresponding PMF. Also, we define correlation of X and Y with respect to a joint
BPAmX,Y for (X,Y) asCmX,Y (X,Y)/(

√
VmX (X)

√
VmY (Y)). Analogous to the probabilistic

case, we define higher moments of X (with respect to mX) about the mean and about the
origin.

If we define I(a) = log2(1/(QmX (a))) as the information content of observing sub-
set a ∈ 2�X whose uncertainty is described by mX , then similar to Shannon’s definition
of entropy of PMFs (Shannon 1948), we can define entropy of BPA mX for X as an
expected value of the function I(X), i.e. H(mX) = EmX (I(X)). This is what is proposed
in Jiroušek and Shenoy (2018b, 2018c). This definition of entropy has many nice prop-
erties. In particular, it satisfies the compound distributions property: H(mX ⊕ mY|X) =
H(mX) + H(mY|X), where mY|X is a BPA for (X,Y) obtained by ⊕{mx,Y : x ∈ �X}, and
mx,Y is a BPA for (X,Y) obtained by conditional embedding of conditional BPAmY|x for Y
given X= x. The compound distribution property of Shannon’s entropy of a PMF is one of
themost important properties that characterizes Shannon’s definition (Shannon 1948). The
definition in Jiroušek and Shenoy (2018b, 2018c) is the only one that satisfies the compound
distributions property.

One motivation in defining an expectation operator was to define an axiomatic lin-
ear utility theory for the D–S belief function lotteries along the lines of von Neu-
mann–Morgenstern’s (vN–M’s) axiomatic theory for probabilistic lotteries (von Neu-
mann and Morgenstern 1947). There are utility theories for D–S lotteries proposed by
Jaffray (1989) and Smets (2002). Jaffray’s linear utility theory does not use Dempster’s
combination rule. Instead, it is based on a mixture set of BPAs, which is not Dempster’s
combination rule, although Dempster’s combination can be used to describe a mixture
operation. Smets’ decision theory is based on first transforming a belief function to a PMF
and then using vN–M’s theory. Unfortunately, Smets’s theory is unable to explain ambi-
guity aversion as demonstrated by Ellsberg’s paradox (Ellsberg 1961). Some preliminary
results on this topic can be found in Denoeux and Shenoy (2019).

Note

1. The definition of independence here is based on factorization semantics, see, e.g. Shenoy (1994).
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