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ABSTRACT 

A new language based on valuations ts proposed as an alternatwe to rule-based 
languages for constructing knowledge-based systems. Valuation-based languages 
are superior to rule-based languages for maintaining consistency m the knowledge 
base, for cachmg references, for managmg uncertainty, and for nonmonotomc 
reasonmg. An abstract description of  a valuatzon-based language is gwen Two 
specifw instances o f  valuation-based languages are described. The first ts designed to 
represent categortcal knowledge. The ablhty of  such a language to mamtam 
conststency and cache references ts demonstrated with an example. The second ts an 
evidential language--a valuatzon-based language m whwh valuattons are behef 
functions. The abthty of  ewdenttal languages to perform nonmonotonic reasoning 
and manage uncertainty is demonstrated with an example. 

KEYWORDS. valuation-based language, rule-based language, valuation 
system, knowledge-based system, rule-based system, consistency in 
knowledge bases, caching inferences, truth maintenance systems, 
evidential systems, nonmonotonic reasoning, management o f  uncer- 
tainty 

I N T R O D U C T I O N  

This paper proposes a new language based on "valuations" as an alternative 
to rule-based languages for budding knowledge-based systems. This language is 
inspired by the axlomauc framework for propagation of probabdmes and behef 
funcuons (Shenoy and Shafer [1, 2]) and by Rs extension, which includes 
constraint propagatl,3a and discrete optlrmzataon (Shenoy and Shafer [3, 4]). 
Since the primary objects in the axiomatic framework are called valuaUons, we 
refer to this language as being valuation-based, and we call a formal structure 
created using this language a valuation system. 

A popular language for building a knowledge-based system is a production or 
a rule-based language (Brownston et all. [5], Davis and King [6]). While these 
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languages have many attractive features, they also have some serious shortcom- 
ings. In this paper we will focus on four major shortcomings of rule-based 
languages that are not shared by valuauon-based languages. These four 
shortcormngs are referred to as the problem of consistency, the problem of 
caching, the problem of nonmonotonic reasoning, and the problem of managing 
uncertainty. 

A special case of a valuation system is an evidential network (Shenoy and 
Shafer [1, 2]). The use of evidenual networks to manage uncertainty is well 
understood (see, e.g., Shafer et al. [7]). However, the use of valuaUon systems 
for representing categorical knowledge, maintaining consistency, and perform- 
mg intelligent caching and nonmonotonlc reasoning is not widely understood 

Valuation systems include as a special case behef networks and moral graphs. 
Belief networks have been proposed by Pearl [8, 9] and moral graphs by 
Launtzen and Splegelhalter [10] for managing uncertainty using probablhtles 
(see also Heckerman and Horvltz [11]) The use of valuation systems m 
representing and propagating probabilities is descnbed m Shenoy and Shafer [1, 
2] and Shafer and Shenoy [12, 13] 

Valuation languages can also be used to propagate constraints (Seldel [14], 
Dechter and Pearl [15], Shenoy and Shafer [3]) and to solve discrete 
optimization problems, both constrained and unconstrained (Bertele and 
Bnoschi [16], Shenoy and Shafer [4]) Other problems that fit in the framework 
of valuauon languages Include solution to systems of equations (Rose [17]), 
propagation of Spohman belief functions (Spohn [18], Hunter [19]), retrieval 
from acychc database schemes (Malvestuto [20], Been et al [21]), and use of a 
Kalman filter (Dempster [22], Melnhold and Singpurwala [23]). 

An outline of this paper is as follows. In the following secuon we discuss 
some problems with rule-based languages In the third section we gwe an 
abstract description of a valuation-based language, and in the fourth section we 
describe a specific instance of a valuation language designed to represent 
categoncal knowledge We demonstrate, using an example, how such a 
language can be used to maintain consistency m a knowledge base and how 
Inferences are cached. In the fifth section we describe an ewdentml language--a 
valuatmn language that uses behef functions as valuauons. We also briefly 
describe a truth maintenance system and show the correspondence between 
concepts m truth maintenance systems and concepts m evidential systems 
Next, using an example, we show how ewdential languages can be used to 
reason nonmonotonicaUy and manage uncertmnty. We conclude with a summary 
and some general comments. 

SOME PROBLEMS WITH RULE-BASED LANGUAGES 

In this secUon, we look at some of the shortcomings of pure rule-based 
languages. In particular, we focus on the problems of consistency, caching, 
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nonmonotomc reasoning, and management of uncertainty. Since there ~s no 
universally accepted formal definition of a rule-based language, we will use the 
model of a pure production system given in Daws and Kang [6] as a 
representative rule-based language 

Consistency 

In large knowledge bases, consistency is an important issue By consistency, 
we mean the absence of syntactic contra&ctions. An example of a syntactic 
contradiction is a premise A = a and two rules: A = a -~ B = b and A = a --, 
B = - b .  (The symbol --, denotes the truth-functional con&tional.) 

Rule-based languages lack expressive power to check for contra&ctions. 
Accordingly, most commercial lmplementaUons of rule-based languages pro- 
vide little or no support for checlong for contradlcUons. However, this does not 
mean that such checking cannot be done outside the formal structure of rule- 
based languages. In recent years, there have been several stu&es on effloent 
methods for checlong for contra&ctlons in rule-based languages (see, e.g., 
Adams [24], Suwa et al. [25], Nguyen et al. [26], Pearl [27], Touretzky [28], 
and Gmsberg [29]). As we shall see, unlike rule-based languages, maintenance 
of consistency is an Integral part of valuation-based languages 

Caching 

Regarding caching of references, typically, backward-chaining, goal-driven 
rule-based languages do not cache any inferences, whereas forward-chaining 
production systems cache all Inferences in worlong memory In either case, 
caching m rule-based languages is of little help to the knowledge engineer in 
understanding the implications of the knowledge in the knowledge base. As we 
shall see, valuation languages cache and display certain inferences, and this can 
be very useful in the knowledge engineering process. 

Nonmonotonic Reasoning 

The subject of nonmonotomc or default reasoning is an important area m 
artificial intelligence We often use assumptions or defaults as facts untd we 
observe something that contradicts the references we have derived. We then 
need to retract some assumpuons or defaults to avoid the contradiction. A 
famous example is that of  Tweety the bird. Most birds fly We may initially use 
the rule I f X  is a bird then X f l w s  as an assumption or a default. Upon learning 
that Twecty is a bird, we may infer that Tweety flies. However, we may 
subsequently learn that Tweety is a penguin and does not fly. At this stage, to 
keep our knowledge base contra&ction-free, we need to retract the assumption 
that led to the contra&ction. 

The construction of efficient procedures to enable nonmonotonic or default 
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reasoning is the subject of considerable research m artificial intelligence 
(McCarthy [30], McCarthy and Hayes [31], McDermott and Doyle [32], Moore 
[33], Reiter [34]). 

Uncertainty 

Finally, it is now well known that pure rule-based languages are inadequate 
both to represent uncertain knowledge and to make references from such 
knowledge (Shafer [35], Heckerman and Horvltz [36]). For example, MYCIN 
used certainty factors and PROSPECTOR used a pair of likelihood ratios with 
each rule to represent uncertainty (Shorthffe and Buchanan [37], Duda et al 
[38]). However, these systems are brittle. They give the right answers in only 
the simplest of cases. 

One solution to some of these problems is to couple a truth maintenance 
system to the knowledge base (Doyle [39], de Kleer [40], Reiter and de Kleer 
[41]). Truth maintenance systems were dewsed by logicianS In artificial 
intelligence to reason with incomplete and uncertain information symbohcally 
without using numerical calcuh such as probability theory or belief functions. 
Truth maintenance systems are still in the developmental stage and are the 
subject of intense research m artificial intelligence. 

Another solution has been to control the sequence of inferences so that the 
correct results are obtained. This approach has been studied, for example, by 
Laskey and Lehner [42] and by D'AmbrosIo [43]. 

AN ABSTRACT DESCRIPTION OF A VALUATION-BASED 
LANGUAGE 

This section gives an abstract description of a valuation-based language. The 
language consists of objects, and operators that operate on the objects. The 
objects are used to represent knowledge The operators are used to make 
mferences from the knowledge In rule-based languages, the objects are 
variables and rules and the operator is modus ponens. In valuation-based 
languages, the objects are called variables and valuations, and the operators are 
called combination, marginalizatlon, and solution. 

The level of abstractness at which this language is described here forces us to 
omit the computational details of how precisely the three operators are used to 
make inferences. This allows us to concentrate on the concepts (For a more 
formal and less abstract exposition with theorems and proofs, we refer the reader 
to Shenoy and Shafer [1-4] and Shafer and Shenoy [13].) However, since 
abstract descriptions can be difficult to comprehend, we describe two specific 
valuation-based systems in the succeeding sections with concrete examples. 
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Variables and Configurations 

We use the symbol ~ x  for the set o f  possible values of  a variable X,  and we 
call ~dTx the frame for  X.  We wall be concerned with a fimte set 9C of  variables, 
and we will assume that all the variables In 9C have finite frames 

Given a fimte nonempty set h of  variables, we let 'Wh denote the Cartesian 
product of  '~7x for X m h; ~ h  = X { %Vx[X E h }. We call "~h the frame for  
h. We will refer to elements of  'Wh as configurattons o f  h. 

PROJECTION OF CONFIGURATIONS ProJection of  configurations simply 
means dropping extra coordinates; if (w, x, y,  z) is a configuration of  { W, X,  
Y, Z},  for example, then the projection of  (w, x, y,  z) to { W, X}  is simply (w, 
x), which is a configuration o f  { W, X}  

I f g  and h are sets of  variables, h c g, and x is a configuration of  g, then we 
will let x *h denote the projection of  x to h. The projection x *h is always a 
configuration of  h. I f  h = g and x is a configuration of  g, then x *h = x 

Valuations 

Given a set h o f  variables, there is a set ~h.  The elements of  ~h are called 
valuattons o f  h. We will let ~ denote the set of  all valuations, that is, ~ = 
(-J {~h[h c ~E}. Valuations are primmves m our abstract description and as 
such require no definition But as we shall see shortly, they are objects that can 
be combined, marglnahzed, and solved. 

Intmtively, a valuation on h represents some knowledge about the variables m 
h 

Examples of  valuations on h are an array, a function H :  ~¢~h ---' ~+ (~+ 
denotes the set of  non-negatwe real numbers); a superarray, a function H :  2 v:h 
-+ ~/+ (2wh denotes the set of  all subsets 0f'Wh); a rule, a function H :  %Vh -+ 
{ true, false }, etc 

PROPER VALUATIONS For each h c ~ ,  there Is a subset (Ph of  ~h whose 
elements will be called proper valuattons on h. Let (P denote I,.) { (Ph I h c ~E }, 
the set of  all proper valuations. 

Intuitively, a proper valuation represents knowledge that is consistent in itself 
The notion of  proper valuations is important as it enables us to define 
combmabllity of  valuaUons, it allows us to define existence of  solutions, and it 
allows us to constrain the definitions of  combination and marginalization to 
meaningful operations. 

Examples of  proper valuaUons are apotenttal, a funcuon P" ~¢7h ~ ~L that is 
not identically zero for all configurations; a superpotential, a funcnon m: 2wh 

~t+ that is not zero for all nonempty subsets of  "~¢h; a satisfiable rule, a 
function R: 'Wh ~ {true, false} that is not identically false for all 
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configurataons; etc. Potentials correspond to unnormalized probabdlty 
distributions, and superpotentials correspond to unnormallzed basic probability 
assignment functions. 

Combination 

We assume there is a mapping ® :  ~ × ~ --) ~7, called combination, such 
that 

1. I f  G and H are valuations on g, and h, respectively, then G ® H is a 
valuation on g LI h. 

2. I f  either G or H is not a proper valuation, then G ® H is not a proper 
valuation 

3. I f  G and H are both proper v a l u a t i o n s ,  then G @ H may or may not be a 
proper valuation 

If  G @ H is not a proper valuaUon, then we shall say that G and H are not 
combinable. If  G ® H is a proper valuation, then we shall say that G and H are 
combinable and that G ® H is the combmatton oJ G and H. 

Intuitively, as its name suggests, combination corresponds to aggregauon of  
knowledge If  G and H are proper valuations on g and h representing knowledge 
about varmbles in g and h, respecuvely, then G ® H represents the aggregated 
knowledge about variables m g U h. 

For potentials, combination corresponds to polntw~se multiplication, if G and 
H are potentmls on g and h, respectively, then (G ® H)(x)  = G(x~g)H(x~h). 
For basic probabdlty assignment funcuons, combmatxon corresponds to Demp- 
ster's rule (Dempster [44, 45]). For rules, ff G and H are rules on g and h, 
respectively, then G ® H is a rule on g t3 h such that (G ® H)(x)  = true lff 
G(x ~g) = true and H(X ~h) = true. 

Marginalization 

We assume that for each h c_ 9C, there IS a mapping ~h: I,.J {~glg ~- h} 
%9h, called marginalization to h, such that 

1. If  G is a valuation on g and h c g, then G sh is a valuation on h 
2. If  G is a proper valuation, then G ~h is a proper valuation. 
3. If  G IS not a proper valuation, then G ~h i s  not a proper valuation 

We will call G ~h the marginal o f  G for  h. 
Intuitively, marginalization corresponds to crystalhzatlon of  knowledge. I f  G 

is a valuation on g representing some knowledge about variables in g, and h _c 
g, then G ~h represents the knowledge about variables in h implied by G if we 
disregard varmbles in g - h. 

In the case of  potentials, margmalizatlon from g to h is summation over the 
configurations o f g  - h. In the behef-functlon case, margmallzation Is explained 
in the section " A n  Evidential Language.. .  " For rules, if G is a rule on g, then 
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G ~h is a rule on h such that GSh(x) = true fff there is a configuration y of g - h 
such that G(x, y) = true. 

Solution 

We assume that for each g c_ 9C, there is a mapping if. ~g ~ 2~g called 
solutton such that 

1. If  G is a proper valuation on g, then if(G) is a nonempty subset of ~Vg. 
2. If  G is a valuauon on g that is not proper, then if(G) = ~ .  

The configurations m if(G) are called soluttons for G. 
Intmtlvely, the solution operator maps knowledge from the space of 

valuations to the space of configurations. We encode knowledge as valuaUons so 
that we can aggregate and crystalhze it. However, we need to decode the result 
The solution operator simply serves as a decoding mechanism 

In the case of  probablhUes, solutions may correspond to configurauons w~th 
the highest probabihty or simply configurations with posltwe probabdmes. For 
behef functions, solutions may correspond to configurauons with the highest 
plauslbihty or simply configurations with posltwe plausibihtles For rules, 
solutions may correspond to configurations whose value ~s true 

Propagation of Valuations. 

A valuation-based language (VL) makes references by 
1. Combining all proper valuations m the system (the resulting valuation, if 

proper, is called the jomt valuation), 
2. Computing the marginal of the joint valuation for each varxable in the 

system, 
3. Computing the set of all solutions for the margmals of the joint valuation 

for each variable; and 
4. Computing the set of all solutions for the joint valuation 

The above is only a conceptual descripUon of the actions of a valuaUon-based 
language. It is not an algorithm If  there are n variables in the system, and each 
variable has two configurations m ~ts frame, then there are 2 n configurations of 
all variables. Hence, it will not be feasible to compute the joint valuation when 
there are a large number of variables. The VL does not actually compute the 
joint valuation. It computes the marglnals of the joint valuation without 
exphcltly computing the joint valuation, and it does this using only local 
computations. An algorithm for computing exact marglnals and solutions is 
described in detail in Shenoy and Shafer [1-4]. An algorithm for computmg 
approximate margmals is described m Pearl [46], and an algorithm for 
computing an approximate soluuon to the joint valuauon ~s described in 
Klrkpatnck et al. [47] and Geman and Geman [48]. 
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Valuation System 

A valuation system (VS) consists of a fimte set of variables ~E, a finite frame 
'Wx for each variable X in 9C, and a finite collection of valuauons { V,},eM 
where each valuation V, is on some subset of ~E. 

A valuatton network is a graph whose vertices represent either variables or 
valuations. If valuation 1I, is on a subset h of vertices, then this is represented in 
the valuation network by Including an edge between the vertex corresponding to 
V, and all variable vertices Xj such that Xj E h. 

The valuation network serves as a graphical representation of a valuation 
system and can be used as a user interface The valuation network is also used by 
the VL to propagate the valuations The algorithm for computing exact 
margmals and solution requires that the valuation network be a tree If the 
valuation network is not a tree, then this algorithm embeds it in a tree by 
clustering variables Such a tree, called a Markov tree, is then used to compute 
the marglnals and solutions (Shenoy and Sharer [1-4]). The simulation 
algorithms for computing marglnals and soluuons use the valuation network 
directly 

Capabifities of a Valuation-Based Language 

A VL has the following capablllUes: 
1. A VS can be extended by adding new vartables and adding new proper 

valuations. 
2. A VS can also be reduced by removing variables and valuations. 
3. Each time the VL recewes a new proper valuation, It checks whether or 

not it is combinable with the proper valuations already present in the 
system. 

4. If  the new proper valuation is combinable with the valuauons already 
present m the system, then the VL accepts the new valuation. If the new 
proper valuation is not combinable, then the VL rejects it and informs the 
user of its acUon. 

5. Each time the VL accepts a proper valuanon, it finds the marginal of the 
joint valuaUon (the valuation obtained by combining all proper valuations 
in the system) for each variable in the system. This IS accomphshed using 
local computaUons ff an efficient Markov tree can be found for the 
valuation network (Shenoy and Shafer [1, 2]) or by stochastm simulation 
otherwise (Pearl [46]) 

6. The VL also computes for each variable the set of all solutaons for the 
marginal of the joint valuation for that variable. Once we have the 
marginal of the joint valuauon for a variable, computing the set of all 
solutions is simply done by exhaustive enumeration of the frame for that 
variable. 

7. If necessary, the VL can compute a configuration of all variables that is a 
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solution for the joint valuation. This can be done using an exact algorithm 
ff an efficient Markov tree can be found for the valuataon network (Shenoy 
and Shafer [3, 4]) or by stochastic relaxaUon and annealing (Kirkpatnck et 
al [47], Geman and Geman [48]) 

A VALUATION LANGUAGE FOR CATEGORICAL KNOWLEDGE 

In this section, we describe an instance of a valuation-based language 
designed to represent categorical knowledge--the lond of knowledge tradiUon- 
ally represented by rules in rule-based systems. Next, we show by means of a 
small example how consistency is maintained m the knowledge base and how 
references are cached Our exposmon here is informal. A formal treatment (with 
theorems and proofs) of the valuation language described m this section is given 
m Shenoy and Shafer [3]. 

Suppose we are interested m representing categorical knowledge m a 
valuauon system. Let us describe what valuations are and what the combination 
marginalization, and soluUon operations are for such systems 

VALUATIONS A valuatton on h is a function H:  'Wh ---' {t, f } ,  where t means 
true and f means false 

Thus a rule that relates the values of variables m set h is represented as a 
valuation on h For example, consider the rule I f A  = a then B = b that relates 
two variables A and B whose frames are, respecuvely, "~7,4 = {a, - a } ,  and 
~ B  = {b, - b}. Then the rule can be represented by the valuation Von {A, B} 
defined as follows: V(a, b) = t, V(a, - b )  = f ,  V ( - a ,  b) = t, V ( - a ,  - b )  = 
t. 

Consider the valuation U on h such that U(x)  = t for all x E ~¢h. Obwously, 
such a valuation tells us nothing about the variables m h. We call such a 
valuation the vacuous valuation on h. 

PROPER VALUATIONS Suppose H is a valuaUon on h. We shall say that H is a 
proper  valuation if there exists a configuration x of h such that H ( x )  = t. Thus 
a proper valuation cannot be identically equal to f for all configurations. 

COMBINATION Suppose G and H are valuauons on g and h, respectwely The 
valuauon G @ H on g I.) h is defined as follows: 

( G ® H ) ( x ) = I )  

for all x E q~v~suh. 

If G(X ~g) = t and H ( X  ih) = t 
otherwise 
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MARGINALIZATION Suppose G is a valuation on g, and suppose h _c g. Then 
the marginal o f  G f o r  h, G *h, is defined as follows: 

for all x E 'Wh. 

If there IS a y E e~g_ h such that G(x,  y ) =  t 
otherwise 

SOLUTION Suppose G is a valuaUon on g. The solution for  G, denoted by 
~b(G), is a subset of %Vg such that y E if(G) if and only if G(y)  = t. 

The combination, margmahzatlon, and solution operations are used by the VL 
to make Inferences from the knowledge 

Suppose a knowledge base Is built incrementally by adding valuations one at a 
time Consistency in the knowledge base is maintained by the VL by checking 
whether the added valuation is proper and combinable with the proper valuations 
already present in the system. Thus combinablhty of valuations corresponds to 
consistency in the knowledge base (Shenoy and Shafer [3]) 

As valuations are added to the knowledge base, the system propagates all 
valuations and computes the marginal of the joint valuation for each variable and 
the solutions for each of these marglnals. More precisely, suppose { Rh [ h E 3E } 
is a collection of proper combinable valuations in the system. The valuation 
@{Rh [h E 3~2 } is called the j o m t  valuatton. The valuation system computes 
(~{Rh[h  E 3(~})~{x, } for each variable X, and also computes ak((®{Rhih E 
3C }),{x,}). In doing so, the VS acts as a cache. At all times, the VS indicates the 
relevant inferences of the knowledge in the knowledge base 

AN EXAMPLE The following example is adapted from Ethenngton [49]. The 
knowledge base consists of four rules as follows 

Rule 1. Gullible citizens are citizens. 
Rule 2. Elected crooks are crooks. 
Rule 3. Cmzens &slike crooks. 
Rule 4. Gullible citizens do not dislike elected crooks 

First we observe that Fred is a gullible citizen Next we observe that Dick is 
an elected crook. We would hke to consult our knowledge base to see if Fred 
dislikes Dick or not. 

One representaUon of this knowledge base is as follows Let C = c, G = g, 
K = k, E = e, and D = d be five variables and their respective configurations 
representing X is a citizen, X is a gullible Otlzen, Y is a crook, Y is an elected 
crook, and X dislikes Y, respectively Suppose all five of these variables are 
binary variables 
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Tab le  1. The Valuations Corresponding to the Four  Rules 
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%V{c,a} RI 'W{x,e} R2 

c g t k e t 

c - g  t k - e  t 

- c  g f - k  e f 
- c  - g  t - k  - e  t 

"~7 { C,K,D } R3 't~7 { G,E,D } R4 

c k d t g e d f 
c k - d  f g e - d  t 
c - k  d t g - e  d t 
c - k  - d  t g - e  - d  t 

- c  k d t - g  e d t 
- c  k - d  t - g  e - d  t 
- c  - k  d t - g  - e  d t 
- c  - k  - d  t - g  - e  - d  t 

Rules 1, 2, 3, and 4 are represented by proper  valuaaons on {C, G} ,  {K, E } ,  
{C, K,  D } ,  and {G, E ,  D } ,  respectively,  as shown in Table 1 

Suppose these variables and valuaUons are entered m the system A network 

representation of  the system is shown in Figure 1 In that figure, variables are 
represented by circles and valuations are represented by squares. For  each 
vanable ,  the set o f  all soluuons for the marginal of  the joint  valuation for that 
variable is indicated inside the variable vertex. As can be seen from Figure 1, for 
each variable the marginal of  the joint  valuation for that variable is the vacuous 
valuaUon 

Now, suppose we enter the observation that Fred ts a gulhble cmzen.  This is 
represented in the system as a proper  valuation F1 on {G} as follows F l ( g )  = t, 

F 1 ( - g )  = f .  The system accepts this proper  valuation, and after propagaUon it 
displays the results as shown in Fxgure 2 Note that the system proper ly  
concludes that Fred  is a citizen. However ,  the system also concludes that Y is 
not an elected crook! This is the first hint we have that something is wrong with 
out knowledge base. The system has concluded something about Y without 
being told it explici t ly,  and this is not an reference we expect from the 
knowledge base. The reason for the reference Y is n o t  an e l ec ted  c r o o k  is the 
contradictory nature o f  rules 3 and 4. 

Final ly,  we enter the observaUon that Dick is an elected crook. This 
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@ 

Figure 1. The valuation network with five variables and four rules 

Table 2. The Valuation Corresponding to Rule 5 

~dT{G,x,D~ R5 

g k d t 
g k - d  t 
g - k  d t 
g - k  - d  t 

- g  k d t 
- g  k - d  f 
- g  - k  d t 
- g  - k  - d  t 
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Figure 2. The valuation network after valuation Fl Is included 

observation is represented as a proper valuation F2 on {E} as follows: Fz(e) = t, 

F 2 ( - e )  = f .  This time the system refuses to accept the valuation because the 
system detects that thejoint valuation RI @ R2 ® R3 ® R4 ® Fl ® F2 Is not a 
proper valuation. This signals that the knowledge in the system is inconsistent. 

Suppose we remove rule 3 from the system and substitute instead rule 5 as 
follows: 

R u l e  5 Nongullible citizens dishke crooks. 

Rule 5 is represented in the system as the valuation R5 on {G, K, D} as shown m 
Table 2 The valuation system accepts valuation R5 wxth the results shown m 
Figure 3. Note that the system now concludes nothing about Y. 

Finally we enter valuation/72 in the system. This lame the system accepts the 
valuation wxth the results shown in Figure 4 Thus we conclude that Fred does 
not dmhke Dick. 

We have not described the exact process by which the valuation language 
arrives at the results displayed m Figures 1-4 A computationally efficient 
procedure m sparse networks that uses only local computation is described m 
Shenoy and Shafer [3] 
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Figure 3. 
added 

Ciuzen(X) 
~ = { c }  

Citizen(X) 

V = {g} 

v =  {,:t, ,-,d} 

The valuation network after valuation R3 is removed and valuation R5 1s 

~ Crook(Y) huzen(X) ~ R5 
v={ c} I V={ k} 

396 

Cluzen(X) 

Figure 4. The valuation network after valuataon F2 is included 
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AN EVIDENTIAL LANGUAGE FOR UNCERTAIN AND 
N O N M O N O T O N I C  R E A S O N I N G  

In this section, we describe another valuation language called an evidential 
language The valuations m this language are belief functions 

Propagation of belief functions has been studied by Shafer and Logan [50], 
Shenoy and Shafer [1, 2, 51], Shenoy et al [52], Kong [53, 54], Dempster and 
Kong [55], Shafer et al. [56], Mellouh [57], Shafer and Shenoy [13], Dempster 
[22], and Almond [58] Zarley [59] describes an implementation of an evidential 
system on a Symbohcs workstation (see also Zarley et al. [60]) Yen-Teh Hsia 
has implemented an evidential system called AUDITOR'S ASSISTANT on a 
Macintosh microcomputer. Shafer et al [7] describe an application of 
AUDITOR'S ASSISTANT for assisting in audit decisions 

The use of probabtlmes or belief functions to perform nonmonotonlc 
reasoning is not new. Such an approach has been suggested, for example, by 
Baldwin [61], Ginsberg [62], and Rich [63]. The essence of these approaches IS 
to relax the binary constraint of Boolean logic and allow truth values to be 
measured by a number between 0 and 1 Our approach IS different We do not 
tack on probabilities or belief functions to logic. Instead, we show that pure 
behef-function reasoning is mherently nonmonotonic. A similar approach is 
taken by Grosof [64], who discusses how probabfliStlC reasoning is nonmono- 
tonic. 

In this section, we will first briefly describe evidential systems. Next, we 
sketch the basic definitions in a truth maintenance system and describe the 
correspondence between concepts in an truth maintenance system and concepts 
in a evidential system Fmally, we study a small example in nonmonotomc 
reasoning and demonstrate how evidential systems handle such problems This 
example also serves to illustrate the management of uncertainty in evidential 
systems 

An Evidential System 

In evidential systems (ES), proper valuations correspond to superpotentlals, 
which are unnormahzed basic probabihty assignment functions. First we will 
briefly describe the basics of the theory of belief functions (Shafer [65]) Next, 
we define superpotentials and combination, marginahzatlon, and solution for 
superpotentlals 

Suppose XVh is the frame for a subset h of variables A basic probablhty 
assignment functton (bpa function) for h is a non-negative, real-valued 
function m on the set of all subsets of 'Wh such that 

1. m(fZS) = 0 
2. X{m( ,0 l a  c_ ~ h }  = 1 
Intuitively, re(a) represents the degree of belief assigned exactly to ~x (the 

proposition that the true configuration of h is in the set t~) and to nothing smaller. 
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A bpa function is the belief funcuon equivalent of  a probability mass assignment 
function m probability theory. Whereas a probability mass function is restricted 
to assigning probability masses only to singleton configurations of  variables, a 
bpa function is allowed to assign probability masses to sets of  configurations 
without assigning any mass to the individual configurations contained m the sets. 

For example, If we have absolutely no knowledge about the true value of  a 
variable, we can represent this situation by a bpa function as follows" 

m(cd2h) = 1, m(a) = 0 for all other a E 2wh 

Such a function is called a vacuous bpafunction. Note that m Bayesian theory 
the only way to express total ignorance is to assign a mass of  I/n to each value, 
where n is the total number of  possible values Thus, m Bayesian theory, we are 
unable to distinguish between equally likely configurations and total ignorance. 
The theory o f  behef functions offers richer semantics. 

Associated with a bpa function are two related functions called belief and 
plausibility. A belieffunctton is a function Bel: 2Wh ~ [0, 1] such that 

Sel (a)=Y~{m(~)l~  _ a}  

Whereas m(a) represented the behef assigned exactly to a ,  Bel(a) represents the 
total behefasslgned to a .  Note that Be l (~ )  = 0 and Bel('Wh) = 1 for any belief 
function. For the vacuous bpa function m, the corresponding behef function Bel 
is given by 

Bel(%qh) = 1, B e l ( a ) = 0  for all other a E 2wh 

A plaustbilityfunctton is a function PI" 2wh --' [0, 1] such that 

Pl (a)=Y~{m(~)l~  t3 a ~ : ~ }  

Pl(a) represents the total degree of  behef  that could be assigned to a .  Note that 
Pl(a) = 1 - Bel( - a) ,  where - a represents the complement o f  a in 'Wh; - a 
= 'Wh -- a .  Also note that Pl(a) _ Bel(a) For the vacuous bpa function, the 
corresponding plausibdlty function Is 

P I ( ~ ) = 0 ,  P l ( a )  = 1 for all other a E 2~h.  

If  a bpa function m is also a probabdity mass function 0.e. ,  all the probability 
masses are assigned only to singleton subsets), then 

Bel(tr) = P l (a )  = X {m({x })Ix E a } = probabdlty of  proposition a 

SUPERPOTENTIALS Suppose h is a subset of  variables. A superpotentialfor h 
is a non-negative, real-valued function on the set of  all subsets of  'Wh such that 
the values of  nonempty subsets are not all zero. Given a superpotential H on h, 
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we can construct a bpa function H '  for h from H as follows: 

H'(~)=O, H,(a)=H(a)/y,{H(~)l~ c_ 'Wh, ~:/:~} 

Thus superpotentials can be thought of  as unnormalized bpa functmns 
SuperpotentlalS correspond to the notion of proper valuatmns in the general 
framework. 

PROJECTION AND EXTENSION OF SUBSETS Before we can define 
combinatmn and marginahzation for superpotenuals, we need the concepts of 
projection and extension for subsets of configuratmns. 

If  g and h are sets of  variables, h c g, and $ is a nonempty subset of 'Wg, 
then the projection o f~  to h, denoted by ~*h, IS the subset of 'Wn given by ~,n 
= { x * h l x  

For example, ff a is subset of ~dT{ w,x,r,z}, then the marginal of a to {X, Y} 
consists of the elements of %V{x, r} that can be obtained by projecting elements of 
,x to %V{x.r}. 

By extensmn of a subset of a frame to a subset of a larger frame, we mean a 
cylinder set extensmn. I f g  and h are sets of varmbles, h _c g, h :# g, and ~ is a 
subset of'Wh, then the extenston o f~  to g is J~ x ~d?g_h. IfJ~ is a subset of  %Vn, 
then the extension of ~ to h is defined to be ~. We will let ~)g denote the 
extensmn of ~ to g, 

For example, ff a is a subset of 'W{ w.x}, then the vacuous extension of a to 
{ W, X, Y) Z} IS d, X ¢~{y,z}. 

COMBINATION For superpotentmls, comblnatmn ~s called Dempster 's rule 
(Dempster [44, 45]) Consider two superpotentials G and H on g and h, 
respectwely. If  

X{G(a)n(~)l(a *(guh)) N (~t(gUh)):#~} =#0 (1) 

then their combination, denoted by G @ H,  is the superpotential on g U h 
given by 

(G ~ H)(c)=Y~{G(,~)H(g)I(a ~uh)) n (~(*uh) )=c}  (2) 

for all c c_ %Vguh. I f ~ { G ( a ) H ( ~ ) l ( a  ~(gUh)) n (~ r(guh)) :# ~ }  = 0, then we 
say that G and H are not combmable. 

Intumvely, if the bodies of  evidence on which G and H are based are 
independent, then G @ H is supposed to represent the result of poohng these 
two bodies of evidence. Note that condition (1) ensures that G @ H defined m 
(2) is a superpotentml. I f  condmon (1) does not hold, this means that the two 
bodies of evidence corresponding to G and H contradmt each other completely 
and it is not possible to combine such evidence 

MARGINALIZATION Suppose G ~s a superpotential for g, and suppose h _c g. 
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Then the marginal of  G for h is the superpotential G ~h for h defined as follows: 

G~h(a.)=~,{G(~)l ~ c_ "~Tg such that ~*h=a.} 

for all subsets ,x of  ~,Vh. 

SOLUTION There are several definitions of  solution possible for evidential 
systems. For  nonmonotonic reasoning, we will define a solution for m to be a 
configuration whose plausibili ty IS positive. Formal ly ,  suppose m is a bpa on h. 
Suppose Pl is the plausibility function on h corresponding to m Then we say 
that x E 'Wh is a solutton for m f f  Pl({x})  > 0. 

A Truth Maintenance System 

Assume a proposmonal  language consisting of  proposit ional symbols,  the 
logical connectives A, V, - - ,  ~ ,  ~ ,  formulas,  and the usual standard 
entailment relation ="  I f S  is a set of  formulas and w is a formula, then S = w if  
every assignment of  truth values to the proposit ional symbols of  the language 
that makes each formula of  S true also makes w true. 

A hteral is a proposit ional symbol or the negation of  a proposit ional symbol 
A clause is a finite disjunction of  hterals with no hterals repeated whose truth 
value is true A premtse is a literal whose truth value ~s true. A categortcal 
justification is a conditional whose truth value is true. Note that a categorical  
justification can be represented as a clause For  example,  the conditional A = a 
--, B = b can be represented as a clause as follows: - ( A  = a) v (B = b). 

An assumption is a literal whose truth value is assumed to be true in the 
absence of  a contradiction A noncategorwal justzfication is a conditional 
whose truth value is assumed to be true In the absence of  a contradiction. A 
nogood is a clause whose truth value is false. 

A knowledge base is a collection of  justifications (rules), premises 
(observations), and assumptions (uncertain judgments) .  Justifications may be 
categorical or  noncategorical.  Categorical  justifications may describe logical 
relations between proposit ional  symbols Non-categorical  justifications may 
describe facts that are usually but not always true 

The functions of  a truth maintenance system (TMS) are as follows: 
1. The use of  noncategorical justifications and assumptions or  defaults is 

permitted. 
2. In the absence of  a contradiction, noncategorlcal justifications and 

assumptions are assumed to be true 
3. I f  there is a contradiction In the knowledge base, then some noncategoncal  

justifications or  assumptions or both need to be retracted so that 
consistency IS restored When an assumption or  a noncategorlcal justifica- 
tion is retracted, all Inferences made using these assumptions and 
noncategorical justifications must also be retracted. 
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4. All  inferences that are consistent with the knowledge in the knowledge 
base should be displayed to the user so that the user is aware of  the 

implications of  the knowledge.  

USING AN EVIDENTIAL LANGUAGE AS A TMS W e  will now outhne a 
correspondence between the concepts in a TMS and concepts in an evidential 
system (ES). 

A hteral  in a TMS is represented In an ES by a variable and one of  its values. 
Thus X = x is an ES representation of  the hteral  x where x belongs to 'Wx, the 
set of  possible values of  variable X .  For  example,  suppose the proposmon 
TWEETY IS A BIRD is represented m a TMS as a hteral.  In the ES, this could 
be represented by a variable BIRD with two possible values y e s  and n o .  Then 
the literal T W E E T Y  IS A BIRD corresponds to BIRD - y e s  in an ES 

A premise is a hteral whose truth value is true In an ES, a premise is 
represented as a categorical  behef  function. ] :or  example,  the premise X -- x IS 
represented by a bel ief  function on XVx given by m({x})  = 1. 

An assumption in a TMS is a literal whose truth value is set to true in the 
absence of  a contradiction m the knowledge base. In the ES, an assumption X = 
x is represented by a noncategorical  bel ief  function Bel (with basic probabil i ty 
assignment m) on %Vx such that 

m ( { x } )  = p  and m ( ' W x )  = 1 - p  

where 0 < p < 1. The actual value of  p will depend on the particular 
assumption, p can be interpreted to be the pr ior  degree of  bel ief  in the 
assumption 

A jusUfication is a con&tional ,  

x l  A X2 A " • • A Xn--* y 

where xl ,  x2, • • ", xn, y are hterals.  In an ES, a categorical justification x~ A x2 A 
• • • A xn ~ y is represented as a categorical  bel ief  funcUon on the frame %Vh, 
where h = {Xi ,  X2, • • ", An, Y}. For  example,  consider two variables X and 
Y with frames ~d~x = {x, - x }  and ~*Vr = {y,  - y } .  Then the categorical  

justification x ~ y is represented m the ES as a categorical bel ief  function on 
%V(x ,y )  gwen by 

m({(x ,  y ) ,  ( - x ,  y ) ,  ( - x ,  - y ) } ) =  1 

Noncategorlcal  justif ications are represented m the ES as noncategoncal  
bel ief  functions There are several ways in which this can be done. The most 
appropriate  way wall depend on the nature of  the part icular  jusUficatlon. 

The first type of  behef-function representation of  a noncategorical justif ica- 
tion is called e x c e p t i o n a l •  The exceptional  representation of  a noncategoncal  
justaficatlon is implied by McCar thy ' s  [66] formulation For  example,  consider  
the noncategoncal  just if ication MOST BIRDS FLY This can be represented in a 
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TMS by a categorical jusUficatlon and an assumption as follows: 

BIRD = y e s  A EXCEPTIONAL_BIRD = no ~ FLY = y e s  
Assume EXCEPTIONAL_BIRD = no 

Here EXCEPTIONAL_BIRD = no ~s a hteral that captures all the conditions 
under which birds fly. Let B = b, E = - e ,  a n d F  = f d e n o t e  the ES 
representation of the literals B I R D = y e s ,  E X C E P T I O N A L _ B I R D = n o ,  and 

FLY =yes .  Then the justificaUon MOST BIRDS FLY can be represented in an 
ES by two independent basic probability assignment functions, m~ on 'W~B,~,F) 
and m2 on "~,V E as follows: 

m l  ( e ~ { B , E , F  } --  {(b, - e, - f ) } )  = 1 

m2({ - e } ) = p ,  m2(~gTe) = 1 - - p  

where 0 < p < 1. Note that ml (~) m2 Is a basic probablhty assignment on 
~/B.E,F) given by 

ml G m2({(b, - e ,  f ) ,  ( - b ,  - e ,  f ) ,  ( - b ,  - e ,  -f)})=p 

ml G mZ(~C{B.E,F} -- {(b, - e ,  - f ) } ) =  1 - p  

m~ • m2 xs then the exceptional representation m an ES of the jusUficatlon 
MOST BIRDS FLY 

The second type of behef-function representation of a noncategorical 
justification is called assoctattonal.  Consider again the justificaUon MOST 
BIRDS FLY We can interpret this to mean that birds are associated with flying 
with a certain degree of behef. This associaUon may just go one way, that is, we 
may not necessarily assocmte all flying objects wRh birds. Interpreted in this 
way, we can represent this justification by a basic probability assignment 
function m3 on 'W{B,F} as follows 

m3({(b,f), ( -b,f) ,  (-b, -f)})=p, m3(~CC{B,F))=l--p 

where0 < p  < 1. 
Obwously, excepUonal representaUons of noncategorlcal justifications have 

greater expressive power than assocmtional representations. In the bird example, 
if the basic probability assignment functaon ml (~) m2 is marginalized by deleting 
the E varmble, then we obtain precisely the assocmtlonal representation m3, that 
is, (ml @ m2) ~{B'F} = m3. However, this expressive power comes at a 
computataonal cost since more variables are required in the exceptional 
representation than m the assocmtional representation. 

Consider a knowledge base represented by a collection of bpa functions {m, [i 
= 1, • • -, n} representing premises, rules, and assumptions. Suppose my is an 
assumption X = x. We shall say that the assumption m ,  xs retracted by  the  
knowledge  base {m~li = 1, . . . ,  n} if plqx)({x}) = 0 where Plq  x} is the 
plausibility function corresponding to ( ~  {m, [i = 1, - - . ,  n})qx}. We shall say 
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that the assumption m~ is confirmed by the knowledge base {m, l t = 1, . . . ,  n} 
l fm~X) ( {x} )  = 1 where m = ( O { m ,  lt = 1, - - ' ,  n}). 

An Example 

Consider the following knowledge base: 

Rule 1. Most Repubhcans (at least 80%) are not pacifists. 
Rule 2. Most Quakers (at least 90%) are paclficists 

First we observe that Nlxon is a Republican. Then we observe that Nixon is also 
a Quaker. We would like to consult our knowledge base to find out whether 
Nixon is a pacifist or not. Next we will add the premise that Nlxon is not a 
pacifist and see how the evidential system reconciles this premise with rule 2. 

One representaUon of this knowledge base is as follows. Let R = r, Q = q, P 
= p be three variables and their respective configurauons representmg the 
propositions X Is a Republican, X is a Quaker, and X is a pacifist, respectively. 
Furthermore, let ER = er and EQ = eq be two more variables and their 
respectwe configurations representing the proposmons X Is an excepUonal 
Repubhcan and X is an exceptional Quaker, respectively 

We will represent rule 1 with categorical rule 1 and assumption 1 as follows. 

CATEGORICAL RULE 1 If X lS a Repubhcan and X is not an excepaonal 
Repubhcan, then X is not a paclficlst 

ASSUMPTION 1. X IS not an excepUonal Republican 

The bpa function representaUon of categorical rule 1 is as follows 

mt(5~2{e, ER,P}- {(r, --er, p ) } ) =  1 

The bpa function representation of assumption 1 is as follows: 

m2({ - er}) = 0.8, m2(~CCeR) = 0.2 

We will represent rule 2 with categorical rule 2 and assumption 2 as follows: 

CATEGORICAL RUL~ 2. If X Is a Quaker and X is not an exceptional Quaker, 
then X is a pacifist 

ASSUMZrION 2 X IS not an exceptional Quaker. 

The bpa funcuon representation of categorical rule 2 is as follows. 

m3('W{O, EO, p} -- {(q, -- eq, --p)}) = 1 

The bpa function representation of assumption 2 is as follows: 

m4({ - e q } )  =0.9,  m4('vdTEO) = 0.1 

If  we enter these four bpa functions in the ewdential system, the resultmg 
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Figure 5. The evidential network with two categorical rules and two assumptmns 

evidential network is as shown in Figure 5. As before, variable vertices are 
shown as circles and valuation vertmes are shown as squares. In addition to 
displaying the set of all soluuons for the marginal of  the joint valuation, the 
marginal bpa function is also displayed. I f  {x, - x }  is the frame for variable X, 
then the marginal of  the joint valuation for X is shown as a vector (m ~{x)({x}), 
(mt{X)({-x}) ,  (mqXI({x, - x } ) ) ,  where m = (~ {m, ll = 1, . . - ,  n}. 

Suppose we now enter the premise that Nlxon is a Republican. This is 
represented as a bpa function as follows 

m s ( { r } ) =  1 

The evidential system accepts this bpa function with the results as shown m 
Figure 6. Note that the behef in the proposition that Ntxon is not a pacifist has 
increased from 0 to 0.8 and the brief in the proposmon Nlxon is not a Quaker has 
increased from 0 to 0 72. 

Suppose we now enter the premise that Nlxon is a Quaker. This is represented 
by a bpa functmn as follows 

m6({ q})= 1 

The ewdenUal system accepts this bpa functmn with the results shown m Figure 
7. Note that as per the ES, Nlxon could either be a pacifist or not. The 
plausibility of Nlxon being a pacifist (0.71) is higher than the plauslbdity that 
Nixon is not a pacifist (0.35). This is because Quakers have higher belief (0 90) 
of being pacificists than Repubhcans have of not being pacifists (0.80). 
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Figure 6. The evldenUal network with the prermse that Nlxon is a Repubhcan 

Figure 7. The evidential network with the prenuse that Nlxon Is a Quaker 
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Figure 8. The evidential network with the premise that Nlxon is not a paclficst 

Now suppose we enter the prermse that Nlxon is not a pacifist. This is 
represented by a bpa function as follows: 

m7({ - - p } ) =  1 

The ES accepts this bpa function, and the results are displayed in Figure 8. Note 
that the assumption that Nlxon is not an exceptional Quaker has been retracted 
by the evidence! 

SUMMARY AND CONCLUSIONS 

The main objective of this article 1s to introduce a new language for budding 
knowledge-based systems as an alternative to rule-based-languages Whereas 
rule-based languages use rules as a knowledge representation device and modus 
ponens as an operation for making references, our language uses proper 
valuations as a knowledge representation device and three operations-- 
combination, marginallZatlon, and solution--for making inferences. Combina- 
tion corresponds to aggregation of knowledge, marginallzation corresponds to 
crystalhzation of knowledge, and solution is a decoding mechanism that maps 
knowledge from the space of valuations to the space of configurations. 
Conceptually, the language combines all valuations, finds the marginal of the 
joint valuation for each variable, and then finds the solution for each marginal. 

Like rule-based languages, our valuation-based language retains the modular- 



Valuation-Based Language for Expert Systems 407 

ity feature Each valuatmn represents a distract modular chunk of knowledge. I f  
the combination operator is commutative and assocmtlve, then, like rule-based 
languages, valuation-based languages are nonprocedural. These desirable 
features of rule-based languages are retained 

Unlike rule-based languages, our valuation-based language automatically 
maintains consistency in the knowledge base, caches and displays relevant 
inferences, reasons nonmonotomcally, and pernuts coherent management of 
uncertainty 

A natural question IS, what is the computational power of valuation-based 
languages? Anderson [67] has formally shown that is is possible to imagine 
coding any given Turing machine using a pure production system. We suspect 
that valuation-based languages have the same computational power, but we do 
not have a proof. 

A C K N O W L E D G M E N T  

This work was supported in part by the National Science Foundation under 
grant IRI-8610293 and a Research Opportunities in Auditing grant 87-135 from 
the Peat Marwlck FoundaUon. The foundation on which tins paper rests is the 
result of  research done jointly with Glenn Shafer over the last three years. I owe 
a lot to Glenn. I would also like to acknowledge the influence of the AI group m 
the Business School Finally, this paper has benefitted from useful comments 
from Bruce D'Ambrosio and three anonymous referees. 

This paper is a rewsion of Shenoy [68] 

References 

1 Shenoy, P. P ,  and Shafer, G ,  An araomatlc framework for Bayesian and belief- 
funcuon propagation, Proc 4th Workshop on Uncertainty m AI, Minneapolis, 
Mlnn, 307-314, 1988 

2 Shenoy, P P ,  and Shafer, G ,  Axioms for probabdlty and behef-functlon 
propagation, Workmg Paper No 209, School of Business, Umverslty of Kansas, 
Lawrence, Kan, 1988 

3 Shenoy, P P ,  and Shafer, G., Constraint propagation, Workang Paper No 208, 
School of Business, Umverslty of Kansas, Lawrence, Kan., 1988 

4 Shenoy, P P ,  and Shafer, G ,  Axioms for discrete optlratzatlon using local 
computauon, School of Business Working Paper No. 207, Umverslty of Kansas, 
Lawrence, Kan, 1988 

5 Brownston, L. S ,  Farrell, R G ,  and, Kant, E., and Martin, N ,  Programming 
Expert Systems in OPS5: An Introduction to Rule-Based Programmmg, 
Addison-Wesley, Reading, Mass., 1985 



408 Prakash P. Shenoy 

6 Davis, R ,  and King, J J ,  The origin of rule-based systems in AI, m Rule-Based 
Expert Systems: The MYCIN  Experiments o f  the Stanford Heuristw Program- 
mmg ProJect (B G Buchanan and E H Shortliffe, Eds ), Addison-Wesley, 
Reading, Mass., 20-52, 1984 

7 Shafer, G , Shenoy, P P ,  and Srlvastava, R P ,  AUDITOR'S ASSISTANT a 
knowledge engmeermg tool for audit deoslons, Worlong Paper No 197, School of 
Business, University of Kansas, Lawrence, Kan,  1988 

8 Pearl, J ,  Fusion, propagaUon and structuring in belief networks, A I  29, 241-288, 
1986 

9 Pearl, J ,  Networks of  Behef: Probablhstw Reasomng m Intelhgent Systems, 
Morgan Kanfmann, Palo Alto, Cal , 1988 

10 Launtzen, S L ,  and Splegelhalter, D J ,  Local computations with probabflttles on 
graphical structures and their apphcatlon to expert systems (with discussion), J 
Roy. Star Soc. Ser B 50(2), 157-224, 1988 

11 Heckerman, D E ,  and Horvltz, E J , On the expressiveness of rule-based systems 
for reasoning with uncertainty, Proc 6th National Conference on AI (AAAI-87), 
Seattle, Wash,  1, 121-126, 1987 

12 Sharer, G ,  and Shenoy, P P ,  Probability propagation, Working Paper No 200, 
School of Business, University of Kansas, Lawrence, Kan,  1988 To appear in 
Proe 2nd International Workshop on AI and Statistics, Fort Lauderdale, F l a ,  1989 

13 Shafer, G ,  and Shenoy, P P ,  Local computation m hypertrees, Working Paper No 
201, School of Business, University of Kansas, Lawrence, Kan,  1988 

14 Seldel, R ,  A new method for solving constraint satisfaction problems, Proc 7th 
International Joint Conference on AI (IJCAI-81), Vancouver, B C , Canada, 1,338- 
342, 1981 

15 Deehter, R ,  and Pearl, J ,  Tree-clustering schemes for constraint processing, Proc 
7th National Conference on AI (AAAI-88), St Paul, Minn , 1, 150-154, 1988 

16 Bertele, U ,  and Brloschl, F ,  Nonsertal Dynamw Programming, Academic, New 
York, 1972. 

17 Rose, D J ,  A graph-theoretic study of the numerical solution of sparse posmve 
definite systems of linear equations, m Graph Theory and Computing (R C Read, 
Ed ), Acadenuc, New York, 183-217, 1973 

18 Spohn, W ,  Ordinal condmonal functions a dynamic theory of epistemic states, in 
Causatton m Dectston, Behef Change, and Stattstws, Vol 2, (W L Harper and 
B Skyrms, Eds ), D Reidel, Dordrecht, Holland, 105-134, 1988 

19 Hunter, D ,  Parallel belief revision, Proc 4th Workshop on Uncertainty in AI, 
Mmneapohs, Minn., 170-176, 1988 

20. Malvestuto, F M ,  Decomposing complex contingency tables to reduce storage 
requirements, Proc 1986 Conference on Computational Statistics, 66-71, 1986 



Valuation-Based Language for Expert Systems 409 

21 Been, C ,  Fagm, R ,  Maler, D ,  and Yannakakas, M , On the deslrablhty of acychc 
database schemes, J. ,4CM, 30(3), 479-513, 1983 

22 Dempster, A. P ,  Construction and local computation aspects of network behef 
functions, Research Report S-125, Department of Statistics, Harvard Umverslty, 
Cambridge, Mass , 1988 

23 Melnhold, R J , and Smgpurwalla, N D , Understanding the Kalman filter, Am. 
Stat, 37, 241-288, 1982 

24 Adams, E ,  Probablhty and the logic of condmonals, m Aspects of  Inductlve Logw 
(J Hmtlkka and P Suppes, Eds ,), North-Holland, New York, 1986 

25 Suwa, M Scott, A C ,  and Shorthffe, E H ,  An approach to verifying 
completeness and consistency m a rule-based expert system, A I  Mag. 3(3), 16-21, 
1982 

26 Nguyen, T A ,  Perlons, W A ,  Laffey, T J ,  and Pecora, D ,  Checkang an expert 
system's knowledge base for consistency and completeness, Proc 9th International 
Joint Conference on AI (IJCAI-85), Los Angeles, Cal , 1,375-378, 1985 

27 Pearl, J ,  Deciding consistency m inheritance networks, Tech Report No 870053 
(R96), Cogmtlve Systems Laboratory, Umverslty of Cahforma at Los Angeles, Cal , 
1987 

28 Touretzky, D S , The Mathematws of  Inherttance Systems, Morgan Kaufmann, 
Los Altos, Ca l ,  1986 

29 Gmsberg, A , Knowledge-base reduction a new approach to checking knowledge 
bases for mconslstency and redundancy, Proc 7th NaUonal Conference on AI 
(AAAI-88), St Paul, Mmn,  l ,  585-589, 1988 

30. McCarthy, J , Clrcumscnptlon--a form of non-monotomc reasoning, A113, 27-39, 
1980 

31 McCarthy, J , and Hayes, P J , Some philosophical problems from the standpoint of 
artlficml mtelhgence, m Machine Intelhgence, Vol. 4 (B Meltzer and D Mlchle, 
Eds ), Edinburgh Umverslty Press, 463-502, 1969 

32 McDermott, D ,  and Doyle, J , Non-monotomc logic I, A I  13, 41-72, 1980 

33 Moore, R C , Semantical consideration on nonmonotomc logic, A !  25. 75-94, 
1985 

34 Relter, R , A logic for default reasoning, ,41 13, 81-132, 1980 

35 Shafer, G ,  Probabdlty judgment m artlficml mtelhgence and expert systems, Stat. 
Scl. 2(1), 3--44, 1987 

36 Heckerman, D E ,  and HorvltZ, E J , The myth of modularity m rule-based 
systems for reasomng w~th uncertmnty, m Uncertamty zn Artificial Intelhgence, 
Vol 2 (J F Lemmer and L N Kanal, Eds ), North-Holland, New York, 23-34, 
1988 



410 Prakash P Shenoy 

37 Shorthffe, E., and Buchanan, B. G ,  A model of inexact reasomng m medicine, 
Math. Btosct. 23, 351-379, 1975 

38 Duda, R ,  Hart, P , and Ndsson, N , Subjective Bayesian methods for rule-based 
reference systems, m Readmgs m Arttfictal Intelhgence (B L Webber and N J 
Ndsson, Eds ), Tioga, Palo Alto, Ca l ,  192-200, 1981 

39 Doyle, J., A truth maintenance system, A I  12(3), 231-272, 1979 

40 de Kleer, J , An assumption-based TMS, A !  28, 127-162, 1986 

41 Relter, R ,  and de Kleer, J , Foundations of assumptaon-based truth maintenance 
systems" prehnunary report, Proc 6th National Conference on AI (AAAI-87), 
Seattle, Wash,  1, 183-188, 1987 

42 Laskey, K. B ,  and Lehner, P E ,  Behef maintenance an integrated approach to 
uncertmnty management, Proc 7th National Conference on AI (AAAI-88), St Paul, 
Mmn,  1,210-214, 1988 

43. D'Ambroslo, B., A hybrid approach to reasomng under uncertmnty, Int. J. 
Approxtmate Reasoning 2(1), 29--46, 1988 

44 Dempster, A. P ,  New methods for reasoning toward posterior dlstnbuUons based 
on sample data, Ann. Math. Stat. 37, 355-374, 1966 

45. Dempster, A P ,  Upper and lower probabllmes induced by a multlvalued mapping, 
Ann. Math. Stat. 38, 325-339, 1967 

46 Pearl, J , Ewdentml reasomng using stochastic simulation of causal models, A I  32, 
245-257, 1987 

47 garkpatnck, S ,  Gelatt, C D ,  J r ,  and Vecchl, M P ,  Optamlzatlon by simulated 
annealing, Science 220, 671-680, 1983 

48 Geman, S ,  and Geman, D ,  Stochastic relaxation, Gibbs dlstnbuuon, and the 
Bayesmn restoration of images, IEEE Trans. P A M I  6, 721-741, 1984 

49 Ethenngton, D W ,  More on inheritance hierarchies with exceptions" default 
theories and mferentml distance, Proc 6th National Conference on AI (AAAI-87), 
Seattle, Wash,  1,352-357, 1987 

50 Sharer, G ,  and Logan, R ,  Implementmg Dempster's rule for hierarchical evidence, 
A I  33,271-298, 1987 

51 Shenoy, P P , and Shafer, G., Propagating behef functions using local computa- 
tions, IEEE Expert 1(3), 43-52, 1986. 

52 Shenoy, P P , Shafer, G, and Mellouli, K (1986), Propagation ofbehef functions, a 
distributed approach, Proc 2nd Workshop on Uncertainty m AI, Phdadelphm, 
Penn, 249-260, 1986 Also m Uncertamty m ArtOclailntelhgence, Vol 2 (J. F 
Lemmer and L N. Kanal, Eds.), North-Holland, New York, 325-335, 1988. 

53 Kong, A ,  Multivariate behef functions and grapfucal models, Ph.D. Thesis, 
Department of StatlsUcs, Harvard Umverslty, Cambridge, Mass., 1986 



Valuation-Based Language for Expert Systems 411 

54 Kong, A ,  A behef function generahzatlon of Gibbs ensembles, Tech Report No 
239, Department of Statmtlcs, Umverslty of Chicago, Chicago, I l l ,  1988 

55 Dempster, A P ,  and Kong, A , Uncertain evtdence and artificial analysis, Research 
Report S-108, Department of Statisncs, Harvard University, Cambridge, Mass ,  
1986 

56. Shafer, G ,  Shenoy, P P ,  and Mellouh, K ,  Propagating behef functions in 
qualitative Markov trees, Int. J. Apprommate Reasomng 1(4), 349-400, 1987 

57 MeUouh, K ,  On the propagation of behefs m networks using the Dempster-Shafer 
theory of evtdence, Ph D Thesis, School of Business, University of Kansas, 
Lawrence, Kan,  1987 

58 Almond, R ,  Fusion and propagation in graphical belief models, Research Report S- 
121, Department of Statastics, Harvard Umverslty, Cambridge, Mass ,  1988 

59 Zarley, D K., An evidential reasoning system, Working Paper No. 206, School of 
Business, University of Kansas, Lawrence, Kan,  1988 

60 Zarley, D K ,  Hsia, Y T , and Shafer, G , Evidential reasomng using DELIEF, 
Proc 7th National Conference on AI (AAAI-88), Minneapolis, Minn,  1,205-209, 
1988 

61 Baldwin, J F , Evidential support logic programmang, Fuzzy Sets Syst. 24, 1-26, 
1987 

62 Ginsberg, M. L ,  Non-monotomc reasoning using Dempster's rule, Proc. 4th 
National Conference on AI (AAAI-84), Austin, Tex ,  126-129, 1984 

63 Rich, E., Default reasoning as likelihood reasoning, Proc. 3rd National Conference 
on AI (AAAI-83), Washington, D C , 348-351, 1983 

64 Grosof, B N., Non-monotonicity m probablhstic reasomng, in Uncertamty m 
Arttftctal Intelhgence Vol 2 (J F Lemmer and L N Kanal, Eds ), North- 
Holland, New York, 237-249, 1988 

65 Shafer, G,  A Mathematwal Theory of  Evtdence, Pnnceton Umv Press, 
Princeton, N J , 1976 

66 McCarthy, J ,  Applications of circumscription to formahzing common-sense 
knowledge, A I  28(1), 89-116, 1986 

67 Anderson, J , Language, Memory and Thought, Erlbaum, Hfllsdale, N J , 1976 

68 Shenoy, P P ,  Valuation systems a language for knowledge-based systems, 
Working Paper No 203, School of Business, Umverslty of Kansas, Lawrence, Kan,  
1988 


