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Abstract

We discuss two issues in using mixtures of polynomials (MOPs) for inference in hy-
brid Bayesian networks. MOPs were proposed by Shenoy and West for mitigating the
problem of integration in inference in hybrid Bayesian networks. First, in defining
MOP for multi-dimensional functions, one requirement is that the pieces where the
polynomials are defined are hypercubes. In this paper, we discuss relaxing this condi-
tion so that each piece is defined on regions called hyper-rhombuses. This relaxation
means that MOPs are closed under transformations required for multi-dimensional lin-
ear deterministic conditionals, such as Z = X + Y , etc. Also, this relaxation allows us
to construct MOP approximations of the probability density functions (PDFs) of the
multi-dimensional conditional linear Gaussian distributions using a MOP approxima-
tion of the PDF of the univariate standard normal distribution. Second, Shenoy and
West suggest using the Taylor series expansion of differentiable functions for finding
MOP approximations of PDFs. In this paper, we describe a new method for finding
MOP approximations based on Lagrange interpolating polynomials (LIP) with Cheby-
shev points. We describe how the LIP method can be used to find efficient MOP
approximations of PDFs. We illustrate our methods using conditional linear Gaussian
PDFs in one, two, and three dimensions, and conditional log-normal PDFs in one and
two dimensions. We compare the efficiencies of the hyper-rhombus condition with the
hypercube condition. Also, we compare the LIP method with the Taylor series method.

1 Introduction

An hybrid Bayesian network (BN) is a BN with a mix of discrete and continuous random
variables. A random variable is said to be discrete if its state space is countable, and
continuous otherwise. Each variable in a BN is associated with a conditional distribution
function (conditional, in short) for the variable given its parents. A conditional is said to be
deterministic if its conditional variance is zero for each state of its parents.
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Marginalizing a continuous variable involves integration of the product of all potentials
that contain the variable in their domains. Often, these potentials are not integrable in
closed form. This is a major problem in making inferences in hybrid BNs. We will call this
the integration problem.

Literature Review. A traditional approximate method for dealing with the integration
problem is to discretize all continuous variables. If the number of bins used for discretization
is large (to increase the accuracy of the results), the computational effort required to find
marginals can be large. A priori, we may not know the regions of the continuous variables
where the posterior density lies. Kozlov and Koller [1] have proposed a dynamic discretization
technique where one starts with a uniform coarse discretization, and then iteratively refines
the discretization based on the location of the probability masses.

Another approximate method for dealing with the integration method is to use Monte
Carlo sampling methods. There are a host of methods including importance sampling (e.g.,
[2, 3]) and Markov chain Monte Carlo (e.g., [4]). The idea is to sample from the posterior
distribution. In the presence of deterministic conditionals, convergence can be a problem.

One exact solution to the integration problem proposed by Lauritzen and Jensen [5] is to
restrict conditionals of continuous variables to the conditional linear Gaussian (CLG) family,
and for discrete variables to not have continuous parents. Such BNs are called mixture of
Gaussians BNs. In this case, we can avoid the integration problem as marginals of multi-
variate normal distributions are multivariate normal and no integration needs to be done.
However, restricting conditionals to the CLG family can be too restrictive. Also, the require-
ment that discrete variables not have continuous parents can also be too restrictive. Finally,
in finding marginals, all continuous variable have to be marginalized before marginalizing
discrete ones, and this restriction can lead to large cliques making inference intractable [6].

If a BN has discrete variables with continuous parents, Murphy [7] uses a variational
approach to approximate the product of the potentials associated with a discrete variable and
its parents with a CLG distribution. Lerner et al. [8] uses a numerical integration technique
called Gaussian quadrature to approximate non-CLG distributions with CLG distributions,
and this same technique can be used to approximate the product of potentials associated
with a discrete variable and its continuous parents. Murphy’s and Lerner’s approach is then
embedded in the Lauritzen-Jensen [5] algorithm to solve the resulting mixtures of Gaussians
BN.

Shenoy [9] proposes approximating non-CLG distributions by mixtures of Gaussians using
a nonlinear optimization technique, and using arc reversals to ensure discrete variables do
not have continuous parents. The resulting mixture of Gaussians BN is then solved using
the Lauritzen-Jensen [5] algorithm.

Another solution to the integration problem is to approximate conditional PDFs by a
functions called mixtures of truncated exponentials (MTEs) [10]. MTE functions are piece-
wise functions that are defined on regions called hypercubes, and the functions themselves
are exponential functions of a linear function of the variables. Such functions are easy to
integrate, and the family of MTE functions is closed under multiplication, addition, and
integration, three operations that are used in finding marginals using the extended Shenoy-
Shafer architecture [11]. Cobb et al. [12] describe MTE approximations of several commonly
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used one-dimensional PDFs. Moral et al. [13] describe a mixed-tree method for representing
an MTE approximation of the 2-dimensional CLG distribution. Parameter learning in MTE
networks are discussed in [14, 15]. Rumı́ and Salmerón [16] discuss approximate inference in
MTE hybrid BNs that do not contain deterministic conditionals.

Another method that is similar in principle to the MTE method is the mixture of poly-
nomials (MOP) method proposed by Shenoy and West [17]. Instead of using piecewise
exponential functions, the MOP method uses piecewise polynomials. Although a detailed
comparison of MTE and MOP methods has yet to be done, an advantage of the MOP
method is that one can easily find MOP approximations of differentiable PDFs using the
Taylor series expansion of the PDF. Shenoy and West [17] describe a MOP approximation
of a two-dimensional CLG distribution using the Taylor series method.

Contributions. In both the MTE and the MOP methods, the multi-dimensional piecewise
functions are defined on regions called hypercubes. One advantage of this restriction is that
such multi-dimensional piecewise functions are easy to integrate. However, the hypercube
restriction poses two limitations. First, it is difficult to find an MTE or a MOP approximation
of a multi-dimensional conditional PDF for dimensions greater than two. The mixed-tree
method proposed by Moral et al. [13] and the Taylor series method proposed by Shenoy
and West [17] do not scale up to higher dimensions in practice, i.e., the approximations
using these methods have too many pieces or too many terms or have too high a degree for
practical use.

The second limitation is that in the presence of multi-dimensional linear deterministic
conditionals, the family of MTE and MOP functions are not closed. For example, suppose X
has PDF fX(x) and suppose Y has conditional PDF fY |x(y), and suppose Z has a determin-
istic conditional given by the linear function Z = X + Y . To find the marginal distribution
of Z, we need to combine fX(x) and fY |x(z−x) and then integrate x out of the combination.
The problem is that even if fY |x(y) was defined on hypercubes, fY |x(z − x) is no longer
defined on hypercubes. This problem applies equally to the MTE and MOP methods.

In this paper, we suggest replacing the hypercube condition with a more general hyper-
rhombus condition. For one-dimensional functions, the two conditions coincide. However, for
dimensions two or greater, the hyper-rhombus condition is a generalization of the hypercube
condition. The hyper-rhombus condition has three important advantages. First, MOP func-
tions defined on hyper-rhombuses are closed under operations required for multi-dimensional
linear deterministic conditionals. Second, it allows us to define MOP approximations of high-
dimensional CLG distributions using a MOP approximation of the one-dimensional standard
normal PDF. Third, the hyper-rhombus condition allows us to find MOP approximations
of multi-dimensional conditional PDFs that have fewer pieces and lower degrees than MOP
approximations that are restricted to hypercubes.

Another contribution of this paper is a method for finding MOP approximations of PDFs
based on Lagrange interpolating polynomials (LIP) with Chebyshev points. We describe
this method, and compare it with the Taylor series method. The LIP method produces
MOP approximations that have a better fit than the Taylor series method assuming the
same number of pieces and same degree. The LIP method does not require a PDF to be
differentiable. For multi-dimensional conditional PDFs, the LIP method with Chebyshev
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points coupled with the hyper-rhombus condition allows us to find MOP approximations
that have fewer pieces and lower degrees than MOP approximations found using Taylor
series method.

Limitations. The hyper-rhombus condition has some disadvantages compared to hyper-
cubes. First, integrating MOPs defined on hyper-rhombuses takes longer than integrating
MOPs on hypercubes. Second, after integration, the degrees of MOPs defined on hyper-
rhombuses tend to increase, whereas for MOPs defined on hypercubes the degrees always
decrease.

The hyper-rhombus condition does not help for MTE functions, i.e., if the definition of
MTE functions were generalized so that the hypercube condition was replaced by the hyper-
rhombus condition, then MTE functions would not be closed under operations required for
multi-dimensional linear deterministic functions. For example, the sum of two independent
variables with exponential PDFs (which are MTEs) has a gamma PDF, which is not a MTE
function.

One downside of the LIP method is that when one is restricted to doing exact analysis
(using integers for non-transcendental numbers) for stability reasons in the presence of high
degree polynomials, the MOP functions produced by the LIP method have significantly more
terms (compared to the Taylor series method), and this can slow down the computation of
marginals.

Outline. An outline of the remainder of this article is as follows. In Section 2, we provide
a re-definition of high-dimensional MOP functions that are defined on regions called hyper-
rhombuses. Also, by means of a simple example, we describe the process of integrating a
MOP defined on a hyper-rhombus. In Section 3, we describe a general process for finding
MOP approximations of PDFs using the LIP method with Chebyshev points. Also, we
illustrate this general process to find MOP approximations of the standard normal PDF, a
one-dimensional log-normal PDF, and a two-dimensional conditional log-normal PDF. Also,
we show how we can use a MOP approximation of the standard normal PDF to find MOP
approximations of the PDFs of two- and three-dimensional CLG distributions. In Section 4,
we compare the practical implications of the hyper-rhombus condition with the hypercube
condition. We compare the time required for computation of marginals for a couple of
simple Bayesian networks, and also the accuracy of the computed marginals. In Section
5, we compare the LIP method with the Taylor series method. Finally in Section 6, we
summarize our findings and discuss some issues for further research.

2 Mixture of Polynomials Functions

In this section, we define MOP functions. The definition we provide here is slightly more
general than the definition provided in Shenoy and West [17] for the case of multi-dimensional
functions.
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2.1 MOP Functions

A one-dimensional function f : R→ R is said to be a mixture of polynomials (MOP) function
if it is a piecewise function of the form:

f(x) =

{
a0i + a1ix+ · · ·+ anix

n for x ∈ Ai, i = 1, . . . , k,

0 otherwise.
(2.1)

where A1, . . . , Ak are disjoint intervals in R that do not depend on x, and a0i, . . . , ani are
constants for all i. We will say that f is a k-piece (ignoring the 0 piece), and n-degree
(assuming ani 6= 0 for some i) MOP function.

An example of a 2-piece, 3-degree MOP function g1(·) in one-dimension is as follows:

g1(x) =


0.41035 + 0.09499x− 0.09786x2 − 0.02850x3 if −3 < x < 0,

0.41035− 0.09499x− 0.09786x2 + 0.02850x3 if 0 ≤ x < 3

0 otherwise

(2.2)

g1(·) is a MOP approximation of the PDF of the standard normal distribution on the domain
(−3, 3), and was found using Lagrange interpolating polynomial with Chebyshev points,
which will be discussed in Section 3.4

The definition given in Equation (2.1) is exactly the same as in Shenoy and West [17].
The main motivation for defining MOP functions is that such functions are easy to integrate
in closed form, and that they are closed under multiplication, integration, and addition, the
main operations in making inferences in hybrid Bayesian networks. The requirement that
each piece is defined on an interval Ai is also designed to ease the burden of integrating MOP
functions.

A multivariate polynomial is a polynomial in several variables. For example, a polynomial
in two variables is as follows:

P (x1, x2) = a00 + a10x1 + a01x2 + a11x1x2 + a20x
2
1 + a02x

2
2 (2.3)

+a21x
2
1x2 + a12x1x

2
2 + a22x

2
1x

2
2

The degree of the polynomial in Equation (2.3) is 4 assuming a22 is a non-zero constant. In
general, the degree of a multivariate polynomial is the largest sum of the exponents of the
variables in the terms of the polynomial.

An m-dimensional function f : Rm → R is said to be a MOP function if

f(x1, x2, . . . , xm) =

{
Pi(x1, x2, . . . , xm) for (x1, x2, . . . , xm) ∈ Ai, i = 1, . . . , k,

0 otherwise
(2.4)

where Pi(x1, x2, . . . , xm) are multivariate polynomials in m variables for all i, and the disjoint
regions Ai are as follows. Suppose π is a permutation of {1, ...,m}. Then each Ai is of the
form:

l1i ≤ xπ(1) ≤ u1i, (2.5)

l2i(xπ(1)) ≤ xπ(2) ≤ u2i(xπ(1)),

...

lmi(xπ(1), . . . , xπ(m−1)) ≤ xπ(m) ≤ umi(xπ(1), . . . , xπ(m−1))
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where l1i and u1i are constants, and lji(xπ(1), . . . , xπ(j−1)) and uji(xπ(1), . . . , xπ(j−1)) are linear
functions of xπ(1), xπ(2), . . . , xπ(j−1) for j = 2, . . . ,m, and i = 1, . . . , k. We will refer to the
nature of the region described in Equation (2.5) as a hyper-rhombus. Although we have
defined the hyper-rhombus as a closed region in Equation (2.5), each of the 2m inequalities
can be either strictly < or ≤. Notice that the hyper-rhombus region in Equation (2.5) is a
generalization of the condition that Ai are intervals for the one-dimensional case.

A special case of the hyper-rhombus region Ai is a region of the form:

l1i ≤ x1 ≤ u1i, l2i ≤ x2 ≤ u2i, . . . , lmi ≤ xm ≤ umi (2.6)

where l1i, . . . , lmi, u1i, . . . , umi are all constants. We refer to the region defined in Equation
(2.6) as a hypercube (in m dimensions).

An example of a 2-piece, 3-degree MOP h1(·, ·) defined on a two-dimensional hyper-
rhombus region is as follows:

h1(x, y) =


0.41035 + 0.09499(y − x)− 0.09786(y − x)2 − 0.02850(y − x)3 if x− 3 < y < x,

0.41035− 0.09499(y − x)− 0.09786(y − x)2 + 0.02850(y − x)3 if x ≤ y < x+ 3

0 otherwise

(2.7)
h1(x, y) is a two-dimensional MOP approximation of the PDF of the CLG distribution of
Y |x ∼ N(x, 12) on the domain −∞ < x < ∞, x − 3 < y < x + 3. Notice that h1(x, y) =
g1(y − x), where g1(·) is as defined in Equation (2.2).

The definition of a m-dimensional MOP function stated in Equation (2.4) is more general
than the corresponding definition stated in Shenoy and West [17], which is as follows:

An m-dimensional function f : Rm → R is said to be a MOP function if:

f(x1, . . . , xm) = f1(x1) · f2(x2) · · · fm(xm) (2.8)

where each fi(xi) is a one-dimensional MOP function as defined in Equation (2.1).
It is easy to see that an m-dimensional function satisfying the condition in Equation

(2.8) will also satisfy the condition in Equation (2.4), but the converse is not true. Thus, a
function as follows:

f(x1, x2) =

{
x1x

2
2 + x21x2 for −3 ≤ x1 ≤ 3 and x1 − 3 ≤ x2 ≤ x1 + 3

0 otherwise
(2.9)

satisfies Equation (2.4) but not Equation (2.8) for two reasons. First, x1x
2
2 + x21x2 cannot

be obtained by a product of two one-dimensional polynomials. Second, the function f is
defined on the region −3 ≤ x1 ≤ 3, x1− 3 ≤ x2 ≤ x1 + 3, which is not a hypercube, but is a
hyper-rhombus.

Finally, high-dimensional MOP functions defined on hyper-rhombuses remain MOP func-
tions after integration. Thus, the family of MOP functions are closed under multiplica-
tion, addition, and integration. They are also closed under operations needed for multi-
dimensional linear deterministic conditionals.

There are some advantages and some disadvantages of the hyper-rhombus condition com-
pared to hypercubes. First, the family of MOP functions are closed under operations needed
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for multi-dimensional linear deterministic conditionals. Second, we can more easily construct
MOP approximations of high dimensional conditional PDFs such as the conditional linear
Gaussian distributions. Third, the hyper-rhombus condition allows us to construct MOP
approximations of conditional PDFs that have fewer pieces and lower degrees than MOP ap-
proximations on hypercubes. A disadvantage of the new definition is that it is more difficult
to integrate MOP functions on hyper-rhombuses compared to MOP functions on hypercubes.
Also, after integration, the degrees of MOP functions defined on hyper-rhombuses tend to
increase, whereas for MOP functions defined on hypercubes, they tend to decrease. The
added complexity of integrating a MOP function defined on a hyper-rhombus is described
in the next subsection. Also, the advantages and disadvantages of hyper-rhombus versus
hypercube are discussed further in greater detail in Section 4.

2.2 Integrating a MOP on a Hyper-rhombus

In this subsection, we investigate the complexity of integrating a MOP defined on a hyper-
rhombus by means of a small example.

Suppose X ∼ U(0, 1), Y ∼ U(0, 2), X and Y are independent, and W = X + Y . Let
fX(·) and fY (·) denote the PDFs of X and Y , respectively. Thus,

fX(x) =

{
1 if 0 < x < 1

0 otherwise

fY (y) =

{
1
2

if 0 < y < 2

0 otherwise

Both fX(·) and fY (·) are 1-piece, 0-degree MOPs. Suppose we wish to find the marginal of
W . Let fW (·) denotes the marginal PDF of W . Then, fW (w) is given by the convolution
formula:

fW (w) =

∫ ∞
−∞

fX(x) fY (w − x) dx (2.10)

Notice that the potential fY (w−x) is a two-dimensional MOP defined on a hyper-rhombus.
The integrand, fX(x) fY (w − x), is a 1-piece, 0-degree two-dimensional MOP in x and w
defined on the hyper-rhombus 0 < x < 1, 0 < (w− x) < 2. In integrating with respect to x,
the lower and upper limits of integration depend on w. Thus, the integrand is equal to 1

2
if

max{0, w − 2} < x < min{1, w}, and 0 otherwise. So, if w ≤ 0 or w ≥ 3, the integrand is
0, and non-zero otherwise. The two upper bounds on x are equal when w = 1, and the two
lower bounds on x are equal when w = 2. Thus, if 0 < w ≤ 1, the limits of integration are
from 0 to w. If 1 < w ≤ 2, the limits of integration are 0 to 1, and if 2 < w < 3, the limits
of integration are (w− 2) to 1. Therefore, the result of the integration is a 3-piece, 1-degree
polynomial as follows:

fW (w) =


w
2

if 0 < w ≤ 1
1
2

if 1 < w ≤ 2
3−w
2

if 2 < w < 3

0 otherwise

(2.11)
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From this simple example, we see that in integrating a MOP defined on a hyper-rhombus,
the limits of integration are the results of solutions of linear inequalities, which may be a
linear function of the remaining variables, and thus, may not be constants. In comparison,
in the case of integrating a MOP defined on a hypercube, while the limits of integration may
depend on the remaining variables, they are always constants.

3 Finding MOP Approximations of PDFs

In this section, we describe finding MOP approximations of PDFs using Lagrange interpo-
lating polynomials (LIP) with Chebyshev points. Given an approximation of a PDF, we
describe some measures of goodness of fit. Next, we describe a general process for finding
a MOP approximation of a PDF (in one or higher dimensions) using LIP with Chebyshev
points. We illustrate this general process for finding a MOP approximation of the standard
normal PDF, an univariate log-normal PDF, and a two-dimensional conditional log-normal
PDF. Also, we describe how we can use a MOP approximation of the univariate standard
normal PDF to find MOP approximations of CLG PDFs in two or higher dimensions.

3.1 Lagrange Interpolating Polynomials with Chebyshev Points

Suppose we need to fit a polynomial for a given one-dimensional function f(x). Given a
set of n points {(x1, f(x1)), ..., (xn, f(xn))}, a Lagrange interpolating polynomial in x is a
function P (x) given by

P (x) =
n∑
j=1

[
f(xj)

n∏
k=1, k 6=j

x− xk
xj − xk

]
(3.1)

Although the formula in Equation (3.1) is attributed to Lagrange, who published it in 1795
in his book Leçons Elémentaires sur les Mathématiques, it was first published by Waring
[18] in 1779.

P (x) has the following properties [19]. It is a polynomial of degree ≤ (n− 1) that passes
through the n points {(x1, f(x1)), ..., (xn, f(xn))}, i.e., P (xj) = f(xj) for j = 1, ..., n. If
f(x) is continuous and n-times differentiable in an interval [a, b], and x1, . . . , xn are distinct
points in [a, b] such that x1 < . . . < xn, then for each x ∈ [a, b], there exists a number ξ(x)
(generally unknown) between x1 and xn such that

f(x) = P (x) +
f (n+1)(ξ(x))

n!
(x− x1)(x− x2) · · · (x− xn) (3.2)

When constructing a polynomial to fit a PDF, there is a tradeoff between the fit and the
smoothness of the fit. The more data points that are used to construct the polynomial, the
higher the degree of the polynomial, and therefore, the greater the oscillation it will exhibit
between the data points. One solution to this problem is to divide the range in which we
wish to fit a function into several intervals, select a small number of points in each interval,
and then fit a low-degree polynomial in each interval. Another solution to this problem is
to choose the points as per Chebyshev’s theory so as to minimize the deviation between the
target function and the interpolating polynomial. We will use both of these strategies to
find MOP approximation using a small number of pieces and low degrees.
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Chebyshev Points. Suppose we wish to fit a (n− 1)-degree polynomial for the function
f(x) on the domain (a, b). How should we choose the n points? For the interval (a, b), the
n Chebyshev points are given by [19]:

xi =
1

2
(a+ b) +

1

2
(b− a) cos

(
2i− 1

2n
π

)
, for i = 1, . . . , n. (3.3)

The Chebyshev points are often used with Lagrange interpolating polynomials because the
resulting polynomial approximation P (x) minimizes the quantity |(x − x1) · · · (x − xn)| for
all x ∈ [a, b], which is proportional to the absolute error between the function f(x) and the
interpolating polynomial P (x) (see Equation (3.2)). The minimum value of |(x−x1) · · · (x−
xn)| is 1

2n−1 . Thus, as n increases, the maximum absolute deviation decreases, thus avoiding
the oscillating behavior of Lagrange interpolating polynomials. An example of the use of
Chebyshev points will be given in the Section 3.4.

3.2 Some Measures of Goodness of Fit

Suppose we find an approximation g(·) of a PDF f(·). There are several ways of measuring
the goodness of fit of g(·) with respect to f(·).

We can use the Kullback-Liebler (KL) divergence [20] as a measure of the goodness of
fit. If f is a PDF on the range (a, b), and g is a PDF that is an approximation of f such
that g(x) > 0 for x ∈ (a, b), then the KL divergence between f and g, denoted by KL(f, g),
is defined as

KL(f, g) =

∫ b

a

ln

(
f(x)

g(x)

)
f(x) dx. (3.4)

KL(f, g) ≥ 0, and KL(f, g) = 0 if and only if g(x) = f(x) for all x ∈ (a, b).
Another measure of goodness of a fit is the maximum absolute deviation. Thus, if f is a

PDF on the range (a, b), and g is a PDF that is an approximation of f , then the maximum
absolute deviation between f and g, denoted by MAD(f, g), is given by:

MAD(f, g) = sup{|f(x)− g(x)| : a < x < b} (3.5)

Finally, other measures of goodness of fit are the absolute errors in the means and vari-
ances. Thus, the absolute error of the mean, denoted by AEM(f, g) and the absolute error
of the variance, denoted by AEV (f, g) are given by:

AEM(f, g) = |E(f)− E(g)| (3.6)

AEV (f, g) = |V (f)− V (g)| (3.7)

where E(·) and V (·) denote the expected value and the variance of a PDF, respectively.

3.3 A General Procedure for Finding MOP Approximations of
PDFs

In this subsection, we will describe a general procedure for finding a MOP approximation of
a conditional PDF. In the succeeding subsections, we will illustrate this procedure for some
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CLG and non-CLG PDFs, in one and higher dimensions. We will describe the procedure for
a PDF in one-dimension. The procedure is the same for higher dimensions.

Suppose we wish to find a MOP approximation of a PDF f(·). First, if f(x) is defined
on a infinite domain, we need to decide on a finite domain for the MOP approximation. In
general, depending on the context of the application, we can fit a distribution from 0.5 to
99.5 percentiles giving us 99% of the total probability. If more precision is required, we can
choose, e.g., 0.05 to 99.95 percentiles giving us 99.9% of the total probability.

Suppose we have fixed the domain (a, b) for the MOP approximation. Next, we fit the
PDF f(x) on the domain (a, b) with a 3-degree polynomial, say gu(x), using the LIP method
with Chebyshev points. Second, we make sure the PDF is non-negative on the entire range
(a, b) (by computing the minimum of gu(x) on the range (a, b) and making sure it is non-
negative). If not, we increase the degree of the fitted polynomial until we get non-negativity.
Since we are using Chebyshev points, we are guaranteed to get non-negativity for some n
assuming f(x) > 0 for all x ∈ (a, b). If the smallest degree n for which we obtain non-
negativity is too high (e.g., > 5 for a one-dimensional MOP), then we partition the domain
(a, b) into more pieces and restart. Currently, we have no theory for how to partition the
global domain. However, we can use heuristics such as choosing the mode of the PDF, local
optima, inflection points, equal widths, or some combination of these. Ideally, we would like
to keep the number of pieces and degrees as small as possible.

Next, after we have a non-negative MOP approximation gu(x), we normalize it so that
it integrates to 1. Then we check the goodness of fit statistics of the normalized MOP
approximation. If these are acceptable, we are done. If not, we can increase the degree of
the approximation, or increase the number of pieces, or both. In all cases, we need to ensure
that the MOP approximation is non-negative over the entire domain, and that it integrates
to 1.

Regarding the number of pieces and the degree of a MOP approximation, there is a
tradeoff between number of pieces and degree. Using more pieces will, in general, allow us
to fit a lower degree MOP. Thus, e.g., we can approximate any PDF with a 1-degree (linear)
MOP function if we have sufficient number of pieces to ensure a good fit. Our strategy is to
keep the number of pieces as small as possible, subject to the constraint that the degree is
below some threshold. We will illustrate this general procedure in Sections 3.4, 3.5, and 3.7.

3.4 Fitting MOPs to One-dimensional Gaussian PDFs

Consider the PDF of the one-dimensional standard normal distribution, ϕ(z) = (1/
√

2π)e−z
2/2

for −∞ < z < ∞. To approximate this function with a MOP, we must first decide on a
range on which we find an approximation. For the standard normal PDF, we can use the
interval (−3, 3), since this interval contains 99.73% of the total probability.

If we try to fit a 1-piece MOP on the interval (−3, 3), the smallest n (# of Chebyshev
points) for which we get non-negativity is n = 9, thus resulting in a 1-piece, 8-degree MOP.
For many applications, degree 8 is too high. So, we divide the interval (−3, 3) into two
sub-intervals (−3, 0), [0, 3). Why these sub-intervals? The PDF ϕ is symmetric around 0,
and 0 is also the mode of ϕ.

For each of the pieces (−3, 0) and [0, 3), we find n-Chebyshev points using Equation (3.3).
The smallest n for which we obtain non-negativity is n = 4. The four Chebyshev points for
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the interval (−3, 0) are x1 = −2.886, x2 = −2.074, x3 = −0.926, and x4 = −0.114, and for
the interval [0, 3), the four Chebyshev points are: x1 = 0.114, x2 = 0.926, x3 = 2.074, and
x4 = 2.886. After normalization, the resulting 2-piece, 3-degree MOP g1(·) is as described
in Equation 2.2.

Let Φ(·) denote the CDF corresponding to PDF ϕ(·), and let G1(·) denote the CDF
corresponding to PDF g1(·). For example, we can obtain G1(·) from g1(·) as follows:

G1(z) =

∫ z

−∞
g1(y) dy (3.8)

Since MOPs are closed under integration, G1(·) is computed as a 3-piece, 4-degree MOP as
follows:

G1(z) =


0 if z ≤ 0

0.5 + 0.41035z1 + 0.04750z2 − 0.03262z3 − 0.00713z4 if −3 < z < 0

0.5 + 0.41035z1 − 0.04750z2 − 0.03262z3 + 0.00713z4 if 0 ≤ z < 3

1 if z ≥ 3

Figure 1 shows a graph of CDF G1(·) overlaid on the graph of Φ(·). Also, Figure 2 shows
a graph of the PDF g1(·) overlaid on the graph of the PDF ϕ(·). The goodness of fit statistics
are as follows:

KL(ϕ, g1) ≈ 0.0086

MAD(ϕ, g1) ≈ 0.0140

MAD(Φ,G1) ≈ 0.0053

AEM(ϕ, g1) ≈ 0.0000

AEV (ϕ, g1) ≈ 0.0203

We make several comments about the values of the various goodness of fit statistics.

1. MAD(Φ,G1) is in units of probability, whereas MAD(ϕ, g1) is in units of probability
density. Thus, the two values cannot be compared with each other.

2. Since the functions G1 and g1 represent exactly the same distribution, the “accuracies”
of the two functions are exactly the same. Thus, if we use these two functions to
compute the probability of any interval (c, d) ⊆ (−3, 3) (using G1(d) − G1(c), and∫ d
c
g1(x) dx), then we get exactly the same result.

3. Since P (Z ∈ (c, d)) = G1(d) − G1(c), the maximum absolute error of this probability
is ≤ 2×MAD(Φ,G1) = 0.0106.

4. Since P (Z ∈ (c, d)) =
∫ d
c
g1(x) dx, the maximum absolute error of this probability is

≤MAD(ϕ, g1) · (d− c) = 0.0140 · (d− c). Thus, if (d− c) is small, we may get smaller
error bounds on the probability compared to the bounds obtained from MAD(Φ,G1).

5. Based on the graphs in Figures 1 and 2, it may appear visually that G1 is more accurate
than g1. But as discussed above, this is an incorrect conclusion. The y-axis on these
two graphs are in different units, and different scales.
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Figure 1: A graph of the CDF corresponding to g1(z) (in red) overlaid on the graph of the
CDF corresponding to ϕ(z) (in blue)

Figure 2: A graph of g1(z) (in red) overlaid on the graph of ϕ(z) (in blue)
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To find a MOP approximation of the PDF of the general N(µ, σ2) distribution, where µ
and σ are real constants such that σ 6= 0, we exploit the fact that MOP functions are closed
under linear transformations. Thus, if f(x) is a MOP function, then given any constants a
and b, f(ax+b) is also a MOP function. If Z ∼ N(0, 1), its PDF is approximated by a MOP
function g(z), and X = σZ +µ, then X ∼ N(µ, σ2), and a MOP approximation of the PDF
of X is given by 1

|σ| g(x−µ
σ

). Notice that 1
|σ| g(x−µ

σ
) remains a MOP even if µ is a variable (and

not a constant) as long as σ is a non-zero constant. In the Subsection 3.6, we will exploit
this fact to find MOP approximations of CLG PDFs in two and higher dimensions from a
MOP approximation of the univariate standard normal PDF.

3.5 Fitting MOPs to One-dimensional Log-normal PDFs

In this subsection, we find a MOP approximation of a one-dimensional log-normal PDF. S1

is said to have log-normal PDF with parameters µ and σ2, written as S1 ∼ LN(µ, σ2), if
ln(S1) ∼ N(µ, σ2).

Suppose S1 ∼ LN(µ, σ2), where µ = ln(40) + 0.00074, and σ2 = 0.132292 (these pa-
rameters are taken from an American Put Option problem described in [21]). We will
find a MOP approximation of the PDF of S1 on the domain (eµ−3σ, eµ+3σ) = (27.03, 59.28)
(that will capture 99.73% of the total probability). If we try to fit a 1-piece MOP on the
domain (27.03, 59.28), we end up with a 8-degree MOP using the procedure described in
Section 3.3. So we partition the domain into two pieces (27.03, 39.34), [39.34, 59.28), where
39.34 (= eµ−σ

2
) is the mode of the PDF. Given these two intervals, the procedure described

in Section 3.3 results in a 2-piece, 5-degree MOP as follows:

g2(x) ={
−31.17 + 4.75z − 0.29z2 + 0.0085z3 − 0.00012z4 + 7.11× 10−7z5 if 27.03 < x < 39.34

−49.56 + 4.85z − 0.19z2 + 0.0036z3 − 0.000034z4 + 1.28× 10−7z5 if 39.34 ≤ x < 59.28

(3.9)

Let fS1(·) denote the PDF of LN(ln(40) + 0.00074, 0.132292) truncated to (27.03, 59.28).
A graph of g2(·) overlaid on the graph of fS1(·) is as shown in Figure 3.

The goodness of fit statistics for g2(·) are as follows (G2 is the CDF corresponding to
PDF g2, and , and FS1 is the CDF corresponding to fS1).

KL(fS1 , g2) ≈ 8.65× 10−6

MAD(fS1 , g2) ≈ 0.00030

MAD(FS1 , G2) ≈ 0.00034

AEM(fS1 , g2) ≈ 0.00096

AEV (fS1 , g2) ≈ 0.00398

3.6 Fitting MOPs to Higher-dimensional CLG PDFs

In this subsection, we will find MOP approximations of the PDFs of two- and three-
dimensional conditional linear Gaussian (CLG) distributions. Our revised definition of
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Figure 3: A graph of g2(·) (in red) overlaid on the graph of fS1(·) (in blue)

multi-dimensional MOP functions in Equation (2.4) facilitates the task of finding MOP
approximations of the PDFs of CLG conditional distributions.

3.6.1 Two-dimensional CLG Distributions

Consider the CLG conditional distribution Y |z ∼ N(z, 1), where Z ∼ N(0, 1). As in the
one-dimensional case, we will find a MOP approximation of the conditional PDF of Y |z on
the two-dimensional region z − 3 < y < z + 3.

In Shenoy and West [17], a 12-piece, 14-degree MOP approximation is found by covering
the two-dimensional region −3 < z < 3, z − 3 < y < z + 3 by 12 squares (hypercubes
in two dimensions), and then by using two-dimensional Taylor series approximation at the
mid-point of each square.

Here, we can use the one-dimensional 2-piece, 3-degree MOP approximation g1(z) of the
standard normal distribution as follows. Let h1(z, y) denote a MOP approximation of the
conditional PDF of Y |z. Then,

h1(z, y) = g1(y − z) (3.10)

It follows from the remark at the end of Subsection 3.4, that h1(z, y) as defined in Equation
(3.10) represents a MOP approximation of the PDF of N(z, 1). Since g1(z) is a PDF, it
follows that h1(z, y) is a PDF, i.e., h1(z, y) ≥ 0, and

∫∞
−∞ h1(z, y) dy = 1 for all z. Notice

that the two pieces of h1(z, y) are not defined on hypercubes, but rather on hyper-rhombuses
(since we now have regions such as −3 < y−z ≤ 0, etc). A three-dimensional plot of h1(z, y)
is shown in Figure 4.

Since we are using the one-dimensional MOP approximation g1(z), the goodness of fit
of h1(z, y) is same as that of g1(z). One question is how long does it take to integrate
MOPs that are defined on hyper-rhombuses? To test this, we do two simple experiments.
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Figure 4: A three-dimensional plot of h1(z, y)

All times reported here were obtained using the Timing command in Mathematica c©, v.
8.0.4.0, running on a MacBook Air laptop computer (with 1.8 GHz Intel Core i7 CPU and 4
GB 1333 MHz DDR3 RAM). Also, the integrations were done exactly (and not numerically)
resulting in a MOP function that can be used for down-stream calculations.

First, we compute the marginal PDF of Y as follows. g1(z)h1(z, y) represents a MOP
approximation of the joint PDF of (Z, Y ). To find the marginal PDF of Y , we integrate Z
out of the joint. Thus, a MOP approximation of the marginal PDF of Y is given by:

h2(y) =

∫ ∞
−∞

g1(z)h1(z, y) dz (3.11)

It takes Mathematica c© ≈ 3.2 seconds to do the multiplication and integration in Equation
(3.11), and h2(y) is computed as a 5-piece, 7-degree MOP function on the domain (−6, 6).
The exact joint distribution of Y is N(0, 2). Let fY (y) denote the exact PDF of N(0, 2)
truncated to (−6, 6). A plot of h2(y) overlaid on the plot of fY (y) is shown in Figure 5. The
goodness of fit statistics between fY (·) and h2(·) are as follows:

KL(fY , h2) ≈ 0.0017

MAD(fY , h2) ≈ 0.0030

AEM(fY , h2) ≈ 0.0000

AEV (fY , h2) ≈ 0.0931

Second, consider the Bayesian network as shown in Figure 6 that includes W with a
deterministic conditional, W = Z + Y . Suppose we use g1(z) as a MOP approximation of
N(0, 1), and h1(z, y) as a MOP approximation of N(z, 1). The marginal distribution of W
is then given by the convolution formula:

h3(w) =

∫ ∞
−∞

g1(z)h1(z, w − z) dz (3.12)
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Figure 5: A graph of h2(y) (in red) overlaid on the graph of fY (y) (in blue)

It takes Mathematica c© ≈ 5.9 seconds to do the multiplication and integration in Equation
(3.12). h3 is computed as a 8-piece, 7-degree MOP function on the domain (−9, 9). The
exact marginal distribution of W is N(0, 5). Let fW (w) denote the exact PDF of N(0, 5)
truncated to (−9, 9). A plot of h3(w) overlaid on the the plot of fW (w) is shown in Figure
7. The goodness of fit statistics between fW (·) and h3(·) are as follows:

KL(fW , h3) ≈ 0.0027

MAD(fW , h3) ≈ 0.0030

AEM(fW , h3) ≈ 0.0000

AEV (fW , h3) ≈ 0.2299

Z Y

W

Y|z ~ N(z, 1)Z ~ N(0, 1)

W = Z + Y

Figure 6: A Bayesian network with a sum deterministic conditional

3.6.2 Three-dimensional CLG Distributions

Suppose Z ∼ N(0, 1), Y |z ∼ N(z, 1), and X|(z, y) ∼ N(z + y, 1). Notice that the con-
ditional PDF of X is in three dimensions. As in the two-dimensional case, we find a



Two Issues in Using Mixtures of Polynomials 17

Figure 7: A graph of h3(w) (in red) overlaid on the graph of fW (w) (in blue)

MOP approximation h4(z, y, x) of the PDF of N(z + y, 1) in the three-dimensional region
z+y−3 < x < z+y+3 by using the 2-piece, 3-degree MOP approximation g1(z) for N(0, 1)
as follows:

h4(z, y, x) = g1(x− (z + y)) (3.13)

Notice that the 2 pieces of h4 are defined on regions −3 < x − (z + y) < 0, etc. Therefore,
h4 is a MOP by our definition in Equation (2.4).

As in the two-dimensional case, we will investigate how long it takes to integrate a
MOP that is defined on a hyper-rhombus. First, we will compute the marginal PDF of
X as follows. g1(z) denotes a MOP approximation of the marginal PDF of Z, h1(z, y)
denotes a MOP approximation of the conditional PDF of Y |z, and h4(z, y, x) denotes a MOP
approximation of the conditional PDF of X|(y, z). Thus, g1(z)h1(z, y)h4(z, y, x) denotes a
MOP approximation of the joint PDF of (Z, Y,X). Thus, a MOP approximation of the
marginal PDF of X is given by:

h6(x) =
∫∞
−∞

∫∞
−∞ g1(z)h1(z, y)h4(z, y, x) dy dz

=
∫∞
−∞ g1(z)

(∫∞
−∞ h1(z, y)h4(z, y, x) dy

)
dz (3.14)

The integration in Equation (3.14) was done in two stages in Mathematica c©. The inner
integral (with respect to y) required ≈ 38.8 seconds, and the outer integral (with respect
to z) required ≈ 24.8 seconds, and resulted in a 12-piece, 11-degree MOP on the interval
(−12, 12). Thus, the two multiplications and the two integrations in Equation (3.14) require
a total of approximately 63.6 seconds. The exact distribution of X can be shown to be
N(0, 6). Let fX(·) denote the PDF of N(0, 6) truncated to the region (−12, 12). A graph of
h6(x) overlaid on the graph of fX(x) is shown in Figure 8. The goodness of fit statistics for
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h6 with respect to fX are as follows:

KL(fX , h6) ≈ 0.0017

MAD(fX , h6) ≈ 0.0018

AEM(fX , h6) ≈ 0.0000

AEV (fX , h6) ≈ 0.2816

Figure 8: A graph of h6(x) (in red) overlaid on the graph of fX(x) (in blue)

Second, consider the Bayesian network as shown in Figure 9 that includes V with a
deterministic conditional, V = Z+Y +X. Suppose we use g1(z) as a MOP approximation of
N(0, 1), h1(z, y) as a MOP approximation ofN(z, 1), and h4(z, y, x) as a MOP approximation
of N(z + y, 1). The marginal distribution of V is then given by the convolution formula:

h8(v) =
∫∞
−∞

∫∞
−∞ g1(z)h1(z, y)h4(z, y, v − z − y) dy dz

=
∫∞
−∞ g1(z)

(∫∞
−∞ h1(z, y)h4(z, y, v − z − y) dy

)
dz (3.15)

The integration in Equation (3.15) was done in two stages in Mathematica c©. The inner
integral (with respect to y) required approximately 59.6 seconds, and resulted in a 9-piece,
7-degree MOP. The outer integral (with respect to z) required 38.7 seconds, and resulted
in a 21-piece, 11-degree, MOP on the interval (−21, 21). Thus, the two multiplications and
the two integrations in Equation (3.15) require a total of approximately 98.3 seconds. The
exact marginal distribution of V is N(0, 21). Let fV (v) denote the exact PDF of N(0, 21)
truncated to (−21, 21). A plot of h8(w) overlaid on the the plot of fV (v) is shown in Figure
10. The goodness of fit statistics for h8(v) with respect to fV (v) are as follows:

KL(fV , h8) ≈ 0.0024

MAD(fV , h8) ≈ 0.0004

AEM(fV , h8) ≈ 0.0000

AEV (fV , h8) ≈ 0.9841
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Z

X

Y

V

Y|z ~ N(z, 1)

X|(z,y) ~ N(z+y, 1)

Z ~ N(0, 1)

V = Z + Y + X

Figure 9: A Bayesian network with a three-dimensional conditional PDF

Figure 10: A graph of h8(v) (in red) overlaid on the graph of fV (v) (in blue)



Two Issues in Using Mixtures of Polynomials 20

The characteristics and approximate times required for computation of h2, h3, h6, and
h8 are summarized in the following table.

MOP Description # pieces Degree Computation time (secs)
h2 marg. of Y in Fig. 6 5 7 3.2
h3 marg. of W in Fig. 6 8 7 5.9
h6 marg. of X in Fig. 9 12 11 63.6
h8 marg. of V in Fig. 9 21 11 98.3

In summary, the hyper-rhombus condition enables us to easily represent CLG condi-
tionals in high dimensions. The computational cost of integrating a high-dimensional MOP
function with a hyper-rhombus condition does not seem high for two or three-dimensional
CLG distributions, and there is no loss of precision compared to one-dimensional condition-
als. In Section 4, we compare the efficiencies of MOPs defined on hyper-rhombus regions
with MOPs defined on hypercube regions.

3.7 Fitting MOPs to a Two-dimensional Log-normal PDF

In this section, we describe the construction of a MOP for a two-dimensional log-normal PDF.
Suppose S2|s1 ∼ LN(ln(s1)+0.00074, 0.132292), where S1 ∼ LN(ln(40)+0.00074, 0.132292)
(these parameters are from the American Put Option problem described in [21]).

A MOP approximation of the PDF of S1 was described in Section 3.5 on the domain
(26.92, 39.34)∪ [39.34, 59.53). If S1 = 26.92, the (eµ−3σ, eµ+3σ) domain of S2 is (18.11, 40.06).
If S1 = 39.34, the corresponding domain of S2 is (26.47, 58.54), and if S1 = 59.53, it is
(40.06, 88.60). We divide the entire domain of S2|s1 into eight regions as shown in Figure 11.
Notice that four of the corner regions are triangular-shaped hyper-rhombus regions, and the
other four in the middle are equal-height hypercubes. These regions were selected by trial
and error. We initially fitted the domain of S2|s1 by eight hypercubes. The degree of the
resulting MOP was too high (18) since the four corner hypercube regions extend far beyond
the 6-sigma limits (on a log-scale). Using the hyper-rhombus condition to stay within the 6-
sigma limits allows us to find a MOP with a much lower-degree. Using the general procedure
described in Section 3.3, we found an 8-piece, 5-degree MOP g3(s1, s2) for the PDF of S2|s1.
A three-dimensional plot of the MOP approximation g3(s1, s2) is shown in Figure 12.

How good is this MOP approximation? We compute the marginal PDF of S2 as follows:

g4(s2) =

∫ ∞
−∞

g2(s1) g3(s1, s2) ds1, (3.16)

where g2 is the MOP approximation of the PDF of S1 as described in Equation (3.9). It
takes Mathematica c© ≈ 12.4 seconds to do the multiplication and integration in Equation
(3.16). g4(·) is computed as a 8-piece, 11-degree MOP on the domain (18.11, 88.60). The
exact marginal distribution of S2 is LN(ln(40)+2×0.00074, 2×0.132292). Let fS2(·) denote
the exact PDF of S2 truncated to (18.11, 88.60). A plot of g4(·) overlaid on the plot of fS2(·)
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Figure 11: The region over which a MOP approximation of S2|s1 is computed

Figure 12: A three-dimensional plot of g3(s1, s2)
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is shown in Figure 13. The goodness of fit statistics between g4 and fS2 are as follows:

KL(fS2 , g4) ≈ 0.0007

MAD(fS2 , g4) ≈ 0.0020

AEM(fS2 , g4) ≈ 0.0141

AEV (fS2 , g4) ≈ 1.6351

Figure 13: A plot of g4 (in blue) overlaid on the plot of fS2 (in red)

Unlike the CLG PDFs, the parameters µ and σ2 of the log-normal PDF are shape pa-
rameters, and thus, each log-normal PDF has to approximated separately, i.e., we cannot
use a linear transformation of one to find another. The hyper-rhombus condition enables
us to find a MOP approximation of the conditional log-normal PDF using fewer pieces and
lower degrees by avoiding regions far beyond the 6-sigma limits (on a log scale) where the
PDF has extremely small values.

In Section 4, we discuss the tradeoffs between the hyper-rhombus and hypercube condi-
tions in greater detail.

4 Comparing the Hyper-rhombus Condition with the

Hypercube Condition

In this section, we will compare the hyper-rhombus condition defined in Equation (2.5) to
define multi-dimensional MOP functions with the hypercube condition used by Shenoy and
West [17]. As we saw in Subsection 3.6, the hyper-rhombus condition allows us to use a MOP
approximation of one-dimensional standard normal PDF to define MOP approximations of
higher-dimensional CLG PDFs.

Shenoy and West [17] describe a 12-piece, 14-degree, MOP approximation of the CLG
distribution Y ∼ N(z, 1), where Z ∼ N(0, 1). Using 6-sigma limits, the CLG distribution of
Y |z is defined on the two-dimensional hyper-rhombus region −3 < z < 3, z − 3 < y < z + 3.
This region is covered by 12 rectangles as shown in Figure 14, and a MOP approximation
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is found for each rectangle using the Taylor series expansion at the mid-point of each rect-
angle to degree 7 in y and degree 7 in z. Why do we need such high degrees? Since the
rectangles extend far outside the 6-sigma limits, we need to find a 14-degree Taylor series
approximation to ensure non-negativity. For example, at the point (z, y) = (−3, 2), we
are 5 standard deviations away from the mean z = −3. Why 12-pieces? If we use fewer
pieces, then we extend more outside the 6-sigma limits and the degree of the MOP ap-
proximation increases. We could use more pieces to lower the degree of the approximation,
but this increases the computational effort of integrating such functions. Finally, it is not
possible to normalize the 12-piece, 14-degree MOP approximation since the normalization
constant would be a function of z, and normalizing it would make the normalized function
a non-polynomial. Therefore, Shenoy and West [17] describe a “partial” normalization of
this MOP approximation, which suffices for all purposes. In the case of MOP approximation
using the hyper-rhombus condition, there is no need for normalization since we use the MOP
approximation of the one-dimensional standard normal PDF, which is already normalized.

Figure 14: A graph of the domain of the MOP approximation of Y |z

How (in)efficient is the 12-piece, 14-degree, MOP approximation of Y |z denoted by
r1(z, y)? We did two experiments. First, we compute the marginal PDF of Y . Second,
we compute the marginal PDF of W = Z + Y as shown in Figure 6. In both experiments,
we note down the time required and the accuracy of the resulting MOP approximations, and
compare these with the time required and the accuracy of the MOP approximations using
the hyper-rhombus condition.

In the first experiment, we compute the marginal distribution of Y as described in Equa-
tion (3.11) except that we replace h1(z, y) by r1(z, y) and h2(y) by r2(y). r2(y) is computed
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as a 8-piece, 7-degree MOP. Computing r2(y) takes ≈ 83.9 seconds (compared to ≈ 3.2 sec-
onds when using h1(z, y). One reason for the increased time is the higher number of pieces
in r1(z, y) (12 in r1(z, y) instead of 2 in h1(z, y)). Another reason is the higher degree of the
approximation (14 in r1(z, y) compared to 3 in h1(z, y)).

The accuracy of the resulting MOP approximation of the marginal distribution of Y is
as follows (shown with the accuracy of h2, both with respect to fY ).

Error h2 r2
KL 0.0017 0.0004
MAD 0.0030 0.0016
AEM 0.0000 0.0000
AEV 0.0931 0.0505

In comparison, we notice that the two accuracies are the same orders of magnitude and r2
has a slightly better accuracy than h2, probably because of higher number of pieces and
higher degree.

In the second experiment, we compute the marginal distribution of W as described in
Equation (3.12), except that we replace h1(z, w − z) by r1(z, w − z), and h3(w) by r3(w).
Notice that although r1(z, y) is defined on hypercubes, r1(z, w−z) is not. r3(w) is computed
as a 24-piece, 18-degree MOP. Computing r3(w) takes ≈ 425.2 seconds (compared to ≈ 5.9
seconds when using h1(z, y)). The accuracy of the fit of r3 is as follows, shown with the
accuracy of h3 for comparison (both with respect to fW ):

Error h3 r3
KL 0.0027 0.0020
MAD 0.0030 0.0031
AEM 0.0000 0.0000
AEV 0.2299 0.1875

The accuracy of r3 is comparable to the corresponding accuracy of h3.
Moral et al. [13] has suggested a “mixed tree” method for constructing mixture of

truncated exponentials (MTE) approximation of high dimensional conditional distributions.
Here we will use their method for constructing MOP approximations of the PDF of Y |z ∼
N(z, 1) where the regions are hypercubes, and we will compare such MOP approximations
to the MOP approximation using hyper-rhombus described in Subsection 3.6.

Consider the CLG distribution of Y |z ∼ N(z, 1), where Z ∼ N(0, 1). We partition the
domain of Z into 3 equal pieces: (−3,−1], (−1, 1], (1, 3). In each piece, we approximate
the conditional distribution of Y |z as normal where the mean is constant and equal to the
mid-point of the piece, and the variance is 1. Thus, we get a MOP approximation of N(z, 1)
as follows

t1(z, y) =


g1(y + 2) if −3 < z < −1

g1(y) if −1 ≤ z < 1

g1(y − 2) if 1 ≤ z < 3

(4.1)

where g1(·) is the 2-piece, 3-degree, MOP approximation of N(0, 1) as discussed in Section
3. Thus, t1(z, y) is a 6-piece, 3-degree MOP approximation of the PDF of Y |z ∼ N(z, 1)
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Figure 15: A three-dimensional plot of t1(z, y)

assuming Z ∼ N(0, 1) where the pieces are defined on hypercubes. A three-dimensional plot
of t1(z, y) is shown in Figure 15.

How efficient is the mixed-tree MOP approximation t1(z, y)? We compute the marginal
of Y as described in Equation (3.11) except that we replace h1(z, y) by t1(z, y), and replace
h2(y) by t2(y). t2(y) is computed as a 8-piece, 3-degree MOP. Computation of t2(y) takes
≈ 2.1 seconds (compared to ≈ 3.5 seconds when using h1(z, y)). The shorter time for
multiplication and integration is probably due to the hypercube regions in t1(z, y). A graph
of t2(y) overlaid on the graph of fY (y), the marginal PDF of Y truncated on the domain
(−6, 6) is shown in Figure 16. The accuracy of t2(y) is as follows, which is slightly worse
than the accuracy of h2(y).

Error h2 t2
KL 0.0017 0.0014
MAD 0.0030 0.0138
AEM 0.0000 0.0000
AEV 0.0931 0.2651

Finally, we compute the marginal of W as described in Equation (3.12) except that we
replace h1(z, y) by t1(z, y), and replace h3(w) by t3(w). t3(w) is computed as a 19-piece,
7-degree MOP. Computation of t3(w) takes ≈ 11.9 seconds (compared to ≈ 5.9 seconds
when using h1(z, y)). The longer time for computing t3(w) is probably due to the loss of the
hypercube condition in the convolution formula in Equation (3.12), and due to the larger
number of pieces in t1(z, y) (6 compared of 2 in h1(z, y)). A graph of t3(w) overlaid on the
graph of fW (w), the marginal PDF of W truncated on the domain (−8, 8) is shown in Figure
17. The accuracy of t3 is as follows (with respect to fW )—in comparison with h3, the results
are mixed.
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Figure 16: A graph of t2(y) (in blue) overlaid on the graph of fY (y) (in red)

Error h3 t3
KL 0.0027 0.0023
MAD 0.0030 0.0539
AEM 0.0000 0.0000
AEV 0.2299 0.1542

The following table summarizes our findings:

MOP Description # pieces Degree Computation time (secs)
h2 marg. of Y using g1, h1 5 7 3.2
t2 marg. of Y using g1, t1 8 3 2.1
h3 marg. of W using g1, h1 19 7 5.9
t3 marg. of W using g1, t1 21 11 11.9

In conclusion, the hyper-rhombus condition allows us to use the MOP approximation of
the PDF of the one-dimensional standard normal distribution to construct MOP approx-
imations of CLG distributions in two and higher dimensions. The cost of integrating a
multi-dimensional MOP function on a hyper-rhombus appears to be small compared to the
cost of constructing MOP approximations on hypercubes of two-dimensional CLG distribu-
tions, or by using the mixed tree approach of Moral et al. [13].

5 Comparing the LIP Method with the Taylor Series

Method

In this section we compare the LIP method for constructing MOP approximations of PDFs
with the Taylor series (TS) method suggested by Shenoy and West [17].

The two methods have very different characteristics. Using the LIP method, if we wish to
get a better accuracy, we can either increase the number of pieces, or increase the degree by
selecting more points, or both. With Chebyshev points, the LIP technique does not exhibit
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Figure 17: A graph of t3(w) (in blue) overlaid on the graph of fW (w) (in red)

oscillating behavior. On the other hand, using the TS method, if we wish to get better
accuracy (around the mid-point of the interval where the Taylor series is calculated), we can
just increase the degree of the approximation. But this may not always work. For example
[19], consider f(x) = 1

x
. Taylor series polynomial of degree n at the point x0 = 1 are as

follows:

Pn(x) =
n∑
k=0

(−1)k(x− 1)k

When we approximate f(3) = 1/3 by Pn(3), the approximations become increasingly more
inaccurate:

n 1 2 3 4 5 6 7
Pn(3) −1 3 −5 11 −21 43 −85

When we are trying to fit a polynomial in an interval containing the tail of a PDF,
non-negativity is an important requirement. We can guarantee non-negativity of a LIP
polynomial approximation of a PDF by finding a one-degree LIP polynomial. A one-degree
LIP polynomial is a linear interpolation between two end-points of an interval, and thus, is
guaranteed to be non-negative. Of course, the accuracy may not be good, but we can improve
the accuracy by having smaller pieces. On the other hand, to guarantee non-negativity of a
TS polynomial, we have to increase the degree of the polynomial. This is the reason why we
end up with a 14-degree MOP approximation of a two-dimensional CLG distribution. If the
degree of the polynomial get very high, then we have to use exact arithmetic (integers for
the non-transcendental coefficients) for stability reasons, and this increases the time required
for multiplication and integration of polynomials.

An n-degree polynomial found using the LIP method may contain as many as 2n terms in
the polynomial, where as an n-degree polynomial found using TS method has at most n+ 1
terms. When we are using floating point numbers for the coefficients, we can consolidate
the 2n terms in the LIP polynomial to n + 1 by addition. However, when we are using
exact arithmetic (integers for the non-transcendental coefficients), we may not be able to
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consolidate the terms, and in this case, the high number of terms may cause an increase of
time needed for multiplication and integration of such polynomials.

How does the accuracy of the LIP polynomial compare with the accuracy of the TS
polynomial? We will answer this question by examining the polynomials produced with
the two methods under similar conditions (same regions) for the standard normal PDF. In
Section 3, we described a 2-piece, 3-degree MOP approximation for the standard normal
PDF using the LIP method, which is denoted by g1(z). The two regions where the pieces
are defined are (−3, 0), [0, 3). Using these same regions, we find a 3-degree polynomial using
the TS method. In each region, we compute the TS polynomial at the mid-point of the
region to degree 3. We make sure the values of polynomial pieces are non-negative, and we
normalize the two pieces so that the total area of the MOP in the region (−3, 3) is one. Let
s1(z) denote the TS MOP. The accuracy of the two MOPs (with respect to ϕ) are as follows:

Error g1 s1
KL 0.0086 0.0370
MAD 0.0140 0.0305
AEM 0.0000 0.0000
AEV 0.0203 0.3080

We observe that g1(z) is a more accurate approximation of ϕ(z) than s1(z).

6 Summary and Discussion

A major contribution of this paper is a re-definition of multi-dimensional mixture of polyno-
mials so that the regions where the polynomials are defined are hyper-rhombuses instead of
hypercubes. This re-definition has three major advantages. First, it ensures that MOP func-
tions are closed operations needed for multi-dimensional linear conditionals, which was not
true when MOP functions were defined on regions that are hypercubes. Second, it allows us
to use the MOP approximation of a one-dimensional standard normal PDF to define MOP
approximations of high-dimensional CLG PDFs. Third, it allows us to construct MOP ap-
proximations of two-dimensional conditional PDFs that have fewer pieces and lower degrees
by avoiding regions where the PDFs have very small values.

Another contribution is the use of Lagrange interpolation polynomial with Chebyshev
points to construct MOP approximations of PDFs. There are some advantages to using
the LIP method as compared to the Taylor series method. The PDFs do not have to be
differentiable, and the MOP approximations produced by the LIP method have a better
fit that those produced by the TS method for the case of the standard normal PDF. The
Lagrange interpolation polynomial described for one-dimensional functions generalizes to
multi-dimensional functions. Also, the Chebyshev points defined for one-dimensional func-
tions have been generalized for two-dimensional functions [22].

A disadvantage of the hyper-rhombus condition is that in the process of propagating
MOP potentials, the number of pieces and degrees of the intermediate potentials can get
large. One solution to this (described in [23]) is to re-approximate the intermediate MOP
potentials using fewer pieces and lower degrees. For example, the 21-piece, 11-degree MOP
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h8 (described in Section 3.6) can be easily re-approximated by a 2-piece, 3-degree MOP using
the general procedure described in Section 3.3.

The methods described here apply for CLG PDFs in one to three dimensions, and non-
CLG PDFs in one or two dimensions. Beyond that, our methods do not scale up either
computationally (in the case of CLG PDFs) or for finding MOP approximations (in the case
of non-CLG PDFs). Further research is needed in this regard.

Finally, an important issue is the complexity of solving hybrid BNs where the potentials
are all represented by MOPs. What is the size of hybrid BNs that can be solved in a
reasonable amount of time? Shenoy et al. [23] reports some results in solving a small hybrid
BN with 12 variables (2 discrete, 5 continuous with non-deterministic conditionals, and 5
continuous with linear deterministic conditionals). This is yet another topic for further
research.
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