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The main goal of this paper is to describe an axiomatic utility theory for Dempster-Shafer 
belief function lotteries. The axiomatic framework used is analogous to von Neumann-
Morgenstern’s utility theory for probabilistic lotteries as described by Luce and Raiffa. 
Unlike the probabilistic case, our axiomatic framework leads to interval-valued utilities, 
and therefore, to a partial (incomplete) preference order on the set of all belief function 
lotteries. If the belief function reference lotteries we use are Bayesian belief functions, then 
our representation theorem coincides with Jaffray’s representation theorem for his linear 
utility theory for belief functions. We illustrate our representation theorem using some 
examples discussed in the literature, and we propose a simple model for assessing utilities 
based on an interval-valued pessimism index representing a decision-maker’s attitude to 
ambiguity and indeterminacy. Finally, we compare our decision theory with those proposed 
by Jaffray, Smets, Dubois et al., Giang and Shenoy, and Shafer.

Published by Elsevier Inc.

1. Introduction

The main goal of this paper is to propose an axiomatic utility theory for lotteries described by belief functions in the 
Dempster-Shafer (D-S) theory of evidence [5,39]. The axiomatic theory is constructed similar to von Neumann-Morgenstern’s 
(vN-M’s) utility theory for probabilistic lotteries [51,29,28,37,34,17]. Unlike the probabilistic case, our axiomatic theory leads 
to interval-valued utilities, and therefore to a partial (incomplete) preference order on the set of all belief function lotteries. 
Also, we compare our decision theory to those proposed by Jaffray [30], Smets [48], Dubois et al. [11], Giang and Shenoy 
[21,22], and Shafer [44].

In the foreword to Glenn Shafer’s 1976 monograph [39], Dempster writes: “. . . I believe that Bayesian inference will 
always be a basic tool for practical everyday statistics, if only because questions must be answered and decisions must be 
taken, so that a statistician must always stand ready to upgrade his vaguer forms of belief into precisely additive probabil-
ities.” More than 40 years after these lines were written, a lot of approaches to decision-making have been proposed (see 
the recent review in [7]). However, most of these methods lack a strong theoretical basis. The most important steps toward 
a decision theory in the D-S framework have been made by Jaffray [30], Smets [48] and Shafer [44]. However, we argue that 
these proposals are either not sufficiently justified from the point of view of D-S theory, or not sufficiently developed for 
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practical use. Our goal is to propose and justify a utility theory that is in line with vN-M’s utility theory, but adapted to be 
used with lotteries whose uncertainty is described by D-S belief functions.

In essence, the D-S theory consists of representations—basic probability assignments (also called mass functions), belief 
functions, plausibility functions, etc.—together with Dempster’s combination rule, and a rule for marginalizing joint belief 
functions. The representation part of the D-S theory is also used in various other theories of belief functions. For example, in 
the imprecise probability community, a belief function is viewed as the lower envelope of a convex set of probability mass 
functions called a credal set. Credal set semantics are also referred to in the literature as lower probability interpretation [31–
33], and as generalized probability [16,27]. Using these semantics, it makes more sense to use the Fagin-Halpern combination 
rule [16] (also proposed by de Campos et al. [4]), rather than Dempster’s combination rule [27,42,43]. The utility theory this 
article proposes is designed specifically for the D-S belief function theory, and not for the other theories of belief functions. 
This suggests that Dempster’s combination rule should be an integral part of our theory, a property that is not satisfied in 
the proposals by Jaffray and Smets.

There is a large literature on decision making with a (credal) set of probability mass functions [23] motivated by Ells-
berg’s paradox [15]. An influential work in this area is the axiomatic framework by Gilboa-Schmeidler [24], where they use 
Choquet integration [3,25] to compute expected utility. A belief function is a special case of a Choquet capacity. Jaffray’s [30]
work can also be regarded as belonging to the same line of research, although Jaffray works directly with belief functions 
without specifying a combination rule. A review of this literature can be found in, e.g., [18], where the authors propose a 
modification of the Gilboa-Schmeidler [24] axioms. As we said earlier, our focus here is on decision-making with D-S theory 
of belief functions, and not on decision-making based in belief functions with a credal set interpretation. As we will see, 
our interval-valued utility functions lead to intervals that are contained in the Choquet lower and upper expected utility 
intervals.

The remainder of this article is as follows. In Section 2, we sketch vN-M’s axiomatic utility theory for probabilistic 
lotteries as described by Luce and Raiffa [37]. In Section 3, we summarize the basic definitions in the D-S belief function 
theory. In Section 4, we describe our adaptation of vN-M’s utility theory for lotteries in which uncertainty is described by 
D-S belief functions. Our assumptions lead to an interval-valued utility function, and consequently, to a partial (incomplete) 
preference order on the set of all belief function lotteries. We also describe a model for assessments of utilities. In Section 5, 
we compare our utility theory with those described by Jaffray [30], Smets [48], Dubois et al. [11], Giang and Shenoy [21,22], 
and Shafer [44]. Finally, in Section 6, we summarize and conclude.

2. Von Neumann-Morgenstern’s utility theory

In this section, we describe vN-M’s utility theory for decision under risk. Most of the material in this section is adapted 
from [37]. A decision problem can be seen as a situation in which a decision-maker (DM) has to choose a course of action 
(or act) in some set F. An act may have different outcomes, depending on the state of nature X . Exactly one state of nature 
will obtain, but this state is unknown. Denoting by �X = {x1, . . . , xn} the set of states of nature and by O = {O 1, . . . , O r} the 
set of outcomes,1 an act can thus be formalized as a mapping f from � to O. In this section, we assume that uncertainty 
about the state of nature is described by a probability mass function (PMF) p X on �X . In vN-M’s original exposition [51], 
probabilities on �X are assumed to be objective and to correspond to long-run frequencies. However, the line of reasoning 
summarized below is also valid with other interpretations of probabilities, such as additive degrees of belief, provided that 
probabilities are assumed to have been determined beforehand, independently of the decision problem. For instance, in the 
constructive approach proposed by Shafer [44], probabilities are constructed by comparing a given problem with a scale of 
examples in which the truth is generated according to known chances.2

If the DM selects act f , they will get outcome O i with probability

pi =
∑

{x∈�X | f (x)=O i}
p X (x). (1)

To each act f thus corresponds a PMF p = (p1, . . . , pr) on O. We call L = [O, p] a probabilistic lottery. As only one state in 
�X will obtain, a probabilistic lottery will result in exactly one outcome O i (with probability pi ), and we suppose that the 
lottery will not be repeated. Another natural assumption is that two acts that induce the same lottery are equivalent: the 
problem of expressing preference between acts then boils down to expressing preference between lotteries.

We are thus concerned with a DM who has preferences on L, the set of all probabilistic lotteries on O, and our task 
is to find a real-valued utility function u : L → R such that the DM strictly prefers L to L′ if and only if u(L) > u(L′), and 
the DM is indifferent between L and L′ if and only if u(L) = u(L′). We write O i � O j if the DM strictly prefers O i to O j , 
write O i ∼ O j if the DM is indifferent between (or equally prefers) O i and O j , and write O i � O j if the DM either strictly 
prefers O i to O j or is indifferent between the two.

1 The assumption of finiteness of the sets �X and O is only for ease of exposition. It is unnecessary for the proof of the representation theorem in this 
section.

2 Savage [38] derives both probabilities and utilities from a set of axioms. This approach will not be considered in this paper.
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Fig. 1. A two-stage compound lottery reduced to an indifferent simple lottery.

Of course, finding such a utility function is not always possible, unless the DM’s preferences satisfy some assumptions. 
We can then construct a utility function that is linear in the sense that the utility of a lottery L = [O, p] is equal to its 
expected utility 

∑r
i=1 pi u(O i), where O i is regarded as a degenerate lottery where the only possible outcome is O i with 

probability 1. In the remainder of this section, we describe a set of assumptions that lead to the existence of such a linear 
utility function.

Assumption 2.1 (Weak ordering of outcomes). For any two outcomes O i and O j , either O i � O j or O j � O i . Also, if O i � O j
and O j � O k , then O i � O k . Thus, the preference relation � over O is a weak order, i.e., it is complete and transitive.

Given Assumption 2.1, without loss of generality, let us assume that the outcomes are labeled such that O 1 � O 2 � · · · �
O r , and to avoid trivialities, assume that O 1 � O r .

Suppose that L = {L(1), . . . , L(s)} is a set of s lotteries, where each of the s lotteries L j = [O, p( j)] are over outcomes in O, 
with PMFs p( j) for j = 1, . . . , s. Suppose q = (q1, . . . , qs) is a PMF on L such that q j > 0 for j = 1, . . . , s, and 

∑s
j=1 q j = 1. 

Then [L, q] is called a compound lottery whose outcome is exactly one lottery L(i) (with probability qi ), and lottery L(i) will 
result in one outcome O j (with probability p(i)

j ). Notice that the PMF p(i) is a conditional PMF for O in the second stage 
given that lottery L(i) is realized (with probability qi > 0) in the first stage (see Fig. 1). We can compute the joint PMF for 
(L, O), and then compute the marginal p of the joint for O. The following assumption states that the resulting lottery [O, p]
is indifferent to the compound lottery [L, q].

Assumption 2.2 (Reduction of compound lotteries). Any compound lottery [L, q], where L(i) = [O, p(i)], is indifferent to a simple 
(non-compound) lottery [O, p], where

pi = q1 p(1)
i + . . . + qs p(s)

i (2)

for i = 1, . . . , r. PMF (p1, . . . , pr) is the marginal for O of the joint PMF of (L, O).

A simple lottery involving only outcomes O 1 and O r with PMF (u, 1 − u), where 0 ≤ u ≤ 1, is called a reference lottery, 
and is denoted by [{O 1, O r}, (u, 1 − u)]. Let O2 denote the set {O 1, O r}.

Assumption 2.3 (Continuity). Each outcome O i is indifferent to a reference lottery
Õ i = [O2, (ui, 1 − ui)] for some ui , where 0 ≤ ui ≤ 1, i.e., O i ∼ Õ i .

Assumption 2.4 (Weak order). The preference relation � for lotteries in L is a weak order, i.e., it is complete and transitive.

Assumption 2.4 generalizes Assumption 2.1 for outcomes, which can be regarded as degenerate lotteries.

Assumption 2.5 (Substitutability). In any lottery L = [O, p], if we substitute an outcome O i by the reference lottery Õ i =
[O2, (ui, 1 − ui)] that is indifferent to O i , then the result is a compound lottery that is indifferent to L (see Fig. 2), i.e.,

[(O 1, . . . , O i−1, O i, O i+1, . . . , O r),p] ∼ [(O 1, . . . , O i−1, Õ i, O i+1, . . . , O r),p].

From Assumptions 2.1–2.5, given any lottery L = [O, p], it is possible to find a reference lottery ̃L = [O2, (u, 1 − u)] that 
is indifferent to L (see Fig. 3). This is expressed by Theorem 2.1 below.
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Fig. 2. The substitutability Assumption 2.5.

Fig. 3. Reducing a lottery to an indifferent compound lottery and then to an indifferent reference lottery.

Theorem 2.1 (Reducing a lottery to an indifferent reference lottery). Under Assumptions 2.1-2.5, any lottery L = [O, p] is indifferent to 
a reference lottery ̃L = [O2, (u, 1 − u)] with

u =
r∑

i=1

pi ui . (3)

Proof. ([37]) First, we replace each O i by Õ i for i = 1, . . . , r. Assumption 2.3 (continuity) states that these indifferent lot-
teries exist, and Assumption 2.5 (substitutability) says that they are substitutable without changing the preference relation. 
So by using Assumption 2.4 serially, [O, p] ∼ [Õ, p]. Now if we apply Assumption 2.2 (reduction of compound lotteries), then 
[O, p] ∼ [O2, (u, 1 − u)], where u is given by Eq. (3). �

Assumption 2.6 (Monotonicity). A reference lottery L = [O2, (u, 1 − u)] is preferred or indifferent to reference lottery L′ =
[O2, (u′, 1 − u′)] if and only if u ≥ u′ .

As O 1 ∼ Õ 1 = [O, (u1, 1 − u1)] and O r ∼ Õ r = [O, (ur, 1 − ur)], Assumptions 2.4 and 2.6 imply that u1 = 1 and ur = 0. 
Also, from O 1 � O 2 � · · · � O r , we can deduce that 1 = u1 ≥ u2 ≥ · · · ≥ ur = 0.

Assumptions 2.1–2.6 allow us to define the utility of a lottery as the probability of the best outcome O 1 in an indifferent 
reference lottery, and this utility function for lotteries on O is linear. This is stated by the following theorem.

Theorem 2.2 ([37]). If the preference relation � on L satisfies Assumptions 2.1–2.6, then there are numbers ui associated with out-
comes O i for i = 1, . . . , r, such that for any two lotteries L = [O, p], and L′ = [O, p′], L � L′ if and only if

r∑
i=1

pi ui ≥
r∑

i=1

p′
i ui . (4)

Thus, we can define the utility of lottery L = [O, p] as u(L) = ∑r
i=1 pi ui , where ui = u(O i). Also, such a linear utility function is unique 

up to a strictly increasing affine transformation, i.e., if u′
i = a ui + b, where a > 0 and b are real constants, then u(L) = ∑r

i=1 pi u′
i also 

qualifies as a utility function.
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3. Basic definitions in the D-S belief function theory

In this section, we review the basic definitions in the D-S theory of belief functions. Like various uncertainty theories, 
D-S belief function theory includes functional representations of uncertain knowledge, and basic operations for making 
inferences from such knowledge. These will be recalled, respectively, in Section 3.1 and 3.2. Conditional belief functions and 
the notion of conditional embedding are then introduced in Section 3.3, and the semantics of belief functions in D-S theory 
is discussed in Section 3.4. Most of the material in this section (except Section 3.4) is taken from [36]. For further details, 
the reader is referred to [39] and to [8] for a recent review.

3.1. Representations of belief functions

Belief functions can be represented in several different ways, including as basic probability assignments, plausibility 
functions and belief functions.3 These are briefly discussed below.

Definition 1 (Basic probability assignment). Suppose X is an unknown quantity (variable) with possible values (states) in a 
finite set �X called the state space of X . We assume that X takes one and only one value in �X , but this value is unknown. 
Let 2�X denote the set of all subsets of �X . A basic probability assignment (BPA) mX for X is a function mX : 2�X → [0, 1]
such that∑

a⊆�X

mX (a) = 1, and mX (∅) = 0. (5)

The subsets a ⊆ �X such that mX (a) > 0 are called focal sets of mX . An example of a BPA for X is the vacuous BPA for X , 
denoted by ιX , such that ιX (�X ) = 1. We say that mX is deterministic if mX has a single focal set (with mass 1). Thus, the 
vacuous BPA for X is deterministic with focal set �X . If all focal sets of mX are singleton subsets (of �X ), then we say that 
mX is Bayesian. In this case, mX is equivalent to the PMF P X for X such that P X (x) = mX ({x}) for each x ∈ �X .

Definition 2 (Plausibility function). The information in a BPA mX can be represented by a corresponding plausibility function 
PlmX defined as follows:

PlmX (a) =
∑

{b⊆�X |b∩a
=∅}
mX (b) for all a ⊆ �X . (6)

For an example, suppose �X = {x, ̄x}. Then, the plausibility function PlιX corresponding to BPA ιX is given by PlιX (∅) = 0, 
PlιX ({x}) = 1, PlιX ({x̄}) = 1, and PlιX (�X ) = 1.

Definition 3 (Belief function). The information in a BPA mX can also be represented by a corresponding belief function BelmX

that is defined as follows:

BelmX (a) =
∑

{b⊆�X |b⊆a}
mX (b) for all a ⊆ �X . (7)

For the example above with �X = {x, ̄x}, the belief function BelιX corresponding to BPA ιX is given by BelιX (∅) = 0, 
BelιX ({x}) = 0, BelιX ({x̄}) = 0, and BelιX (�X ) = 1. For any proposition a ∈ 2�X , it is easy to see that BelmX (a) ≤ PlmX (a). 
Thus, if a DM’s belief in proposition a is an interval, say [p, p + q], where p, q ≥ 0 and p + q ≤ 1, then such beliefs can be 
represented by a BPA mX such that mX (a) = p, mX (�X \ a) = 1 − p − q, and mX (�X ) = q. For such a BPA, BelmX (a) = p ≤
p + q = PlmX (a).

All three representations—BPA, belief and plausibility functions—have exactly the same information, as any one of them 
allows us to recover the other two [39].

Next, we describe the two main operations for making inferences.

3.2. Basic operations in the D-S theory

There are two main operations in the D-S theory—Dempster’s combination rule and marginalization.

Dempster’s combination rule. In the D-S theory, we can combine two BPAs m1 and m2 representing distinct pieces of evidence 
by Dempster’s rule [5] and obtain the BPA m1 ⊕ m2, which represents the combined evidence. Dempster refers to this rule 

3 Belief functions can also be mathematically represented by a convex set of PMFs called a credal set, but the semantics of such a representation are 
incompatible with Dempster’s combination rule [40,42,43,27]. For these reasons, we skip a credal set representation of a belief function.
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as the product-intersection rule, as the product of the BPA values are assigned to the intersection of the focal sets, followed 
by normalization. Normalization consists of discarding the mass assigned to ∅, and normalizing the remaining values so that 
they add to 1. In general, Dempster’s rule of combination can be used to combine two BPAs for arbitrary sets of variables.

Let X denote a finite set of variables. The state space of X is ×X∈X �X . Thus, if X = {X, Y } then the state space of 
{X, Y } is �X × �Y . Projection of states simply means dropping extra coordinates; for example, if (x, y) is a state of {X, Y }, 
then the projection of (x, y) to X , denoted by (x, y)↓X , is simply x, which is a state of X . Projection of subsets of states is 
achieved by projecting every state in the subset. Suppose b ∈ 2�{X,Y } . Then b↓X = {x ∈ �X : (x, y) ∈ b}. Notice that b↓X ∈ 2�X .

Vacuous extension of a subset of states of X1 to a subset of states of X2, where X2 ⊇X1, is a cylinder set extension, i.e., 
if a ∈ 2X1 , then a↑X2 = a × �X2\X1 . Thus, if a ∈ 2�X , then a↑{X,Y } = a × �Y .

Definition 4 (Dempster’s rule using BPAs). Suppose m1 and m2 are BPAs for X1 and X2, respectively. Then m1 ⊕ m2 is a BPA 
for X1 ∪X2 =X , say, given by (m1 ⊕ m2)(∅) = 0 and

(m1 ⊕ m2)(a) = K −1
∑

{b1,b2⊆�X |b1∩b2=a}
m1(b

↓X1
1 )m2(b

↓X2
2 ), (8)

for all a ⊆ �X , where K is a normalization constant given by

K = 1 −
∑

{b1,b2⊆�X |b1∩b2=∅}
m1(b

↓X1
1 )m2(b

↓X2
2 ). (9)

The definition of Dempster’s rule assumes that the normalization constant K is non-zero. If K = 0, then the two BPAs 
m1 and m2 are said to be in total conflict and cannot be combined. If K = 1, we say m1 and m2 are non-conflicting.

Marginalization. Marginalization in D-S theory is addition of values of BPAs.

Definition 5 (Marginalization). Suppose m is a BPA for X . Then, the marginal of m for X1, where X1 ⊂X , denoted by m↓X1 , 
is a BPA for X1 such that for each a ⊆ �X1 ,

m↓X1(a) =
∑

{b⊆�X |b↓X1 =a}
m(b). (10)

3.3. Conditional belief functions

In probability theory, it is common to construct joint PMFs for a set of discrete variables by using conditional probability 
distributions. For example, we can construct joint PMF for (X, Y ) by first assessing PMF P X of X , and conditional PMFs P Y |x
for each x ∈ �X such that P X (x) > 0. The pointwise multiplication of P Y |x for all x ∈ �X is called a CPT, and denoted by 
P Y |X . Then, P X,Y = P X ⊗ P Y |X . We can construct joint BPA for {X, Y } in a similar manner.

Suppose that there is a BPA for Y expressing our belief about Y if we know that X = x, and denote it by mY |x . Notice that 
mY |x : 2�Y → [0, 1] is such that 

∑
b∈2�Y mY |x(b) = 1. We can embed this conditional BPA for Y into a BPA for {X, Y }, which 

is denoted by mx,Y , such that the following three conditions hold. First, mx,Y tells us nothing about X , i.e., m↓X
x,Y (�X ) = 1. 

Second, mx,Y tells us nothing about Y , i.e., m↓Y
x,Y (�Y ) = 1. Third, if we combine mx,Y with the deterministic BPA mX=x for 

X such mX=x({x}) = 1 using Dempster’s rule, and marginalize the result to Y we obtain mY |x , i.e., (mx,Y ⊕ mX=x)
↓Y = mY |x . 

The least committed way to obtain such an embedding, called conditional embedding, was derived by Smets [46,47] (see 
also [41]). It consists of taking each focal set b ∈ 2�Y of mY |x , and converting it to a corresponding focal set of mx,Y (with 
the same mass) as follows: ({x} × b) ∪ ({x} × �Y ), where {x} denotes the complement of {x} in �X . It is easy to confirm 
that this method of embedding satisfies the three conditions mentioned above, and mx,Y is the least committed (minimally 
informative) BPA verifying this property.

Example 1 (Conditional embedding). Consider discrete variables X and Y , with �X = {x, ̄x} and �Y = {y, ȳ}. Suppose that mX

is a BPA for X such that mX (x) > 0. If we have a conditional BPA mY |x for Y given X = x as follows:

mY |x(y) = 0.8, and

mY |x(�Y ) = 0.2, (11)

then its conditional embedding into BPA mx,Y for {X, Y } is

mx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8, and

mx,Y (�{X,Y }) = 0.2. (12)
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There are some differences with conditional probability distributions. First, in probability theory, P Y |X consists of all
conditional distributions P Y |x that are well-defined, i.e., for all x ∈ �X such that P X (x) > 0. In D-S belief function theory, we 
do not have similar constraints. We can include only those non-vacuous conditionals mY |x such that mX ({x}) > 0. Also, if we 
have more than one conditional BPA for Y , given, say for X = x1, and X = x2 (assuming mX ({x1}) > 0, and mX ({x2}) > 0), 
we embed these two conditionals for Y to get BPAs mx1,Y and mx2,Y for {X, Y }, and then combine them using Dempster’s 
rule of combination to obtain one conditional BPA mY |X = mx1,Y ⊕ mx2,Y , which corresponds to P Y |X in probability theory.

Second, given any joint PMF P X,Y for {X, Y }, we can always factor this into P↓X
X,Y = P X for X , and P Y |X for {X, Y }, such 

that P X,Y = P X ⊗ P Y |X . This is not true in D-S belief function theory. Given a joint BPA mX,Y for {X, Y }, we cannot always 
find a BPA mY |X for {X, Y } such that mX,Y = m↓X

X,Y ⊕ mY |X . However, we can always construct joint BPA mX,Y for {X, Y } by 
first assessing mX for X , and assessing conditionals mY |xi for Y for those xi that we have knowledge about and such that 
mX ({xi}) > 0, embed these conditionals into BPAs for {X, Y }, and combine all such BPAs to obtain the BPA mY |X for {X, Y }. 
An implicit assumption here is that BBAs mxi ,Y are distinct, and it is acceptable to combine them using Dempster’s rule. We 
can then construct mX,Y = mX ⊕ mY |X .

3.4. Semantics of D-S belief function

In D-S theory, belief functions are representations of an agent’s state of knowledge based on some evidence. As explained 
by Shafer [40], such representations can be constructed by comparing the available evidence with a hypothetical situation 
in which we receive a coded message, the meaning of which is random. More precisely, assume that a source sends us 
an encrypted message using a code selected at random from a set of codes C = {c1, . . . , cn} with known probabilities 
p1, . . . , pn . If we decode the message with code ci , we get a decoded message of the form “X ∈ �(ci)”, where � is a multi-
valued mapping from C to 2�X . For any nonempty subset a of �X , the probability that the meaning of the original message 
is “X ∈ a” is

m(a) =
n∑

i=1

pi I(�(ci) = a),

where I(·) is the indicator function. The random message metaphor thus provides a way to construct BPAs m. The fun-
damental assumption of D-S theory is that such metaphors provide a scale of canonical examples to which any piece of 
evidence (or, at least, most pieces of evidence encountered in practice) can be meaningfully compared.

The random set metaphor accounts for the use of Dempster’s rule, which can be easily derived from the assumption that 
the two BPAs m1 and m2 are induced by stochastically independent randomly coded messages. Two bodies of evidence are 
considered as independent if “(they) are sufficiently unrelated that pooling them is like pooling stochastically independent 
randomly coded messages” [40, Section 5.1].

In D-S theory, any belief function can thus be thought of as being induced by a multi-valued mapping from a probability 
space to the power set of the frame of discernment. Such multi-valued mappings were already explicitly constructed from 
a statistical model in Dempster’s original application of belief functions to statistical inference [5]. A statistical model is no 
more “real” than a random code canonical examples: both are idealizations that allow us to formalize our knowledge and 
make inferences based on reasonable assumptions.

4. A utility theory for D-S belief function theory

In this section, we describe a new utility theory for lotteries where the uncertainty is described by D-S belief functions. 
These lotteries, called belief function lotteries,4 will be introduced in Section 4.1. We present and discuss assumptions in 
Section 4.2 and state a representation theorem in Section 4.3. In Section 4.4, we show that an additional assumption leads 
to a simpler model, and we state the corresponding representation theorem. Finally, in Section 4.5, we describe an even 
simpler practical model allowing us to assess the utility of a belief function lottery based on a limited number of parameters.

4.1. Belief function lotteries

We generalize the decision framework outlined in Section 2 by assuming that uncertainty about the state of nature X
is described by a BPA mX for X . The probabilistic framework is recovered as a special case when mX is Bayesian. The BPA 
mX is assumed to be given, and is assumed to be a meaningful representation of the DM’s state of knowledge about X at 
a given time, with the semantics described in Section 3.4. As before, we define an act as a mapping f from �X to the set 
O of outcomes. Mapping f pushes mX forward from �X to O, transferring each mass mX (a) for a ∈ 2�X to the image of 
subset a by f , denoted as f [a] = { f (x) : x ∈ a}. The resulting BPA m for O is then defined as

4 This notion was previously introduced in [7] under the name “evidential lottery.”
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m(b) =
∑

{a∈2�X | f [a]=b}
mX (a), (13)

for all b ⊆ O [8]. Eq. (13) clearly generalizes Eq. (1). The pair [O, m] will be called a belief function (bf) lottery. It is a 
representation of the DM’s subjective beliefs about the outcome that will obtain as a result of selecting act f . As noted in 
[7], a bf lottery can also arise from a BPA mX on �X and a nondeterministic act f , defined as mapping from �X to 2O . This 
formalism may be useful to account for under-specified decision problems in which, for instance, the set of acts or the state 
space �X are too coarsely defined to allow for a precise description of the consequences of an act [19].

As before, we assume that two acts can be compared from what we believe their outcomes will be, irrespective of 
the evidence on which we base our beliefs. This assumption is a form of what Wakker [52] calls the principle of complete 
ignorance (PCI). It implies that two acts resulting in the same bf lottery are equivalent. The problem of expressing preferences 
between acts becomes that of expressing preferences between bf lotteries.

Remark 1. As a consequence of the PCI, preferences between acts do not depend on the cardinality of the state space �X

in case of complete ignorance. For instance, assume that we define �X = {x1, x2}, and we are completely ignorant of the 
state of nature, so that our belief state is described by the vacuous BPA mX (�X ) = 1. Consider two acts f1 and f2 that 
yield $100 if, respectively, x1 or x2 occurs, and $0 otherwise. These two acts induce the same vacuous bf lottery m(O) = 1
with O = {$100, $0}: consequently, they are equivalent according to the PCI. Now, assume that we decide to express the 
states of nature with finer granularity and we refine state x1 into two states x11 and x12. Let �X ′ = {x11, x12, x2} denote the 
refined frame. We still have mX ′ (�X ′ ) = 1 and m(O) = 1, so that our preferences between acts f1 and f2 are unchanged. 
We note that a Bayesian DM applying Laplace’s principle of indifference (PI) would reach a different conclusion: before 
the refinement, the PI implies p X (x1) = p X (x2) = 1/2, which results in the same probabilistic lottery p = (1/2, 1/2) on 
O = {$100, $0} for the two acts, but after the refinement the same principle gives us p X (x11) = p X (x12) = p X (x2) = 1/3; 
this results in two different lotteries p1 = (2/3, 1/3) for act f1 and p2 = (1/3, 2/3) for act f2, which makes f1 strictly 
preferable to f2. Considering that the granularity of the state space is often partly arbitrary (as discussed by Shafer in [39]), 
we regard this property of invariance to refinement under complete ignorance as a valuable feature of a decision theory 
based on D-S belief functions.

We are thus concerned with a DM who has preferences on Lbf , the set of all bf lotteries. Our task is to find a utility 
function u : Lbf → [R], where [R] denotes the set of closed real intervals, such that the u(L) = [u, 1 − v] is viewed as an 
interval-valued utility of L. The interval-valued utility can be interpreted as follows: u and v are, respectively, the degrees of 
belief of receiving the best and the worst outcome in a bf reference lottery equivalent to L (and 1 − v is, consequently, the 
degree of plausibility of receiving the best outcome). Given two lotteries L and L′ , L is preferred to L′ if and only if u ≥ u′
and v ≤ v ′ . This leads to incomplete preferences on the set of all bf lotteries. If we assume u = 1 − v for all bf lotteries, 
then we have a real-valued utility function on Lbf , and consequently, complete preferences.

Example 2 (Ellsberg’s Urn). Ellsberg [15] describes a decision problem that questions the adequacy of the vN-M axiomatic 
framework. Suppose we have an urn with 90 balls, of which 30 are red, and the remaining 60 are either black or yellow. 
We draw a ball at random from the urn. Let X denote the color of the ball drawn, with �X = {r, b, y}. Notice that the 
uncertainty of X can be described by a BPA mX for X such that mX ({r}) = 1/3, and mX ({b, y}) = 2/3.

First, we are offered a choice between Lottery L1: $100 on red, and Lottery L2: $100 on black, i.e., in L1, you get $100 if 
the ball drawn is red, and $0 if the ball drawn is black or yellow, and in L2, you get $100 if the ball drawn is black and $0
if the ball drawn is red or yellow. Choice of L1 can be denoted by alternative f1 : �X → {$100, $0} such that f1(r) = $100, 
f1(b) = f1(y) = $0. Similarly, choice of L2 can be denoted by alternative f2 : �X → {$100, $0} such that f2(b) = $100, 
f2(r) = f2(y) = $0. L1 can be represented by the BPA m1 for O = {$0, $100} as follows: m1({$100}) = 1/3, m1({$0}) = 2/3. 
L2 can be represented by BPA m2 for O as follows: m2({$0}) = 1/3, m2({$0, $100}) = 2/3. Notice that L1 and L2 are bf 
lotteries. Ellsberg notes that a frequent pattern of response is L1 preferred to L2.

Second, we are offered a choice between L3: $100 on red or yellow, and L4: $100 on black or yellow, i.e., in L3 you 
get $100 if the ball drawn is red or yellow, and $0 if the ball drawn is black, and in L4, you get $100 if the ball drawn 
is black or yellow, and $0 if the ball drawn is red. L3 can be represented by BPA m3 as follows: m3({$100}) = 1/3, and 
m3({$0, $100}) = 2/3, and L4 can be represented by the BPA m4 as follows: m4({$0}) = 1/3, m4({$100}) = 2/3. L3 and L4
are also belief function lotteries. Ellsberg notes that L4 is often strictly preferred to L3. Also, the same subjects who prefer 
L1 to L2, prefer L4 to L3. Table 1 is a summary of the four bf lotteries.

Thus, if the outcomes of a lottery are based on the states of a random variable X , which is described by a BPA mX for 
X , then we have a belief function lottery. In this example, we have only two outcomes, $100, and $0. L1 and L4 can also 
be regarded as probabilistic lotteries as the corresponding BPAs are Bayesian. L2 and L3 have BPAs with non-singleton focal 
sets. Thus, these two lotteries can be considered as involving “ambiguity” as the exact distribution of the probability (of 
2/3) between outcomes $100 and $0 is unknown. Regardless of how the probability of 2/3 is distributed between b and y, 
the preferences of subjects violate the tenets of vN-M utility theory.
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Table 1
Four belief function lotteries in Example 2.

Lottery mi({$100}) mi({$0}) mi({$100,$0})
L1 ($100 on r) 1/3 2/3
L2 ($100 on b) 1/3 2/3

L3 ($100 on r or y) 1/3 2/3
L4 ($100 on b or y) 2/3 1/3

4.2. Assumptions of our framework

As in the probabilistic case, we will assume that a DM’s preferences for bf lotteries are reflexive and transitive. However, 
unlike the probabilistic case (Assumption 2.4), we do not assume that these preferences are complete. In the probabilistic 
case, incomplete preferences are studied in [1], and in the case of sets of utility functions, in [13].

Our first assumption is identical to Assumption 2.1.

Assumption 4.1 (Weak ordering of outcomes). The DM’s preferences � for outcomes in O = {O 1, . . . , O r} are complete and 
transitive.

This allows us to label the outcomes such that

O 1 � O 2 � · · · � O r, and O 1 � O r . (14)

Let Lbf denote the set of all bf lotteries on O = {O 1, . . . O r}, where the outcomes satisfy Eq. (14). As every BPA m on 
O is a bf lottery, Lbf is essentially the set of all BPAs on O. As the set of all BPAs include Bayesian BPAs, the set Lbf is a 
superset of L, i.e., every probabilistic lottery on O can be considered a bf lottery.

Consider a compound lottery [L, m], where L = {L1, . . . , Ls}, m is a BPA for L, and L j = [O, m j|L j ] is a bf lottery on O, 
where m j|L j is a conditional BPA for O in the second stage given that lottery L j is realized in the first stage. We thus have 
s + 1 pieces of evidence represented by BPAs m and m1|L1 , . . . , ms|Ls . Assuming these pieces of evidence to be independent, 
they can be combined by Dempster’s rule (8), after conditionally embedding the conditional BPAs m j|L j (see Section 3.3). 
Marginalizing the orthogonal sum on O, we get a BPA m′. Assumption 4.2 below posits that the resulting simple lottery 
[O, m′] is equally preferred to the original compound lottery [L, m], i.e., we can reduce the compound lottery to a simple bf 
lottery on O using the D-S calculus.

Assumption 4.2 (Reduction of compound lotteries). Suppose [L, m] is a compound lottery as described in the previous para-
graph. Then, [L, m] ∼ [O, m′], where

m′ =
⎛⎝m ⊕

⎛⎝ s⊕
j=1

mL j , j

⎞⎠⎞⎠↓O

, (15)

and mL j , j is a BPA for (L, O) obtained from m j|L j by conditional embedding, for j = 1, . . . , s.

Example 3. Consider two urns: Urn 1 contains 90 balls, 30 of which are black, and 60 are red or yellow. Urn 2 is identical 
to Ellsberg’s urn in Example 2: it contains 90 balls, 30 of which are red, and 60 are black or yellow. Assume that, in the 
first stage, you are allowed to draw one ball B1 from Urn 1:

• If B1 is black or red, then you will be allowed to draw one ball from Urn 2 in the second stage, and you will get $100 
if it is red, and $0 otherwise (lottery L1 of Example 2);

• If B1 is yellow, you will be allowed to draw one ball from Urn 2, and you will get $100 if it is black, and $0 otherwise 
(lottery L2 of Example 2).

Here, we have a compound bf lottery with outcome space L = {L1, L2}. We get L1 or L2 depending on the color X1 of ball 
B1 drawn from Urn 1. We have mX1 ({b}) = 1/3 and mX1 ({r, y}) = 2/3, and the act f defined by f (b) = f (r) = L1, f (y) = L2. 
The BPA on L is, thus, m({L1}) = 1/3 and m({L1, L2}) = 2/3. Now, L1 and L2 are bf lotteries on O = {$100, $0}, with BPAs

m1|L1({$100}) = 1/3, m1|L1({$0}) = 2/3

and

m2|L2({$0}) = 1/3, m2|L2({$0,$100}) = 2/3.
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Fig. 4. A 2-stage compound belief function lottery. B1 is drawn from Urn 1, and B2 is drawn from Urn 2. The corresponding BPAs are shown on the right. 
In the first stage, m is a BPA for {L1, L2}. In the second stage, m1|L1 and m2|L2 are BPAs for {$100, $0}.

Here, m j|L j is a conditional BPA on O, given that L j is obtained in the first stage (see Fig. 4). The conditional embeddings of 
m1|L1 and m2|L2 are BPAs on L × O equal, respectively, to

mL1,1({(L1,$100), (L2,$100), (L2,$0)}) = 1/3,

mL1,1({(L1,$0), (L2,$100), (L2,$0)}) = 2/3,

and

mL2,2({(L2,$0), (L1,$100), (L1,$0)}) = 1/3,

mL2,2(L × O) = 2/3,

Their orthogonal sum is

(mL1,1 ⊕ mL2,2)({(L1,$100), (L2,$0)}) = 1/9,

(mL1,1 ⊕ mL2,2)({(L1,$0), (L2,$0)}) = 2/9,

(mL1,1 ⊕ mL2,2)({(L1,$100), (L2,$100), (L2,$0)}) = 2/9,

(mL1,1 ⊕ mL2,2)({(L1,$0), (L2,$100), (L2,$0)}) = 4/9.

Combining it with m, we get

(m ⊕ mL1,1 ⊕ mL2,2)({(L1,$100)}) = 3/27,

(m ⊕ mL1,1 ⊕ mL2,2)({(L1,$0)}) = 6/27,

(m ⊕ mL1,1 ⊕ mL2,2)({(L1,$100), (L2,$0)}) = 2/27,

(m ⊕ mL1,1 ⊕ mL2,2)({(L1,$0), (L2,$0)}) = 4/27,

(m ⊕ mL1,1 ⊕ mL2,2)({(L1,$100), (L2,$100), (L2,$0)}) = 4/27,

(m ⊕ mL1,1 ⊕ mL2,2)({(L1,$0), (L2,$100), (L2,$0)}) = 8/27.

Marginalizing on O, we get m′ = (m ⊕ mL1,1 ⊕ mL2,2)
↓O equal to

m′({$100}) = 3/27 = 1/9,

m′({$0}) = 10/27,

m′({$100,$0}) = 14/27.

According to Assumption 4.2, a rational DM should be indifferent between receiving the compound bf lottery [L, m], or 
receiving the bf lottery [O, m′], i.e., a prize about which the only information he has is given by a randomly coded message 
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whose meaning can be “The value of the prize is $100” with probability 1/9, “The value of the prize is $0” with probability 
10/27, and “The value of the prize is unknown” with probability 14/27.

The following proposition states that Assumption 4.2 generalizes Assumption 2.2.

Proposition 1. Let L = {L1, . . . , Ls} be a set of bf lotteries, with L j = [O, m j|L j ], in which m j|L j is a Bayesian conditional BPA for O
such that m j|L j ({O i}) = p( j)

i and 
∑r

i=1 p( j)
i = 1 for j = 1, . . . , s. Let [L, m] be a compound lottery in which m is a Bayesian BPA for L

such that m({L j} = q j for j = 1, . . . , s with 
∑s

j=1 q j = 1. Then BPA m′ defined by (15) is Bayesian and it verifies

m′({O i}) =
s∑

j=1

q j p( j)
i (16)

for i = 1, . . . , r.

Proof. The conditional embedding of m j|L j is given by

mL j , j
({(L j, O i)} ∪ {L j} × O

) = p( j)
i , i = 1, . . . , r.

Let m0 = ⊕s
j=1 mL j , j . It is a BPA for L × O defined by

m0
({(L1, O i1), . . . , (Ls, O is )}

) = p(1)
i1

. . . p(s)
is

for all (i1, . . . , is) ∈ {1, . . . , r}s . Combining m0 with m, we get a Bayesian BPA m′
0 on L × O such that

m′
0({(L j, O i)}) = q j p( j)

i .

After marginalizing on O, we finally get Eq. (16). �
Next, we define a bf reference lottery [O2, m] as a bf lottery on O2 = {O 1, O r}. A bf reference lottery has three parameters 

u = m({O 1}), v = m({O r}), and w = m(O2), which are all non-negative and sum to 1. It can be equivalently denoted as 
[O2, (u, v, w)]. The first and second elements of the triple are, respectively, the degrees of belief of receiving the best and 
worst outcomes, while the third element can be seen as a degree of ignorance. Obviously, the degrees of plausibility of 
receiving the best and the worst outcomes are, respectively, 1 − v and 1 − u. The following assumption states that any 
deterministic bf lottery is equally preferred to some bf reference lottery.

Assumption 4.3 (Continuity). Any subset of outcomes a ⊆ O (considered as a deterministic bf lottery) is indifferent to a bf 
reference lottery ̃a = [O2, (ua, va, wa)] for some ua, va, wa ≥ 0 such that ua + va + wa = 1. Furthermore, wa = 0 if a = {O i}
is a singleton subset.

For singleton subsets, the equivalent bf reference lottery is Bayesian: this ensures that Assumption 4.3 is a generalization 
of Assumption 2.3. For non-singleton subsets a of outcomes, we may have wa > 0, i.e., the bf reference lottery may not be 
Bayesian. In other words, we do not assume that ambiguity can be resolved by selecting an equivalent probabilistic reference 
lottery.

Example 4. Consider lottery L2 = [{$100, $0}, m2] in Example 2, where m2({$0}) = 1/3, and m2({$100, $0}) = 2/3. Suppose 
we wish to assess the utility of focal set {$100, $0} using a probabilistic reference lottery [{$100, $0}, (p, 1 − p)]. A DM may 
have the following preferences. For any p ≤ 0.2 she prefers {$100, $0} to the probabilistic reference lottery, and for any 
p ≥ 0.3, she prefers the probabilistic reference lottery to {$100, $0}. However, she is unable to give us a precise p such that 
{$100, $0} ∼ [{$100, $0], (p, 1 − p)]. For such a DM, we can assess a bf reference lottery [{$100, $0}, (0.2, 0.7, 0.1)] such that 
Belma({$100}) = 0.2 and Plma ({$100}) = 0.3.

Assumption 4.4 (Quasi-order). The preference relation � for bf lotteries on Lbf is a quasi-order, i.e., it is reflexive and 
transitive.

In contrast with the probabilistic case (Assumption 2.4), we do not assume that � is complete. There are many reasons 
we may not wish to assume completeness. It is not descriptive of human behavior. Even from a normative point of view, it 
is questionable that a DM has complete preferences on all possible lotteries. The assumption of incomplete preferences is 
consistent with the D-S theory of belief functions where we have non-singleton focal sets. Several authors, such as Aumann 
[1], and Dubra et al. [13] argue why the assumption of complete preferences may not be realistic in many circumstances.

The substitutability assumption is similar to the probabilistic case (Assumption 2.5)—we replace an outcome in the 
probabilistic case by a focal set of m in the bf case.
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Fig. 5. Reducing a bf lottery to a bf reference lottery.

Assumption 4.5 (Substitutability). In any bf lottery L = [O, m], if we substitute a focal set a of m by an equally preferred bf 
reference lottery ̃a = [O2, ma], then the result is a compound lottery that is equally preferred to L.

It follows from Assumptions 4.1–4.5 that given any bf lottery, we can reduce it to an equally preferred bf reference 
lottery. This is stated as Theorem 4.1 below.

Theorem 4.1 (Reducing a bf lottery to an indifferent bf reference lottery). Under Assumptions 4.1–4.5, any bf lottery L = [O, m] with 
focal sets a1, . . . , ak is indifferent to a bf reference lottery ̃L = [O2, ̃m], such that

m̃({O 1}) =
k∑

i=1

m(ai) uai , (17a)

m̃({O r}) =
k∑

i=1

m(ai) vai , and (17b)

m̃(O2) =
k∑

i=1

m(ai) wai , (17c)

where uai , vai and wai are the masses assigned, respectively, to {O 1}, {O r} and O2 by the bf reference lottery ̃ai equivalent to ai .

Proof. From Assumption 4.3 (continuity), we can replace each focal set ai of m one at a time by an indifferent bf reference 
lottery ãi = [O2, mi|̃ai ], yielding a sequence of compound lotteries. From Assumptions 4.5 (substitutability) and 4.4 (quasi-
order), these compound lotteries are all indifferent to L (see Fig. 5). Let L′ = [L, m′] be the compound lottery obtained after 
all focal sets ai have been substituted, with m′({̃ai}) = m(ai). From Assumption 4.2 (reduction of compound lotteries), L′ can 
be reduced to a reference bf lottery ̃L = [O2, ̃m], by considering each BBA mi|̃ai as a conditional BPA and applying the rules 
of D-S calculus. The reduced bf lottery ̃L = [O2, ̃m] is then given by

m̃ =
(

m′ ⊕
(

k⊕
i=1

mã,i

))↓O2

,

where mã,i is the BPA for O2 obtained from mi|̃ai by conditional embedding. If we have
mi|̃ai ({O 1}) = uai , mi|̃ai ({O r}) = vai and mi|̃ai (O2) = wai , then after conditional embedding BPA mãi ,i is as follows:

mãi ,i({(̃ai, O 1)} ∪ ({̃ai} × O2)) = uai

mãi ,i({(̃ai, O r)} ∪ ({̃ai} × O2)) = vai

mãi ,i(L × O2) = wai .

Let m0 denote 
⊕k

i=1 mãi ,i . The focal sets of m0 are of the form

a(I1,I2,I3) =
⎛⎝⋃

i∈I

ãi × {O 1}
⎞⎠ ∪

⎛⎝⋃
i∈I

ãi × {O r}
⎞⎠ ∪

⎛⎝⋃
i∈I

Li × O2

⎞⎠ ,
1 2 3
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for all partitions (I1, I2, I3) of {1, . . . , k}, and the corresponding value of m0 is:

m0(a(I1,I2,I3)) =
⎛⎝∏

i∈I1

uai

⎞⎠⎛⎝∏
i∈I2

vai

⎞⎠⎛⎝∏
i∈I3

wai

⎞⎠ .

Next, we combine Bayesian BPA m′ for L with m0. The focal sets of m′ ⊕ m0 are of the form {̃ai} × {O 1}, {̃ai} × {O r}, and 
{̃ai} × O2 depending on whether i ∈ I1 or i ∈ I2, or i ∈ I3, respectively, with mass m(ai)m0(a(I1,I2,I3)). Finally we marginalize 
m′ ⊕m0 to O2. The mass assigned to each focal set {̃ai} ×{O 1} is mai uai . Thus, m̃({O 1}) = ∑k

i=i m(ai)uai . Similarly, m̃({O r}) =∑k
i=i m(ai)vai , and m̃(O2) = ∑k

i=i m(ai)wai . �
Next, we formulate a monotonicity assumption to generalize Assumption 2.6. Given two bf reference lotteries, if any of 

them assigns a higher degree of belief to the best outcome O 1 and a lower degree of belief to the worst outcome O r (or, 
equivalently, higher degrees of belief and plausibility to O 1), then it should arguably be preferred. If this is not the case, 
i.e., if the best and the worst outcomes both have a higher degree of belief for one lottery (or, equivalently, if the belief-
plausibility intervals for O 1 in the two lotteries are strictly nested), then there does not seem to be any solid ground for 
preference, and the two lotteries can be considered as incomparable. This line of reasoning is formalized in Assumption 4.6
below.

Assumption 4.6 (Monotonicity). Suppose L = [O2, (u, v, w)] and L′ = [O2, (u′, v ′, w ′)] are bf reference lotteries. Then, L � L′
if and only if u ≥ u′ and 1 − v ≥ 1 − v ′ .

It is clear that � as defined in Assumption 4.6 is reflexive and transitive. The corresponding indifference relation is 
L ∼ L′ if and only if u = u′ and v = v ′ , i.e., if and only if L = L′ . Also, the preference relation � on the set of all bf reference 
lotteries is obviously incomplete: two lotteries L and L′ are incomparable if not L � L′ and not L′ � L, i.e., if the intervals 
[u, 1 − v] and [u′, 1 − v ′] are strictly nested.

The preference relation defined in Assumption 4.6 can equivalently be expressed as L � L′ if and only if Belm({O 1}) ≥
Belm′({O 1}) and Plm({O 1}) ≥ Plm′ ({O 1}) (meaning that the best outcome O 1 is deemed both more credible and more 
plausible under L than it is if under L′).

We note that a stronger notion of preference would be to prefer L over L′ if and only if Belm({O 1}) ≥ Plm′ ({O 1}), i.e., 
if and only if u ≥ 1 − v ′ . This alternative preference relation is arguably too strict, which would lead to a more incomplete 
preference order on lotteries.

To conclude this section, we note that Assumptions 4.1, 4.3 and 4.6 imply the following consistency constraints between 
the reference bf lotteries equivalent to single outcomes:

1 = u{O 1} ≥ u{O 2} ≥ . . . ≥ u{O r } = 0. (18)

4.3. Representation theorem

Theorem 4.2 (Interval-valued utility function). Suppose L = [O, m] and L′ = [O, m′] are bf lotteries on O. If the preference relation �
on Lbf satisfies Assumptions 4.1–4.6, then there are intervals [ua, 1 − va] associated with nonempty subsets a ⊆ O such that L � L′ if 
and only if∑

∅
=a⊆O

m(a) ua ≥
∑

∅
=a⊆O

m′(a) ua (19a)

and ∑
∅
=a⊆O

m(a) va ≤
∑

∅
=a⊆O

m′(a) va. (19b)

Thus, for a bf lottery L = [O, m], we can define

[u](L) = [u,1 − v] (20)

as an interval-valued utility of L, with

u =
∑

∅
=a⊆O

m(a) uai and v =
∑

∅
=a⊆O

m(a) va. (21)

Also, such a utility function is unique up to a strictly increasing affine transformation, i.e., if u′ = a u + b, and v ′ = a v + b, where 
a > 0, and b are real constants, then

[u′](L) = [u′,1 − v ′]
also qualifies as an interval-valued utility function.
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Fig. 6. Ellsberg’s urn, choice of lotteries, and the corresponding belief function lotteries.

Proof. The proof is immediate from Theorem 4.1 and Assumption 4.6 (monotonicity). �
A special case of Theorem 4.2 is if we use Bayesian bf reference lotteries for the continuity assumption, i.e., wa = 0 for 

all focal sets a of m. In this case, Theorem 4.2 implies Corollary 4.1 below where we have a real-valued utility function and 
a complete ordering on Lbf .

Corollary 4.1 (Real-valued utility function). Suppose L = [O, m] and L′ = [O, m′] are bf lotteries on O. If the preference relation � on 
Lbf satisfies Assumptions 4.1–4.6 and if wa = 0 for all focal sets a of m and m′ , then there are numbers ua associated with nonempty 
subsets a ⊆ O such that L1 � L2 if and only if∑

∅
=a⊆O

m(a) ua ≥
∑

∅
=a⊆O

m′(a) ua.

Thus, for a bf lottery L = [O, m], we can define

u(L) =
∑

∅
=a⊆O

m(a) ua (22)

as the utility of L. Also, such a utility function is unique up to a strictly increasing affine transformation, i.e., if u′
a = a ua + b, where 

a > 0, and b are real constants, then

u′(L) =
∑

∅
=a⊆O

m(a) u′
a

also qualifies as a utility function.

Proof. The result in Corollary 4.1 follows trivially from Theorem 4.2. �
The utility function in Eq. (22) has exactly the same form as Jaffray’s linear utility [30]. This is discussed further in 

Section 5.1.
Next, we illustrate the application of Theorem 4.2 to some examples: Ellsberg’s urn problem described in Example 2, the 

one red ball problem described in [35], and the 1,000 balls urns described in [2].

Example 5 (Ellsberg’s urn). Consider the four bf lotteries described in Example 2 (also in Table 1, and in Fig. 6). Given a 
vacuous bf lottery [{$100, $0}, ι], where ι is the vacuous BPA on O = {$100, $0}, what is an indifferent bf reference lottery? 
For an ambiguity-averse DM,

[{$100,$0}, (1/2,1/2,0)] � [{$100,$0}, ι].
For such a DM, we thus have 1 − v{$100, $0} < 1/2.

For the first choice problem between L1 ($100 on r) and L2 ($100 on b), using Eq. (22), [u](L1) = [1/3, 1/3], and

[u](L2) = 2 [
u{$100,$0},1 − v{$100,$0}

]
.

3
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Fig. 7. One red ball urn, choices, and the corresponding belief function lotteries.

Thus, an ambiguity-averse DM would choose L1. This result is valid as long as 1 − v{$100, $0} < 1/2 and is consistent with 
Ellsberg’s findings. For the second choice problem between L3 ($100 on r or y), and L4 ($100 on b or y),

[u](L3) = 1

3
(1) + 2

3

[
u{$100,$0},1 − v{$100,$0}

]
,

and [u](L4) = [2/3, 2/3]. An ambiguity-averse DM would choose L4, as

1

3
+ 2

3
(1 − v{$100,$0}) <

2

3
as long as 1 − v{$100, $0} < 1/2, a result that is also consistent with Ellsberg’s empirical findings.

Example 6 (One red ball). Consider the following example called ‘one red ball’ in [35] (see Fig. 7). An urn possibly contains 
balls of six colors: red (r), blue (b), green (g), orange (o), white (w), and yellow (y). One ball is drawn at random from 
the urn. We are informed that the urn has a total of n balls, where n is a positive integer, and that there is exactly one red 
ball in the urn. Suppose random variable X denotes the color of the ball drawn from the urn. Then �X = {r, b, g, o, w, y}, 
and mX is a BPA for X such that mX ({r}) = 1/n, and mX ({b, g, o, w, y}) = (n − 1)/n. First, you choose a color, and then you 
draw a ball at random from the urn. You win $100 if the color of the ball drawn from the urn matches the color you chose, 
and you win $0 if it doesn’t. What color do you choose? In [35], the authors describe some informal experiments where all 
respondents chose red for n ≤ 7, and for n ≥ 8, several respondents preferred a color different from red.

Suppose you choose r. The bf lottery Lr based on mX is as follows: [{$100, $0}, mr], where mr({$100}) = 1/n, and 
mr({$0}) = (n − 1)/n. If the color you pick is b, then the bf lottery Lb is [{$100, $0}, mb], where mb({$0}) = 1/n, and 
mb({$100, $0}) = (n − 1)/n. Thus, we have [u](Lr) = [1/n, 1/n], and

[u](Lb) = n − 1

n

[
u{$100,$0},1 − v{$100,$0}

]
.

So, Lb is strictly preferred to Lr whenever

n − 1

n
u{$100,$0} >

1

n
,

i.e., whenever u{$100, $0} > 1/(n − 1), and Lr is strictly preferred to Lb whenever

n − 1

n

(
1 − v{$100,$0}

)
<

1

n
,

i.e., whenever 1 − v{$100, $0} < 1/(n − 1). Hence, Lb is increasingly preferred to Lr when n increases, which is consistent with 
the findings reported in [35]. In our model, when

u{$100,$0} <
1

n − 1
< 1 − v{$100,$0},

the two lotteries Lr and Lb are incomparable. If forced to choose, the DM might just choose arbitrarily. As the experiment 
reported in [35] did not allow the respondents to express inability to choose between the two lotteries, it does not provide 
any evidence for or against our model.
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Fig. 8. Two urns with 1,000 balls, choices, and the corresponding belief function lotteries.

Example 7 (Urns with 1,000 balls). The following example is discussed in [2], where it is credited to Ellsberg in an oral 
conversation (with the authors of [2]). It is also discussed in [14]. There are two urns, each with 1,000 balls, numbered from 
1 − 1, 000. Urn 1 has exactly one ball for each number, and there is no ambiguity. Urn 2 has unknown number of balls of 
each number, and there is much ambiguity. One ball is to be chosen at random from an urn of your choosing. If the number 
on the ball matches a specific number, e.g., 687, you win $100, and if not, you win nothing ($0). Which one of the two urns 
will you choose? This choice problem is shown in Fig. 8.

It is reported in [2] that many respondents chose Urn 2. Why? Urn 1 has only one ball numbered 687, and therefore, 
the probability of winning $100 if the choice is Urn 1 is very small, 0.001. Urn 2 could possibly have anywhere from 0 to 
1, 000 balls numbered 687. Thus, the choice of Urn 2, although ambiguous, is appealing. Let’s analyze this problem using 
Theorem 4.2.

Let X1 denote the number on the ball chosen Urn 1, and let X2 denote the number on the ball chosen Urn 2. �X1 =
�X2 = {1, . . . , 1000}. Function mX1 is a BPA for X1 as follows: mX1 ({1}) = . . . = mX1({1000}) = 0.001. BPA mX2 is vacuous, 
i.e., mX2(�X2 ) = 1.

Lottery L1 corresponding to choice of Urn 1 (say, alternative f1) is [{$100, $0}, m1], where m1 is a BPA for {$100, $0}
such that m1({$100}) = 0.001, and m1({$0}) = 0.999. L1 is a bf reference lottery, and thus, [u](L1) = [0.001, 0.001]. Lottery 
L2 corresponding to choice of Urn 2 (say, alternative f2) is [{$100, $0}, m2], where m2 is a vacuous BPA for {$100, $0}. The 
utility of L2 is

[u](L2) = [
u{$100,$0},1 − v{$100,$0}

]
.

Consequently, L2 is preferred to L1 as long as

u{$100,$0} ≥ 0.001,

a condition that is easily satisfied. This may explain why many DMs appear to be ambiguity-seeking in this context, i.e., 
prefer L2 to L1.

4.4. An additional assumption and the corresponding representation theorem

Whereas Theorem 4.2 guarantees the existence of an interval valued utility function for bf lotteries, there remains the 
problem of practical elicitation of utilities. The maximum number of utilities to be elicited increases exponentially with the 
number r of outcomes. As the utilities of the worst and the best outcomes are, by construction, 0 and 1, and w{O i } = 0 for 
each other single outcome O i , the actual number of utilities to be elicited is, at most, 2(2r − 1 − r) + r − 2 = 2r+1 − r − 4. 
By making one more reasonable assumption, we can drastically limit the number of parameters to be elicited.

Assumption 4.7 below has no counterpart in the vN-M theory, but it is rooted in decision-making under ignorance 
[30,52]. For any nonempty subset of consequences a ⊆ O, let O a and O a denote, respectively, the worst and the best 
outcome in a. To simplify the notations, we assimilate a deterministic BPA with its focal set, and we write a � b to mean 
that the deterministic lottery with focal set a is preferred or indifferent to the deterministic lottery with focal set b. Then 
our last assumption can be stated as follows.
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Table 2
Acts in Example 8.

ω1 ω2 ω3 ω4

f1 0 1 1000 1000
f2 0 0 999 1000
f ′
1 0 1 1 1000

f ′
2 0 999 1000 1000

Assumption 4.7 (Dominance). For all nonempty subsets a and b of O, if O a � O b and O a � O b , then a � b.

Assumption 4.7 implies that the preference between two deterministic lotteries with focal sets a and b is determined 
only by the best and worst outcomes in a and b. In particular, when O a = O b and O a = O b , then a ∼ b. Although counter-
intuitive at first glance, this assumption cannot be avoided if we accept the PCI, i.e., if we accept that any two acts yielding 
the same bf lottery are equivalent, as shown by the following example.

Example 8. Assume that the set of outcomes is O = {$0, $1, $999, $1, 000}. According to Assumption 4.7, a DM would be 
indifferent between receiving one of the prizes in a = {$0, $1, $1, 000}, without any further information, and receiving one 
of the prizes in b = {$0, $999, $1, 000}. It may be argued that most DMs would strictly prefer b to a. Yet, assume that 
the state space is �X = {ω1, ω2, ω3, ω4}, we are in a state of complete ignorance, i.e., mX (�X ) = 1, and the deterministic 
lotteries a and b are generated by the acts f1 and f2 shown in Table 2. It is clear that f1 dominates f2 (it yields at least as 
desirable consequences for all states of nature, and strictly preferred consequences for some states of nature), so it would 
be paradoxical to strictly prefer f2 over f1, i.e., to strictly prefer b over a. But a and b might also have been generated by 
acts f ′

1 and f ′
2 in Table 2 and, as f ′

2 dominates f ′
1, it would also be paradoxical to strictly prefer f ′

1 over f ′
2, i.e., to strictly 

prefer a over b. Consequently, indifference between a and b seems to be the only rational option in this case.

Generalizing Example 8, Jaffray [30] shows that, whenever O a � O b and O a � O b , we can always construct a state space 
�X and two acts f1 and f2 such that f1[�X ] = a, f2[�X ] = b and, for any ω ∈ �X , f1(ω) � f2(ω). As f1 yields at least as 
desirable outcomes as f2 under any state of nature, it should be preferred whatever our beliefs on �X , and in particular 
when mX (�X ) = 1. Hence, we should have a � b.

Assumption 4.7 implies that a � O a and O a � a. From Assumption 4.6, we thus have ua ≥ uO a
and 1 − va ≤ uO a

. 
Consequently, the utility bounds ua and 1 − va of subset a can be written as convex combinations of the utilities of its 
worst and best outcomes:

ua = α(O a, O a) uO a
+ (

1 − α(O a, O a)
)

uO a
(23a)

1 − va = β(O a, O a) uO a
+ (

1 − β(O a, O a)
)

uO a
, (23b)

where α(O a, O a) and β(O a, O a) are two coefficients depending only on the best and worst outcomes in a, such that 
0 ≤ α(O a, O a) ≤ β(O a, O a) ≤ 1. In Jaffray’s framework [30], wa = 0 (see Section 5.1) and α(O a, O a) is called a local 
pessimism index. In our framework, we can see the interval 

[
α(O a, O a), β(O a, O a)

]
as an interval-valued local pessimism 

index reflecting both the DM’s attitude to ambiguity and indeterminacy. Assumption 4.7 thus brings the maximum number 
of parameters to be elicited from 2r+1 − r − 4 down to r(r − 1) + r − 2 = r2 − 2. The above discussion can be summarized 
in the form of the following representation theorem (generalizing Theorem 2 in [30]).

Theorem 4.3 (Interval-valued local pessimism index). Suppose L = [O, m] and L′ = [O, m′] are bf lotteries on O. If the preference 
relation � on Lbf satisfies Assumptions 4.1–4.7, then there are numbers uO associated with outcomes O  ∈ O and two mappings α
and β from

O = {(O , O ′) ∈ O2 : O ′ � O }
to [0, 1], with α ≤ β , such that L � L′ if and only if∑

∅
=a⊆O

m(a)
[
α(O a, O a)uO a

+ (1 − α(O a, O a))uO a

]
≥

∑
∅
=a⊆O

m′(a)
[
α(O a, O a)uO a

+ (1 − α(O a, O a))uO a

]
and ∑

∅
=a⊆O

m(a)
[
β(O a, O a)uO a

+ (1 − β(O a, O a))uO a

]
≥

∑
∅
=a⊆O

m′(a)
[
β(O a, O a)uO a

+ (1 − β(O a, O a))uO a

]
,
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where O a and O a are, respectively, the worst and the best outcomes in a ⊆ O. Thus, for a bf lottery L = [O, m], we can define

[u](L) = [u,1 − v]
as an interval-valued utility of L, with

u =
∑

∅
=a⊆O

m(a)
[
α(O a, O a)uO a

+ (1 − α(O a, O a))uO a

]
and

1 − v =
∑

∅
=a⊆O

m(a)
[
β(O a, O a)uO a

+ (1 − β(O a, O a))uO a

]
.

Also, this utility function is unique up to a strictly increasing affine transformation.

4.5. A simpler model

Strat [50] proposes independently, but without any axiomatic justification, a criterion similar to that of Theorem 4.3
but with a constant parameter α(O a, O a) = β(O a, O a) = α that does not depend on the subset a. In a similar way, we 
can assume that the lower and upper pessimism indices take on constant values: α(O a, O a) = α and β(O a, O a) = β , with 
0 ≤ α ≤ β ≤ 1. This simple model depends on only r parameters: the utilities of the single outcomes u{O i } for i = 2, . . . , r −1, 
and the two coefficients α and β . It allows us to recover some existing decision criteria as special cases:

• When α = β , the utility interval [u](L) is reduced to a point u(L) and we get Strat’s criterion, also called the generalized 
Hurwicz criterion in [7], which is a special case of the real-valued utility (22) in Corollary 4.1;

• In particular, when α = β = 0, then

u(L) =
∑
a⊆O

m(a) min
O∈a

uO , (24)

which is the lower expected utility u m with respect to m [5,40,6]. As shown by Gilboa and Schmeidler [25], u m is also 
the Choquet expected utility [3] with respect to the belief function Belm corresponding to m. The preference relation 
between bf lotteries then corresponds to the maximin criterion, which reflects a pessimistic attitude of the DM.

• Similarly, when α = β = 1, we get

u(L) =
∑
a⊆O

m(a) max
O∈a

uO , (25)

which is the upper expected utility um , or the Choquet expected utility with respect to the plausibility function Plm
corresponding to m [25]. The corresponding decision strategy corresponds to the maximax criterion, which models an 
optimistic attitude of the DM.

• When α = 0 and β = 1, then the interval-valued utility is equal to the lower-upper expected utility interval

[u](L) = [
u m, um

]
.

The corresponding preference relation is then the interval bound dominance relation [10,7], defined by

L � L′ ⇔ (
u m ≥ u m′ and um ≥ um′

)
. (26)

In the general case, we have

u m ≤ u ≤ 1 − v ≤ um, (27)

where u and v are as in Eq. (21). Thus, the interval-valued utility [u](L) of lottery [O, m] as defined in Theorem 4.2 is 
always included in the lower-upper expected utility interval, and the preference relation induced by our interval-valued 
utilities compares more bf lotteries than the interval dominance relation (26). The lower and upper expectations defined by 
Eqs. (24)-(25) can thus be seen as lower and upper bounds of the interval utility of a lottery L = [O, m] and could be used 
as conservative estimates if parameters α and β cannot be elicited.

Example 9. Assume that the set of outcome is O = {$0, $10, $50, $100}. The full model (without Assumption 4.7) requires 
the assessment of 24 parameters: u{$10} , u{$50} , and the u and v values for the 11 subsets of O with cardinality strictly 
greater than 1. With Assumption 4.7, the number of parameters to be elicited is down to 14: u{$10} , u{$50} , and the α and 
β values for the following pairs of worst and best outcomes: ($0, $10), ($0, $50), ($0, $100), ($10, $50), ($10, $100) and 
($50, $100). Assuming α and β to be constant brings the number of parameters to only 4.
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A practical elicitation procedure. Whatever the simplifying assumptions made, the trickiest part for eliciting the interval-
valued utility of a bf lottery resides in the determination of the equivalent bf reference lottery for any non-singleton focal 
set a (if α and β are assumed to be constant, this determination needs to be done for only one non-singleton focal set). 
Let ã = [O2, (ua, va, wa)] be the bf reference lottery equivalent to a (assumed to exist from Assumption 4.3). For any a 
probabilistic reference lottery L = [O2, (u, 1 − u)], there are three cases:

1. If u ≥ 1 − va , then L � ã;
2. If u ≤ ua , then ̃a � L;
3. If ua < u ≤ 1 − va or ua ≤ u < 1 − va , then ̃a and L are incomparable.

To determine ua and va , we can thus start with u = 0 and gradually increase u until ̃a and L become incomparable, which 
gives us ua , and then gradually decrease u from u = 1 until ̃a and L become incomparable, which gives us va . Parameters 
α and β are then obtained by solving Eqs. (23). This procedure was used implicitly in Example 4.

5. Comparison with some existing decision theories

In this section, we compare our utility theory to Jaffray’s linear utility theory [30], Smets’ two-level decision theory 
[48], decision theories for possibility theory [11,21] and partially consonant belief functions [22], and Shafer’s constructive 
decision theory [44].

5.1. Comparison with Jaffray’s axiomatic theory

Jaffray’s axiomatic theory is based on considering the set of all belief functions on O as a mixture set as follows. Suppose 
m1 and m2 are BPAs for O, and suppose λ ∈ [0, 1]. Then m defined as:

m(a) = λm1(a) + (1 − λ)m2(a) (28)

for all a ∈ 2O , is a BPA for O. BPA m can be written as m = λ m1 + (1 − λ)m2, and called a mixture of m1 and m2. Using the 
Jensen-version [34] of vN-M axiom system, Jaffray uses the following axioms, all of which are expressed using mixture BPA 
functions:

Assumption 5.1 (Completeness and transitivity). The relation � is complete and transitive over Lbf .

Assumption 5.2 (Independence). For all L1 = [O, m1] and L2 = [O, m2] in Lbf , and λ ∈ (0, 1), L1 � L2 implies [O, λ m1 + (1 −
λ) m] � [O, λ m2 + (1 − λ) m].

Assumption 5.3 (Continuity). For all L1 = [O, m1], L2 = [O, m2], and L3 = [O, m3] in Lbf such that L1 � L2 � L3, there exists 
λ and μ in (0, 1) such that

[O, λm1 + (1 − λ)m3] � [O,m2] � [O,μm1 + (1 − μ)m3].

Theorem 5.1 (Jaffray’s representation theorem [30]). The preference relation � on Lbf satisfies Assumptions 5.1–5.3 if and only if there 
exists a utility function u :Lbf →R such that for any lottery L = [O, m] in Lbf ,

u(L) =
∑

∅
=a⊆O

m(a) ua (29)

where ua = u([O, md
a]), and md

a is a deterministic BPA for O such that md
a(a) = 1.

Thus, Jaffray’s axioms result in the same solution as that of Corollary 4.1, which is a special case of Theorem 4.2. As 
Jaffray’s axioms do not use Dempster’s rule explicitly, it is not clear whether Eq. (29) applies to the D-S framework or not. 
The mixture BPA m derived from BPAs m1 and m2 using Eq. (28) is not Dempster’s combination rule, although Eq. (28) can 
be derived from a belief function model using Dempster’s rule. In [32], Jaffray writes:

“It has been shown by [30,31] that, in the lower probability interpretation of belief functions, the axioms of von Neumann-
Morgenstern linear utility theory could be justified with the same arguments as in the case of risk (probabilized 
uncertainty)” (emphasis added).

Also, in [33], Jaffray and Wakker write:
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“Given the widespread use of belief functions, it is remarkable that only recently were decision criterion for the above-
mentioned type of situations proposed and axiomatized in [30]. He uses as a primitive axiom the independence condition 
with respect to mixtures of belief functions over the outcomes to generalize expected utility: [31] justifies this condition 
by means of a lower-probability interpretation of belief functions.” (emphasis added).

Thus, it is clear that Jaffray has in mind the credal set semantics of belief functions, which are inconsistent with Demp-
ster’s combination rule.5

In comparison, our representation theorem is based on a set of axioms making use of the basic constructs of DS theory 
(namely, Dempster’s combination rule, marginalization, and conditional embedding), we provide more compelling arguments 
supporting Eq. (29) as a natural definition of the real-valued utility of a bf lottery in the D-S theory.

Also, there is no explicit notion of a bf reference lottery in Jaffray’s framework. Thanks to our continuity axiom (Assump-
tion 4.3), the interval-valued utility [ua, 1 − va] in our framework receives a simple interpretation as an interval-valued 
probability of a best outcome O 1, in a bf reference lottery [O2, ma] that is indifferent to a and such that ma({O 1}) = ua , 
ma({O r}) = va , and ma(O2) = 1 − ua − va . We believe that this simple interpretation can be very helpful when eliciting 
utilities from DMs, as discussed in Section 4.5.

5.2. Comparison with Smets’ decision theory

Smets’ decision theory [48] is a two-level framework where beliefs, represented by belief functions, are held at a credal 
level. When a DM has to make a decision, the marginal belief function for a variable of interest is transformed into a PMF, 
and the Bayesian expected utility framework is then used to make a decision.

Smets uses a transformation called the pignistic transform to transform belief functions into PMFs. This transform is 
justified in [49] using a mixture property as follows. Let T denote the belief-PMF transformation. Smets [49] argues that 
this transformation should be linear, i.e., we should have, for any λ ∈ [0, 1],

T (λm1 + (1 − λ)m2) = λT (m1) + (1 − λ)T (m2). (30)

The unique transformation T verifying (30) is the pignistic transformation defined as T (m) = Bet Pm with

Bet Pm(O ) =
∑
a⊆O

m(a)

|a| I(O ∈ a) (31)

for all O  ∈ O. The pignistic PMF Bet Pm is mathematically identical to the Shapley value in cooperative game theory [45]. 
In [49], Smets attempts to derive Eq. (30) from the maximum expected utility principle. The argument, however, is quite 
technical and not very compelling.

Given the definition in Eq. (31), the expected utility of a bf lottery L = [O, m] according to the pignistic PMF is

uBet P (L) =
∑
O∈O

Bet Pm(O ) u{O } (32a)

=
∑
O∈O

⎛⎝∑
a⊆O

m(a)

|a| I(O ∈ a)

⎞⎠ u{O } (32b)

=
∑
a⊆O

m(a)

(
1

|a|
∑
O∈a

u{O }

)
. (32c)

It is a special case of Eq. (22), with

ua = 1

|a|
∑
O∈a

u{O }.

Smets’ decision theory thus amounts to assuming that a DM is indifferent between a bf lottery that gives them an outcome 
in a for sure, and a bf reference lottery in which the probability of the best outcome is equal to the average utilities of the 
outcomes in a. This is consistent with our Assumptions 4.1–4.6, but it is inconsistent with Assumption 4.7. For instance, in 
Example 8, a DM using the pignistic criterion would strictly prefer b to a, even though the act f1 generating a dominates 
the act f2 generating b. Moreover, this restricted model does not have any parameter to represent a DM’s attitude toward 
ambiguity. As a result, it is unable to explain Ellsberg’s paradox and the ambiguity aversion of human DMs as described, 
e.g., in the examples presented in Section 4.3.

5 It is possible that in 1989, it was not well understood that credal set semantics of belief functions were incompatible with Dempster’s combination 
rule. This was apparently clarified in the early 1990s by Shafer in [42,43] and also by Fagin and Halpern in [16,27].
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5.3. Comparison with other axiomatic theories

In this subsection, we compare our axiomatic decision theory with other axiomatic decision theories for D-S belief 
functions.

Dubois et al. [11] describe an axiomatic decision theory for the case where uncertainty is described by a possibility 
distribution, which is a special case of a belief function with nested focal elements (such a belief function is said to be 
consonant). Dubois et al.’s decision theory consists of two sets of axioms, one for the pessimistic case, and one for the 
optimistic case. In contrast, Giang and Shenoy [21] propose an axiomatic theory for possibility theory with one set of 
axioms, and the utility function is binary-valued (binary-valued utilities are possibility distribution values of O 1 and O r for 
possibilistic reference lotteries). The two axiomatic theories for possibility theory are compared in detail in [21]. The latter 
theory is generalized in terms of partially consonant belief functions in [22]. A partially consonant belief function is a belief 
function where the set of focal elements can be divided into groups such that (a) the focal elements in different groups are 
disjoint, and (b) the focal elements in the same group are nested. The family of partially consonant belief functions include 
Bayesian belief functions and consonant belief functions.

Giang [20] compares the Giang-Shenoy decision theory for partially consonant belief functions with Jaffray’s axiomatic 
decision theory for general belief functions. Similar to Jaffray’s theory, our decision theory is for the case of general belief 
functions. While our utility is interval-based, leading to incomplete preferences, Jaffray’s theory for general belief functions, 
and Giang-Shenoy’s theory for partially consonant belief functions based on binary utility, result in complete preferences, 
which is a special case of our theory. Walley [53] argues that partially consonant belief functions is the only class of D-S 
belief functions that is consistent with the likelihood principle of statistics, but this argument applies only to statistical 
inference, and not to uncertain reasoning in general.

5.4. Comparison with Shafer’s constructive decision theory

Shafer [44] argues for a decision theory that allows us to construct both goals and beliefs in response to a decision. In the 
vN-M utility theory, we start with a probabilistic lottery, and construct a utility function that reflects a DM’s risk attitude. 
Thus, probabilities and utilities are separate constructs that are then combined for the computation of expected utility. In 
many situations, we have neither objective nor subjective probabilities. For such situations, Shafer argues for constructing 
belief functions from available evidence, and constructing a set of consistent and monotonic goals. Given a set of actions, 
we examine which goals each of the actions will achieve. We use belief functions to make judgments based on evidence 
about what will happen if an action is taken. We then use these belief functions to compute the expected number of goals 
that an action will satisfy, and pick an action that satisfies the most goals. This can be generalized to the case where not all 
goals are equally weighted, some are weighted more than others.

Our utility theory is more in line with vN-M utility theory than Shafer’s constructive decision theory. There is consid-
erable literature in many domains about the use of utility theory for decision making. While Shafer’s constructive decision 
theory is intriguing and may indicate an interesting direction to explore, there is much to be done before we can apply it 
in many domains for which we have a decision theory in the vN-M style.

6. Summary and conclusions

In this section, we summarize our proposal and sketch some future work. We start with Luce and Raiffa’s version of the 
vN-M utility theory for probabilistic lotteries. We then consider bf lotteries, lotteries when our beliefs about the state of 
the world is described by DS belief functions. We use a similar set of axioms as vN-M, but first we replace each singleton 
outcome in a probabilistic lottery by a focal set of a BPA. Second, we replace the reduction of compound lotteries with 
a corresponding axiom that uses Dempster’s combination rule and belief function marginalization in place of probabilistic 
combination (pointwise multiplication followed by normalization) and probabilistic marginalization (addition). Third, we 
use a bf reference lottery with two independent parameters. The axioms lead to a decision theory that involves assessing 
the utility of each focal element of a BPA as an interval-valued utility. Interval-valued utilities lead to a partial preference 
relation on the set Lbf of all bf lotteries. If we use Bayesian bf reference lotteries with a single parameter, then our axiomatic 
framework leads to a real-valued utility function that is exactly the same as in Jaffray’s linear utility theory [30].

The decision theory that results from our axioms is more general than that proposed by Jaffray [30], which can be 
construed as a decision theory for belief functions interpreted as generalized probabilities. Jaffray’s axiomatic theory is 
based on a set of mixture BPAs. A mixture of two BPAs is not the same as a Dempster’s combination of two BPAs, although 
we could construct a belief function model where the mixture BPA is obtained by Dempster’s rule. Thus, it is not clear 
if Jaffray’s linear utility theory is applicable to D-S belief function lotteries or not. Our utility theory confirms that this is 
indeed the case. Our bf reference lotteries lead to interval-valued utilities, and consequently, a partial preference relation on 
the set of all bf lotteries.

We also compare our axiomatic theory to Smets’ two-level framework [48,49], and note that his framework is too con-
strained to explain ambiguity-aversion or ambiguity-seeking behavior of human DMs. Other axiomatic decision theories 
proposed by Dubois et al. [11] and Giang and Shenoy [21,22] are restricted to consonant or quasi-consonant belief functions. 
Shafer [44] has recently published his constructive decision theory where he rejects the separation of beliefs and utilities. 
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He proposes, instead, constructing a set of consistent and monotonic goals, and measuring the utility of each choice by the 
number of goals (or weighted goals) achieved by the choice. Shafer’s constructive decision theory needs to be fleshed out 
before it can be applied to practical decision-making situations.

In practice, implementing the most general form of our axiomatic theory may need assessment of 2 k parameters, where 
k is the number of focal sets of a bf lottery. In the worst case, k can be as large as 2|O| −1. Based on additional assumptions, 
we propose a model based on only two parameters, which can be interpreted as reflecting both the DM’s attitude to 
ambiguity and their indeterminacy. This model, as well as others, will have to be further studied and developed. More 
generally, a rigorous methodology to elicit interval-valued utilities remains to be designed and validated experimentally.

Finally, in this paper, we start from the assumption that the D-S formalism is an adequate model of an agent’s state of 
knowledge, and we derive a corresponding decision theory from a set of rationality requirements. Thus, a belief function 
on the state space is assumed to be given, and we generate interval-valued expected utilities for bf lotteries. A further step 
would be to justify not only utilities, but also the D-S calculus itself (including belief functions and Dempster’s rule) from 
properties of the DM’s preference relation over acts, similar to what Savage [38] did to provide a foundation for decision-
making with probability theory, similar to what Dubois et al. [12] did to justify decision-making with qualitative possibility 
theory, and similar to what Gul and Pesendorfer [26], and Zhou et al. [54] did for decision-making with a theory of belief 
functions where the belief functions are interpreted as credal sets. This task remains to be done.
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