
Propagating Belief Functions 
in Qualitative Markov Trees 

Glenn Shafer, Prakash P. Shenoy, 
and Khaled Mellouli 

School o f  Business, University o f  Kansas 

A B S T R A C T  

This article is concerned with the computational aspects of combining evidence within 
the theory of belief functions. It shows that by taking advantage of logical or categorical 
relations among the questions we consider, we can sometimes avoid the computational 
complexity associated with brute-force application of Dempster's rule. 

The mathematical setting for this article is the lattice of partitions of a fixed overall 
frame of discernment. Different questions are represented by different partitions of this 
frame, and the categorical relations among these questions are represented by relations 
of qualitative conditional independence or dependence among the partitions. Qualitative 
conditional independence is a categorical rather than a probabilistic concept, but it is 
analogous to conditional independence for random variables. 

We show that efficient implementation of Dempster's rule is possible if the questions 
or partitions for which we have evidence are arranged in a qualitative Markov tree--a 
tree in which separations indicate relations of qualitative conditional independence. In 
this case, Dempster's rule can be implemented by propagating belief functions through 
the tree. 

K E Y W O R D S :  Bayesian propagation, bel ie f  funct ions ,  causal trees, Dempster- 
Shafer theory, Dempster 's  rule, combination o f  evidence, qualitative 
independence, partitions, qualitative Markov  trees, diagnostic trees, 
probability, propagation o f  evidence 

Research for this article has been partially supported by NSF grants IST-8405210 and IST-8610293, 
by ONR grant N00014-85-K-0490 and by a Research Opportunities in Auditing grant from the Peat, 
Marwick, Mitchell Foundation. The authors have profited from conversations and correspondence 
with Paul Cohen, Arthur Dempster, Augustine Kong, and Judea Pearl. They have also profited from 
comments by anonymous referees. 

Address correspondence to Glenn Shafer, School of Business, University of Kansas, Lawrence, KS 
66045-2003. 

International Journal of Approximate Reasoning 1987; 1:349-400 
© 1987 Elsevier Science Publishing Co., Inc. 
52 Vanderbilt Ave., New York, NY 10017 0888-613X/87/$3.50 349 



350 Glenn Sharer, Prakash P. Shenoy, and Khaled Mellouli 

INTRODUCTION 

A practical problem may involve a number of related questions. The evidence 
bearing on the problem may consist of a number of independent arguments and 
other items. Typically, each item of evidence bears directly on only a few of 
the questions. It is natural in this situation to assess the force of each item of 
evidence separately, obtaining in each case probability judgments about the 
questions on which that evidence directly bears. But since all the questions are 
related, it is then necessary to combine the probability judgments. 

In this article, we study this task of combination within the theory of belief 
functions (Shafer [ 1 ]), with an emphasis on computational problems. We assume 
that the items of evidence are independent and that each item has been used to 
construct a belief function for the questions on which it bears. The theory of 
belief functions tells us that these belief functions, since they are independent, 
can be combined by Dempster's rule. Unfortunately, a brute-force application 
of Dempster's rule may be computationally infeasible in a problem involving 
many questions. We show how to take advantage of logical or categorical rela- 
tions among the questions to reduce the computation. 

We show that if the different questions are arranged in a tree, the structure 
of which captures the categorical relations among the questions, then the com- 
bination of the belief functions can be accomplished step by step, with each step 
involving only a small number of directly related questions. The task of com- 
bining the belief functions reduces, in effect, to the task of propagating them 
through the tree. 

The propagation scheme we present here generalizes the scheme for diagnostic 
trees studied by Shafer and Logan [2] and the slightly more general scheme for 
hierarchical evidence studied by Shafer [3]. It also generalizes Pearl's scheme 
for propagating the effects of new data in Bayesian causal trees [4-8]. (Recall 
that the theory of belief functions is a generalization of the Bayesian theory.) 
We believe this general scheme will prove useful in expert systems, where a 
compromise is often needed between the modularity of production rules and the 
ideal structure of Bayesian models. Belief function models offer one such com- 
promise, and propagation in trees makes this compromise feasible in a variety 
of problems. 

Our exposition is relatively abstract. We treat related questions as related 
partitions of a single frame of discernment. We call this the partitive formalism, 
and we contrast it with the multivariate formalism, which uses variables rather 
than partitions. We use the partitive formalism because we feel its abstractness 
makes for mathematical clarity. The multivariate formalism is closer to aplica- 
tions, but we only sketch it in this article. For a more thorough development, 
see Kong [9]. For more on the relation between the two formalisms, see Mellouli 
[lO]. 
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In the next section, we give a mathematical treatment of partitions, empha- 
sizing qualitative conditional independence. This is a logical or categorical con- 
cept rather than a probabilistic concept, but it is analogous to conditional 
independence for random variables. In the third section we study qualitative 
Markov trees of partitions, which are analogous to Markov trees of random 
variables. Following that we review the mathematical theory of belief functions, 
with an emphasis on partitions. In the final section we use the background 
provided by the preceding three sections to give a concise description of our 
general propagation scheme. 

Our purpose in this article is to provide a general mathematical understanding 
that unifies a number of practical approaches. This general level of understanding 
is somewhat distant from actual implementation. When working at the level of 
implementation, we would expect to replace the general ideas and terminology 
used here with more concrete ideas and more specific terminology selected to 
fit the nature of the particular problem. In some cases, we might use diagnostic 
or fault trees; in other cases we might use variables in causal trees; and so on. 

One question only touched on here is how to deal with networks of variables 
or partitions when these networks are not trees. In the Bayesian case, this has 
been studied by Pearl [6] and by Lauritzen and Spiegelhalter [11]. The com- 
putational problems are more severe in the general belief-function case than in 
the Bayesian case, but in both cases it seems to be necessary to collapse the 
networks to trees so that the general method we give here can be applied. Kong 
[9] has initiated the study of how to do this efficiently in the general belief- 
function case. See also Mellouli [10]. 

PARTITIONS 

We begin this section with a discussion of how to formalize relations among 
questions. We distinguish between the multivariate formalism, which begins 
with a number of relatively simple questions or variables, and the partitive 
formalism, which begins with a set of alternative comprehensive statements and 
treats variables as functions that are defined on and hence partition this set. 

After this discussion, we turn to the mathematics of the partitive formalism. 
We review some basic facts about partitions, and we study qualitative indepen- 
dence for partitions. 

In the section on belief functions, we will use the notation and concepts of 
the partitive formalism to explain what is involved in coarsening, extending, 
and projecting belief functions. These operations are important in both the par- 
titive and multivariate formalisms, but we have found that we can explain them 
most succinctly using the partitive formalism. This is only a manner of exposition, 
of course. Once the operations are understood, they can be used freely in the 
multivariate formalism. 
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The Multivariate and Partitive Formalisms 

Suppose O is a finite set of possible answers to some question, and suppose 
we know that one and only one of these answers can be correct. In this case we 
call O a frame of discernment, or simply a frame. Adoption of a frame involves 
an assumption that can usually be challenged the assumption that exactly one 
of the elements of the frame is the right answer to the question. 

The act of adopting a frame for a question formalizes a variable. The elements 
of the frame are the possible values of the variable. For example, when we adopt 
the set {red, white, yellow} as our frame for the question "What color rose is 
Bill wearing today?," we formalize the variable "the color rose Bill is wearing 
today," with possible values, red, white, and yellow. 

Questions, related or unrelated, can be conjoined. We can conjoin the question 
of what color rose Bill is wearing with the question of what color shirt he is 
wearing, obtaining the joint question, "What color rose and what color shirt is 
Bill wearing today?" The frame we adopt for such a joint question should, of 
course, be consistent with the frame we adopt for the individual questions. If 
we adopt the frame O~ = {red, white, yellow} for the question about the rose, 
and the frame 02 = {white, blue} for the question about the shirt, then we might 
adopt the Cartesian product 

O~ x O2={(red, white), (red,blue), (white,white), (white,blue), 
(yellow,white), (yellow,blue)} 

for the joint question. Alternatively, we might rule out the possibility of Bill's 
wearing either a red rose on a blue shirt or a white rose on a white shirt and 
adopt the smaller frame 

O = {(red,white), (white,blue), (yellow,white), (yellow,blue)} 

which is a subset of the Cartesian product O, x 0,.  
The multivariate formalism uses Cartesian products freely. In order to study 

together variables X~ . . . . .  Xn, which are individually formalized by frames 
O, . . . .  , On, the formalism introduces a joint variable (X, . . . .  , X,) and adopts 
as the frame for this joint variable either the Cartesian product 01 × • • • × O,  
or a subset of it. 

The multivariate formalism has a flexibility that is useful in applied statistics 
and other practical work. It allows us to formalize a problem step by step, 
introducing new questions and corresponding variables as the need arises. 

When we are concerned with general theory rather than applications, however, 
the proliferation of frames that accompanies the flexibility of the multivariate 
formalism can seem cumbersome. Consider, for example, the case of a variable 
that is a function of variables we have already introduced. In practical work, it 
is often useful to introduce such a variable explicitly, giving it its own name 
and frame, even though knowledge of its value would add nothing to knowledge 
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of the values of the previous variables, and even though its explicit introduction 
complicates our notation. Suppose, for example, that we have a variable XI = 
"the color rose Bill is wearing," with the frame O1 = {red, white, yellow}. For 
practical reasons, we may want to consider explicitly both X1 and the variable 
X2 = "whether Bill is wearing a red rose," with the frame O3 = {yes, no}. This 
shifts our attention from the simple frame O1 to the Cartesian product Oi × 03 
or its subset {(red, yes), (white, no), (yellow, no)}. This shift may be useful, 
but from an abstract point of view it is a complication that adds nothing in 
meaning; the new alternatives {(red, yes), (white, no), (yellow, no)} have the 
same meaning as the original alternatives {red, white, yellow}. 

The partitive formalism, which we use in this article, avoids this proliferation 
of notation. It is based on the assumption that we have a fixed overall frame O 
that is detailed enough to take account of all the questions we want to consider 
in a particular problem. Since we begin with this frame rather than with a 
question, we think of it as a set of statements rather than as a set of answers. 
Adopting the frame means assuming that exactly one of these statements is true. 
If, for example, we are thinking about Bill, we might begin with a frame O 
consisting of four statements: O = {01, 02, 03, 04}, where 

01 =Bill  is wearing a red rose on a white shirt 

02 = Bill is wearing a white rose on a blue shirt 

03 = Bill is wearing a yellow rose on a white shirt 

04 = Bill is wearing a yellow rose on a blue shirt 

In this formalism, a variable is a function or mapping defined on the frame O. 
For example, the variable XI, "the color rose Bill is wearing," is a mapping that 
maps 01 to "red," 02 to "white," and 03 and 04 to "yellow." 

On reflection, we see that the concept of a variable is not essential in the 
partitive formalism. What is essential is not the values to which the variable 
maps but how it partitions the frame on which it is defined. Our variable Xt 
partitions the frame O into three subsets, the singletons {01} and {02} and the 
pair {03,04}. Once we know that this is the partition corresponding to XI, we can 
tell from the 0i themselves that X, is telling us what color rose Bill is wearing. 

The partitive formalism concentrates on the frame O and on partitions of O. 
The frame O itself corresponds to a very detailed question, and each partition 
corresponds to a less detailed question. 

Advanced mathematical treatments of probability theory (e.g., Breiman [ 12]) 
generally use the partitive formalism, for the same reason we are using it. But 
these works are largely concerned with infinite sets and continuous probability 
measures, and hence they emphasize fields (also called algebras) of subsets rather 
than partitions. Afield of subsets of a set O is a set of subsets that contains both 
O and the empty set 0 ,  contains A's complement A c whenever it contains A, 
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and contains A fq B and A LIB whenever it contains both A and B. In the case 
where O is finite, there is a one-to-one correspondence between partitions and 
fields. Given a partition, we obtain the field by taking all unions of elements of 
the partition. Given a field, we obtain the partition by taking the atoms of the 
field, the elements of the field that contain no smaller element of the field other 
than the empty set. In the case where O is infinite, however, this correspondence 
breaks down. Continuous probability measures on infinite sets usually involve 
fields that do not contain all unions of their atoms (Halmos [13]). 

In this article we are concerned only with the case where O is finite. We 
therefore emphasize partitions and treat fields, which are more complex, as 
secondary and derivative. 

The Lattice of Partitions 

We will now establish a notation for talking about partitions and review some 
well-known facts about partitions and variables. Throughout our discussion, O 
will be a fixed finite nonempty set. 

Let us begin by recalling that a set ~ of subsets of O is a partition of O if 
the sets in ~ are all nonempty and disjoint and their union is O. 

A variable on O is a mapping from O to some other set. A variable on O 
induces a partition of O, the partition obtained by grouping together elements 
that are mapped to the same value by the variable. We will let ~ x  denote the 
partition induced by the variable X: 

~x = {x- l(x)lxEX(O)} 

Given a partition ~ ,  it is easy to construct a variable X that induces it; we 
choose a set l l  that has the same number of elements as ~ ,  we set up a one- 
to-one correspondence between the elements of ~ and the elements of l l ,  and 
we have X map each element 0 of O to the element of [l  corresponding to the 
element of ~ that contains 0. Different choices of [ l  produce different variables, 
but all these variables have ~ as their induced partition. 

I~t  us write ~ --< ~2 whenever ~ and ~2 are partitions of O and for every 
Pt U ~ there exists P2 E ~2 such that P~ C_ P2. This means that each element 
of ~2 is a union of elements of ~ t .  When ~ -< ~2, we say that ~ is a refinement 
of ~2 and ~2 is a coarsening of ~ t .  We also say that ~ t  isfiner than ~2 and 
~2 is coarser than ~ l .  

One partition being coarser than another is the same as one variable being a 
function of another. Here is a more precise way of saying this: Suppose X and 
Y are variables. The variable X maps O to ~ ,  and the variable Y maps O to 
f~2. Then ~ v  is coarser than ~ x  if and only if there exists a mapping f from ~ 
to I~2 such that Y(0) = f(X(O)) for every element of 0 of O. 

Given a partition ~ of O, let ~ *  denote the set consisting of all unions of 
elements of ~ .  As we have already pointed out, ~ *  is afieM of subsets of O; 
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it contains both O and the empty set, it contains A's complement whenever it 
contains A, and it contains A M B and A U B whenever it contains both A and 
B. Notice that ~ l  -< ~32 if and only if ~*  C ~* .  (This reversal may seem in 
appropriate to some readers; perhaps we should write ~2 -< ~ instead o f ~ t  --< ~2 
when ~ l  is finer than ~2. However, it is standard in the mathematical literature 
to write ~ l  -< ~2 when ~1 is finer than ~2-) 

The relations -< partially orders the set of all partitions of O. With this partial 
order, these partitions form a lattice (Birkhoff [14]). This means that any two 
partitions ~ and ~2 have a greatest lower bound and a least upper bound. The 
greatest lower bound ~ / k  ~2 is also called the coarsest common refnement 
of ~ t  and ~2" Its elements are intersections of the elements of ~ t  and ~2: 

~,A'~. ,  = {p,nPdP,~ ' ,~ ,, P:~',~2, and P,ne~#~} 
The least upper bound ~ V ~2 is also called thefinest common coarsening of 
~ and ~2. It is most easily described in terms of its corresponding field: 
(~ ,  v I~)* = ~ *  n I~*. 

Notice that ~ z  -> ~ x / ~  ~ r  if and only if Z is a function of X and Y. 
The lattice of partitions of O contains a coarsest partition and a finest partition. 

The coarsest partition is {O}, the set whose only element is O itself. The finest 
partition is {{0}10 E O}, the set of singleton subsets of O. (This partition contains 
the same numbr of elements as O does, but it is not exactly the same set as O.) 

If ~ is a partition of O, and A is a subset of O, then we can obtain a partition 
of A by intersecting the elements of ~ with A and discarding those intersections 
that are empty. Let this partition of A be denoted by ~(A); 

~(A ) = (A APIPE~, A fqP~Q~} 

If we learn that the true statement in O is actually in the subset A, then we have 
the option of thinking of A as our frame in place of O, and then the question 
previously formalized by the partition ~ of O will be formalized by the partition 
~(A) of A. 

Qualitative Independence 

In this section, we introduce the concepts of qualitative independence and 
qualitative conditional independence. We use the adjective "qualitative" in order 
to distinguish these concepts from the analogous probabilistic concepts. Quali- 
tative independence is a property of just the partitions or variables involved. 
Probabilistic independence, in contrast, depends on the choice of a particular 
probability distribution; whether two random variables are independent depends 
on their joint probability distribution. 

Two partitions ~1 and ~2 are qualitatively independent if P~ f'l P2 ~ O 
whenever P1 ~ ~ and P2 E ~2. This means that knowing which element of 
~ contains the truth tells us nothing about which element of ~2 contains the 
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truth; being in one particular element of ~ does not rule out being in any 
particular element of ~2- Two partitions ~ l  and ~2 are qualitatively conditionally 
independent given a third partition ~ (or simply qualitatively independent given 
~)  if ~t(P) and ~2(P) are qualitatively independent for every element P of ~ .  
This means that once we are told which element of ~ contains the truth, knowing 
which element of ~ t  contains the truth tells us nothing further about which 
element of ~2 contains the truth. It follows directly from these definitions that 
~1 and ~2 are qualitatively independent given ~ if and only if P O PI f') P2 -7~ 
O whenever P E ~ ,  PI (~ ~1, P2 (= ~2, P n P~ ~ 0 ,  and P n P2 :)6 ~ .  

We write [ ~ ,  ~2]q to indicate that ~ t  and ~2 are qualitatively independent. 
We write [ ~ ,  ~2]q~ to indicate that ~ l  and ~2 are qualitatively independent 
given ~ .  Notice that [~l ~2]q is equivalent to [ ~  ~2]q{0}. 

Much of the theory we are about to study could just as well be stated in terms 
of variables. Instead of saying that ~ and ~2 are qualitatively independent given 

and writing [~l ,  ~ 2 ] ~ ,  we could say that X~ and X2 are qualitatively inde- 
pendent given X and write [X~, X2]qX, where X~, )(2, and X are variables such 
that 

~x, = ~ , ,  ~x2= ~2 and ~ x = ~  
Notice that there are many variables corresponding to a given partition, and the 
same qualitative independence relations hold for all of them. 

Previous work in the theory of belief functions has used a different terminology 
for qualitative independence. Instead of saying that ~ and ~2 are qualitatively 
independent given ~ ,  this work (Shafer [1,3] and Shafer and Logan [2]) has 
said that ~ discerns the interaction relevant to itself between ~ and ~2. This 
terminology obscures the analogy to probabilistic independence, but it makes 
explicit one aspect of the role the concept of qualitative independence plays in 
the management of evidence. As we shall see later (Theorem 4), we can use 
as our frame for combining evidence bearing directly on ~ and ~2 if ~ and 
~2 are qualitatively independent givenS. 

Qualitative conditional independence is also equivalent to what is called 
"embedded multivalued dependency" is the theory of relational databases (Fagan 
[15] and Maier [16]). In that theory the relation [X~ X2]-tX is written X--->-->X~IX2. 
Some of the properties that we will derive here have also been derived in that 
theory, but the different notation and point of view lead to different emphases. 
In particular, the work in relational databases has not brought out the analogy 
with probabilistic conditional independence that we emphasize. 

Qualitative independence relations arise nationally in the multivariate for- 
malism. Here are three examples. 

EXAMPLE 1 Suppose 0~ and O 2 are nonempty sets, and set 0 equal to the 
Cartesian product 0, x 02. Set ~ = {{0~} x O210~ E O,}, and set ~32 = 
{O~ x {02}102 ~ 02}. The partitions ~ and ~ :  are qualitatively independent, 
since({Ot} x 02) A (0, x {02} = {(0,,02) 4: ~ .  
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EXAMPLE 2 Suppose O~, 02, and 03 are nonempty sets, and set 0 equal 
to the Cartesian product Oi x 02 x 03. Set ~ = {{0~} x {02} × O3101 E 
e , ,  = {e ,  x {o2} x {o }lo  and = {O, x 
{02} X 03[02 E 02}. The partitions ~ ,  and ~2 are not qualitatively inde- 
pendent. However ~l  and ~2 are qualitatively independent given ~.  

EXAMPLE 3 Suppose we formalize a problem along the lines of Example 2, 
and afterwards we obtain evidence that rules out certain values for the pair 
(0~, 02) and other evidence that rules out certain values for the pair (02, 03). 
Let A denote the subset of O~ x O2 consisting of elements not ruled out by 
the first item of evidence, and let B denote the subset 02 x 03 consisting of 
elements not ruled out by the second item of evidence. Then we may decide 
to simplify the formalization of our problem by adopting O' = (A x 03) fq 
(0~ x B), a subset of O, as our frame. If we do this, then the three questions 
that were formalized by ~1, ~2, and ~ will now be formalized by ~l(O'), 
~2(0' ), and ~ ( 0 '  ). The qualitative independence relation will be preserved, 
however; ~l(O' ) and ~2(O') will be qualitatively independent given ~ ( 0 '  ). 

There is another interesting conditional independence relation in this exam- 
ple. Define partitions ~ ,  C22, and ~3 of Ot x 02 x 03 by setting ~ = 
{{0t} x 02 x O310~ E O~}, etc. Then ~ ( 0 ' )  and ~3(O') will not, in gen- 
eral, be qualitatively independent. They will, however, be qualitatively inde- 
pendent given ~z(O'). 

The definition of qualitative independence involves categorical relations, not 
probabilities. But, as the following lemma shows, probabilistic independence 
for random variables does imply qualitative independence for the induced 
partitions. 

LEMMA 1 Suppose X and Y are variables defined on O. Then [~x, ~r]q 
if and only if there exists a probability distribution Pr on 0 such that (i) X 
and Y are independent with respect to Pr and (ii) Pr({O}) > O for all 0 E O. 
(Recall our assumption that 0 is finite.) 

Proof First assume that there exists such a probability distribution Pr. Let 
P E rItx and Q E ~3~. Since Xand Yare independent with respect to Pr, Pr(P f3 
Q) = Pr(P)Pr(Q). Since Pr(p) > 0 and Pr(Q) > 0, it follows that 
Pr(P t"l Q) > 0. Hence P fq Q # O. 

Now assume [~x, ~r]-t. We must construct a probability distribution Pr 
satisfying the stated conditions. For every 0 E O, there exist unique elements 
P of ~x  and Q of ~r  such that 0 ~ P fq Q. Set 

Pr({O})= IPIq QI-' I~1-' {I~,1-' 
(Here [A[ denotes the number of elements in A.) The numbers Pr ({0}) are positive. 
It is easy to see that they add to 1, thus defining a probability distribution, and 
that X and Y are independent with respect to this distribution. • 
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COROLLARY Supposee X, Y, and Z are variables defined on O. Then [~x,  
~ r ] d ~ z  if  and only if  there exists a probability distribution Pr on 0 such 
that (i) X and Y are independent given Z with respect to Pr and (ii) Pr({0}) > 0 
for all 0 E O. 

The concepts of qualitative independence generalize readily to collections of 
more than two partitions. We say that the partitions ~ . . . . .  ~ ,  are qualita- 
tively independent if P~ n ... n P, ~ O whenever Pt E ~,., for i = 1 . . . . .  
n. We say that the partitions ~ . . . . .  ~ ,  are qualitatively independent given 

if the partitions ~ ( P )  . . . . .  ~ , (P)  are qualitatively independent for every 
P in ~3. Notice that when ~ . . . . .  ~ ,  are qualitatively independent (or qual- 
itatively independent given ~) ,  any smaller group selected from them are also. 

We write [~1 . . . . .  ~.]-t to indicate that ~1 . . . . .  ~ ,  are qualitatively 
independent, and we write [~3~]~N-~ to indicate that the partitions in an indexed 
collection {~}~N are qualitatively independent. (This notation allows some of 
the ~ to be identical, but in fact two identical partitions of O cannot be inde- 
pendent unless they are both equal to {O}.) We write [~1 . . . . .  ~ . ] - t~  and 
[~]~eN-~ to indicate relations of qualitative conditional independence. 

Projections 

Set 

a ~ = u{ple  , e f q a ~ }  
and 

A~ = u{PIP~, PC_A} 

Notice that A~ _C A _C A ~. In fact, A * is the smallest element of ~ *  containing 
A, and A~ is the largest element of ~ *  contained in A. Notice also that A ~ C B 
if and only if A C_ B~. 

Shafer [1, pp. 117-119] called Av and Av "outer and inner reductions," 
respectively. Pawlak [ 17, 18] called the pair (A~, A ~) a "rough set." Here we will be 
interested primarily in A ~, which we will call the projection of A onto the field 
~* .  

EXAMPLE4 S e t O  = O1 x 02, a n d ~  = {{01} × O210,~O~}.Thenthe 
projection A ~ is equal to B x 02, whereB = {0, E Od(0~, 02) E A f o r s o m e  
02E 02}. 

LEMMA 2 The following statements are equivalent. 
1. [~ ,  . . . . .  ~d-4~ .  
2. If P E ~3, S, E ~ *  and P f3 S, ¢: ~ f o r  i = 1 . . . . .  n, then P f) ( S  1 

n - . .  n s , ) ~ :  z .  
3. s~ o . . .  n s~ = (s, N . . .  n s,)~ whenever S, is an element of~3*, 

i = 1 . . . . .  n. 
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4 .  P ~  n • • • O P~ = (Pt n • • • n P~)~ whenever P~ is an element of  
~ , i = l  . . . . .  n. 

Proof We will show that statement 1 implies 2, 2 implies 3, 3 implies 4, 
and 4 implies 1. 

Suppose statement 1 holds. Suppose P E ~ ,  S~ E ~ *  and P n S~ # O for 
i = 1 . . . . .  n. For each i, we can choose P,. E ~ such that Pi C_ S~ and 
P n P~ # QS. By statement l ,  P O ( e  I n • • • n Pn) :/: ~.~. Since P O 
(P~ n • • • n P~) C_ P n (s~ n • • • n s~), it follows that P O 
( s ,  n • • • n s . )  o .  

Now suppose statement 2 holds, and choose S~ in ~ *  for i = 1, . . . , n. 
We have 

(san. . .  nS.)~--U {PIPE~,  en(s ,n - . ,  ns.)#~:Z~} 
and 

s ~ n  - . . n s ~ =  A { o { P I P E ~ ,  P O S , , : o } l i  = 1 . . . . .  n} 

U { P I P E ~ ,  P n s , ~ f ~  for i=  1 . . . . .  n} 
By statement 2, these are equal. 

It is obvious that statement 3 implies statement 4, because any element of ~i  
is also an element of ~* .  

Finally, suppose statement 4 holds. Suppose P E ~ ,  Pi E ~ ,  and P O P, ~: 
fo r i  = 1 , . . .  , n .  T h e n P ~  P~ n . . .  N P ~ . H e n c e P _ C  (Pl n - - .  A 

P . ) ~ , a n d h e n c e P  n P, n . . .  n Pn ~ ~ .  • 

Suppose [ ~ ,  ~2]q~ ,  and suppose we are interested in projecting an element 
S~ of ~ *  to field ~* .  The next lemma tells us that we will get the right answer 
if we first project St to ~ *  and then project the resulting projection to ~* .  In 
order to understand the practical implications of this lemma, think of S~ as 
information about the question represented by ~ t -  The lemma tells us that in 
order to deduce the implications of this information for the question represented 
by ~2, we do not need to work in the frame O; instead we can work in the 
smaller frame ~.  This lemma will be used later to prove Theorem 5, which 
extends the idea from the categorical information represented by an element of 
~ *  to the probabilistic information represented by a belief function carded by 
~ .  

LEMMA 3 Suppose [ ~ ,  ~2]q~,  and St E ~* .  Then S~ 2 = (S~) ~2. 

Proof Using the definitions together with statement 3 of Lemma 2, we obtain 
.2 = 

= O { P ,  IP2E%, (P~n s , ) ~ : # ~ }  

= u{P IP E  , e ns, O} 
• 



360 Glenn Sharer, Prakash P. Shenoy, and Khaled Mellouli 

Properties of Qualitative Independence 

We now study some properties of qualitative independence. These properties 
are analogous to properties of probabilistic independence, and many of them 
could be proved using Lemma 1, but we will give more elementary proofs. 

We know that functions of independent random variables are independent. If 
Xi and X2 are independent random variables, then f (Xl)  and g(X2) are also 
independent random variables. More generally, ifXl . . . . .  Xn are independent, 
{N1 . . . . .  Nk} is a partition of the set {X1 . . . . .  Xn}, and Yj is a function of the 
Xi in Nj, then Y~ . . . . .  Yk are independent. Yet, more generally, if the X, are 
independent given Z and each Yj is a function of Z together with the Xi in Nj, 
then the Y~ are independent given Z. The following lemma and corollary make 
analogous statements for qualitative independence. 

LEMMA 4 Suppose ~ t  . . . . .  ~ , ,  ~ ,  . . . . .  ~k  are partitions of  O. Sup- 
pose l~ ,  . . . . .  ~3dq, and suppose N~ . . . . .  N,  are disjoint subsets o f  
{1 . . . . .  n}. I f  ~ j  > A{~,li ~ N~} for j = 1 . . . . .  k, then l ~ t  . . . . .  
~da. 
Proof Suppose Qj E ~ j  for j = 1 . . . . .  k. Since ~ j  > A{~,[i ~ Nj}, Qj 

is a union of sets of the form N{P~[i E Nj}. Choose one such set for ech Qy. 
Since the Nj are disjoint, this gives us a unique choice of P~ for all i in UNj. 
Since {~i]i~UN/t, N{Pi[i ~ UNj} # 0 .  But fq{P,[i E U Nj} C_ Qi fq " " " f') Qk. 
Hence Q, N " '"  CI Qk :~ ~ .  • 

COROLLARY I f  Nt . . . . .  N,  are disjoint  subsets o f  {1 . . . . .  n}, 
/~1 . . . . .  ~,,]q~, and ~ j  -> ~ A (A{~,li ~ Nj}), then [ ~  . . . . .  ~ d q ~ .  

Proof I f P E  ~ ,  

(~A(A{~3, I i~Nj}) ) (P) = A{~,(P)I i~N~} 

The hypotheses of the corollary therefore tell us that [¢~,(P) . . . . .  ~.(P)]-q and 
that ~ ( P )  >_ ^{$,(P)Ii ~ NA- It follows from the lemma that [E),(P) . . . . .  
~(P)]-~. • 

If [ ~  . . . . .  ~n]-~, then [ ~ ,  ~j]-t for all distinct i and j. The converse is 
not true, of course. If, for example, O = {a,b,c,d}, ~3~ = {{a,b},{c,d}}, ~ = 
{ { a , c } , { b , d } } ,  and ~3~ = { { a , d } } , { b , c } } ,  then the three relations [~,, ~ ]q  
[~ , ,  ~3]q, and [~: ,  ~]-~ hold, but [ ~ ,  ~ ,  ~]-~ does not hold. 

The following lemma shows that the qualitative independence of n partitions 
is nevertheless equivalent to a set of pairwise qualitative independence relations. 

LEMMA 5 The following statements are equivalent. 

i .  l~, . . . . .  ~1~. 
2. [~3, . . . . .  ~.-,1~ andl~3..  A {~3,[i = 1 . . . . .  n - 1}1~. 
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3.  [ ~ j ,  A {~ , l i  ~ N - §}}lq for all j ~ N,  where N --  {1 . . . . .  n}. 
4. /~j ,  A {~ l i  = 1 . . . . .  j -- 1}]q for j  = 2 . . . . .  n. 

Proof It follows directly from Lemma 4 that statement 1 implies statement 
2, 2 implies 3, and 3 implies 4. So we need only show that statement 4 implies 
statement 1. 

Assume statement 4 holds. Choose elements Pi of ~i for i = 1 . . . . .  n. We 
need to show that P1 n • • • O Pn # 0 .  Since Pl # 0 ,  it suffices to show that 
if PI n . .  • o P j _ l  ~ O ,  t h e n P 1  n • . -  N P ~ # O .  ButPl  O • - .  O P j _ I ,  
if it is nonempty, is an element of the partition A {~,li = 1 . . . . .  j - 1}, and 
hence the relation [~j, A { ~ , I i  = 1, • • • , j - 1}]q implies that P1 n • • • n 
P j * ~ .  • 

COROLLARY The four statements in the lemma remain equivalent if each 
independence relation is changed to conditional independence given ~ .  

In general, unconditional independence of random variables XI . . . . .  Xn does 
not imply their independence given another random variable Z. They will be 
independent given Z, however, if Z is a function of one of the Xi. The situation 
is similar for qualitative independence: 

LEMMA 6 Suppose [~3, . . . . .  ~,]4, and suppose ~ >_ ~1" Then [¢13, . . . . .  

Proof Choose elements Q ~ ~ and Pi E ~ such that Q n P~ # O for 
i = 1 . . . . .  n. S i n c e ~ - > ~ l ,  Pl C_Q. H e n c e Q n P l  o - -  • APn  = P1 O 
• . .  n p . = / : ~ .  • 

COROLLARY Suppose [~j  . . . . .  ~ , dq~ ,  and suppose ~ >-- ~ > ~ A ~1. 
Then [~ j  . . . . .  ~ r ~ .  

Proof The hypotheses of this corollary can be restated by saying that for 
every element P of ~ ,  [~I(P) . . . . .  ~n(P)] -t and ~ ( P )  --> ~I(P)- By the 
lemma, this implies that [~ I (P )  . . . . .  ~ , ( P ) ] q ~ ( P ) .  This means that 
[~1(P n Q) . . . . .  ~ , ( P  n Q)]q whenever P is in ~ and Q is in ~ .  Since 

_> ~ ,  this is the same as saying that [~I(Q) . . . . .  ~,(Q)]-~ whenever Q is in 
~ .  And this is the conclusion of the corollary. • 

If X, Y, and Z are random variables, X and Y are independent, and X and Z 
are independent given Y, then X is independent of Y and Z. Lemma 7 says the 
same thing for partitions. 

LEMMA 7 l f  [~l ,  ~z]q and [ ~ ,  ~3]q~2, then [ ~ ,  ~2 A ~3]q. 

Proof Suppose P1 E ~ l ,  P2 E ~2, and P3 ~ ~3 such that P2 n P3 ~=O. 
We need to show that P~ n P2 o Pa # 0 .  Since [~ l ,  ~2]q, Pi O P2 # 0 .  
Since P2 n P3 # O and we assumed that [~l ,  ~3]-1~2, we have P~ n P2 n 
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The next lemma is bothersomely complex, too complex to correspond to 
familiar properties of probabilistic independence. We give it here because we 
will need it in the proof of Theorem 1. 

LEMMA 8 Suppose ~ l  . . . . .  ~n are partitions of  O. Suppose il and i2 are 
elements o f  {1 . . . . .  n}, and 921 and 922 are partitions o f  {1 . . . . .  n}. 
Suppose /A{~,li E a}],~% q ~,, and /A{~,[i ~ 13}1a~2-~$,2. Then 

Proof Choose an element Q of ~3,, A ~2 and elements Q~ of ^{~,li E 8} 
such that Q n Qb ~ O for all 8 E ~ / %  922. We need to show that Q O 

There exist unique elements R~, of ~ ,  and R~ 2 of ~3~ 2 such that Q = R~, n R~ 2. 
And there exist unique elements P~ o f ~  such that Q6 = N {P~[ i E ~} for all 6 E 
92, A 92s. Since Q O Q5 ~ D,  we have R,, = P~ and R, 2 = P~2- 
So our task reduces to showing that if P~ E ~ and 

e,,ne,~n(n{e,li~})~O for all ~E92~/%92~ (1) 

thenP~ R .  • • n P , ~ Q S .  
Choose a ~ 92~. Combining our hypothesis that [/%{~,1i ~ 13}]~;~,2 with 

Lemma 4 we have 

[A {~,1 i~  ~ O (a U {i1} ~}] ae~2-~¢~i~ (2) 

(We use the convention that ^{~3,[i ~ ~ }  = {O}.) But Eq. (1) tells us that 

~¢~p,,nei~ n( n{P,li~ctn13} = P, n (  n { P , [ i ~ n ( a u { i ~ } ) )  

for all 13 ~ 9~ such that a n 13 ~ ~ .  Hence (2) tells us that 

~P,~n ( n  {P,I iQ ot U {i,} }) = P,, nP ,~n  ( n  {P,I i@ or}) 

and therefore 

P i, n (  n{P~[i~c~})~f~ (3) 

We have established (3) for all a ~ 9~. Since [/%{~1i Q a}].e~,-t~, ,  it 
follows that P~ n • • • n P, ~ ~ .  • 

Notice that it is necessary, for the conclusion of the lemma to hold, that 92~ 
and 92~ each fully partition {1 . . . . .  n}; it is not sufficient that they consist of 
disjoint subsets of {1 . . . . .  n}. 

The following corollary follows from Lemma 8 by induction on k. 

COROLLARY Suppose i~ . . . . .  i~ are elements of{1 . . . . .  n} and 92~ . . . . .  
92~ are part i t ions o f  {1 . . . . .  n}. Suppose [/%{~[i Q e t } ] .~ - t~  f o r  

j = 1 . . . . .  k. Then /A{~ , [ i  ~ ~}]~,A.. . / ,~-~3, ,A- • .A~,~. 

How many further properties of qualitative conditional independence are there? 
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Infinitely many. Perhaps there are really only a finite number, and the others can 
be deduced from these. Sagiv and Walecka [19] have shown, however, that the 
concept does not have a finite axiomatization using Horn clauses. 

QUALITATIVE M AR KOV TREES 

We call a tree of partitions a qualitative Markov tree if the structure of the 
tree indicates conditional independence relations among the partitions. Partitions 
and groups of partitions that are connected in the tree only through a given 
partition must be conditionally independent given that partition. 

As we shall see, qualitative Markov trees arise naturally from diagnostic and 
causal trees. In other cases, we can construct them by collapsing networks. 

Our interest in qualitative Markov trees will be justified in a later section, 
where we will show how belief functions can be propagated in such trees. 

We begin this section by looking at alternative ways of stating precisely the 
condition that a tree of partitions be qualitative Markov. Then we study some 
ways of changing such trees without disturbing the Markov property, we show 
in detail how qualitative Markov trees arise from diagnostic trees, and we sketch 
some ways qualitative Markov trees arise in the multivariate formalism. 

Properties of Qualitative Markov Trees 

We will use standard graph-theoretic terminology and notation for trees. Recall 
that a graph or network is a pair (N, E), where N is a finite set and E is a set 
of unordered pairs of distinct elements of N. (In other words, each element of 
E is a two-element subset of N.) The elements of N are nodes, and the elements 
of E are edges. A graph is a tree if it is connected and has no cycles. When 
{i, j} E E, we say that i and j are adjacent and that each is a neighbor of the 
other. A node is a leaf  if it has exactly one neighbor. Let V~ denote the set of 
all neighbors of i. 

If  M is a subset of N, i is not in M, but i is a neighbor of an element of M, 
then we say that i is a neighbor of M. The set of nodes consisting of M together 
with all its neighbors is called the closure of M. Let VM denote the set of all 
neighbors of M, and let /W ~ denote the closure of M; M ~ = M U I'M. 

If No, N~ . . . . .  Nr are subsets of N, and every path from a node in N~ to a 
node in Nj goes via some node in No whenever i ~ j ,  we say that No separates 
N~ . . . . .  N,. If  No separates N~ . . . . .  Nr, then N~ - No . . . . .  Nr - No are 
disjoint. 

If  a node n in a tree (N, E) is not a leaf, then when we remove it (and the 
edges incident to it) from the tree, the graph that remains will consist of two or 
more isolated subtrees, one for each neighbor of n. Let (Nk .... Ek.n) denote the 
subtree containing the neighbor k. 
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Suppose {~i}~es is a finite collection of partitions, and suppose (N, E) is a 
tree. (This notation permits some of the ~ i  to be identical.) We say that (N, E) 
is a qualitative Markov tree for {~}~eN if for every n ~ N, 

[A{~,li~Nk..}],~v -~.  (4) 

THEOI~EM 1 Given a finite collection of partitions {~}~N and a tree (N, E), 
the following conditions are equivalent. 

1. Whenever N~ . . . . .  N, are separated by No, 

[A{~3,IiEN,} . . . . .  A{~,IiENr}14A{~,Ii~No} 

2. Whenever N1 and N2 are represented by No, 

[A{~,IiEN,}, A{~3,IiEN~}4A{~,IiENo} (5) 
3. Whenever N~ and N2 are separated by No and the three sets are disjoint, 

(5) holds. 
4. For every subset M of N, 

[ A { $ 4 i E M  }, A{~3,IiEN-M~'}IaA{~3,IiE VM} 

5. (N, E) is qualitative Markov for {~}~eN" 

Proof Statement 2 is a special case of statement 1, 3 is a special case of 2, 
and 4 is a special case of 1. Hence it suffices to show that statement 4 implies 
5 and that 5 implies 1. 

To show that 4 implies 5, we use Lemma 5. Suppose n ~ N, and suppose k 
is a neighbor of n; k ~ V,. Then n is the only neighbor of N~.,. So substituting 
Nk., for M in statement 4 yields 

o r  

[A{~,Ii~N~.4, A{~,Ii~N- (N~..U{n})}]-~. 

eV,,- 

Since this holds for every element k of V,, (4) follows from the corollary to 
Lemma 5. 

To show that statement 5 implies statement 1, we use Lemmas 4 and 7. 
Suppose N~ . . . . .  Nr are separated by No. For each node n in No, set 92, = 
{n} U {Nk..Ik ~ V.}; this is the partition of N consisting of n together with the 
disjoint subtrees that remain when n is removed from the tree. Let 92 denote the 
partition A{92.1n e No}; this partition consists of the singleton subsets of No 
together with the disjoint subtrees that remain when No is removed from the tree. 
Now use N1 . . . . .  N, to define a partition {Ro, R1 . . . . .  R,÷ 1} of 92. Let Ro 
be the set of singleton subsets of No. For j = 1 . . . . .  r, let R~ be the set of 
elements of 92 that are contained in N~ but are disjoint from No. Let R,+ I = 
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- (Ro U • • • U Rr). Then Nj C O{8[5 ~ Ro U Rj}, and hence 

A{~,IiENj}_>A{A{!~,IiE~}IS~RoURj} 
= ( A { ~ , I i ~ N o } ) A ( A { { ~ , I i ~ } I ~ R , } )  (6) 

So if we assume statement 5 is true, then we have 

[A{'~,li~ ~ } ] ~  -I'~,, 

for all n E No. So by the corollary to Lemma 8, 

Statement 1 follows from (6) and the corollary to Lemma 4. • 

It turns out that conditions 1 thorugh 4 of Theorem 1 are also equivalent when 
the graph (N, E) is not necessarily a tree. When these conditions hold, we call 
the graph a qualitative Markov network. We will discuss such networks briefly 
in the section on multivariate Markov trees. For more information, see 
Mellouli [ 10]. 

In a private communication, Pearl has pointed out two more characteristics 
of qualitative Markov trees: 

6. For any pair of nonadjacent nodes n and m and any set No consisting 
o f  one or more nodes lying along the path between n and m, 

7. There exists a node r in the tree such that if  we think of  movement away 
from r as descent, then for  ever), node n in the tree, 

[~3,, A{~,liff.A(n)}]q~m,n) 

where m(n) is the mother o f  n, and A(n) consists o f  the nondescendants 
o fn .  

It is obvious from our thereom that these conditions are necessary for a tree to 
be qualitative Markov; in fact, the second condition is true for any node r. That 
either condition is sufficient for a tree to be qualitative Markov can be deduced 
from the lemmas in the preceding section (Partitions) or from theorems given 
by Pearl and Verma [20]. 

The remainder of  this section can be omitted on a first reading by those who 
are willing to grant the importance of qualitative Markov trees and want to move 
on as quickly as possible to the computational scheme presented under the heading 
Propagation in Trees. 
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Transformations of Qualitative Markov Trees 

The questions for which we have evidence sometimes change. We may obtain 
evidence about new questions, or we may discard given evidence because it has 
been discredited. If  we are using a qualitative Markov tree because its partitions 
correspond to questions for which we have evidence, then these changes may 
lead us to make changes in the tree. We will not want these changes to destroy 
the Markov property. 

We now consider some ways we can change a qualitative Markov tree while 
preserving the Markov property. 

SUBTREES The simplest thing we can do to a tree is remove a leaf. This does 
not affect the separations in the tree; if No, Nl, and N: are sets of nodes in the 
tree that remains, then No separates N, and N2 in the tree that remains if and 
only if it did so in the original tree. It follows from statement 2 of Theorem 1 
that if the original tree was qualitative Markov, then the one that remains is also. 

By successively removing leaves from a tree, we can obtain any subtree. 
Hence any subtree of a qualitative Markov tree is qualitative Markov. 

CONTRACTION There is another way to make a qualitative Markov tree smaller. 
We replace a subtree of the tree with a single new node, say m, and associate 
with m the coarsest common refinement of the partitions that had been associated 
with the nodes of the subtree; if No is the set of nodes in the subtree, then 
A{~3ili E No} is the partition associated with m. We introduce edges connecting 
m to those nodes outside the subtree that were neighbors of nodes in the subtree. 
Let us call the new tree a contraction of the old one. We can see that a contraction 
of a qualitative Markov tree is also a qualitative Markov tree by noting that 
(4) holds for every node n in the new tree. Indeed, if n is the new node m, then 
(4) is the same as statement 1 of Theorem 1, applied to the old tree, with 
Nl . . . .  Nr the nodes in the r disjoint subtrees that remain when No is removed. 
And if n is not m - - i f  n is one of the nodes remaining from the old tree---then 
the partitions {A{~,Ii E Nk.,}}kevn in the new tree are the same as in the old, 
hence (4) holds in the new tree because it holds in the old. 

An important special case of contraction occurs when No consists of two 
neighboring nodes i and j and ~ i  is coarser than ~j.  In this case the partition 
associated with the new node is simply ~, ,  and hence the contraction amounts 
to the removal of j from the tree. 

DELETION Suppose we replace a subtree by a single node m, as in the preceding 
paragraph. But we associate a coarser partition with m. Instead of the partition 
A{~,Ii E No}, we use the partition A{$,Ii ~ M}, where M is the subset of No 
consisting of those elements that have neighbors outside No. Then the result is 
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still a qualitative Markov tree. To see this, we review the reasoning of the 
preceding paragraph. We see that (4) holds when n is equal to m, because M is 
sufficient to separate the isolated subtrees that remain when No is removed from 
the old tree. It holds when n is not equal to m, because the partitions 
{A{~Ii E Nk.~}}k~vn in the new tree are still the same as in the old tree, except 
for the one for the neighbor k for which Nk., contains the new node, and the 
difference there is only that No - M is subtracted from Nk., and hence 
/~{~l i E Nk.n} is coarsened. Independent partitions remain independent when 
they are coarsened. 

It is natural to call this kind of reduction of a qualitative Markov tree a 
deletion. We are deleting the nodes in No - M, in the sense that we are no 
longer taking account of the partitions associated with these nodes, Removal of 
a leaf is a special case of deletion; here No consists of the leaf together with its 
only neighbor and M consists of just the neighbor. 

We can do things intermediate between contraction and deletion. We can 
associate with the new node m any partition ~,~ that satisfies A{~3,Ii ~ N,.n} >-- 
~,~ >- A{~,Ii ~ M}. 

INTERPOLATION OF REFINEMENTS Suppose i and j are neighbors in a quali- 
tative Markov tree. Suppose we interpolate a new node, say m, in the edge 
between i andj .  (This means that we add m to N, remove {i,j} from E, and add 
{i,m} and {j,m} to E.) Suppose we associate with m the partition ~ / ~  ~j.  Then 
we again have a qualitative Markov tree. To see that this is true, we again think 
about (4) for each node n of the new tree. If  n is not equal to i, j, or rn, then 
these three nodes all lie on the same branch from n, and since ~ and ~ j  were 
already on this branch, the addition of ~ i / ~  ~ j  will not change the refinement 
of all the partitions on it. If  n is equal to m, i, or j ,  then we must appeal to 
Lemma 4. Consider two cases: 

1. Supose n is equal to m. Compare the branches separated by m in the new 
tree with the branches separated by {i,j} in the old tree. The only difference 
is the addition of i to one branch and j to another in the new tree. The 
refinements of the partitions along these branches in the old tree are con- 
ditionally independent given ~ A ~ j  by statement 1 of Theorem 1. By 
the corollary to Lemma 4, addition of ~ ;  or ~ j  to one or more of the 
branches does not affect this conditional independence. 

2. Now suppose n is equal to i or j ,  say i. Compare the branches separated 
by i in the new tree with those separated by i in the old tree. The only 
difference is the addition of m to the branch containing j. This has the 
effect of adding ~ to the partitions along this branch, and we can again 
appeal to the corollary to Lemma 4 to see that this does not affect the 
conditional independence given ~ .  

Notice that if we interpolate refinements between every pair of neighbors, 
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except those pairs in which one of the partitions is already a refinement of the 
other, then we obtain a qualitative Markov tree in which moving from a node 
to a neighbor of that node is always a matter of either refinement or coarsening. 

ATI~ACHMENT Finally, notice that the Markov property is preserved when we 
attach a new node m to what was a leaf node i and associate with m a coarsening 
of the partition associated with i. If  ~,~ is coarser than ~ ,  then its addition to 
a refinement already involving ~ will not change that refinement. 

Diagnostic Markov Trees 

In this section we study qualitative Markov trees that arise from hierarchical 
structures for diagnostic problems. 

Hierarchical structures are rooted trees. Recall that a rooted tree is a tree that 
is drawn downward from a topmost node, as in Figure 1. The topmost node is 
called the root, and node j is called a daughter of node i if j is directly below 
i. A hierarchical structure for a frame of discernment 0 is a rooted tree in which 
the root is O, the other nodes are subsets of O, and the daughters of any nonleaf 
node form a partition of that node. 

To construct a hierarchical structure for a diagnostic problem, we first con- 
struct a tree of  diagnoses, a rooted tree whose nodes are diagnoses. We begin 
with a list of possible diagnoses. In the case of a car that will not start, for 
example, we might begin with the list 

{faulty battery system, faulty fuel system, 
faulty starting system, something else} 

Let us assume that the diagnoses on the list are mutually exclusive and collectively 

Figure 1. A Rooted Tree 
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Faulty ~ lmaulty~ ~aulty ~ ~omething~ 
battery I I fuel / I startingl I else | 
system 3 I system | ~system J k (d) J 

~ eak or~ ~aulty h~efective~ransmission~ome other~ 
aultYi|battery |~witch Jlnot in park|l fault in | 
attery I I cOnnectiOns] / ~ k (g) Jl starting | 
(e) ~/k~ (f) / ~ Lsys~h~m J 

~efective~ ~efective~ CDefeet in 
I ignition| i starter | ~ some other [ 
|switch | J 

Figure 2. A Tree of Diagnoses 

exhaustive; exactly one is correct. We use the list to construct an initial tree of  
diagnoses, consisting of just a root and its daughters. The root represents the 
problem, and the daughters are the diagnoses in the list. We then single out one 
of  the diagnoses, say d, and we make a list of  possibilities (again mutually 
exclusive and collectively exhaustive) for what more specifically might be true 
if d were correct. In the case of  the car that will not start, for example,  we might 
single out the diagnosis "faulty battery" and make the list 

{weak or faulty battery, faulty battery connections} 

We then enlarge our tree by attaching to the node corresponding to d a set of  
daughter nodes, one for each of  the possibilities on this new list. We do this 
repeatedly, each time splitting some diagnosis d into more specific diagnoses, 
exactly one of which is correct if d is correct, and none of  which are correct if 
d is not correct. Figure 2 shows a tree of  diagnoses this might lead to in the 
case of  the car. 

Such a tree of  diagnoses will have the property that its leaves themselves 
constitute a set of  mutually exclusive and collectively exhaustive diagnoses. We 
can use this set as a frame of  discernment. In Figure 2, for example,  we can set 
0 = {c,d,e, f ,g,h,i , j ,k}.  Moreover,  we can easily transform the tree of  diagnoses 
into a hierarchical structure for this frame; we simply replace each node with 
the set of  the leaves that lie below it. In Figure 2, we replace "defective switch" 
with the set N = {i,j,k}, we replace "faulty starting system" with the set M = 
{g,h,i,j ,k}, we replace "weak or faulty battery" with the singleton set E = {e}, 
and so on. This gives the hierarchical structure shown in Figure 3. 
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Figure 3. A Hierarchical Structure 

We will be interested in a given hierarchical structure for a diagnostic problem 
if it matches the structure of the evidence we have for that problem. This means 
that each item of evidence we have either (1) directly supports or refutes some 
node in the tree or (2) bears on the question of which daughter of some node 
might be correct. An example of type 1 for Figure 3 would be evidence that the 
battery system is faulty. An example of type 2 would be experience about which 
switches in the starting system fail most often. Items of evidence of these two 
types bear most directly on relatively small partitions of the frame O. Evidence 
of type 1 bears on partitions of the form {A,AC}, where A is a node of the tree. 
Evidence of type 2 bears on partitions of the form ~)a U {At}, where A is a 
nonleaf node of the tree and ~ a  is the set of A's daughters. Can these partitions 
be arranged in a qualitative Markov tree? Yes. In fact, given any hierarchical 
structure, we can construct two interesting qualitative Markov trees from these 
partitions. One of these we call the tree of families; the other we call the tree 
of families and dichotomies. 

To construct the tree of families, we first remove the leaves from the hier- 
archical structure. We then associate a partition with each remaining node. With 
the root node O, we associate the partition Do,  and with each nonroot node A, 
we associate the partition ~A U {At}. Figure 4 shows the tree of families con- 
structed in this way from the hierarchical structure in Figure 3. 

To construct the tree of families and dichotomies, we enlarge the tree of 
families as follows. First we put a new node in the middle of each edge, and 
we associate with it the partition {A,A~}, where A is the node on the lower end 
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%={L, C, M, D }) 

Figure 4. 

%u{NC} {N c I , J , K } )  

The Tree of Families for Figure 3 

of the edge (the one now associated with the partition ~A O {At}). Then we add 
back to the tree each leaf A that we removed from the hierarchical structure 
when we were constructing the tree of families, and we associate with it the 
partition {A,AC}. Figure 5 shows the tree of families and dichotomies constructed 
in this way from Figure 4. Notice that this tree has a dichotomy {A,A c} corre- 
sponding to every nonroot node A in the original hierarchical structure. 

THEOREM 2 The tree of families and the tree of families and dichotomies 
constructed from a hierarchical structure are qualitative Markov trees. 

To prove Theorem 2, it suffices to prove that the tree of families and dichotomies 
is qualitative Markov, since the tree of families is a contraction of it. (Each 
dichotomy {A,A ~} has a refinement as a neighbor.) In order to prove that the tree 
of families and dichotomies is qualitative Markov, we need another lemma about 
conditional independence. 

LEMMA 9 I f  ~3 is a partition o f  O, then [943 ~] ac~q~, where 

s~ = {K}U{{O}IOEA } 
Proof Suppose P is an element of ~ ,  and for each element A of ~ choose 

an element PA o f ~  such that P n PA :# Z .  Then Pe c p,  and PA = A c forA 
:¢: P.  Hence P n (O{P~IA 6 ~} )  = pp ~: Z .  • 

Proof of Theorem 2 We need to show that 

[A{~,liENk,.}]k~v 4~B. (7) 
for every node n in the tree of families and dichotomies. There are three cases: 
(1) n is the root node, (2) n is a family node, with associated partition ~A U {At}, 
or (3) n is an interpolated or leaf node, with associated partition {A,AC}. In case 
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{L ,N,G,H} 

,I,J,K} 

Figure 5. The Tree of Families and Dichotomies 

1, (7) reduces to 

In case 2, 7 reduces to 

In case 3, (7) reduces to 

[ ~ ,  ~A~c]-I{A,AC). 

These are all special cases of  Lemma 9. 

Multivariate Markov Trees 

We saw earlier that conditional independence relations do arise naturally in 
the multivariate formalism. In this section we will discuss some ways to construct 
qualitative Markov networks and trees in this formalism. 

Suppose we begin with variables X1 . . . . .  X, with frames Ot . . . . .  Or, 
respectively. If  we initially specify no relations among these variables, then our 
overall frame O will be the Cartesian product O1 x • • • x O,; otherwise it 
will be a subset of  O1 x • • • x Or. 

Let R denote the set of  coordinates R = { 1 . . . . .  r}. Given any subset V of  
R, we can construct a partition ~ v  of  O by grouping together those elements of  
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O that agree on all the coordinates in V; two elements 0 and 0' of O are in the 
same element P of ~ v  if and only if 0j = 07 for all j in V. We write ~ j  for ~0>- 
Elements of ~ v  are often called cylinder sets. Notice that as we enlarge the 
subset VofR,  we refine the partition ~v. I f  It', c 1"2, then ~ t  > ~v2. And ~ ,  ^ 
~v2 = ~vluv2. 

THE UNRESTRICTED CASE Let us assume for the moment that we do not specify 
any relations among our variables, so that O = O1 x • • • x Or. In this case, 
generalizing Example 2, we see that [~v,, ~3v2]q~v whenever V~ n V2 c v. 

Generally we will be concerned only with partitions corresponding to certain 
subsets V of R. If we let W denote the set of these subsets, then we are dealing 
with a pair (R, W), where W is a set of subsets of R. In graph theory, such a 
pair is called a hypergraph. So instead of a graph (N, E) with partitions associated 
with the nodes in N, we have a hypergraph (R, W) with partitions associated 
with the hyperedges in W. 

We can, however, use the elements of W as nodes in a network. From the 
fact that [~v~, ~v2]q~v whenever V~ n v~ c v, we see that such a network 
will be qualitative Markov for the partitions {~v}ww if (UA) n (UB) c_ t iC 
whenever A, B, and C are sets of nodes in the network and C separates A from 
B. 

One way to construct a network that has this property (and is therefore 
qualitative Markov) is to connect any two elements of W that have a nonempty 
intersection; this gives the network (N,, Ep ,  where 

N,=w and e,={{w.w2}lwi W, w2EW, and w, 

Let us call this the network of families for the hypergraph. 
Another way to construct a qualitative Markov network from the hypergraph 

(R, W) is to take both the single coordinates in R and the sets of coordinates in 
W as nodes and join each coordinate to each set containing it. This gives the 
network (N2, E2), where 

N2=RUW and E2={{j,w}IwEW and j ew}  

Let us call this the network of families and variables for the hypergraph. 
Figure 6 shows a small hypergraph together with its network of families and 

its network of families and variables. The hypergraph is (R, W), where R = 
{1,2,3,4,5} and W = {{1,2,3},{2,4},{3,5},{4,5}}. 

THE RESTRICTED CASE Now let us assume that we do specify relations among 
our variables, so that O is a subset of O1 x • • • x Or. In Example 3, we saw 
that conditional independence relations can still hold in this case, provided 
relations among the variables follow a certain pattern. What pattern is needed 
in order for the networks we have just constructed to be qualitative Markov? 
We shall show that they will be qualitative Markov if W is a Kong pattern. 
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(a) (b) (c) 
Figure 6. (a) A Hypergraph. (b) The Families. (c) The Families and Variables 

Let us define this term. Specifying relations among variables means imposing 
restrictions on the values they can jointly take. We specify a relation among 
Xj,, . . . .  Xj~, for example, by specifying a subset O0, . . . . .  j,~ of  the Cartesian 
product O j, × • • • x Oj~ and imposing the restriction that Xj,, . . . .  Xjk can 
jointly take the values 0j,, . . . .  0~,, respectively, only if (0r,, . . . .  0~) is in 
Oo . . . . . .  ~k}. Let Wo denote the set consisting of  all the subsets of  R for which 
we impose restrictions; for each element {/', . . . . .  Jk} of  Wo, we specify a subset 
O { j , .  Jkl of  the Cartesian product Oj, x • • • x Ojk. We call Wo, and any set 
containing W0, a Kong pattern for O. To avoid trivialities, let us assume that 
every element o f  W0 has at least two elements; k >_ 2 whenever {j,,  . . . , jk} 
E W. Our overall frame of  discernment is 

O : { ( 0 1  . . . . .  0 r ) l ( 0 j ,  , . . . .  0 j k ) ~ O { j  ! . . . . .  j.} 

for each element {j~ . . . . .  jk}~Wo} 
this is a subset of  O~ × • • • × O,. 

THEOREM 3 I f  W is a Kong pattern, then the network o f  families and the 
network o f families and variables are qualitative Markov. 

To prove Theorem 3, it suffices to prove that the network of  families and variables 
is qualitative Markov, since the network of  families is a contraction of  it. (The 
earlier reasoning about contractions of  qualitative Markov trees applies also to 
qualitative Markov networks.) This is obvious from the following lemma. 

LEMMA 10 Suppose W is a Kong pattern. Suppose removal o f  a set o f  nodes 
f rom (N2, E2) results in k connected subnetworks, and let V and V ~ . . . . .  V k 
denote the sets o f  coordinates in the set o f  nodes removed and the remaining 
subnetworks, respectively. Then [943v ~ . . . . .  ~3J4~3v. 

Proof Choose an element P of  ~ v  and an element Pk of  ~v~ such that P N 
Pk *: Z for k = 1 . . . . .  s. We want to show that P N P~ N . . . .  ) P~ :# Z .  
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The choice of  P amounts to the choice of  an element 0j of  Oj for each 
coordinate j in V, and the choice of  Ps amounts to the choice of  an element 0j 
for each coordinate j in Vs. Since V, V1 . . . . .  V, form a partition of R, we have 
chosen 0j for every coordinate j; we have chosen an element (01 . . . . .  0r) of  
O1 x • • • x Or. We will have P f') P1 13 " "" (q P s ~ Q ~  if and only if 
( 0 1 , . . . , 0 r )  i s inO.  

Now (01 . . . . .  0r) will be in O unless there is an element {Jl . . . . .  j,_} of  
W0 such that (0jj . . . . .  0jk) is not in Ou, . . . . .  Jkl. But every element of  tV0 is 
contained either in V or else in exactly one union V U Vs. If  {Jl . . . . .  Js} is 
contained in V, then (0j,, . . . .  0j) is in O u . . . . . .  j~ by virtue of  the fact that P 
is nonempty. If  {Jl . . . . .  Js} is contained in V U Vs, then (0j,, . . . .  0j) is in 
O~j, . . . . .  Jk~ by virtue of  the fact that P N Pk :=]= Z .  • 

If (Nl, El) or (N2, E2) happens to be a tree, then it is a qualitative Markov 
tree. In general, we cannot expect these networks to be trees. They will be trees, 
however,  if the variables X1 . . . . .  Xr with which we begin are already arranged 
in a rooted tree (R, F) and each family in W consists of  a mother and her 
daughters: 

W = {~jU{j}[jER, j is not a leaf in (R, F)} 

In this case,the construction of  (NI, El) and (N2, E2) from (R, F) is analogous 
to our construction of the tree of  families and the tree of  families and dichotomies 
in the section on diagnostic Markov trees. 

In fact,the diagnostic problem can be put into the multivariate formalism so 
that Theorem 2 is a special case of  Theorem 3. We take R to be the set of  nodes 
in the tree of  diagnoses (e.g.,  Figure 2), and we take Xj to be the variable that 
takes the value "yes" if the diagnosis j is correct and "no" if it is not. The frame 
Oj for Xj is the set {yes, no}, and the frame O~jou~ for the element ~ j  U {j} of  
W is the subset of  the Cartesian product × {Oj,[j 'E~jU{j}} consisting of (no, 
no . . . . .  no) together with all elements that have a yes for the mother and a 
yes for exactly one daughter. 

As Kong [9] has pointed out, the general multivariate framework does not 
require that we impose the restriction that the system we are diagnosing have 
only a single fault. We could impose weaker restrictions or no restrictions at all. 

Diagnostic trees are not the only trees of  variables that can be used to construct 
qualitative Markov trees in the way just described. Another class of  examples 
is provided by causal trees, trees of  variables where the mother-daughter rela- 
tionship indicates direct causation from the mother to the daughter (Pearl [6]). 

B E L I E F  F U N C T I O N S  

A basic reference for the elementary aspects of  the theory of belief functions 
(sometimes called the Dempster-Shafer theory in artificial intelligence) is Shafer 
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• [1]. For more recent expositions and extensive bibliographies, see Shafer [21,22] 
and Shafer and Srivastava [23]. Expositions that discuss the theory's relevance 
to artificial intelligence include Garvey et al. [24] Gordon and Shortliffe [25], 
and Shafer [26]. See also Shafer [27-29] and Zhang [30]. 

Readers will need to turn to the references just cited for thorough expositions 
and for information about the theory's intuitive interpretation. Here we will 
quickly review the basics and then move on to some special topics. We continue 
to assume that the frame of discernment O is finite. For treatments of the infinite 
case, see Dempster [31-33], Shafer [34], and Strat [35]. 

Readers already familiar with the theory of belief functions will not need to 
read the next two subsections, which review the basics. They should, however, 
read Belief Functions and Partitions and Belief Functions and Qualitative Inde- 
pendence, which explain the notation that we will use in the final section and 
review the relevance of conditional independence to belief functions. 

Basic Definitions 

A function Bel that assigns a degree of belief BeI(A) to every subset A of a 
frame of discernment O is called a belief function over O if there is a random 
nonempty subset S of O such that BeI(A) = Pr[S C A] for every subset A of 
O. Intuitively, Bel(A) is the total degree of belief committed to A in light of 
given evidence. 

A subset A of O is called a focal element of Bel if Pr[S = A] is positive. 
The simplest belief function over O is the one whose only focal element is O 
itself; in this case Pr[S = O] = 1. This belief function is called the vacuous 
belief function. A belief function over O that has at most one focal element not 
equal to O itself is called a simple support function. If a simple support function 
does have a focal element not equal to O (i.e., if the simple support function is 
not vacuous), then this focal element is called the focus of the simple support 
function. 

The information contained in a belief function can be expressed in several 
different ways. One way is in terms of the basic probability assignment m, 
defined by 

m(A) = Pr[S = A] 

for every subset A of O. Since S is nonempty, m(O) = 0, and since O is finite, 

~'~{m(A)~AC_O}-- 1 

Intuitively, m(A) measures the belief that is committed exactly to A (and to 
nothing smaller). We can express Bel in terms of m as follows: 

BeI(A) = Pr[SCA] 
= ~{Pr[S =BIIB_CA} ---- ~{m(B)IBC_A } 
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It is shown in Shafer [1, Ch. 2] that we can also obtain m from Bel: 

m(A) = ~'~{( - 1) ~-BIBeI(B)IBC_A} 

where ~4 - BI denotes the number of  elements in the set A - B. 
Another way of  expressing the information contained in a belief function Bel 

is in terms of  the plausibility function P1, which is given by 

PI(A) = 1 - BeI(A c) = P r I S A A ~ O ]  

for every subset A of  O. Intuitively PI(A) measures the extent to which given 
evidence fails to refute A. To recover Bel from PI, we use the relation 

BeI(A) = 1 - PI(A c) (8) 

Notice that BeI(A) -< PI(A) for every subset A of  O. Both Bel and PI are monotone: 
BeI(A) -< Bel(B) and PI(A) --< PI(B) whenever A C B. 

Finally, the information in Bel or m or PI is also contained in the commonality 
function Q, defined by 

Q(A ) = Pr[SD_A ] = ~ {m(B)IBD_A } (9) 

for every subset A of  O. It is shown in Shafer [ 1, Ch. 2] that 

Q(A) = ~ { (  - 1) Inl + 'PI(B)If~#BC_A} (10) 

and 

PI(A) = ~]{( - 1) Inl+ 'Q(B)IO#BCA} (11) 

for every nonempty subset A of  O. We do not need formulas for the empty set, 
since Q(O) = 1 and PI(O) = 0 for any belief function. Notice also that if the 
set A contains only a single element, then (10) reduces to Q(A) = PI(A). 

Dempster's Rule of Combination 

Dempster 's rule of  combination is a rule for forming a new belief function 
from two or more belief functions. Consider two random nonempty subsets Sl 
and S2. Suppose S, and S2 are probabilistically independent, that is, 

Pr[Sl =A~ and S2 =A2] = Pr[S~ = A l ] P r [ S  2 = A 2 ]  

for all subsets A, and A 2 of  O. S u p p o s e  alSO that Pr[S~ O $2 # O]  > 0. Let S 
be a random nonempty subset that has the probability distribution of  S~ O $2 
conditional on S, n $2 # 0 ,  that is 

Pr[S, n $2 = A ] 
Pr [S  = A ] = 

Pr[ S, n S~ ~ ~ ] 

for every nonempty subset A of  O. If  Bell and Bel2 are the belief functions 
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corresponding to S~ and $2, then we call the belief function corresponding to S 
the orthogonal sum o f  Bel~ and Bel 2. The orthogonal sum of Bell and Bel2 is 
denoted by Bel~)Bel2. The rule form forming Bel~Bel2  is called Dempster 's  
rule o f  combination. If the bodies of evidence on which Bel~ and Bel2 are based 
are independent, then Bel~Bel2  is supposed to represent the result of pooling 
these two bodies of evidence. Dempster's rule generalizes to the case where we 
wish to combine more than two belief functions; we merely use Si O • • • O 
Sn in place of Sl n $2. 

It is obvious from the definitions that the operation ~) has the following 
properties: 

• Bel~Bel2 exists unless there is a subset A of O such that Bell(A) = 1 and 
Bel2(A c) = 1. 

• Commutativity: Belt~Bel2 = BelEE)Bell. 
• Associativity: (Bel~Bel2)~)Bel3 = Belt~(Bel2~Bel3). 
• In general, Bel~)Bel ~ Bel. The belief function Bel~Bel will favor the 

same subsets as Bel, but it will do so with twice the weight of evidence, 
as it were. 

• If Bell is vacuous, then Bell~)Bel2 = Bel2. 

Dempster's rule can be expressed in terms of the probability mass assignment 
function as follows. Let the basic probability assignments for Bell, Bel2, and 
Bell~)Bel2 be denoted by m,, m2, and m, respectively. Then for any nonempty 
subset A of O, we have 

Pr[S, OS2=A]  
m ( A ) = P r [ S = A ] =  

Pr[SI AS2 ~: ~ ] 

{mt(B)mz(C)IBOC = m } 

- ~ , { m , ( B ) m 2 ( C ) I B O C # ~  } 

~,{m1(B)m2(C)IBAC = A} 

- 1 - ~ ,{mI(B)m2(C)IBAC=O} 

(12) 

The formation of orthogonal sums by Dempster's rule corresponds to the 
multiplication of commonality functions. Indeed, if the commonality functions 
for Bel,, Bel~, and Bell • Bel2 are denoted by QI, Q2, and Q, respectively, then 

Q ( A ) = P r [ S D _ A ]  = K  Pr[S, A S ,  D_A] = K  Pr[S~___ A and S2D_A] 
= g Pr[SI~_A] Pr[S2_~A] = KQI(A)Q2(A) 

where K does not depend on A. This result generalizes to the case where we 
combine more than two belief functions; if we are combining Bell . . . . .  Bel. 
with commonality functions Q~ . . . . .  Q., we obtain 

Q(A ) = KQ~(A ). • "Qn(A ) (13) 

where K again does not depend on A. 
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Combining (13) and (11), we obtain an expression for PI(A), where PI is the 
plausibility function corresponding to the orthogonal sum Bell~) • • • ~Bel, :  

PI(A)=K~,{(-I)q"I+'Q,(B)..  "Qn(B)I~*Bc_A} (14) 

Since PI(O) = 1, substituting O for A in (14) results in an expression for K: 

K - '  = ~ { (  - 1) IBI+ 'Q,(B). • .Qn(B)IO#BC_O } (15) 

Formulas (14) and (15) can be used as the basis for a procedure for actually 
computing values of the orthogonal sum Bel ;~  • • • ~Bel , .  This procedure 
would begin by finding Qi(B) for each i between 1 and n and for each subset B 
of O. [If the Bel~ are stored as lists of focal elements and associated m values, 
then (9) might be used to do this.] Then it would use (14) and (15) to find PI(A) 
for the particular subsets A that interest us. We could, if we wanted, then shift 
to actual values of Be l t~  • • • OBel, using (8). 

Unfortunately, this procedure is computationally expensive when O is large. 
The number of terms in (14) depends on the size of the subset A, but (15) 
involves a term for every nonempty subset B of O, and the number of these 
subsets increases exponentially with the size of O. "lqais means that we face a 
computation of exponential complexity even if we are trying to find the value 
of the orthogonal sum Bell(3 . . . (3Bel, only for a single subset A of O. 

This computational complexity seems to be intrinsic to Dempster's rule. It is 
possible in some cases to exploit special structure in the belief functions being 
combined in order to reduce the complexity, but there does not seem to be any 
general way of implementing the rule that will always involve fewer computations 
than are involved in (14) and (15) (Barnett [36]). 

Belief Functions and Partitions 

As we explained in the introduction, a partition ~ of a frame of discernment 
O can itself be regarded as a frame of discernment, a frame that is concerned 
with a narrower question than O is concerned with. A belief function Bel over 
O can also be narrowed so that it gives degrees of belief only for this narrower 
question. When we do this, we obtain a belief function that explicitly or implicitly 
uses ~ instead of O as its frame. This shift from O to the simpler (and smaller) 
frame ~ may have both conceptual and computational advantages. A simpler 
frame may be easier to think about, and a smaller frame may be necessary to 
make Dempster's rule computationally feasible. We must always ask, however, 
whether the simplification invalidates our reasoning. Under what conditions will 
we continue to get valid results from Dempster's rule when we substitute ~ for 
O? 

In this section we will develop a notation that will help us discuss this question. 
This notation will make the shift from O to ~ implicit rather than explicit. Given 
a belief function Bel over O, we will represent the shift to ~ by replacing Bel 
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with another belief function, denoted by Bel~ and called the coarsening of Bel 
to ~ .  Formally, the coarsening Bel~ will be another belief function over O, but 
it will have the simpler structure of a belief function over ~ ,  and it will be 
interpreted as a belief function over ~ at the level of implementation. The 
advantage of this implicit approach is that it relieves us of the need for a notation 
that tracks what frames different belief functions are defined over. Formally, all 
our belief functions will be defined over a single frame. 

How can a belief function over O have the simpler structure of a belief function 
over the partition ~ of O? To answer this, recall that a subset A of ~ correponds 
in meaning to the subset UA of O. (The symbol UA denotes the union of the 
elements of A. Thus ifA = {PI . . . . .  P,}, then UA = P1 U ... UP,. The two 
sets correspond in meaning because the answer to the question considered by 
is in A if and only the answer to the question considered by O is in UA.) Because 
of this correspondence, we may say that a belief function over O has the simpler 
structure of a belief function over ~ if all its focal elements are of the form UA 
for some A in ~ ,  that is, if all its focal elements are in the field ~* of subsets 
of O. 

As the following lemma shows, there are a number of ways of expressing 
the condition that a belief function over O must have the simpler structure of a 
belief function over a partition ~ .  

LEMMA 11 Suppose Bel is a belief function over O, with plausibility function 
Pl and random subset S, and suppose ~3 is a partition of O. Then the following 
statements are all equivalent. 

1. Pr IS E ~*I = 1. 
2. Bel' s focal elements are all in ~*. 
3. Bel(A) = Bel(A¢) for every subset A. 
4. PI(A) = PI (A ~) for every subset A. 
5. Bei (A)  = max {Bei (B)[B c_ A and B E ~3"} for  every subset A. 

Proof The equivalence of statements 1 and 2 is obvious from the definitions. 
The equivalence of statements 3 and 4 follows from the fact that (AC) ~ = (A~)L 
And the equivalence of statements 3 and 5 follows from the montonicity of Bel 
and the fact that A~ is the largest element of ~* contained in A. So we need 
only show that statements 2 and 3 are equivalent. 

Since A~ is the largest element of ~* contained in A, the elements of ~* 
contained in A are the same as those contained in A~. 

{ m(B)  I B E ~ *  and BC_A } = ~ { m(B)l B E  ~*  and Bc_A~} 

If all the focal elements are in ~*, then this means that BeI(A) = BeI(A~), So 
statement 2 implies statement 3. 

Suppose, on the other hand, that statement 3 is true; BeI(A~) is just as large 
as BeI(A) for all A. This means that all the focal elements contained in A are 
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also contained in A~. So if A itself is a focal element, A must be contained in 
and hence equal to A~. Hence A is in ~*.  So statement 3 implies statement 2. 

Let us say that a belief function Bel over O is carried by the partition ~ if 
the conditions of Lemma 11 are satisfied. In general, a belief function Bel over 
O will be carried by many different partitions of O, but there will be a coarsest 
partition that carries it, namely, the finest common coarsening of all the partitions 
that carry it. (Proof Recall that Bel is carried by a partition if and only if all 
Bel's focal elements are in the corresponding field. The intersection of all the 
fields of subsets that contain all Bel's focal elements certainly itself contains 
them and is itself a field. Hence it is the smallest field containing them, and 
hence it is the smallest field that carries Bel. But as we noted in the introduction, 
the partition corresponding to the intersection of a collection of fields is the finest 
common coarsening of the corresponding partitions.) 

If  we are working with belief functions carded by ~ ,  then we can think of 
them as belief functions that use ~ as their frame. This is because operations 
on belief functions can be all defined in terms of their focal elements, and these 
are in ~ ' ,  which is isomorphic to the set of all subsets of ~ .  

Notice, in particular, that the combination by Dempster's rule of two or more 
belief functions carried by ~ is also carried by ~ .  

We are now in a position to explain the idea of coarsening a belief function 
to a partition. If S is a random subset of O and ~ is a partion of O, then S ~ is 
also a random subset of O. If Bel is the belief function corresponding to S, then 
let Bel~ denote the belief function corresponding to S ~. We call Bel~ the coar- 
sening of Bel to ~ .  Since S ~ is in ~*, Bel~ is carried by ~ .  

LEMMA 12 Suppose Bel and Bel' are belief functions over O, with plau- 
sibility functions Pl and Pl', respectively. Then the following statements are 
all equivalent. 

1. Bel' is the coarsening of Bel to ~ .  
2. Bel'(A) = Bel(A~) for every subset A. 
3. Bel' agrees with Bel on ~* and is carried by ~ .  
4. PI'(A) = Pl(A ~) for every subset A. 
5. Bel'(A) = max{Bel(B)lB C_ A and B E ~*} for every subset A. 

Proof We will show that the first three statements are equivalent by showing 
that statement 1 implies statement 2, 2 implies 3, and 3 implies 1. 

First, statement 1 implies statement 2. Recall that B ~ C_ A if and only if 
B C A~. If we substitute the random subset S for B in this relation, we obtain 
Pr[S * C A] = Pr[S C A~]. If statement 1 holds, then this is just another way 
of writing statement 2. 

Second, statement 2 implies statement 3. Recall that A = A~ for A E ~*. 
~*. If  statement 2 holds, then this tells us that Bel' agrees with Bel on It then 

follows from statement 2 and Lemma 11 that Bel is carried by ~ .  
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Third, statement 3 implies statement 1. We have just established that the 
coarsening of Bel to ~ is carried by ~ and agrees with Bel on ~*. It is Clear 
from Lemma 1 1 that only one belief function can have these properties. So any 
belief function Bel' having them must be the coarsening of Bel to ~ .  

To complete the proof, we note that statements 2 and 4 are equivalent because 
(A") ~ = (A~) c, while statements 2 and 5 are equivalent because Bel is monotonic 
and A ~ is the largest element of ~"  contained in A. • 

Condition 3 is crucial; it tell us that as far as ~ is concerned, the coarsening 
Bel~ says the same thing as Bel. Lemma 12 tells us, inter alia, that there is only 
one belief function that satisfies condition 3; saying that a belief function is 
carried by ~ and agrees with Bel on ~* identifies this belief function as the 
coarsening of Bel to ~ .  

As we have emphasized, we usually think of Bel~ as a belief function over 
the frame ~ .  This means that the shift from Bel to Bel~ involves a shift from 
O to ~ .  Of course, Bel might already be carried by some partition ~ l  of O, 
and then we may really be making a shift from the frame ~ l  to the frame ~ .  
In this case we may call Bel~ the projection of Bel from ~ l  to ~ .  

Belief Functions and Qualitative Independence 

At the beginning of the previous section we asked under what conditions we 
will continue to get valid results from Dempster's rule if we use ~ instead of 
O as our frame. We can now make the question more precise. Suppose we want 
to combine two belief functions Bel~ and Bel2, and suppose we are really inter- 
ested in values of the orthogonal sum Bel~Bel2 only for certain elements of 
the field ~*. Will we get the right answers for these values if we coarsen both 
belief functions to ~ before combining them? The following theorem tells us 
that we will if there are partitions ~1 and ~2 such that Bel~ is carried by ~ t ,  
Bel2 is carried by ~2, and ~ and ~2 are qualitatively independent given ~ .  

THEOREM 4 If  Bell is carried by ~1' Bel2 is carried by ~2' and [94~ l, ?(32] q ~ ,  
then 

(Bel~Bele),~ = Bel l~Bel2~ 

Proof If Bell is carried by ~1 and Bel2 is carried by ~2, then the random 
nonempty subsets $1 and S2 corresponding to these belief functions are always 
in ~ and ~ ,  respectively, So from Lemma 2 and the assumption that 
[~l ,  ~2] q ~ ,  we obtain (S, N $2) ~ = S~ rl ST. The theorem follows, because 
(Bel~Bel2)~ corresponds to a random nonempty subset that has the probability 
distribution of (S~ N $2) ~ conditional on (S~ N S2) ~ ~ 0 ,  and Bel l~Bel2~  
corresponds to a random nonempty subset that has the distribution of 
S1 ~ N ST conditional on S~ N ST ~ 0 .  
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Bel Bel~8 (Bel~)~ = Belss 

Figure 7. Projecting a Belief Function From ~3t to ~2 

The next theorem tells us that if ~ and ~2 are qualitatively independent 
given ~ and we want to project a belief function from ~ ,  to ~2, then it does 
no harm to project it first to ~ (see Figure 7). 

THEOREM 5 If Bel is carried by ~ and [~l, ~2] q ~,  then 

Bel~2 = (Bel~)~2 

Proof If Bel is carried by ~ , ,  then the random subset S corresponding to 
Bel is always in ~ .  Hence, by Lemma 3, S ~2 = (S~) ~2. 

An Explicit Description of Coarsening 

For the benefit of those readers who may be uncomfortable with our implicit 
notation for coarsening, we will now describe the process with a notation that 
makes the shift from one frame to another explicit. Readers who are satisfied 
with the implicit approach need not read this section in order to understand the 
remainder of the article. Readers who want to see yet another way of handling 
the transition from one frame to another can consult Shafer [1, Ch. 6]. The 
correspondence between a subset A of ~ and the subset UA of O is the key to 
seeing both how to move from a belief function over O to one over ~ and how 
to move from one over ~ to one over O. 

1. Suppose we begin with a belief function Bel over O, with corresponding 
random nonempty subset S and basic probability assignment m. In order to derive 
a belief function over ~ ,  we need only note that since the subset A of 
corresponds to the subset UA of O, it should be assigned a degree of belief 
equal to BeI(UA). Let Bel ~ denote the set function defined by 

Bel ~ (A) = BeI(UA) (16) 

for every subset A of ~ .  We call Bel ~ the restriction of Bel to ~ .  It is indeed 
a belief function; it corresponds to the random subset S ~ of ~ that is defined 
by 

s = (ee lens o) 
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(To prove this, check that S ,  C_ A is equivalent to S C_ U A.) The corresponding 
basic probability assignment, m , ,  is given by 

m,(A )= Pr[ S, = A ]  = ~ { Pr[ S= B]I A = { P E  g~IP N B--# ~} }  

= ~ { m(B)IA = {PE~3IPA B ,  ~ }} (17) 

In general, the restriction Bel ~ contains only part of the information contained 
by Bel; it gives degrees of belief only for propositions that correspond to subsets 
of ~ .  

2. Suppose we begin with a belief function Bel over ~ ,  with corresonding 
random subset S and basic probability assignment m. From the random subset 
S of ~ ,  we may construct the random subset US of O. Let Belt denote the 
belief function over O corresponding to US. We call Bel * the vacuous extension 
of Bel to O. The focal elements of Belt are all in ~* Indeed, if m * denotes 
the basic probability assignment for Bel t ,  then 

m t (A) = Pr[US =A] = Pr[S equals some B E ~  such that UB =A] 

o r  

mr(A) = {O (B) i fA  = UB, where B E ~  
if A is not in ~"  (18) 

The values of Bel t itself are given by 

Belt(A)= ~ {m(B)lBc_~3, U BC_A } 

= ~ {m(B)lBc_ {PE~3 CA }} 

= Bel({PE~IPc_A }) (19) 
Formula (19) tells us in particular that for every BC_~, 

Belr (UB) = Bel(B) (20) 

Thus Belt contains all the information contained by Bel. Bel t also gives degrees 
of belief for subsets of t9 that are not of the form UB, that is, subsets of t9 that 
are not in ~*. But Belt derives its degrees of belief for these subsets from its 
degrees of belief for elements of ~ ' ;  for any A C_ O, 

Belt (A) = BeI({PE~IPC_A}) = Belt (U{PE~IPCA}) = Belt (A~) (21) 

So Belt does not really contain any more information than Bel does. 
Suppose Bel is a belief function over 0 .  Then (Bel ~ ) t is the belief function 

Bel~ defined in the preceding section, the coarsening of Bel to ~ .  To see this, 
we need only note that (Bel ~ )t  has all its focal elements in ~"  (because it is a 
vacuous extension from ~ )  and agrees with Bel on ~* [if A is in ~3", then 
(Bel ~ ) t (UA) = Bel ~ (A) = BeI(UA) by (20) and (16)]. To put the matter more 
verbally, in order to coarsen a belief function from O to ~ ,  we first restrict it 
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to ~ and then vacuously extended it back ot O. The second step, the vacuous 
extension back to O, is only for notational and terminological convenience and 
can be ignored in an implementation. 

For the sake of completeness, we might ask what happens when we combine 
vacuous extension and restriction in the opposite order, first vacuously extending 
and then restricting. The answer is that we get back what we started with; if Bel 
is a belief function over ~ ,  then (Bel~)~ = Bel. [Proof Suppose A c_ ~3. By 
(16), (BeI*),(A) = BeI*(UA). But by (20), Bel*(Ua)  = BeI(A).] 

What are the computational costs of restriction and vacuous extension? 
From a purely mathematical point of view, restriction is a simplification, but 

this mathematical simplification may involve a computational cost. If  our belief 
function Bel over O were stored as an explicit specification of the numbers 
BeI(B) for all subsets B of O, and if there were no computational cost in matching 
A to UA, then formula (16) would make the shift from Bel to Bel~ computa- 
tionally trivial. But if Bel has been obtained by an application of Dempster's 
rule, then it is more likely to be stored as a commonality function or as a 
specification of focal elements and their m-values, and in this case the shift will 
involve a cost such as that suggested by (17). 

Conversely, vacuous extension may involve relatively little computational 
cost. Since O is larger than ~ ,  we might think of any belief function over O 
as inherently more complicated than one over ~ .  But (18) makes it clear that 
if we store a belief function over ~ in terms of its focal elements and their m- 
values, then vacuous extension to O involves little more than changing the names 
of the focal elements. 

PROPAGATION IN TREES 

In this section, we show how to take advantage of the structure of a qualitative 
Markov tree when using Dempster's rule for combining belief functions carried 
by partitions in the tree. 

Here is the setting. We are concerned with r related questions, Qt . . . . .  Qr. 
We represent these questions by partitions of an overall frame O. As usual, we 
let ~i  denote the partition representing Qi. We arrange these partitions in a 
qualitative Markov tree, say T = (N, E), where N = {1 . . . . .  r}. We have r 
independent items of evidence, one beating directly on each of the questions. 
We represent the evidence bearing directly on Qi by a belief function Beli; at 
the level of implementation, Bel~ will be a belief function over ~ ,  but we may 
think of it as a belief function over O carried by ~i. 

We want to use Dempster's rule to combine these belief functions. How can 
we do so efficiently? 

Formally, we are interested in (~{Bel~li E N}, the belief function over O that 
represents all our evidence. If O is large, it may be not feasible to compute all 
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the values of this belief function. In fact, it may not be feasible to compute any 
of them. We will show, however, that if the individual partitions are not too 
large, then it is feasible to compute values of ~{Bel~li ~ N} for subsets of O 
that relate to the original questions, that is, it is possible to compute the coarsening 
of (~{Bel~li E N} to each partition ~ .  

How much does the scheme we present here reduce the computational com- 
plexity of Dempster's rule? The scheme reduces the problem of implementing 
the rule on the overall frame O to the problem of implementing it on the partitions 
~ .  Hence it reduces the problem from one exponential in the size of O (see the 
section on Dempster's rule of combinations) to one exponential in the size of 
the ~ .  Typically, the feasibility of the scheme will depend on the size of the 
largest of the partitions. 

We begin this discussion with a scheme for computing the coarsening to a 
single partition. Then, we present a general scheme, inspired by the work of 
Judea Pearl, for the parallel computation of coarsenings to all the partitions. 
Following that we argue that though this general scheme appears to be a control 
strategy, it should be understood primarily as a design. Finally, we discuss the 
generality and flexibility of the propagation scheme, and we sketch how schemes 
described by Shafer and Logan [2], Shafer [3], and Pearl [6] can be seen as 
special cases. 

Computation for a Single Partition 

For convenience, let Belr denote the result of combining all our belief func- 
tions by Dempster's rule: 

Belr=~{Bel,]iEN} 

The symbol T refers to our tree; T = (N, E). Our task is to compute the coar- 
sening Bel~ for a particular node n. 

If the tree were small enough, we would have no problem. If, for example, 
it consisted of a single node, there would be nothing to do. This trivial point 
gives us a hint. We can compute BelCh recursively if we can reduce the com- 
putation to similar computations for strictly smaller trees. 

We need some more notation. For any subtree U = {N~j, Eo} of T, let Bel v 
denote the orthogonal sum (~{Bel~li ~ Nv}. Recall that V, denotes the set of n's 
neighbors and that T,., --- (N~,n, Ek.~) denotes the subtree containing k that remains 
when n is removed from T. 

The following theorem spells out how to reduce the computation of Bel~. to 
similar computations for strictly smaller trees. 

THEOREM 6 Let T = (N, E) be a qualitative Markov tree for {~[i ~ N} 
and let Belt be carried by ~ for each i in N. Then 

Tt.n Bel~ =Bek • ( • {(Bel** )~.lk E V.}) (22) 
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Since Belr = Bel.~0~){Belrk*lk E V~}), it follows from Theorem 4 

Bel~ = Bel~)({Bel~;lk~ V~}) 

for every k ~ I/., it follows from Theorem 5 that 

Bel~: ~ = (Bel~n)~ n • 

The trees Tk,n = (Nk.,, E~,n) are subtrees of T, and hence they are strictly smaller 
than T. If we can solve our problem for these smaller trees--if  for each neighbor 
k of n we can compute the coarsening Bel~ ~ on the frame ~k--then Eq. (22) 
tells us that we need only perform two more tasks. We need to project each of 
these belief functions from its frame ~k to the frame ~ , ,  and then we need to 
combine them, together with Beln, on the frame ~ .  [Both ~ ' s  in (22) can be 
interpreted as directions to combine belief functions on the frame ~n, because 
all the belief functions being combined, Bel~ and (Bel~)~n for k E V,, are 
carried by ~ ] .  These two tasks should be feasible. Since k and n are neighbors, 
we presumably understand the relations between the questions Qk and Qn, and 
hence we should be able to manage the projection. If the frame ~ ,  is not too 
large, we should be able to handle the combination. 

So our problem is solved. We begin at the leaves of our tree and move step 
by step toward n. We synchronize our paths inward from the different leaves 
by delaying the step to a given node j until we have passed through all the 
neighbors o f j  except the one that lies in the direction of n. As we pass through 
j,  we compute Bel,~, where Uj is the subtree consiting o f j  and all the branches 
of the tree from j except the branch toward n. 

Figure 8 shows a simple example in which the nodes of T are numbered 1 
I r to 15, and we want to compute Be ~,5" We move from the leaves to node 15 in 

five steps. At each step, we compute Bel~Jj for those j such that we already 

computed BelV*~ for all k in Uj = {j}. 
Step 1. We begin with the leaves; j = 1 . . . . .  9. For a leaf j ,  Uj consists 

just of the leaf; Uj = ({j}, O). So Bel~Jj '-- Belj. 

Step 2. Next, we use versions of (22) to compute Bel~Jj fo r j  = 10, 11, and 

12. We compute Bel~' ,  for example, using 

Bel~", = Bel,l~((Bel~33)~,,~(Bel~)~,,) 

Step 3. Now we deal with node 13; 

Bel~,33 = Bella~((Bel~,)~,3~(Bel~,2)~,3) 

Step 4. Now we compute Bel~,, from Belt4, u.~v,, and n.~v,~ l - ¢ t " l ~  I 1 ' I " I P ~ ' I ~  13 " 
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C ~  _ _ ~  

~o ~o /o .io 
...... : ~  o . . . .  o--c~-, o 

o ?  2 -° .............. 

Q"I~---~:'~ 
Figure 8. Computation for a Single Partition 

I r u9 Bel~lt~" Step 5. Finally, we compute Be ~ ,  from Bells, Bel~9, Bel,~ '°, and 
Notice that the nodes j for which we compute Bel~j at a given step are those 

nodes that would become leaves were we to delete all the nodes we have dealt 
with on earlier steps, except that we wait until the last step to deal with node n 
(node 15 in this case). 

The simplicity of this scheme is somewhat obscured by the notation. Here is 
an alternative notation that may make its simplicity and recursive nature clearer. 
For any two neighboring nodes i and j in the tree T, set 

Belie, = (Bel ~" )~, (23) 

Bel~_,i is the information that we need from the neighbor j when we are computing 
i u. Be ~',. If we use this new notation on the fight-hand side of (22), we obtain 

Bel~n=aeln • ( • {Belk.nlkE Vn}) (24) 

Putting the tree Tj. i in the role of T and the node j in the role of n in (24), we 
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obtain 

Bel~.j' = Belj~(~{Bel,__.jlkE(Vj- {i})}) 

Substituting this in (23), we obtain 

Bel~i  = ( B e l j ~ ( ~ { B e l ~ l k E  (Vj - {i})}))~, (25) 

for any neighboring nodes i and j.  
Notice that if j is a leaf, then i is its only neighbor, and the set Vj - {/} is 

empty; in this case Eq. (25) reduces to Belt_, = (Bel~)~. 
Formulas (24) and (25) constitute a recursive program for computing 

Bel~. 
This program is easily implemented in a forward-chaining production system. 

Begin with a working memory that contains Bel,. for each node i in N, and put 
two rules in the rule base: 

RULE 1 If j E (N - {n}), i ~ Vj, Bel~_.j is present in working memory for 
every k in Vj - {i}, and Bel t is present in working memory, then use (25) to 
compute Bel~_., and place it in working memory. 

ROLE 2: If Bel,__,, is present in working memory for every k in V,, and Bel, 
is present in working memory, then use Eq. (24) to compute Bel~,, and print 
it. 

Notice that i and j are variables in Rule 1, whereas n is a constant in both rules; 
n is the node for which we want to compute Bel~ .  Initially, Rule 1 will fire 
only for leaves, since initially no Bel~_.j are in working memory. But eventually 
Rule 1 will fire once for every edge, resulting in Bel~_,~, where j is the node on 
the edge farther from n, and i is the one closer to (or equal to) n. After Rule 1 
has fired for every edge, Rule 2 will fire once, completing the computation. 
Since a tree with INI nodes has INI - 1 edges, the total number of firings is 
equal to I/~. (We assume a refractory principle that prevents a rule from firing 
again for the same instantiation of  the antecedent.) 

Parallel Computation of Coarsenings 

We have been discussing how to compute Bel~. for a single node n. If we 
want to compute Bel~,, for all i, then we can achieve economies by working 
through the computations simultaneously, so that a particular B e l ~  is computed 
only once. Implementing this simultaneous computation in a production system 
requires only a slight modification of  our two rules. Modify Rule 1 so that it 
can fire for all edges in both directions, and modify Rule 2 so that it fires for 
all nodes: 

RULE 1': If j E N, i E Vj, Belk-v is present in working memory, for every 
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k in Vj - {i}, andBelj ispresent in working memory, then use (25) to compute 
Belj_.i, and place it in working memory. 

RULE 2': If i ~N, Belk_.i is present in working memory for every k in Vi, 
and Bel~ is present in working memory, then use (24) to compute Bel~,, and 
print it. 

We again assume a refractory principle that prevents repetitions. Rule 1' will 
eventually fire in both directions for every edge {i, j}, producing both B e l ~  and 
Bel~j. Rule 2' will eventually fire for every i. Thus the total number of firings 
will be 2 ( INI -  1) + INI = 31NI- 2. 

The speed of both our computational schemes (the one for a single Bel~, and 
the one for all Bel~,) can be enhanced by parallel implementation. In the spirit 
of Pearl [6], we can make this potential for parallelism graphic by imagining 
that a separate processor is assigned to each node. The processor assigned to 
node j computes Bel~j and Bel~k using (24) and (25), respectively. To do this, 
it must be able to combine belief functions using ~j  as a frame, and it must be 
able to project belief functions from ~3~ to any neighbor ~k. 

Since the processor assigned to ~j  communicates directly with the processor 
devoted to ~k only when k is a neighboring of i, the Markov tree is a picture 
of the architecture of the parallel machine; the nodes are processors, and the 
edges are communication lines. In this machine, the working memory of the 
production system is replaced by local memory registers on the edges. We may 
assume that there are two registers on each edge---one for communication in 
each direction. On the edge between j and k, say, there will be a register where 
j writes Bel~k for k to read and another where k writes Bel~j  for j to read. 
Each processor j also has an input register, where Bel t is written from outside 
the machine, and an output register, where it writes Bel~j. Figure 9 shows a 
typical processor, with three neighbors. 

As Pearl [6] has emphasized, a parallel machine of this type could operate 
successfully under many different control regimes. In general, no global control 
is necessary. We can imagine that the machine initially has vacuous belief 
functions in all its input registers, resulting in vacuous belief functions in the 
other registers as well. The vacuous belief functions in the input registers can 
be replaced by nonvacuous belief functions as evidence is obtained and assessed. 
As long as each processor occasionally checks its inputs and recomputes its 
outputs, the belief functions in the output registers will eventually be the desired 
coarsenings. 

If we want to complete the computation as quickly as possible, with no wasted 
effort, then we will require that the processor at i begin work on the computations 
it is authorized to perform as soon as it receives the necessary inputs. It must 
begin work on Bel~j as soon as it receives Bel~ and Belk_,~ for all k E (Vj - {j}), 
and it must begin work on Bel~, as soon as it receives Beli and Bel~_,i for all 
k E Vi. We further require that it not repeat computations. If we impose this 
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Figure 9. A Typical Processor (with Three Neighbors) 

regime, and we input all the Beli before turning the processors on, then the 
machine will operate in fundamentally the same way as the production system 
we described above. But its parallelism will make it faster. 

To fix ideas, assume that a processor requires just one unit of time to perform 
and report all the computations it is authorized to perform with any given set of 
inputs. Then the time required to compute all the coarsenings will be equal to 
the diameter of the tree, the length of the longest path through the tree. In fact, 
the time required to compute the coarsening for a given node n will be equal to 
the distance to the node farthest from n. 

To see that this is true, notice first that the total time required to compute the 
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coarsening for n must be at least the time to the node farthest from n, since this 
much time is required to get information from that node to n. On the other hand, 
if we move along the path from this farthest node as the computations are done, 
we will encounter no delays; since we are on the longest path, all the other inputs 
needed for our next step will always be on hand when we arrive. 

Control and Design 

The most striking aspect of the general computational schemes we have just 
discussed is the absence of global control. First we imagine a foward-chaining 
production system in which there is no explicit control over the order in which 
rules are fired, and then we imagine autonomous processors acting on their own 
with no global control. 

This lack of global control should not always be taken seriously, however. 
As Clancey [37] has pointed out, the absence of explicit control that is so 
attractive in pure production systems must usually be abandoned in actual expert 
systems. In general, part of an expert's knowledge is control knowledge--  
principles that help him or her decide what to do next. As Cohen et al. [38] 
have pointed out, such global control knowledge is necessary for two reasons. 
First, our problem may be too large and complex for it to be feasible to propagate 
all our evidence. We may need to decide which part to work on, and this may 
require global control. Second, the evidence may not be free. We have assumed 
that the evidence bearing directly on each partition is fixed; we have even assumed 
that it has already been represented by a belief function. In practice, however, 
we may need to decide which evidence to pay for, and this also may require 
global control. 

If we do not take the absence of global control seriously, then what value 
remains in our picture of belief functions propagated through a Markov tree? 
The answer is that this picture is a design, in the sense of Shafer and Tversky 
[39]. It tells us the structure of our argument, to the extent that we do obtain 
the evidence and implement that argument. It gives the structure of legitimate 
inferences. 

We have presented the qualitative Markov tree as a computational device. 
Conceptually, we combine our belief functions on the overall frame O, but it is 
computationally infeasible to do this, so we propagate them in the tree instead. 
In fact, however, the structure represented by the tree can be much more than 
a computational device. It can be a framework for organizing our knowledge 
and thinking about our evidence. It can be a knowledge-engineering tool. 

The Generality of the Scheme 

Here we will sketch the special cases of our general scheme that have been 
given by Shafer and Logan [2], Shafer [3], and Pearl [6]. We will also discuss 
whether the scheme needs to be generalized further. 
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DIAGNOSTIC TREES The work of Sharer and Logan [2] and Shafer [3] is con- 
cerned with propagation of belief functions in diagnostic trees. As we mentioned 
earlier in our discussion of qualitative independence, these articles use the lan- 
guage of partitions, but instead of using the terminology of qualitative indepen- 
dence, they talk about "discernment of interaction." Moreover, they do not use 
qualitative Markov trees to describe the diagnostic problem. Instead, they work 
with the hierarchical structure. The algorithms they give conform, however, to 
the general scheme we have presented here. These algorithms work up the 
hierarchical structure to its root node and then back down again; this corresponds 
to working in toward the middle of the tree of families and dichotomies and 
then back out again. 

When we use the tree of families and dichotomies for belief-function prop- 
agation, we can include in the propagation any belief function over any of the 
family frames, Go  and the ~,~ U {At}. These family frames can be relatively 
large, and the belief functions on them can be relativel complicated. Shafer [3] 
allows this full generality. Shafer and Logan [2] are concerned, however, with 
the special case where each belief function is carded by a dichotomy {A, AC}. 
Propagation in this special case is still best understood as propagation through 
the tree of families and dichotomies, but the belief functions being combined 
on the family frames are all very simple; they are "simply support functions" 
focused on singletons and their complements. Barnett [36] has shown that when 
we are combining such functions we can implement Dempster's rule very effi- 
ciently, with the number of operations being linear rather than exponential in 
the size of the frame. By taking advantage of Bamett's algorithm, Sharer and 
Logan obtain an algorithm for propagation with complexity proportional to the 
total number of terminal nodes in the diagnostic tree. 

PROBABILISTIC MARKOV TREES Consider a frame O with a probability dis- 
tribution Pr such that Pr({0}) > 0 for all 0 E O. Suppose T is a tree of partitions 
of O, and suppose separation in the tree implies independence with respect to 
Pr. In other words, the conditions of Theorem 1 are satisfied when [~ ' ,  ~"] 4 
is interpreted to mean that ~ '  and ~"  are independent given ~ with respect to 
Pr. Then we call T a probabilistic Markov tree. (See Lauritzen and Spiegelhalter 
[11] and the references therein-----e.g., Moussouris [40]). It is evident from the 
corollary to Lemma 1 that a probabilistic Markov tree is also qualitative 
Markov. 

Conversely, given a qualitative Markov tree T = (N, E), we can easily con- 
struct a probability distribution Pr that makes T probabilistic Markov. We arbi- 
trarily choose a node n and think of T as a rooted tree with n as its root. This 
makes every element of E a mother-daughter pair. We then supply "prior prob- 
abilities" for the root and "transition probabilities" for each mother-daughter 
pair. This means we supply 

Pr(A) for every element A of ~ ,  (26) 
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and for every mother-daughter pair (i, j) we supply 

Pr(CIB) for every B in ~ and C in ~j  (27) 

Then for every selection of elements P, from the partitions ~,, we set 

Pr(N { P, l i E N } )= Pr(P.) I I  Pr(PJlP') (28) 
( i , j )  

where the product is over every mother-daughter pair (i, j). If we assume, for 
the sake of simplicity, that the refinement of all the ~ is the set of singleton 
subsets of O, then (28) completely determines a probability distribution over 0 .  

More interesting in the present context than (28) is the obvious fact that (26) 
and (27) allow us to compute the unconditional distributions for the ~ step by 
step as we move down the tree from its root. We initially have the ingredients 
to compute the distribution for any daughter i of the root n; 

Pr(B) = ~'~{Pr(A)Pr(B~4)[A E ~n}. (29) 

for each element B of ~i. Then we can compute the distribution for any daughter 
j of i; 

Pr( C) = ~ {Pr(B)Pr( CIB )[Be~ 3. (30) 

for each element C of ~j; and so on. 
This step-by-step computation of probability distributions can be interpreted 

as a special case of our general scheme for propagating belief functions. To see 
this, we need to make the following observations: 

• Any probability distribution qualifies as a belief function, and hence a 
probability distribution for ~;  can be thought of as a belief function carried 
by ~3, (Shafer [1]). 

• Any set of transition probabilities for ~ to ~ can be represented by a belief 
function. More precisely, given transition probabilities Pr(C]B), B ~ ~ ,  
and C ~ ~j,  there will be a belief function Bel 0 (actually, there will be 
several) that has a vacuous projection on ~ and yet satisfies 

(Bel~Bel,j)(C) = ~ {BeI,(B)Pr( C]B )[Be~,} 
in agreement with (30), whenever Bel~ is a belief function carried by ~ 
and happening to be a probability distribution there. 

• If between every mother-daughter pair (i, j) in T we interpolate a node 
corresponding to ~ / %  ~j, then we still have a Markov tree, qualitatively 
and probabilistically (see the section Transformations of Qualitative Markov 
Trees and Figure 10). 

Putting these observations together, we see that the step-by-step calculation of 
the distributions for the ~ ,  by (29) and (30) correspond to belief-function prop- 
agation after entering nonvacuous belief functions at the root node and the 
interpolated nodes and vacuous belief functions elsewhere. Nonvacuous belief 
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Figure 10. 
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Interpolation in a Rooted Markov Tree 

functions can also be input at these other nodes. In particular, we can input 
"categorical" belief functions---belief functions representing observations of var- 
iables corresponding to some of the partitions (Shafer [1]; Kong [9]). 

Figure 11 shows a more general form of Bayesian propagation in a Markov 
tree. Here we allow dependent children and multiple parents. Each box contains 
conditional probabilities for the partition or partitions below given the partition 
or partitions above. Prior probabilities must be input to all root nodes (both 1 
and 2 in the figure). Multiple parents are assumed to be unconditionally inde- 
pendent. The belief-function interpretation we just gave carries over to this more 
general form of propagation. 

Bayesian propagation of the type shown in Figures 10 and 11 has been studied 
in detail by Pearl [6]. Pearl's pictures are somewhat different, however. His 
trees have nodes or processors only for individual variables (individual ~ ) - - -  
none for joint variables (refinements)--and hence the action within these pro- 
cessors is more complex. 

Though Bayesian propagation is a special case of belief-function propagation, 
it is not a case likely to arise when a problem is approached in a belief-function 
spirit. Belief functions representing transition probabilities tend to be complex 
and unnatural, and we will tend to prefer simpler belief functions on the refine- 
ments. We may sometimes use a belief function with just two focal elements, 
one equal to O and the other equal to a particular intersection P~ f3 P~, indicating 
suspicision that P~ and Pj go together. 

In general, Bayesian propagation in trees like those of Figures 10 and 11 is 
computationally easier than general belief-function propagation. The Bayesian 
computation is linear in the size of the refinements in the boxes, while the belief- 
function computation may be exponential in these sizes. This computational 
advantage must be balanced, however, against the greater demands of the Baye- 
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sian method at the knowledge-engineering stage. The many transition probablities 
demanded by the Bayesian method may be unavailable. 

THE GENERAL PROBLEM Suppose we are concerned with a number of equa- 
tions, say Qi . . . . .  Qr. The theory of belief functions suggests that our study 
of these questions should begin with an analysis of our evidence. How can we 
sort our evidence into independent items, and on which of these questions do 
these items of evidence bear? 

As Kong [9] has emphasized, such an analysis will usually lead not to a tree 
but to a hypergraph (see the section Multivariate Markov Trees). Usually each 
item of evidence will bear on the relationship among some subset of our ques- 
tions. These subsets, together with the Kong pattern representing the categorical 
relations among the questions, will constitute a hypergraph on the nodes 
{1 . . . . .  r}. 

As we saw earlier, there are several natural ways to construct qualitative 
Markov networks from hypergraphs. But unless we begin with a diagnostic or 
causal tree, these networks will usually not be trees. 

It would be nice if we could find simple and efficient computational schemes 
for networks that extend our scheme for trees. This does not appear possible, 
however. Escape from the computational complexity of Dempster's rule seems 
to require a tree. 

If  it is true, then our task will often be to find the best ways to embed a 
hypergraph in a tree. In the notation of multivariate Markov trees, the problem 
is this. Given a hypergraph (R, W), where R indexes a set of partitions of a 
frame O and W is a Kong pattern for these partitions, find a qualitative Markov 
tree with subsets of R as nodes and refinements of the partitions in the subsets 
as the associated partitions, such that each element of W is contained in one of 
the nodes. We want each element of W to be contained in a node so that we 
can input the belief function based on the corresponding item of evidence into 
that node. Notice that embedding (R, W) in a tree in this way corresponds to 
collapsing, in a certain sense, the network of families to a tree. 

Embeddings always exist. We can embed any hypergraph (R, W) in the 
qualitative Markov tree consisting of the single node R. But we want the nodes 
in the tree to be as small as possible, in the hope that the associated partitions 
will be small enough for propagation to be feasible. Finding embeddings with 
the smallest possible nodes is the main question addressed by Kong [9], MeUouli 
[10], and Lauritzen and Spiegelhalter [11]. 

INDEPENDENCE Throughout this article we have assumed that the items of 
evidence on which our different belief functions are based are independent, so 
that it is legitimate to combine these belief functions by Dempster's rule. Many 
authors have questioned this assumption and have called for generalizing Demp- 
ster's rule to the case of dependent evidence. 
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Some progress has been made in generalizing Dempster's rule; see Shafer 
[22, 26]. It should be noted, however, that independence is not so much an 
assumption about our knowledge as a knowledge-engineering strategy. We do 
not begin, in general, with well-defined evidence divided into distinct items and 
set out for inspection. Usually we must search for evidence. We must decide 
what qualifies as evidence. We must turn hunches, dry facts, and confused 
arguments into evidence. At this knowledge-engineering stage, it is useful to 
look for independent uncertainties and to build up evidence around them. It is 
this belief-function strategy that leads to independent items of evidence in qual- 
itative Markov trees. 
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