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ABSTRACT

A new language based on valuations is proposed as an alternative to rule-based
languages for constructing knowledge-based systems. Valuation-based languages
are superior to rule-based languages for maintaining consistency in the knowledge
base, for caching inferences, for managing uncertainty, and for nonmonotonic
reasoning. An abstract description of a valuation-based language is given Two
specific instances of valuation-based languages are described. The first is designed to
represent categorical knowledge. The ability of such a language to maintain
consistency and cache inferences 1s demonstrated with an example. The second i1s an
evidential language—a valuation-based language in which valuations are belief
Sunctions. The ability of evidential languages to perform nonmonotonic reasoning
and manage uncertainty is demonstrated with an example.
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knowledge bases, caching inferences, truth maintenance systems,
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INTRODUCTION

This paper proposes a new language based on ‘‘valuations’’ as an alternative
to rule-based languages for building knowledge-based systems. This language is
inspired by the axiomatic framework for propagation of probabilities and behef
functions (Shenoy and Shafer [1, 2]) and by its extension, which includes
constraint propagatiou and discrete optimuzation (Shenoy and Shafer [3, 4]).
Since the primary objects in the axiomatic framework are called valuations, we
refer to this language as being valuation-based, and we call a formal structure
created using this language a valuation system.

A popular language for building a knowledge-based system 1s a production or
a rule-based language (Brownston et al. [5], Davis and King [6]). While these
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languages have many attractive features, they also have some serious shortcom-
ings. In this paper we will focus on four major shortcomings of rule-based
languages that are not shared by valuation-based languages. These four
shortcomings are referred to as the problem of consistency, the problem of
caching, the problem of nonmonotonic reasoning, and the problem of managing
uncertainty.

A special case of a valuation system 1s an evidential network (Shenoy and
Shafer [1, 2]). The use of evidential networks to manage uncertainty 1s well
understood (see, e.g., Shafer et al. [7]). However, the use of valuation systems
for representing categorical knowledge, maintaining consistency, and perform-
ing intelligent caching and nonmonotonic reasoning is not widely understood

Valuation systems include as a special case belief networks and moral graphs.
Belief networks have been proposed by Pearl [8, 9] and moral graphs by
Launitzen and Spiegelhalter [10] for managing uncertainty using probabilities
(see also Heckerman and Horvitz [11]) The use of valuation systems in
representing and propagating probabilities 1s described 1n Shenoy and Shafer [1,
2] and Shafer and Shenoy [12, 13]

Valuation languages can also be used to propagate constraints (Seidel [14],
Dechter and Pearl [15], Shenoy and Shafer [3]) and to solve discrete
optimization problems, both constrained and unconstramned (Bertele and
Brioschi [16], Shenoy and Shafer [4]) Other problems that fit in the framework
of valuation languages include solution to systems of equations (Rose [17]),
propagation of Spohnian belief functions (Spohn [18], Hunter [19]), retrieval
from acyclic database schemes (Malvestuto [20], Been et al [21]), and use of a
Kalman filter (Dempster {22], Meinhold and Singpurwala [23]).

An outline of this paper 1s as follows. In the following section we discuss
some problems with rule-based languages In the third section we give an
abstract description of a valuation-based language, and in the fourth section we
describe a specific nstance of a valuation language designed to represent
categorical knowledge We demonstrate, using an example, how such a
language can be used to mantain consistency in a knowledge base and how
inferences are cached. In the fifth section we describe an evidential language—a
valuation language that uses behef functions as valuations. We also briefly
describe a truth maintenance system and show the correspondence between
concepts 1 truth maintenance systems and concepts in evidential systems
Next, using an example, we show how evidential languages can be used to
reason nonmonotonically and manage uncertainty. We conclude with a summary
and some general comments.

SOME PROBLEMS WITH RULE-BASED LANGUAGES

In this section, we look at some of the shortcomings of pure rule-based
languages. In particular, we focus on the problems of consistency, caching,
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nonmonotonic reasoning, and management of uncertainty. Since there 1s no
umversally accepted formal defintion of a rule-based language, we will use the
model of a pure production system given in Davis and King [6] as a
representative rule-based language

Consistency

In large knowledge bases, consistency 1s an important 1ssue By consistency,
we mean the absence of syntactic contradictions. An example of a syntactic
contradiction 1s a premuse A = gandtworules: A =a— B =bandA = a
B = ~b. (The symbol — denotes the truth-functional conditional.)

Rule-based languages lack expressive power to check for contradictions.
Accordingly, most commercial implementations of rule-based languages pro-
vide little or no support for checking for contradictions. However, this does not
mean that such checking cannot be done outside the formal structure of rule-
based languages. In recent years, there have been several studies on efficient
methods for checking for contradictions in rule-based languages (see, e.g.,
Adams [24], Suwa et al. [25], Nguyen et al. [26], Pearl [27], Touretzky [28],
and Ginsberg [29]). As we shall see, unlike rule-based languages, maintenance
of consistency 1s an integral part of valuation-based languages

Caching

Regarding caching of inferences, typically, backward-chaining, goal-driven
rule-based languages do not cache any inferences, whereas forward-chaining
production systems cache all inferences in working memory In either case,
caching 1n rule-based languages 1s of little help to the knowledge engineer 1n
understanding the implications of the knowledge in the knowledge base. As we
shall see, valuation languages cache and display certain inferences, and this can
be very useful 1n the knowledge engineering process.

Nonmonotonic Reasoning

The subject of nonmonotonic or default reasoning 1s an important area in
artificial intelligence We often use assumptions or defaults as facts until we
observe something that contradicts the inferences we have derived. We then
need to retract some assumptions or defaults to avoid the contradiction. A
famous example is that of Tweety the bird. Most birds fly We may imtially use
the rule If X is a bird then X flies as an assumption or a default. Upon learning
that Tweety is a bird, we may infer that Tweety flies. However, we may
subsequently learn that Tweety is a penguin and does not fly. At this stage, to
keep our knowledge base contradiction-free, we need to retract the assumption
that led to the contradiction.

The construction of efficient procedures to enable nonmonotonic or default
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reasoning is the subject of considerable research in artificial intelligence
(McCarthy [30], McCarthy and Hayes [31], McDermott and Doyle [32], Moore
[33], Reiter [34]).

Uncertainty

Finally, it is now well known that pure rule-based languages are inadequate
both to represent uncertain knowledge and to make inferences from such
knowledge (Shafer [35], Heckerman and Horvitz [36]). For example, MYCIN
used certainty factors and PROSPECTOR used a pair of likelihood ratios with
each rule to represent uncertainty (Shortliffe and Buchanan [37], Duda et al
[38]). However, these systems are brittle. They give the right answers in only
the simplest of cases.

One solution to some of these problems 1s to couple a truth maintenance
system to the knowledge base (Doyle [39], de Kleer [40], Reiter and de Kleer
[41]). Truth maintenance systems were devised by logicians in artificial
intelligence to reason with incomplete and uncertain information symbolically
without using numerical calculi such as probability theory or behef functions.
Truth maintenance systems are still in the developmental stage and are the
subject of intense research 1n artificial intelligence.

Another solution has been to control the sequence of inferences so that the
correct results are obtained. This approach has been studied, for example, by
Laskey and Lehner [42] and by D’ Ambrosio [43].

AN ABSTRACT DESCRIPTION OF A VALUATION-BASED
LANGUAGE

This section gives an abstract description of a valuation-based language. The
language consists of objects, and operators that operate on the objects. The
objects are used to represent knowledge The operators are used to make
inferences from the knowledge In rule-based languages, the objects are
variables and rules and the operator 1s modus ponens. In valuation-based
languages, the objects are called variables and valuations, and the operators are
called combination, marginalization, and solution.

The level of abstractness at which this language is described here forces us to
omit the computational details of how precisely the three operators are used to
make inferences. This allows us to concentrate on the concepts (For a more
formal and less abstract exposition with theorems and proofs, we refer the reader
to Shenoy and Shafer [1-4] and Shafer and Shenoy [13].) However, since
abstract descriptions can be difficult to comprehend, we describe two specific
valuation-based systems in the succeeding sections with concrete examples.
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Variables and Configurations

We use the symbol “W x for the set of possible values of a variable X, and we
call Wy the frame for X. We will be concerned with a fintte set & of variables,
and we will assume that all the vanables 1in X have finite frames

Given a finite nonempty set & of variables, we let "W, denote the Cartesian
product of Wy for X 1n h; W, = X {Wx|X € h}. We call W, the frame for
h. We will refer to elements of "W, as configurations of h.

PROJECTION OF CONFIGURATIONS Projection of configurations simply
means dropping extra coordinates; 1f (w, x, y, 2) is a configuration of { W, X,
Y, Z}, for example, then the projection of (w, x, y, z) to { W, X} 1s simply (w,
x), which 1s a configuration of { W, X}

If g and h are sets of variables, # < g, and x 1s a configuration of g, then we
will let x** denote the projection of x to h. The projection x'* 1s always a
configuration of h. If A = g and x 1s a configuration of g, then x** = x

Valuations

Given a set h of variables, there 1s a set V. The elements of VY, are called
valuations of h. We will let V denote the set of all valuations, that 1s, V =
U{V,|h  X}. Valuations are primitives 1n our abstract description and as
such require no defimition But as we shall see shortly, they are objects that can
be combined, marginalized, and solved.

Intwitively, a valuation on 4 represents some knowledge about the vanables in
h

Examples of valuations on 4 are an array, a function H: W, — R, (R,
denotes the set of non-negative real numbers); a superarray, a function H: 2%
— R, (2% denotes the set of all subsets of “W,); a rule, a function H: W, —
{true, false}, etc

PROPER VALUATIONS For each # © X, there 1s a subset ®; of V, whose
elements will be called proper valuations on h. Let ® denote U {®,|h S X},
the set of all proper valuations.

Intuitively, a proper valuation represents knowledge that 1s consistent in itself
The notion of proper valuations is important as it enables us to define
combinability of valuations, it allows us to define existence of solutions, and 1t
allows us to constrain the definitions of combination and marginalization to
meaningful operations.

Examples of proper valuations are a potential, a function P: ‘W, — R, that1s
not identically zero for all configurations; a superpotential, a function m: 2%
— [R, that 1s not zero for all nonempty subsets of W,; a satisfiable rule, a
funchon R: W, — {true, false} that 1s not identically false for all
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configurations; etc. Potentials correspond to unnormalized probability
distributions, and superpotentials correspond to unnormalized basic probability
assignment functions.

Combination

We assume there 1s a mapping ®: V x V — %, called combination, such
that

1. If G and H are valuations on g, and A, respectively, then G ® H 1s a

valuation on g U A.

2. If either G or H 1s not a proper valuation, then G & H 1s not a proper

valuation

3. If G and H are both proper valuations, then G ® H may or may not be a

proper valuation
If G ® H 1s not a proper valuation, then we shall say that G and H are not
combinable. If G ® H 1s a proper valuation, then we shall say that G and H are
combinable and that G ® H is the combination of G and H.

Intwitively, as its name suggests, combination corrcsponds to aggregation of
knowledge If G and H are proper valuations on g and A representing knowledge
about vanables 1n g and A, respectively, then G ® H represents the aggregated
knowledge about variables in g U A.

For potentials, combination corresponds to pointwise multiplication, if G and
H are potentials on g and A, respectively, then (G ® H)x) = G(x*8)H(x'*).
For basic probability assignment functions, combination corresponds to Demp-
ster’s rule (Dempster {44, 45]). For rules, if G and H are rules on g and A,
respectively, then G ® H 1s a rule on g U 4 such that (G ® H)(x) = true 1iff
G(x*?) = true and H(x**) = true.

Marginalization

We assume that for each & € X, there 1s a mapping Lh: U {V,|g 2 h} —
Vy, called marginalization to h, such that

1. If G 1s a valuation on g and & < g, then G** 1s a valuation on A

2. If G is a proper valuation, then G*# 1s a proper valuation.

3. If G 1s not a proper valuation, then G*# 1s not a proper valuation
We will call G** the marginal of G for h.

Intuitively, marginalization corresponds to crystallization of knowledge. If G
1s a valuation on g representing some knowledge about variables in g, and & &
g, then G** represents the knowledge about vanables 1n A implied by G if we
disregard vanables in g — A.

In the case of potentials, marginalization from g to # 1s summation over the
configurations of g — A. In the belief-function case, marginalization 1s explained
in the section ‘‘An Evidential Language... ’’ For rules, if G 1s a rule on g, then
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G*" 18 a rule on A such that G**(x) = true iff there 1s a configuration yof g — h
such that G(x, y) = true.

Solution

We assume that for each g € 9, there is a mapping y. V, = 2% called
solution such that

1. If G 1s a proper valuation on g, then ¥(G) 1s a nonempty subset of W,.

2. If G 1s a valuation on g that 1s not proper, then y(G) = &.

The configurations 1n ¥/(G) are called solutions for G.

Intuitively, the solution operator maps knowledge from the space of
valuations to the space of configurations. We encode knowledge as valuations so
that we can aggregate and crystallize 1t. However, we need to decode the result
The solution operator simply serves as a decoding mechanism

In the case of probabilities, solutions may correspond to configurations with
the highest probability or simply configurations with positive probabilities. For
belief functions, solutions may correspond to configurations with the highest
plausibility or simply configurations with positive plausibilities For rules,
solutions may correspond to configurations whose value 1s true

Propagation of Valuations.

A valuation-based language (VL) makes inferences by

1. Combiming all proper valuations 1n the system (the resulting valuation, 1f
proper, is called the joint valuation),

2. Computing the marginal of the joint valuation for each variable in the
system,

3. Computing the set of all solutions for the marginals of the joint valuation
for each variable; and

4. Computing the set of all solutions for the joint valuation

The above 1s only a conceptual description of the actions of a valuation-based
language. It 1s not an algorithm If there are n variables 1n the system, and each
variable has two configurations n its frame, then there are 2" configurations of
all vanables. Hence, 1t will not be feasible to compute the joint valuation when
there are a large number of variables. The VL does not actually compute the
joint valuation. It computes the marginals of the jomnt valuation without
exphicitly computing the joint valuation, and it does this using only local
computations. An algorithm for computing exact marginals and solutions 1s
described 1n detail 1n Shenoy and Shafer [1-4]. An algorithm for computing
approximate marginals is described in Pearl [46], and an algonthm for
computing an approximate solution to the joint valuation 1s described n
Kirkpatrick et al. [47] and Geman and Geman [48].
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Valuation System

A valuation system (VS) consists of a finite set of variables I, a finite frame
Wy for each vanable X 1n &, and a finite collection of valuations {V.},ex
where each valuation V, 1s on some subset of .

A valuation network 1s a graph whose vertices represent either variables or
valuations. If valuation V, is on a subset h of vertices, then this is represented in
the valuation network by including an edge between the vertex corresponding to
V, and all variable vertices X, such that X, € h.

The valuation network serves as a graphical representation of a valuation
system and can be used as a user interface The valuation network is also used by
the VL to propagate the valuations The algorithm for computing exact
marginals and solution requires that the valuation network be a tree If the
valuation network 1s not a tree, then this algorithm embeds 1t in a tree by
clustering variables Such a tree, called a Markov tree, 1s then used to compute
the marginals and solutions (Shenoy and Shafer [1-4]). The simulation
algorithms for computing marginals and solutions use the valuation network
directly

Capabilities of a Valuation-Based Language

A VL has the following capabilities:

1. A VS can be extended by adding new vaniables and adding new proper
valuations.

2. A VS can also be reduced by removing variables and valuations.

3. Each time the VL receives a new proper valuation, 1t checks whether or
not it 1s combinable with the proper valuations already present in the
system.

4. If the new proper valuation 1s combinable with the valuations already
present 1n the system, then the VL accepts the new valuation. If the new
proper valuation is not combinable, then the VL rejects it and informs the
user of its action.

5. Each time the VL accepts a proper valuation, it finds the marginal of the
Jont valuation (the valuation obtained by combining all proper valuations
in the system) for each variable in the system. This 1s accomplished using
local computations 1f an efficient Markov tree can be found for the
valuation network (Shenoy and Shafer [1, 2)) or by stochastic simulation
otherwise (Pearl [46])

6. The VL also computes for each variable the set of all solutions for the
marginal of the joint valuation for that variable. Once we have the
marginal of the joint valuation for a vanable, computing the set of all
solutions 1s simply done by exhaustive enumeration of the frame for that
variable.

7. If necessary, the VL can compute a configuration of all variables that 1s a
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solution for the joint valuation. This can be done using an exact algorithm
if an efficient Markov tree can be found for the valuation network (Shenoy
and Shafer [3, 4]) or by stochastic relaxation and annealing (Kirkpatrick et
al [47], Geman and Geman [48])

A VALUATION LANGUAGE FOR CATEGORICAL KNOWLEDGE

In this section, we describe an instance of a valuation-based language
designed to represent categorical knowledge—the kind of knowledge tradition-
ally represented by rules 1n rule-based systems. Next, we show by means of a
small example how consistency is maintained in the knowledge base and how
inferences are cached Our exposition here 1s informal. A formal treatment (with
theorems and proofs) of the valuation language described 1n this section 1s given
in Shenoy and Shafer [3].

Suppose we are interested 1n representing categorical knowledge 1n a
valuation system. Let us describe what valuations are and what the combination
marginalization, and solution operations are for such systems

VALUATIONS A valuation on h 1s a function H: W, — {¢, f}, where ¢ means
true and f means false

Thus a rule that relates the values of variables in set & 1s represented as a
valuation on 2 For example, consider the rule If A = a then B = b that relates
two vanables A and B whose frames are, respectively, W, = {a, ~a}, and
Wpg = {b, ~b}. Then the rule can be represented by the valuation ¥ on {4, B}
defined as follows: V{(a, b) = ¢, V(a, ~b) = f, V(~a, b) = t, V(~a, ~b) =
t.

Consider the valuation U on A4 such that U(x) = ¢ for all x € W,. Obviously,
such a valuation tells us nothing about the variables in A. We call such a
valuation the vacuous valuation on h.

PROPER VALUATIONS Suppose H 1s a valuation on h. We shall say that H 1s a
proper valuation if there exists a configuration x of h such that H(x) = ¢. Thus
a proper valuation cannot be i1dentically equal to f for all configurations.

COMBINATION Suppose G and H are valuations on g and A, respectively The
valuation G ® H on g U h 1s defined as follows:

t if G(x*8)=t and H(x'")=t¢
I otherwise

(G ® H)x)= {

for all x € W,yp.
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MARGINALIZATION Suppose G 1s a valuation on g, and suppose # < g. Then
the marginal of G for h, G*, 1s defined as follows:

GH(x)= 4 if there 1s a y € W,_; such that G(x, y)=¢
“{f  otherwise

for all x € W,.

SOLUTION Suppose G 1s a valuation on g. The solution for G, denoted by
¥(G), 1s a subset of ‘W, such that y € ¢(G) if and only if G(y) = ¢.

The combination, marginalization, and solution operations are used by the VL
to make 1nferences from the knowledge

Suppose a knowledge base 1s built incrementally by adding valuations one at a
time Consistency 1n the knowledge base 1s maintained by the VL by checking
whether the added valuation 1s proper and combinable with the proper valuations
already present 1n the system. Thus combinability of valuations corresponds to
consistency 1n the knowledge base (Shenoy and Shafer [3])

As valuations are added to the knowledge base, the system propagates all
valuations and computes the marginal of the joint valuation for each variable and
the solutions for each of these marginals. More precisely, suppose {R,|# € 3}
1s a collection of proper combinable valuations 1n the system. The valuation
®{Ry|h € 3C} 15 called the joint valuation. The valuation system computes
(®{R4|h € 3})"X} for each variable X, and also computes Y ((®{R,|h €
JC X, In doing so, the VS acts as a cache. At all times, the VS indicates the
relevant inferences of the knowledge 1n the knowledge base

AN EXAMPLE The following example is adapted from Etherington [49]. The
knowledge base consists of four rules as follows

Rule 1. Gullible citizens are citizens.

Rule 2. Elected crooks are crooks.

Rule 3. Citizens dislike crooks.

Rule 4. Gullible citizens do not dislike elected crooks

First we observe that Fred 1s a gullible citizen Next we observe that Dick 1s
an elected crook. We would like to consult our knowledge base to see if Fred
dislikes Dick or not.

One representation of this knowledge base 1s as follows Let C = ¢, G = g,
K = k, E = e, and D = d be five variables and their respective configurations
representing X 1s a citizen, X 1s a gullible citizen, Y 1s a crook, Y 1s an elected
crook, and X dishikes Y, respectively Suppose all five of these vanables are
binary variables
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Table 1. The Valuations Corresponding to the Four Rules

Wice) R, Wik.E) R,

c g t k e t

c ~g t k ~e t

~c g f ~k e S
~Cc ~g t ~k ~e t
Wic.k.0) R, W, 6,0} R,

c k d t g e d I
c k ~d f g e ~d t
c ~k d t g ~e d t
c ~k ~d t g ~e ~d t
~cC k d t ~g e d t
~c k ~d t ~g e ~d t
~c ~k d t ~g ~e d t
~c ~k ~d t ~g ~e ~d t

Rules 1, 2, 3, and 4 are represented by proper valuations on {C, G}, {X, E},
{C, K, D}, and {G, E, D}, respectively, as shown 1n Table 1

Suppose these variables and valuations are entered 1n the system A network
representation of the system 1s shown 1n Figure 1 In that figure, vanables are
represented by circles and valuations are represented by squares. For each
variable, the set of all solutions for the marginal of the joint valuation for that
variable 1s indicated inside the variable vertex. As can be seen from Figure 1, for
each variable the marginal of the joint valuation for that variable 1s the vacuous
valuation

Now, suppose we enter the observation that Fred 1s a gullible citizen. This 1s
represented 1n the system as a proper valuation F; on {G} as follows Fi(g) = ¢,
Fi(~g) = f. The system accepts this proper valuation, and after propagation 1t
displays the results as shown in Figure 2 Note that the system properly
concludes that Fred 1s a citizen. However, the system also concludes that Y 1s
not an elected crook! Thus 1s the first hint we have that something 1s wrong with
out knowledge base. The system has concluded something about Y without
being told 1t explicitly, and this 1s not an inference we expect from the
knowledge base. The reason for the inference Y is not an elected crook 1s the
contradictory nature of rules 3 and 4.

Finally, we enter the observation that Dick 1s an elected crook. This
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Citizen(X)
v= {f’-’y "

R1 Dislike(X,Y) R,
vy = {d, ~d}
Gullible Elected
Citizen(X) R Crook(Y)

v = {g, ~g} vy = {e, ~e)

Figure 1. The valuation network with five variables and four rules

Table 2. The Valuation Corresponding to Rule 5

WiG.x,0} R
g k d t
g k ~d t
g ~k d t
g ~k ~d t
~g k d t
~& &k ~d S
~g ~k d t
~g ~k ~d t
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Citizen(X) R Crook(Y)
V= -{c}/ ’ v = (i ~k)

Dislike(X,Y)
vy ={d, ~d}

Gullible
Citizen(X)

v={g)

Elected
Crook(Y)

y = {~¢}

Figure 2. The valuation network after valuation F) 1s included

observation 1s represented as a proper valuation F, on {E} as follows: Fi(e) = ¢,
F,(~e) = f. This ime the system refuses to accept the valuation because the
system detects that the joint valuation R, ® R, ® R; ® R, ® F; ® Fy1s not a
proper valuation. This signals that the knowledge 1n the system 1s inconsistent.

Suppose we remove rule 3 from the system and substitute instead rule 5 as
follows:

Rule 5 Nongullible citizens dislike crooks.

Rule 5 1s represented in the system as the valuation Rs on {G, K, D} as shown in
Table 2 The valuation system accepts valuation Rs with the results shown 1n
Figure 3. Note that the system now concludes nothing about Y.

Finally we enter valuation F, in the system. This time the system accepts the
valuation with the results shown in Figure 4 Thus we conclude that Fred does
not dishke Dick.

We have not described the exact process by which the valuation language
arrives at the results displayed in Figures 1-4 A computationally efficient
procedure 1n sparse networks that uses only local computation 1s described in
Shenoy and Shafer [3]
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y={c}
Gullible
F Citizen(X)

vy ={g}
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Crook(Y)
v = (k ~k)

Figure 3. The valuation network after valuation R; 1s removed and valuation Rs 1s

added

Citizen(X)
y={c}

Gullible
Citizen(X)

Crook(Y)
v={k)

Elected
Crook(Y)

y={g)

y={e}

Figure 4. The valuation network after valuation F, 1s included
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AN EVIDENTIAL LANGUAGE FOR UNCERTAIN AND
NONMONOTONIC REASONING

In this section, we describe another valuation language called an evidential
language The valuations 1n this language are belief functions

Propagation of belief functions has been studied by Shafer and Logan [50],
Shenoy and Shafer [1, 2, 51], Shenoy et al [52], Kong [53, 54], Dempster and
Kong [55], Shafer et al. [56], Melloul1 [57], Shafer and Shenoy [13], Dempster
[22], and Almond [58] Zarley [59] describes an implementation of an evidential
system on a Symbolics workstation (see also Zarley et al. [60]) Yen-Teh Hsia
has implemented an evidential system called AUDITOR’S ASSISTANT on a
Macintosh microcomputer. Shafer et al [7] describe an application of
AUDITOR’S ASSISTANT for assisting 1n audit decisions

The use of probabiliies or belief functions to perform nonmonotonic
reasoning 1s not new. Such an approach has been suggested, for example, by
Baldwin [61], Ginsberg [62], and Rich [63]. The essence of these approaches 1s
to relax the binary constraint of Boolean logic and allow truth values to be
measured by a number between 0 and 1 Our approach 1s different We do not
tack on probabilities or belief functions to logic. Instead, we show that pure
belief-function reasoning 1s inherently nonmonotonmic. A similar approach 1s
taken by Grosof [64], who discusses how probabilistic reasoning 18 nonmono-
tonic.

In this section, we will first briefly describe evidential systems. Next, we
sketch the basic defimitions 1n a truth maintenance system and describe the
correspondence between concepts 1n an truth maintenance system and concepts
1n a evidential system Finally, we study a small example 1n nonmonotonic
reasoning and demonstrate how evidential systems handle such problems This
example also serves to illustrate the management of uncertainty in evidential
systems

An Evidential System

In evidential systems (ES), proper valuations correspond to superpotentials,
which are unnormalized basic probability assignment functions. First we will
briefly describe the basics of the theory of belief functions (Shafer [65]) Next,
we define superpotentials and combination, marginalization, and solution for
superpotentials

Suppose W, 1s the frame for a subset & of variables A basic probability
assignment function (bpa function) for h 1s a non-negative, real-valued
function m on the set of all subsets of W, such that

1. m(g) =20

2. Z{m(a)|la € Wy} =1

Intuitively, m(a) represents the degree of belief assigned exactly to a (the
proposition that the true configuration of 4 is 1n the set a) and to nothing smaller.
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A bpa function 1s the belief function equivalent of a probability mass assignment
function n probability theory. Whereas a probability mass function 1s restricted
to assigning probability masses only to singleton configurations of variables, a
bpa function 1s allowed to assign probability masses to sets of configurations
without assigning any mass to the individual configurations contained 1n the sets.
For example, 1f we have absolutely no knowledge about the true value of a
variable, we can represent this situation by a bpa function as follows-

m(W,)=1, m(a)=0 for all other a € 2%

Such a function 1s called a vacuous bpa function. Note that 1n Bayesian theory
the only way to express total ignorance 1s to assign a mass of 1/n to each value,
where 7 1s the total number of possible values Thus, in Bayesian theory, we are
unable to distinguish between equally likely configurations and total ignorance.
The theory of belief functions offers richer semantics.

Associated with a bpa function are two related functions called belief and
plausibility. A belief function 1s a function Bel: 2%+ — [0, 1] such that

Bel(a)=3={m(8)|8 < a}

Whereas m(a) represented the belief assigned exactly to a, Bel(a) represents the
total belief assigned to a. Note that Bel(¢¥) = 0 and Bel("%,) = 1 for any belief
function. For the vacuous bpa function m, the corresponding belief function Bel
is gtven by

Bel(W,)=1, Bel(a) =0 for all other a € 2W

A plausibility function 1s a function P1- 2% — [0, 1] such that
Pl(a)=2{m®B)|8 N a3}

Pl(a) represents the total degree of belief that could be assigned to a. Note that
Pl{(a) = 1 — Bel(~a), where ~ a represents the complement of a in W;; ~a
= W, — a. Also note that Pl(a) = Bel(a) For the vacuous bpa function, the
corresponding plausibility function 1s

Pl(&) =0, Pl(a) =1 for all other a € 2%,

If a bpa function 7 1s also a probability mass function (1.e., all the probability
masses are assigned only to singleton subsets), then

Bel(a)=Pl(a)=X{m({x})|x € a}=probability of proposition a

SUPERPOTENTIALS Suppose /4 1s a subset of variables. A superpotential for h
is a non-negative, real-valued function on the set of all subsets of ‘W, such that
the values of nonempty subsets are not all zero. Given a superpotential H on 4,
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we can construct a bpa function H’ for h from H as follows:
H (2)=0, H'(a)=H(a)/S{H®)|b c W;, b+}

Thus superpotentials can be thought of as unnormalized bpa functions
Superpotentials correspond to the notion of proper valuations in the general
framework.

PROJECTION AND EXTENSION OF SUBSETS Before we can define
combination and marginalization for superpotentials, we need the concepts of
projection and extension for subsets of configurations.

If g and A are sets of variables, & € g, and ¢ 1s a nonempty subset of W,,
then the projection of ¢ to h, denoted by g“’ , 15 the subset of W, given by g,“’
= {x|x € g}.

For example, if a 1s subset of Wy x vz}, then the marginal of a to { X, Y}
consists of the elements of "W, x y; that can be obtained by projecting elements of
ato W{ XY}

By extension of a subset of a frame to a subset of a larger frame, we mean a
cylinder set extension. If g and /4 are sets of variables, » < g, # # g, and Risa
subset of W,, then the extension of fto g1s A x We_n. If £ 15 a subset of Wh,
then the extension of & to A 1s defined to be A. We will let £'¢ denote the
extension of & to g,

For example, 1f a is a subset of W, x}, then the vacuous extension of a to
{W, X, Y, Z} 1sSa X W(Y,Z}'

COMBINATION For superpotentials, combination 1s called Dempster’s rule
(Dempster [44, 45]) Consider two superpotentials G and H on g and h,
respectively. If

T{G(a)H®B)|(a'€UP) N (B1EUP)£ 35} #0 (1)

then their combination, denoted by G @ H, 1s the superpotential on g U A
given by

(G @ H)c)=3{G(a)HB)|(a'eUP) N (fTeUh)=c} Q)

forall ¢ € W,y If Z{G(@)H®E)|(a 1 €M) N (B &Y9M) % 5} = 0, then we
say that G and H are not combinable.

Intustively, if the bodies of evidence on which G and H are based are
independent, then G © H 1s supposed to represent the result of pooling these
two bodies of evidence. Note that condition (1) ensures that G @ H defined 1n
(2) 1s a superpotential. If condition (1) does not hold, this means that the two
bodies of evidence corresponding to G and H contradict each other completely
and 1t 1s not possible to combine such evidence

MARGINALIZATION Suppose G 1s a superpotential for g, and suppose 2 < g.
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Then the marginal of G for h s the superpotential G** for 4 defined as follows:
G'"(a)=2{G(B)|8 = W, such that B/ = a}
for all subsets a of W,.

SOLUTION There are several defimitions of solution possible for evidential
systems. For nonmonotonic reasoning, we will define a solution for 7 to be a
configuration whose plausibility 1s posittve. Formally, suppose m 1s a bpa on A.
Suppose Pl 1s the plausibility function on /4 corresponding to m Then we say
that x € W, 1s a solution for m if PI({x}) > 0.

A Truth Maintenance System

Assume a propositional language consisting of propositional symbols, the
logical connectives A, V, ~, —, ¢ formulas, and the usual standard
entailment relation = - If S 1s a set of formulas and w 1s a formula, then S = wif
every assignment of truth values to the propositional symbols of the language
that makes each formula of S true also makes w true.

A literal 1s a propositional symbol or the negation of a propositional symbol
A clause 1s a finite disjunction of literals with no literals repeated whose truth
value 1s true A prenuse 1s a literal whose truth value 1s true. A categorical
Justification 1s a conditional whose truth value 1s true. Note that a categorical
Justification can be represented as a clause For example, the conditional A = a
— B = b can be represented as a clause as follows: ~(4 = a) Vv (B = b).

An assumption 1s a literal whose truth value 1s assumed to be true in the
absence of a contradictton A noncategorical justification 1s a conditional
whose truth value 1s assumed to be true in the absence of a contradiction. A
nogood 1s a clause whose truth value 1s false.

A knowledge base 1s a collection of justifications (rules), premises
(observations), and assumptions (uncertain judgments). Justifications may be
categorical or noncategorical. Categorical justifications may describe logical
relations between propositional symbols Non-categorical justifications may
describe facts that are usually but not always true

The functions of a truth maintenance system (TMS) are as follows:

1. The use of noncategorical justifications and assumptions or defaults 1s

permtted.

2. In the absence of a contradiction, noncategorical justifications and

assumptions are assumed to be true

3. If there 1s a contradiction 1n the knowledge base, then some noncategorical

justifications or assumptions or both need to be retracted so that
consistency 1s restored When an assumption or a noncategorical justifica-
tion 1s retracted, all inferences made using these assumptions and
noncategorical justifications must also be retracted.
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4. All inferences that are consistent with the knowledge n the knowledge
base should be displayed to the user so that the user 1s aware of the
implications of the knowledge.

USING AN EVIDENTIAL LANGUAGE AS A TMS We will now outline a
correspondence between the concepts 1n a TMS and concepts 1n an evidential
system (ES).

A lhiteral in a TMS 1s represented 1n an ES by a variable and one of 1ts values.
Thus X = x1s an ES representation of the literal x where x belongs to Wy, the
set of possible values of vanable X. For example, suppose the proposition
TWEETY IS A BIRD 1s represented in a TMS as a literal. In the ES, this could
be represented by a variable BIRD with two possible values yes and no. Then
the literal TWEETY IS A BIRD corresponds to BIRD = yes in an ES

A premise 1s a literal whose truth value 1s true In an ES, a premuse 1s
represented as a categorical belief function. For example, the premise X = x 1s
represented by a belief function on Wy given by m({x}) = 1.

An assumption 1n a TMS 1s a literal whose truth value 1s set to true 1n the
absence of a contradiction in the knowledge base. In the ES, an assumption X =
X 15 represented by a noncategorical belief function Bel (with basic probability
assignment /) on Wy such that

m({x})=p and m(Wy)=1-p

where 0 < p < 1. The actual value of p will depend on the particular
assumption. p can be interpreted to be the prior degree of belief in the
assumption

A justification 18 a conditional,

Xi A Xy A A X,y

where x;, X3, * * *, X, y are literals. In an ES, a categorical justification x; A x; A
*++ A X, — y1s represented as a categorical belief function on the frame W,
where h = {X|, X3, '+, X,,, Y}. For example, consider two variables X and
Y with frames Wx = {x, ~x} and Wy = {y, ~»}. Then the categorical
Justification x — y 1s represented 1n the ES as a categorical belief function on
Wix,v) given by

m({(x, ¥), (~x, ), (~x, ~y)}P=1

Noncategorical justifications are represented 1n the ES as noncategorical
belief functions There are several ways in which this can be done. The most
appropriate way will depend on the nature of the particular justification.

The first type of belief-function representation of a noncategorical justifica-
tion 1s called exceptional. The exceptional representation of a noncategorical
justification 1s implied by McCarthy’s [66] formulation For example, consider
the noncategorical justification MOST BIRDS FL'Y This can be represented in a
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TMS by a categorical justification and an assumption as follows:

BIRD = yes A EXCEPTIONAL_BIRD =no — FLY =yes
Assume EXCEPTIONAL_BIRD =no

Here EXCEPTIONAL_BIRD =no 1s a literal that captures all the conditions
under which birds fly. Let B = b, E = ~e, and F = f denote the ES
representation of the literals BIRD = yes, EXCEPTIONAL_BIRD = no, and
FLY = yes. Then the justification MOST BIRDS FLY can be represented in an
ES by two independent basic probability assignment functions, m; on Wis,e,r}
and m; on “Wg as follows:

ml(w{B,E,F} - {(by ~e, ~.f)})= 1

my({~e})=p, my(We)=1-p

where 0 < p < 1. Note that m; @ m;, 1s a basic probability assignment on
W.B,zrF} g1ven by

m, @ mZ({(bs ~e’f)’ (~b7 ~e’f)s (""b, ~ée, ~f)})=p
m @ m(Wpgry—{(b, ~e, ~)})=1-p

m; @ m, 1s then the exceptional representation n an ES of the justification
MOST BIRDS FLY

The second type of belief-function representation of a noncategorical
justification 1s called associational. Consider again the justificaion MOST
BIRDS FLY We can interpret this to mean that birds are associated with flying
with a certain degree of belief. This association may just go one way, that is, we
may not necessarily associate all flying objects with birds. Interpreted in this
way, we can represent this justification by a basic probability assignment
function m; on Wz sy as follows

m3({(b9f)1 (~b!.f)) (~b1 ~f)})=p9 m3(w{B,F})=l_p

where 0 < p < 1.

Obviously, exceptional representations of noncategorical justifications have
greater expressive power than associational representations. In the bird example,
if the basic probability assignment function m; @ m, is marginalized by deleting
the E variable, then we obtain precisely the associational representation 713, that
18, (m @ my)"BF = m, However, this expressive power comes at a
computational cost since more variables are required in the exceptional
representation than 1n the associational representation.

Consider a knowledge base represented by a collection of bpa functions {m,|i
= 1, -+, n} representing premises, rules, and assumptions. Suppose m, 1s an
assumption X = x. We shall say that the assumption m,, 1s retracted by the
knowledge base {m,|i = 1, ---, n} if PI"X}({x}) = O where P1‘{*} is the
plausibility function corresponding to (D {m,|i = 1, - - -, n})*{X}. We shall say
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that the assumption 71, 1s confirmed by the knowledge base {m,|1 = 1, - - -, n}
f m¥3({x}) = 1 where m = (@{m,|1 = 1, ---, n}).
An Example

Consider the following knowledge base:

Rule 1. Most Republicans (at least 80%) are not pacifists.
Rule 2. Most Quakers (at least 90%) are pacificists

First we observe that Nixon 1s a Republican. Then we observe that Nixon is also
a Quaker. We would like to consult our knowledge base to find out whether
Nixon 1s a pacifist or not. Next we will add the premise that Nixon 1s not a
pacifist and see how the evidential system reconciles this premise with rule 2.

One representation of this knowledge base 1s as follows. LetR = r,Q = g, P
= p be three variables and their respective configurations representing the
propositions X 1s a Republican, X 1s a Quaker, and X 1s a pacifist, respectively.
Furthermore, let ER = er and EQ = eq be two more variables and their
respective configurations representing the propositions X 1s an exceptional
Republican and X is an exceptional Quaker, respectively

We will represent rule 1 with categorical rule 1 and assumption 1 as follows.

Catecoricar. Rute 1 If X 15 a Republican and X 1s not an exceptional
Republican, then X is not a pacificist

AssumpTioN 1. X 1s not an exceptional Republican
The bpa function representation of categorical rule 1 is as follows
m("Wr gr, P}~ {(r, ~er,p)})=1
The bpa function representation of assumption 1 1s as follows:
my({~er})=0.8, my(Wgg)=0.2
We will represent rule 2 with categorical rule 2 and assumption 2 as follows:

CaTeGORICAL RULE 2.  If X 18 a Quaker and X 1s not an exceptional Quaker,
then X is a pacifist

AssumptioN 2 X 18 not an exceptional Quaker.
The bpa function representation of categorical rule 2 1s as follows.
my(Wio ko, py—{(q, ~eq, ~p)})=1
The bpa function representation of assumption 2 1s as follows:
my({~eq})=0.9, my(Wgo)=0.1

If we enter these four bpa functions in the evidential system, the resulting
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Pacifist(X)
0,0, 1)
V= {p, ~p}

Quaker(X)
0,9 1
W= (eq, ~q

m,

Figure 5. The evidential network with two categorical rules and two assumptions

evidential network 1s as shown in Figure 5. As before, vanable vertices are
shown as circles and valuation vertices are shown as squares. In addition to
displaying the set of all solutions for the marginal of the joint valuation, the
marginal bpa function 1s also displayed. If {x, ~x} 1s the frame for variable X,
then the marginal of the joint valuation for X 1s shown as a vector (m*{X}({x}),
(MU ~x}), "3 ({x, ~x})), wherem = @ {m,|1 = 1, ---, n}.

Suppose we now enter the premise that Nixon is a Republican. This 1s
represented as a bpa function as follows

ms({r})=1

The evidential system accepts this bpa function with the results as shown 1n
Figure 6. Note that the belief in the proposition that Nixon 1s not a pacifist has
increased from 0 to 0.8 and the brief 1n the proposition Nixon 1s not a Quaker has
increased from O to 0 72.

Suppose we now enter the premise that Nixon 1s a Quaker. This 1s represented
by a bpa function as follows

ms({g}=1

The evidential system accepts this bpa function with the results shown in Figure
7. Note that as per the ES, Nixon could either be a pacifist or not. The
plausibility of Nixon being a pacifist (0.71) 1s higher than the plausibility that
Nixon 1s not a pacifist (0.35). This is because Quakers have higher belief (0 90)
of being pacificists than Republicans have of not being pacifists (0.80).
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Pacifist(X)
©, 8,.2)
\V = {P’ ""p]
m,
Exceptional Quaker(X)
Republican Republican(X)
CI?;, 0,0 = (0, .8,.2) ©, .72, .28)
y={r} V= {er, ~er} v = {q, ~q)
mg m, o,

Figure 6. The evidential network with the premuse that Nixon 1s a Republican

Pacifist(X)
(.64, .29, .07)
Y = {p’ ~P}
1’1’11 rn3
Exceptional Exceptional
Republican(X) Republican(X) Quaker(X) Quaker(X)
(1,0,0) (.64, .29, .07) (1,0,0) (.29, .64, .07)
y={r) Y = {er, ~er) v=1(q) V= (eq, ~q
m5 m2 m6 m4

Figure 7. The evidential network with the premuse that Nixon 1s a Quaker
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Pacifist(X)
m, | 0,1,0
vy = {~p}
m, m,

Quaker(X) Exceptional
Repuol Quaker(X)
ep(l;, 0(,:?)1)10() 1,0,0) 11.0.0)
\V:{r} "’:{q} \V:{eq}
s Mg m,

Figure 8. The evidential network with the premise that Nixon 1s not a pactficst

Now suppose we enter the premuse that Nixon is not a pacifist. This 1s
represented by a bpa function as follows:

m;({~p})=1

The ES accepts this bpa function, and the results are displayed 1n Figure 8. Note
that the assumption that Nixon 1s not an exceptional Quaker has been retracted
by the evidence!

SUMMARY AND CONCLUSIONS

The main objective of this article 1s to introduce a new language for building
knowledge-based systems as an alternative to rule-based-languages Whereas
rule-based languages use rules as a knowledge representation device and modus
ponens as an operation for making inferences, our language uses proper
valuations as a knowledge representation device and three operations—
combination, marginalization, and solution—for making inferences. Combina-
tion corresponds to aggregation of knowledge, marginalization corresponds to
crystallization of knowledge, and solution is a decoding mechanism that maps
knowledge from the space of valuations to the space of configurations.
Conceptually, the language combines all valuations, finds the marginal of the
jomt valuation for each variable, and then finds the solution for each marginal.

Like rule-based languages, our valuation-based language retains the modular-
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ity feature Each valuation represents a distinct modular chunk of knowledge. If
the combination operator is commutative and associative, then, like rule-based
languages, valuation-based languages are nonprocedural. These desirable
features of rule-based languages are retained

Unlike rule-based languages, our valuation-based language automatically
maintains consistency in the knowledge base, caches and displays relevant
inferences, reasons nonmonotonically, and permuts coherent management of
uncertainty

A natural question 1s, what 1s the computational power of valuation-based
languages? Anderson [67] has formally shown that 1s 1s possible to imagine
coding any given Turing machine using a pure production system. We suspect
that valuation-based languages have the same computational power, but we do
not have a proof.
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