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Extended Shenoy-Shafer Architecture for Inference in Hybrid Bayesian Networks with 
Deterministic Conditionals 
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Summerfield Hall, Lawrence, KS 66045-7601 USA 
<pshenoy@ku.edu>, <cully@ku.edu> 

Abstract 

The main goal of this paper is to describe an architecture for solving large general hybrid 
Bayesian networks (BNs) with deterministic conditionals for continuous variables using 
local computation. In the presence of deterministic conditionals for continuous variables, 
we have to deal with the non-existence of the joint density function for the continuous 
variables. We represent deterministic conditional distributions for continuous variables 
using Dirac delta functions. Using the properties of Dirac delta functions, we can deal 
with a large class of deterministic functions. The architecture we develop is an extension 
of the Shenoy-Shafer architecture for discrete BNs. We extend the definitions of 
potentials to include conditional probability density functions and deterministic 
conditionals for continuous variables. We keep track of the units of continuous potentials. 
Inference in hybrid BNs is then done in the same way as in discrete BNs but by using 
discrete and continuous potentials and the extended definitions of combination and 
marginalization. We describe several small examples to illustrate our architecture. In 
addition, we solve exactly an extended version of the crop problem that includes non-
conditional linear Gaussian distributions and non-linear deterministic functions. 

1 Introduction 

Bayesian networks (BNs) and influence diagrams (IDs) were invented in the mid 1980s (see e.g., 
[Pearl, 1986], [Howard and Matheson 1984]) to represent and reason with large multivariate 
discrete probability models and decision problems, respectively. Several efficient algorithms 
exist to compute exact marginals of posterior distributions for discrete BNs (see e.g., [Lauritzen 
and Spiegelhalter 1988], and [Shenoy and Shafer 1990]) and to solve discrete influence diagrams 
exactly (see e.g., [Olmsted 1983], [Shachter 1986], [Shenoy 1992]). 
 The state of the art exact algorithm for mixtures of Gaussians hybrid BNs is Lauritzen-
Jensen’s [2001] algorithm implemented with Madsen’s [2008] lazy propagation technique. This 
requires the conditional distributions of continuous variables to be conditional linear Gaussians, 
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and that discrete variables do not have continuous parents. Marginals of multivariate normal 
distributions can be found easily without the need for integration. The disadvantages are that in 
the inference process, continuous variables have to be marginalized before discrete ones. In some 
problems, this restriction can lead to large cliques [Lerner and Parr 2001]. 
 If a BN has discrete variables with continuous parents, Murphy [1999] uses a variational 
approach to approximate the product of the potentials associated with a discrete variable and its 
parents with a conditional linear Gaussian. Lerner [2002] uses a numerical integration technique 
called Gaussian quadrature to approximate non-conditional linear Gaussian distributions with 
conditional linear Gaussians, and this same technique can be used to approximate the product of 
potentials associated with a discrete variable and its continuous parents. Murphy’s and Lerner’s 
approach is then embedded in Lauritzen-Jensen’s [2001] algorithm to solve the resulting 
mixtures of Gaussians BN. 
 Shenoy [2006] proposes approximating non-conditional linear Gaussian distributions by 
mixtures of Gaussians using a nonlinear optimization technique, and using arc reversals to ensure 
discrete variables do not have continuous parents. The resulting mixture of Gaussians BN is then 
solved using Lauritzen-Jensen’s [2001] algorithm. 
 Moral et al. [2001] proposes approximating probability density functions (PDFs) by mixtures 
of truncated exponentials (MTE), which are easy to integrate in closed form. Since the family of 
mixtures of truncated exponentials are closed under combination and marginalization, the 
Shenoy-Shafer [1990] algorithm can be used to solve a MTE BN. Cobb and Shenoy [2006] and 
Cobb et al. [2006] propose using a non-linear optimization technique for finding mixtures of 
truncated exponentials approximation for the many commonly used distributions. Cobb and 
Shenoy [2005a, b] extend this approach to BNs with linear and non-linear deterministic 
variables. In the latter case, they approximate non-linear deterministic functions by piecewise 
linear ones. Rumi and Salmeron [2007] describe approximate probability propagation with MTE 
approximations that have only two exponential terms in each piece. Romero et al. [2007] 
describe learning MTE potentials from data, and Langseth et al. [2010] investigate the use of 
MTE approximations where the coefficients are restricted to integers. 
 Shenoy and West [2011] have proposed mixtures of polynomials, in the same spirit as MTEs, 
as a solution to the integration problem. Shenoy [2010] proposes relaxing the hypercube 
condition of MOP functions, which enables easy representation of two and three-dimensional 
CLG conditionals by MOP functions. The family of MOP functions is closed under 
transformations needed for multi-dimensional linear and quotient deterministic functions. 
 For Bayesian decision problems, Kenley [1986] (see also Shachter and Kenley [1989]) 
describes the representation and solution of Gaussian IDs that include continuous chance 
variables with conditional linear Gaussian distributions. Poland [1994] extends Gaussian IDs to 
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mixture of Gaussians IDs. Thus, continuous chance variables can have any distributions, and 
these are approximated by mixtures of Gaussians. Cobb and Shenoy [2008] extend MTE BNs to 
MTE IDs for the special case where all decision variables are discrete. Li and Shenoy [2010] 
have proposed an architecture that is an extension of the architecture described in this paper for 
solving hybrid influence diagrams with deterministic variables. 
 In this paper, we describe a generalization of the Shenoy-Shafer architecture for discrete BNs 
so that it applies to hybrid BNs with deterministic conditionals for continuous variables. The 
functions associated with deterministic conditionals do not have to be linear (as in the CLG case) 
or even invertible. We use Dirac delta functions to represent such functions. We keep track of the 
units of continuous potentials. This enables us, e.g., to describe the units of the normalization 
constant, which are often referred to as “probability” of evidence. Finally, we illustrate our 
architecture using several small examples, and by solving a modified version of the Crop 
problem initially introduced by Murphy [1999]. 
 An outline of the remainder of the paper is as follows. In Section 2, we define Dirac delta 
functions and describe some of their properties. In Section 3, we describe our architecture for 
making inferences in hybrid BNs with deterministic variables. This is the main contribution of 
this paper. In Section 4, we describe four small examples of hybrid BNs with deterministic 
variables to illustrate our definitions and our architecture. In Section 5, we describe and solve a 
modification of the crop problem, initially described by Murphy [1999], and subsequently 
modified by a number of authors. Finally, in Section 6, we end with a summary and discussion. 

2 Dirac Delta Functions 

In this section, we define Dirac delta functions. We use Dirac delta functions to represent 
deterministic conditionals associated with some continuous variables in BNs. Dirac delta 
functions are also used to represent observations of continuous variables. 
 δ: R → R+ is called a Dirac delta function if δ(x) = 0 if x ≠ 0, and ∫ δ(x) dx = 1. Whenever 
the limits of integration of an integral are not specified, the entire range (−∞, ∞) is to be 
understood. The values of δ are assumed to be in units of density. δ is not a proper function since 
the value of the function at 0 doesn’t exist (i.e., is not finite). It can be regarded as a limit of a 
certain sequence of functions (such as, e.g., the Gaussian density function with mean 0 and 
variance σ2 in the limit as σ → 0). However, it can be used as if it were a proper function for 
practically all our purposes without getting incorrect results. It was first defined by Dirac [1927]. 
 As defined above, the value δ(0) is undefined, i.e., ∞, in units of density. We argue that we 
can interpret the value δ(0) as probability 1. Consider the normal PDF with mean 0 and variance 
σ2. Its moment generating function (MGF) is M(t) = eσ2t2/2. In the limit as σ → 0, M(t) = 1. Now, 
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M(t) = 1 is the MGF of the distribution X = 0 with probability 1. Therefore, we can interpret the 
value δ(0) (in units of density) as probability 1 at the location x = 0. 
 Some basic properties of the Dirac delta functions that are useful in uncertain reasoning are 
described in the Appendix. Properties (i)−(iv) are useful in integrating potentials containing 
Dirac delta functions. Property (v) defines the Heaviside function, which is related to the Dirac 
delta function. Properties (vi)−(x) are useful in representing deterministic conditionals by Dirac 
delta functions. 
 Consider a simple Bayesian network consisting of two continuous variables X and Y with X 
as a parent of Y. Suppose X has PDF fX(x), and suppose the conditional PDF for Y given X = x is 
given by fY|x(y). Then, it follows from probability theory that the marginal for Y can be found by 
first multiplying the two PDFs to yield the joint PDF of X and Y, and then integrating X from the 
joint. Thus, if fY(y) denotes the marginal of Y, 

 fY(y) = ∫ fX(x) fY|x(y) dx. (2.1) 

Now suppose that Y has a deterministic conditional given by the equation Y = g(X), i.e., given 
X = x, Y = g(x) with probability 1. In this case, there does not exist a joint PDF for X and Y. 
However, property (vi) of Dirac delta functions tells us that we can represent the conditional for 
Y|x by the Dirac delta function δ(y − g(x)), and we can find the marginal for Y in the usual way 
using (2.1), i.e.,  

 fY(y) = ∫ fX(x) δ(y − g(x)) dx. (2.2) 

The result in equation (2.2) is valid regardless of the nature of the function g. However, the 
integration in (2.2) is possible only if the function g is differentiable and the real roots of the 
equation y − g(x) = 0 in x can be computed in terms of y. This includes a wide family of 
functions including non-invertible ones, such as e.g., Y = X2. 
 We can extend the result in equation (2.2) for deterministic conditionals with several parents. 
For example, consider a Bayesian network with three continuous variables X1, X2, and Y, such 
that X2 has X1 as a parent and Y has X1 and X2 as parents. Suppose the PDF of X1 is given by 
fX1

(x1), the conditional PDF of X2 given x1 is given by fX2|x1
(x2), and Y has a deterministic 

conditional given by Y = g(X1, X2). Then, we can represent the deterministic conditional for Y by 
the Dirac delta function δ(y − g(x1, x2)), and property (ix) tells us that we can find the marginal 
PDF of Y as follows: 

 fY(y) = ∫ ∫ fX1
(x1) fX2|x1

(x2) δ(y − g(x1, x2)) dx2 dx1 (2.3) 

 Finally, consider the Bayesian network consisting of four continuous variables as shown in 
Figure 1. The continuous potentials associated with deterministic conditionals for variables Y and 
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Z are δ(y − g(x1, x2)) and δ(z − h(x1, x2)), respectively. Property (x) tells that the joint PDF of Y 
and Z, denoted by fY,Z(y, z), can be computed as follows: 

 fY,Z(y, z) = ∫ ∫ fX1
(x1) fX2|x1

(x2) δ(y − g(x1, x2)) δ(z − h(x1, x2)) dx2 dx1. (2.4) 

Figure 1. A Bayesian network with two deterministic variables 

 

 In general, if Y is a continuous variable with a deterministic conditional Y = g(X1, …, Xn), 
where {X1, …, Xn} are the continuous parents of Y, then such a deterministic conditional is 
represented by the continuous potential ψ(x, y) = δ(y − g(x)) for all x ∈ Ω{X1, …, Xn}, and y ∈ ΩY. 
If Y is a continuous variable with continuous parents {X1, …, Xn}, and discrete parents 
{A1, …, Am}, and has a deterministic conditional Y = gi(X1, …, Xn} if (A1, …, Am) = ai, for 
i = 1, …, |Ω{A1, …, Am}|, then such a deterministic conditional is represented by the continuous 
potential ψ(x, ai, y) = δ(y − gi(x)) for all x ∈ Ω{X1, …, Xn}, ai ∈Ω{A1, …, Am}, and y ∈ ΩY. 

3 An Architecture for Computing Marginals 

In this section, we will describe an extended Shenoy-Shafer architecture for representing and 
solving hybrid BNs with deterministic variables. The Shenoy-Shafer architecture [Shenoy and 
Shafer 1990] was initially proposed for computing marginals in discrete Bayesian networks. It 
was extended by Moral et al. [2001] to include continuous variables for propagation of mixtures 
of truncated exponentials. Cobb and Shenoy [2005a] extended it further to include linear 
deterministic variables. Cinicioglu and Shenoy [2009] extended it further to include linear and 
non-linear deterministic functions to define arc reversals. They propose the use of Dirac delta 
functions for representing conditionals of deterministic variables. 

3.1 Variables and States 

We are concerned with a finite set V of variables. Each variable X ∈ V is associated with a set ΩX 
of its possible states. If ΩX is a finite set or countably infinite, we say X is discrete, otherwise X 
is continuous. We will assume that the state space of continuous variables is the set of real 
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numbers (or some measurable subset of it), and that the state space of discrete variables is a set 
of symbols (not necessarily real numbers). If r ⊆ V, r ≠ ∅, then Ωr = ×{ΩX | X ∈ r}. If r = ∅, we 
will adopt the convention that Ω∅ = {♦}. 
 In a BN, each variable has a conditional distribution function for each state of its parents. A 
conditional distribution function associated with a variable is said to be deterministic if the 
variances (for each state of its parents) are all zeros. Deterministic conditionals for discrete 
variables pose no computational problems as the joint probability mass function for all discrete 
variables exists. However, deterministic conditionals for continuous variables pose a 
computational challenge, as the joint density function for all continuous variables does not exist. 
Henceforth, when we speak of deterministic conditionals, we are referring to continuous 
variables, and to avoid convoluted language, we will loosely refer to a continuous variable with a 
deterministic conditional as a deterministic variable. In a BN, discrete variables are denoted by 
rectangular-shaped nodes, continuous variables by oval-shaped nodes, and deterministic 
variables by oval-shaped nodes with a double border. 

3.2 Projection of States 

If x ∈ Ωr, y ∈ Ωs, and r∩s = ∅, then (x, y) ∈ Ωr∪s. Thus, (x, ♦) = x. Suppose x ∈ Ωr, and 
suppose s ⊆ r. Then the projection of x to s, denoted by x↓s, is the state of s obtained from x by 
dropping states of r \ s. Thus, (w, x, y, z)↓{W, X} = (w, x), where w ∈ ΩW, and x ∈ ΩX. If s = r, then 
x↓s = x. If s = ∅, then x↓s = ♦. 

3.3 Discrete Potentials 

In a BN, the conditional probability function associated with each variable is represented by 
functions called potentials. If A is discrete, it is associated with conditional probability mass 
functions, one for each state of its parents. The conditional probability mass functions are 
represented by functions called discrete potentials. Formally, suppose r ⊆ V. A discrete potential 
α for r is a function α: Ωr → [0, 1] such that its values are in units of probability, which are 
dimension-less numbers in the interval [0, 1]. By dimension-less, we mean they do not have 
physical units (such as, e.g., feet/meters, pounds/grams, seconds, or some combination of these). 
 Although the domain of the function α is Ωr, for simplicity, we will refer to r as the domain 
of α. Thus, the domain of a potential representing the conditional probability function associated 
with some variable X in a BN is always the set {X}∪pa(X), where pa(X) denotes the set of 
parents of X in the BN graph. 



 Inference in hybrid Bayesian networks with deterministic variables 7 

 

 For an example of a discrete potential, suppose β is a discrete potential for {B, P}, where B is 
a discrete variable with states {b, nb} and P is a continuous variable, such that β(b, p) = 

  
1

1+ e!6.5+ p , and β(nb, p) = 
  

e!6.5+ p

1+ e!6.5+ p . The values of β are in units of probability. 

 Another example of a discrete potential is the identity discrete potential for the empty set, 
denoted by ιd, such that ιd(♦) = 1. The sole value 1 of ιd is in units of probability. 

3.4 Continuous Potentials 

If X is a continuous variable in a BN, it is associated with a conditional distribution that is 
represented by a function called a continuous potential. Formally, suppose x ⊆ V. Then, a 
continuous potential ξ for x is a function ξ: Ωx → R+ such that its values are in units of density. 
 For example, if Z is a continuous variable with the standard normal distribution, then the 
values of the continuous potential for Z, ζ(z) = (1/ 2! )e−z2/2, are in units of density. More 
precisely, the values ζ(z) are in units of probability/unit of Z, which is denoted by (unit Z)−1. 
 For another example, suppose X is a deterministic variable with parents A and Z, where A is 
discrete with states a and na, and Z is continuous. Suppose the deterministic function defining X 
is as follows: X = 1 if A = a, and X = Z if A = na. Then, this conditional is represented by a 
continuous potential ξ for {A, Z, X} such that ξ(a, z, x) = δ(x − 1), and ξ(na, z, x) = δ(x − z). The 
values of ξ are in units of (unit X)−1. 
 For yet another example, consider a continuous variable X with a mixed distribution: a 
probability of 0.5 at X = 1, and a probability density of 0.5 f(x), where f(x) is a PDF. This mixed 
distribution can be represented by a continuous potential ξ for {X} as follows: ξ(x) = 
0.5 δ(x − 1) + 0.5 f(x). Notice that the values of ξ are in units of (unit X)−1, and that ∫ ξ(x) dx = 
0.5 ∫ δ(x − 1) dx + 0.5 ∫ f(x) dx = 0.5 + 0.5 = 1 (in units of probability), so that it is a proper 
distribution function. 
 Consider the BN in Figure 2. A is discrete (with two states, a1 and a2), Z and X are 
continuous, and X has a deterministic conditional. Let α denote the discrete potential for {A}. 
Then α(a1) = 0.5, α(a2) = 0.5. Let ζ denote the continuous potential for {Z} in (unit Z)−1. Then 
ζ(z) = f(z). Let ξ denote the continuous potential for {A, Z, X} in (unit X)−1. Then ξ(a1, z, x) = 
δ(x − z), and ξ(a2, z, x) = δ(x − 1). This BN will be analyzed further in Example 4.3 in Section 4. 
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Figure 2. A hybrid BN with a discrete, a continuous and a deterministic variable 

 

3.5 Combination of Potentials 

Suppose α is a discrete or continuous potential for some subset a of variables and β is a discrete 
or continuous potential for b. Then the combination of α and β, denoted by α⊗β, is the potential 
for a∪b obtained from α and β by pointwise multiplication, i.e., 

 (α⊗β)(x) = α(x↓a) β(x↓b) for all x ∈ Ωa∪b.  (3.1) 

 The units of α⊗β are the product of the units of α and β. Thus, if α and β are both discrete 
potentials, then α⊗β is a discrete potential (since the product of two probabilities is a 
probability). In all other cases, α⊗β is a continuous potential (since the product of probability 
and density or the product of two densities are densities). 
 Since combination is pointwise multiplication, and multiplication is commutative, 
combination of potentials (discrete or continuous) is commutative (α⊗β = β⊗α) and associative 
((α⊗β)⊗γ = α⊗(β⊗γ)). 

3.6 Marginalization of Potentials 

The definition of marginalization depends on whether the variable being marginalized is discrete 
or continuous. We marginalize discrete variables by addition and continuous variables by 
integration. Integration of potentials containing Dirac delta functions is done using properties of 
Dirac delta functions (see properties (i)–(iv) in the Appendix). Also, after marginalization of a 
continuous variable, the nature of a potential could change from continuous to discrete. 
 Suppose α is a discrete or continuous potential for a, and suppose X is a discrete variable in 
a. Then the marginal of α by deleting X, denoted by α−X, is the potential for a\{X} obtained from 
α by addition over the states of X, i.e., 

 α−X(y) = Σ{α(x, y) | x ∈ ΩX} for all y ∈ Ωa\{X}. (3.2) 
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 The nature of α−X depends on the nature of α. If α is discrete, then α−X is discrete, and if α is 
continuous, then α−X is continuous. This follows from equation (3.2) since marginalization is 
addition, and sums of probabilities are probabilities and sums of densities are densities. 
 Suppose α is a continuous potential for a, and suppose X is a continuous variable in a. Then 
the marginal of α by deleting X is obtained by integration over the state space of X, i.e., 

 α−X(y) = ∫ α(x, y) dx for all y ∈ Ωa\{X}. (3.3) 

 In this case, the nature of α−X is slightly more complex. First, before we marginalize a 
variable X, we combine all potentials that include X in their domains. Since X is continuous, 
there is always a conditional for X, which is a continuous potential whose domain contains X (in 
units of density). Since the product of probability and density is density, the potential α that 
includes the conditional for X will always be a continuous potential. Second, if the units of α are 
(unit X)−1, then α−X will be in units of probability since integrating α with respect to X is 
tantamount to multiplying the units of α by unit X. However, if the units of α include other units 
such as, e.g. (unit X)−1(unit Y)−1, then α−X will be in units of (unit Y)−1, and, thus, units of density. 
 For example, if ξ(x) = fX(x) is the PDF of X in units of (unit X)−1, and ψ(x, y) = fY|x(y) is the 
conditional PDF of Y given X = x in units of (unit Y)−1, then ξ−X = ιd (identity discrete potential 
for the empty set), ψ−Y is the identity discrete potential for {X}, i.e., ψ−Y(x) = 1 (in units of 
probability) for all x, whereas (ξ⊗ψ)−X is a density potential for {Y} in units of (unit Y)−1. The 
same is true if we have deterministic conditionals represented by Dirac delta functions. Thus if 
ψ(x, y) = δ(y − g(x)) is the deterministic conditional of Y given x, then the values of ψ are in units 
of (unit Y)−1. As before, ψ−Y is the identity discrete potential for {X} (from property (ii) of Dirac 
delta functions, ∫ δ(y − g(x)) dy = 1), and (ξ⊗ψ)−X is a density potential for {Y} in units of 
(unit Y)−1. 
 If α contains Dirac delta functions, then we have to use properties of Dirac delta functions 
(described in the Appendix) in doing the integration. The two most important properties are the 
sampling property (properties (i) and (ii)) and the re-scaling property (property (iv)). For 
example, if we consider y − x2 as a function of x, then by using the rescaling property we have: 

 δ(y − x2) =
  

1
2 y

! x " y( ) + ! x + y( )( )  if y ≥ 0, 

and by using the sampling property we have: 

 ∫ fX(x) δ(y − x2) dx =
  

1
2 y

fX (x) ! x " y( ) + ! x + y( )( )# dx , if y ≥ 0, 

    =
  

1
2 y

fX ( y ) + fX (! y )( ) , if y ≥ 0. 
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 The Dirac delta function is implemented in Mathematica® and Maple®, so the properties 
(i)−(iv) described in the Appendix can be implemented on a computer. However, not all 
deterministic functions can be handled using Dirac delta functions. Some limitations are as 
follows. First, it must be possible to find the real zeroes of the function in closed form as a 
function of other variables. Second, to enable the computation of the derivative in the re-scaling 
property, the function must be differentiable, and the value of the derivative at the real zeroes of 
the function must be non-zero. Thus, Dirac delta functions can be used, e.g., with linear 
functions (W = X + Y), products (W = X⋅Y), and quotients (W = X/Y). However, they cannot be 
used, e.g., with functions such as W = max{X, Y}. 
 If we marginalize a discrete or continuous potential by deleting two (or more) variables from 
its domain, then the order in which the variables are deleted does not matter, i.e., (α−A)−B = (α−B)−A 
= α−{A, B}. 
 If α is a discrete or continuous potential for a, β is a discrete or continuous potential for b, 
A ∈ a, and A ∉ b, then (α⊗β)−A = α−A⊗β. This is a key property of combination and 
marginalization that allows local computation [Shenoy and Shafer 1990]. We will refer to this 
property as local computation. 

3.7 Normalization of Potentials 

The Shenoy-Shafer [1990] architecture requires only the combination and marginalization 
operations. However, at the end of the propagation, we need to normalize the potentials, and this 
involves division by a constant. 
 Suppose ξ is a discrete or continuous potential for {X} representing the un-normalized 
posterior marginal for X. To normalize ξ, we divide all values of ξ by the constant ξ−X(♦), i.e., if 
ξ′ denotes the normalized potential for {X}, then 

 ξ′(x) = ξ(x) / ξ−X(♦), for all x ∈ΩX. (3.4) 

 If ξ is a discrete potential (in units of probability), and X is a discrete variable, then ξ−X(♦) is 
in units of probability, and the normalized potential ξ′ is a discrete potential for {X}. If ξ is a 
continuous potential, say in units of (unit X)−1, and X is a discrete variable, then ξ−X(♦) is in units 
of (unit X)−1, and consequently, the normalized potential ξ′ is a discrete potential for {X} (since 
the units of the values of ξ′ are now dimension-less, i.e., units of probability). Finally, if ξ is a 
continuous potential, say in units of (unit X)−1, and X is a continuous variable, then ξ−X(♦) is in 
units of probability, and consequently, ξ′ is a continuous potential for {X} in units of (unit X)−1. 
 Depending on the units of ξ−X(♦), it represents either the probability of the evidence if ξ−X(♦) 
is in units of probability, or it represents the density of the evidence if ξ−X(♦) is in units of 
density. One advantage of keeping track of the units of continuous potentials is that it allows us 
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to determine the units of the normalization constant, whether it is probability or density. Thus, 
for methods that are based on analysis of the normalization constant (see, e.g., [Nielsen and 
Jensen 2007]), it is crucial to distinguish between probability and density of evidence. 

3.8 Solving Hybrid Bayesian Networks 

We have all the definitions needed to solve hybrid BNs with deterministic variables. The 
solution algorithm is essentially the same as described in Shenoy and Shafer [1990] and Shenoy 
[1997], i.e., we use the Shenoy-Shafer architecture to propagate the potentials in a binary join 
tree. 
 A major issue in solving hybrid Bayesian networks is marginalizing continuous variables, 
which involves integration. In general, there is no guarantee that we can always find the result of 
integration in closed form. One solution is to approximate all PDFs by MTE functions [Moral et 
al. 2001]. The family of MTE functions is closed under combination, marginalization, and 
transformations needed for one-dimensional linear deterministic functions. For one-dimensional 
non-linear deterministic functions, Cobb and Shenoy [2005b] propose such functions by 
piecewise linear ones. 
 Another solution is to approximate all PDFs by mixtures of polynomials [Shenoy and West 
2011, Shenoy 2010]. The family of mixture of polynomials functions are closed under 
combination, marginalization, and transformations needed for multi-dimensional linear and 
quotient deterministic functions. Like MTEs, non-linear deterministic functions can be 
approximated by piecewise linear functions. 
 In this paper, the focus is on the architecture for making inferences in hybrid Bayesian 
networks without concerning ourselves explicitly with the problem of integration. Of course, to 
be useful in practice, we need to address also the problem of integration. By combining the 
research on MTE and mixture of polynomials functions with the architecture described here, we 
can now solve hybrid Bayesian networks that were not solvable before. 

4 Some Illustrative Examples 

In this section, we will illustrate our framework and definitions using several small illustrative 
examples. For each continuous potential, we keep track of its units. 

4.1 Example 1: Mixture distribution 

Consider a hybrid BN with a discrete variable and a continuous variable as shown in Figure 3. A 
is discrete and Z is continuous. What is the prior marginal distribution of Z? Suppose we observe 
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Z = c (where c is such that the marginal density of Z at c is positive). What is the posterior 
marginal distribution of A? 

Figure 3. A hybrid BN with a discrete and a continuous variable 

 

 Let α denote the discrete potential for A (in units of probability), ζ1 denote the continuous 
potential for {A, Z} in units of (unit Z)−1. Then, 

 α(a1) = 0.4, 
 α(a2) = 0.6; 
 ζ1(a1, z) = f1(z), (unit Z)−1 
 ζ1(a2, z) = f2(z), (unit Z)−1. 

 To find the prior marginal distribution of Z, we first combine α and ζ1, and then marginalize 
A from the combination. 
 ((α⊗ζ1)−A)(z) = 0.4 f1(z) + 0.6 f2(z), (unit Z)−1 

Thus, Z has a mixture PDF weighted by the probabilities of A. Let fZ(z) denote 0.4 f1(z) + 
0.6 f2(z). Let ζ2 denote the observation potential for Z. We assume the constant c is such that 
fZ(c) = 0.4 f1(c) + 0.6 f2(c) > 0, i.e., either f1(c) > 0 or f2(c) > 0 or both. To find the posterior 
marginal for A, first we combine ζ1 and ζ2, next we marginalize Z from the combination, and 
finally we combine the result with α. 

 ((ζ1⊗ζ2)−Z⊗α))(a1) = 0.4 f1(c), (unit Z)−1 
 ((ζ1⊗ζ2)−Z⊗α))(a2) = 0.6 f2(c), (unit Z)−1. 

The normalization constant is 0.4 f1(c) + 0.6 f2(c) = fZ(c), in (unit Z)−1, representing density of 
evidence. After normalization, the posterior marginal distribution of A is 
0.4 f1(c)/(0.4 f1(c) + 0.6 f2(c)) at a1, and 0.6 f2(c)/(0.4 f1(c) + 0.6 f2(c)) at a2, both in units of 
probability. 
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4.2 Example 2: Transformation of variables 

Consider a BN with continuous variable Y and deterministic variable Z as shown in Figure 4. 
Notice that the function defining the deterministic variable is not invertible. What is the prior 
marginal distribution of Z? If we observe Z = c, what is the posterior marginal distribution of Y? 

Figure 4. A continuous BN with a deterministic variable with a non-invertible function. 

 

 Let ψ denote the continuous potential for {Y} (in (unit Y)−1) and let ζ1 denote the 
deterministic conditional for Y (in (unit Z)−1). Then, 

 ψ(y) = fY(y), (unit Y)−1; 
 ζ1(y, z) = δ(z − y2), (unit Z)−1. 

 To find the prior marginal distribution of Z, first we combine ψ and ζ1, and then we 
marginalize Y from the combination. The result is as follows. 

 ((ψ⊗ζ1)−Y)(z)  = 
  

1
2 z

!
"#

$
%&

(fY( z ) + fY(− z )) for z > 0, (unit Z)−1 (4.1) 

The result in (4.1) follows from properties (iv) and (ii) of Dirac delta functions. Let fZ(z) denote 

  

1
2 z

!
"#

$
%&

(fY( z ) + fY(− z )). Now suppose we observe Z = c, where c is a constant such that 

fZ(c) > 0, i.e., c > 0 and fY( c ) > 0 or fY(− c ) > 0 or both. This observation is represented by 
the continuous potential for Z, ζ2(z) = δ(z − c), (unit Z)−1. Then, the un-normalized posterior 
marginal distribution of Y is computed as follows: 

 (ζ1⊗ζ2)−Z(y) = ∫ δ(z − y2) δ(z − c)) dz = δ(y2 − c), (unit Z)−1 

(ψ⊗(ζ1⊗ζ2)−Z)(y) = 
  

fY ( c )!( y " c ) + fY (" c )!( y + c )

2 c
, (unit Y)−1 (unit Z)−1 

The normalization constant is (fY( c ) + fY(− c ))/(2 c ) = fZ(c) is in units of (unit Z)−1. 
Therefore the normalized posterior distribution of Y is 
(fY( c ) δ(y − c ) + fY(− c ) δ(y + c ))/(fY( c ) + fY(− c )), in units of (unit Y)−1. This can be 
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interpreted as follows: Y = c  with probability fY( c )/(fY( c ) + fY(− c )), and Y = − c  with 
probability fY(− c )/(fY( c ) + fY(− c )). 

4.3 Example 3: Mixed distributions 

Consider the hybrid BN shown in Figure 2 with three variables. A is discrete with state space ΩA 
= {a1, a2}, Z and X are continuous, and the conditional associated with X is deterministic. What 
is the prior marginal distribution of X? Suppose we observe X = 1. What is the posterior marginal 
distribution of A? 
 Let α denote the discrete potential for {A} (in units of probability), ζ the continuous potential 
for Z (in units of (unit Z)−1), and ξ1 the conditional for X (in units of (unit X)−1). Then: 

 α(a1) = 0.5, 
 α(a2) = 0.5; 
 ζ(z) = fZ(z), (unit Z)−1; 
 ξ1(a1, z, x) = δ(x − z), (unit X)−1, 
 ξ1(a2, z, x) = δ(x − 1), (unit X)−1. 

 The prior marginal distribution of X is given by (α⊗ζ⊗ξ1)−{A, Z} = ((α⊗ξ1)−A⊗ζ)−Z. 

 (((α⊗ξ1)−A⊗ζ)−Z)(x) =  0.5 fZ(x) + 0.5 δ(x − 1), (unit X)−1 

The normalization constant is 1 (in units of probability). Thus the prior marginal distribution of X 
is mixed with PDF 0.5 fZ(x) and a probability of 0.5 at X = 1. 
 Let ξ2 denote the observation X = 1. Thus, ξ2(x) = δ(x − 1), (unit X)−1. The un-normalized 
posterior marginal of A is given by (α⊗ζ⊗ξ1⊗ξ2)−{Z, X} = α⊗(ζ⊗(ξ1⊗ξ2)−X)−Z. 

 (α⊗(ζ⊗(ξ1⊗ξ2)−X)−Z)(a1) = 0.5 fZ(1), (unit X)−1 
 (α⊗(ζ⊗(ξ1⊗ξ2)−X)−Z)(a2) = 0.5 δ(0), (unit X)−1. 

The normalization constant is 0.5(fZ(1) + δ(0)), (unit X)−1. Thus, after normalization, the 
posterior probability of a1 is 0, and the posterior probability of a2 is 1, both in units of 
probability. The normalization constant can be interpreted as 0.5 in units of probability. 

4.4 Example 4: Discrete Variable with Continuous Parents 

Consider the hybrid BN consisting of continuous variables X and Y, a discrete variable A, and a 
deterministic conditional associated with X as shown in Figure 5. A is an indicator variable with 
states {a1, a2} such that A = a1 if 0 < Y ≤ 0.5, and A = a2 if 0.5 < Y < 1. What is the prior 
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marginal distribution of X? If we observe X = 0.25, what is the posterior marginal distribution of 
Y? of A? 

Figure 5. A hybrid BN with a continuous, a discrete, and a deterministic variable. 

 

 Let ψ denote the continuous potential for {Y}, α the discrete potential for {Y, A}, and ξ1 the 
continuous potential for {Y, A, X}. 

 ψ(y) = fY(y), (unit Y)−1, where fY(y) = 1 if 0 < y < 1, = 0 otherwise; 
 α(a1, y) = H(y) − H(y − 0.5), where H(.) is the Heaviside function (defined in property (v) 

of Dirac Delta functions in the Appendix), 
 α(a2, y) = H(y − 0.5) − H(y − 1); 
 ξ1(a1, y, x) = δ(x − y), (unit X)−1 
 ξ1(a2, y, x) = δ(x + y), (unit X)−1. 

To find the marginal distribution of X, first we combine α and ξ1 and marginalize A from the 
combination, next we combine the result with ψ and marginalize Y from the combination. 

 (((α⊗ξ1)−A)⊗ψ)−Y(x) = H(x) − H(x − 0.5) + H(−x −  0.5) − H(−x − 1), (unit X)−1 (4.2) 

Thus, the prior marginal distribution of X in (4.2) is uniform in the interval (−1, −0.5)∪(0, 0.5). 
Let ξ2 be the continuous potential denoting the observation that X = 0.25. Thus, ξ2 = δ(x − 0.25), 
(unit X)−1. The un-normalized posterior marginal of Y is given by (ξ1⊗(ξ2⊗α))−{A, X})⊗ψ. 

 (((ξ1⊗(ξ2⊗α))−{A, X})⊗ψ)(y) = fY(0.25) δ(y − 0.25), (unit X)−1(unit Y)−1. 

The normalization constant is fY(0.25) in units of (unit X)−1. The normalized posterior marginal 
for Y is δ(y − 0.25), (unit Y)−1, i.e., Y = 0.25 with probability 1. The un-normalized posterior 
distribution of A is given by ((ξ1⊗(ξ2⊗α))−X⊗ψ)−Y. 

 (((ξ1⊗(ξ2⊗α))−X⊗ψ)−Y(a1) = fY(0.25), (unit Y)−1 
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 (((ξ1⊗(ξ2⊗α))−X)⊗ψ)−Y(a2) = 0, (unit Y)−1 

The normalization constant is fY(0.25), (unit Y)−1, the same as that for the marginal of Y. After 
normalization the posterior probability of a1 is 1, and the posterior probability of a2 is 0. 

5 The Extended Crop Problem 

In this section, we describe a modification of the Crop problem initially described by Murphy 
[1999], and extended by Lerner [2002]. Here we extend it further to include deterministic 
variables and we describe its exact solution using the extended Shenoy-Shafer framework 
described in Section 3. 
 The hybrid Bayesian network of the extended crop network is shown in Figure 6. Policy (Po) 
is a discrete variable and describes the nature of the policy in place, liberal (l) or conservative 
(c). Rain (R) is discrete and has three states: drought (d), average (a), or flooding (f). Subsidy (S), 
with states subsidy (s) or no subsidy (ns), is a discrete variable whose conditional distribution 
depends on Policy and Rain. Crop (C) is a continuous variable that denotes the size of the crop 
yield (in million bushels (mB)). It is dependent on Rain, and anything other than average lowers 
expected yield. Price (Pr) (in $/B) is a continuous variable, and is dependent on Subsidy and 
Crop. For a given state of the variable Subsidy, the expected value of Price decreases as the yield 
increases. Similarly for a given crop yield, the price will be lower if there is a subsidy. Buy (B) is 
a discrete variable with states buy (b) and not buy (nb) whose conditional distribution depends 
on Price, and denotes whether a prospective buyer will buy the entire crop yield or not. It 
depends on Price, and as the price increases, the probability that the crop will be bought 
decreases. Revenue1 (R1) is a deterministic variable, and it denotes the portion of revenue (in m$) 
the farmer will receive from selling the crop. It depends on Buy, Price and Crop. Revenue1 = 
Crop ⋅ Price if Buy = b, Revenue1 = 0 if Buy = nb. Revenue2 (R2) is also a deterministic variable, 
and represents the portion of revenue (in m$) the farmer will receive due to the subsidy, if any. 
Revenue2 = 2 if Subsidy = s, Revenue2 = 0 if Subsidy = ns. Revenue3 (R3) is another deterministic 
variable, and Revenue3 = Revenue1 + Revenue2 (in m$). 

 Let π denote the discrete potential for Policy, ρ denote the discrete potential for Rain, σ 
denote the discrete potential for Subsidy, χ denote the continuous potential for Crop (in mB−1), φ 
denote the continuous potential for Price (in ($/B)−1), and β denote the discrete potential for Buy. 
The details of these potentials are shown in Table 1. To avoid problems with integrating density 
functions, we have assumed beta densities for crop and price instead of the normal distribution. 
Suppose X is a continuous variable, m > 0, n > 0, and a < b. We say X ~ Beta[m, n] on [a, b] if 
the PDF of X is as follows: 
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 fX(x) = 
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x " a
b " a
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n"1

if a ≤ x ≤ b, (5.1) 

where β(m, n) is a constant such that ∫ fX(x) dx = 1. The function β is called Euler’s beta function, 
and is defined as follows. If m > 0, and n > 0, then 

  
!(m,n) = tm"1(1" t)n"1

0

1

# dt . 

Notice that if a = 0, and b = 1, then the PDF in (5.1) reduces to the standard Beta[m, n] on [0, 1] 
PDF. 

Figure 6. The hybrid BN for the extended crop problem 

 

 Let τ1, τ2, τ3 denote the Dirac potentials at Revenue1, Revenue2, and Revenue3, respectively. 
Then,  
 τ1(b, p, c, r1) = δ(r1 − p c), τ1(nb, p, c, r1) = δ(r1), in (m$)−1; 
 τ2(s, r2) = δ(r2 − 2), τ2(ns, r2) = δ(r2), in (m$)−1; 
 τ3(r1, r2, r3) = δ(r3 − r1 − r2), (m$)−1. 
 We will describe the computation of the marginal for R3. Suppose we delete R2 first. R2 is in 
the domain of τ2 and τ3. Let τ4 denote the Dirac potential  (τ2⊗τ3)−R2 (in (m$)−1). Then, 
 τ4(s, r1, r3) = ∫ δ(r2 − 2) δ(r3 − r1 − r2) dr2 = δ(r3 − r1 − 2), 
 τ4(ns, r1, r3) = ∫ δ(r2) δ(r3 − r1 − r2) dr2 = δ(r3 − r1), (m$)−1. 
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Table 1. The discrete and density potentials for the variables in the extended crop problem 

Policy π 
liberal (l) 0.5 
conservative (c) 0.5 

 
Rain ρ 

drought (d) 0.35 
average (a) 0.60 
flood (f) 0.05 

 
σ l c 

Subsidy d a f d a f 
subsidy (s) 0.4 0.95 0.5 0.3 0.95 0.2 
no subsidy (ns) 0.6 0.05 0.5 0.7 0.05 0.8 

 
Crop|Rain χ (in (mB)−1) 

drought (d) Beta[2, 2] over the range (1.5, 4.5) 
average (a)  Beta[2, 2] over the range (2, 8) 
flooding (f) Beta[2, 2] over the range (0.5, 3.5) 

 
Price|(Subsidy, Crop = c) ϕ (in ($/B)−1) 

subsidy (s) Beta[2, 2] over the range (8.5 − c, 11.5 − c) 
no subsidy (ns) Beta[2, 2] over the range (10.5 – c, 13.5 − c) 

 
Buy|Price = p β 

buy (b) = 1 + 0.001212 p − 0.01202 p2  if 0 ≤ p ≤ 6.5 
= − 0.001212 (13 − p) + 0.01202 (13 − p)2 if 6.5 < p ≤ 13 
= 0 if p > 13 

not buy (nb) 1 − β(b, p) 

 
 Next, suppose we delete R1 next. R1 is in the domain of τ1 and τ4. Let τ5 denote the Dirac 
potential (τ1⊗τ4)–R1 (in (m$)−1). Then, 
 τ5(s, b, p, c, r3) = ∫ δ(r1 − p c) δ(r3 − r1 − 2) dr1 = δ(r3 − p c − 2), 
 τ5(s, nb, p, c, r3) = ∫ δ(r1) δ(r3 − r1 − 2) dr1 = δ(r3 − 2), 
 τ5(ns, b, p, c, r3) = ∫ δ(r1 − p c) δ(r3 − r1) dr1 = δ(r3 − p c), 
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 τ5(ns, nb, p, c, r3) = ∫ δ(r1) δ(r3 − r1) dr1 = δ(r3). 

 Next, suppose we delete Po next. Po is in the domain of π and σ. Let σ2 denote the discrete 
potential (π⊗σ)–Po. Then, σ2 is shown in Table 2. 

Table 2. The details of discrete potential σ2 

σ2 d a f 
s 0.35 0.95 0.35 
ns 0.65 0.05 0.65 

 Next, we delete Rain (R). R is in the domain of ρ, σ2, and χ. Let χ2 denote the continuous 
potential (ρ⊗σ2⊗χ)−R (in (mB)−1). Then, 
 χ2(s, c) = 0.1225 χ(d, c) + 0.57 χ(a, c) + 0.0175 χ(f, c),  
 χ2(ns, c) = 0.2275 χ(d, c) + 0.03 χ(a, c) + 0.0325 χ(f, c). 
 Next, we delete Price (Pr). Pr is in the domain of ϕ, β, and τ5. Let τ6 denote (ϕ⊗β⊗τ5)−Pr (in  
(m$)−1). Then, 
 τ6(s, b, c, r3) = ∫ ϕ(s, c, p) β(b, p) δ(r3 − p c − 2) dp, 
 τ6(s, nb, c, r3) = δ(r3 − 2) ∫ ϕ(s, c, p) β(nb, p) dp, 
 τ6(ns, b, c, r3) = ∫ ϕ(ns, c, p) β(b, p) δ(r3 − p c) dp, 
 τ6(ns, nb, c, r3) = δ(r3) ∫ ϕ(ns, c, p) β(nb, p) dp. 
 Next, we delete Crop (C). C is in the domain of τ6, and χ2. Let τ7 denote (τ6⊗χ2)−C (in 
(m$)−1). Then, 
 τ7(s, b, r3) = ∫ τ6(s, b, c, r3) χ2(s, c) dc, 
 τ7(s, nb, r3) = ∫ τ6(s, nb, c, r3) χ2(s, c) dc, 
 τ7(ns, b, r3) = ∫ τ6(ns, b, c, r3) χ2(ns, c) dc, 
 τ7(ns, nb, r3) = ∫ τ6(ns, nb, c, r3) χ2(ns, c) dc. 
 Next, we delete Buy (B). B is in the domain of τ7. Let τ8 denote τ7

−B (in (m$)−1). Then, 
 τ8(s, r3) = τ7(s, b, r3) + τ7(s, nb, r3), 
 τ8(ns, r3) = τ7(ns, b, r3) + τ7(ns, nb, r3). 
 Finally, we delete Subsidy (S). S is in the domain of τ8. Let τ9 denote τ8

−S (in (m$)−1). Then, 
 τ9(r3) = τ8(s, r3) + τ8(ns, r3). 
τ9 represents the marginal distribution for R3. An implementation in Mathematica shows that τ9 
is as follows: 
 τ9(r3) = 0.228 δ(r3) + 0.263 δ(r3 − 2) + 0.509 f(r3) (in (m$)−1), where f(r3) is a PDF as 
shown in Figure 7. Thus the marginal distribution of R3 is a mixed distribution with probability 
masses of 0.228 at R3 = 0, 0.263 at R3 = 2, and a weighted density function 0.509 f(r3). 
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Figure 7. The PDF portion of the mixed distribution of marginal for R3. 

 

6 Summary and Discussion 

We have described an extension of the Shenoy-Shafer architecture for discrete BNs so it applies 
to hybrid BNs with deterministic variables. We use Dirac delta functions to represent 
deterministic conditionals of continuous variables. We use discrete and continuous potentials, 
and we keep track of the units of continuous potentials. Marginalization of discrete variables is 
done using addition and marginalization of continuous variables is done using integration. We 
illustrate our architecture by solving some small examples of hybrid BNs. We also solve exactly 
a modified version of the extended crop problem that has non-conditional linear Gaussian 
conditionals, and non-linear functions for deterministic variables. 
 The extended architecture described in this paper is different from the architectures described 
by Moral et al. [2001] and by Cobb and Shenoy [2005a,b]. Moral et al. [2001] do not consider 
deterministic conditionals. Also, they use a restriction operation to incorporate observations of 
continuous variables. In our framework, this operation is unnecessary. We represent observations 
of continuous variables by Dirac delta functions, and the restriction operation is equivalent to 
marginalization of the observed continuous variable. Cobb and Shenoy [2005a] use an equation 
potential to represent linear deterministic conditionals. This framework is unable to directly 
represent non-linear deterministic conditionals. Cinicioglu and Shenoy [2009] introduce Dirac 
delta functions to represent deterministic conditionals. But the framework in Cinicioglu and 
Shenoy [2009] is designed for describing arc reversals rather than inference. While arc reversals 
can be used for making inferences in hybrid BNs (see, e.g., [Shachter 1988] for the case of 
discrete BNs), it is not as computationally efficient as using the extended architecture described 
in this paper. 
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 We have ignored the computational problem of integrating density potentials. In many cases, 
e.g., Gaussian density functions, there does not exist a closed form solution of the integral of the 
Gaussian density functions. 
 One way around this problem is to use mixtures of truncated exponentials (MTEs) to 
approximate density functions [Moral et al. 2001, Cobb et al. 2006]. MTEs are easy to integrate 
and are closed under combination and marginalization. They are also closed under 
transformations needed for a one-dimensional linear deterministic functions [Cobb and Shenoy 
2005a], but not non-linear ones. One solution for non-linear functions of a single variable is to 
approximate them by piecewise linear functions [Cobb and Shenoy 2005b]. However, many 
issues remain unsolved. For example, the family of MTE functions is not closed under 
transformations needed by linear deterministic functions involving two or more continuous 
parent variables [Shenoy 2010]. Also, finding an MTE approximation of a high-dimensional 
conditional (with two or more continuous parent variables) is not easy. 
 Another way around the problem of integration of density functions is to approximate them 
using mixtures of polynomials (MOP) [Shenoy and West 2011, Shenoy 2010]. MOP functions 
are closed under a bigger class of functions for deterministic variables (including linear and 
quotient functions) than MTE functions. In the extended crop problem discussed in the previous 
section, we have a product function for one of the deterministic variables, and we can compute a 
closed form solution for the marginal (although it is not a mixture of polynomials function). The 
use of MTE and MOP functions for inference in hybrid BNs needs further investigation. 
 The use of Dirac delta functions for representing deterministic functions is practical only for 
differentiable functions. If the function is not differentiable, then there doesn’t always exist a 
closed form solution for the integral of such Dirac delta functions. For example, if Z = 
max{X, Y}, then we are unable to compute the marginal of Z even if the densities of X and Y are 
easily integrable, i.e., there is no closed form solution for the integral: 

fZ(z) = ∫ ∫ fX(x) fY|x(y) δ(z − max{x, y}) dy dx, 

where fZ(z) denotes the marginal PDF of Z, fX(x) denotes the PDF of X, and fY|x(y) denotes the 
conditional PDF of Y given x. However, we can convert the max deterministic function to a 
differentiable one as follows: Z = X if X ≥ Y, and Z = Y if X < Y. We introduce a discrete variable, 
say A, with two states, a and na, with X and Y as parents, where a denotes that X ≥ Y, and make A 
a parent of Z. This hybrid BN can then be solved using the extended Shenoy-Shafer architecture. 
A solution of this problem for the case where X and Y are independent with normal distributions 
is described in Shenoy and West [2011]. 
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Appendix: Properties of the Dirac Delta Function 

Some properties of δ are as follows [Dirac 1927, Dirac 1958, Hoskins 1979, Kanwal 1998, 
Saichev and Woyczynski 1997, Khuri 2004]. We attempt to justify most of the properties. These 
justifications should not be viewed as formal mathematical proofs, but rather as examples of the 
use of Dirac delta functions that lead to correct conclusions. 

(i) (Sampling) If f(x) is any function, f(x) δ(x) = f(0) δ(x). If f(x) is continuous in the 
neighborhood of 0, then ∫ f(x) δ(x) dx = f(0) ∫ δ(x) dx = f(0). The range of integration 
need not be from −∞ to ∞, but cover any domain containing 0. 

(ii) (Change of Origin) ∫ δ(x − a) dx = 1, and f(x) δ(x − a) = f(a) δ(x − a). If f(x) is any 
function which is continuous in the neighborhood of a, then ∫ f(x) δ(x − a) dx = f(a). 

(iii) ∫ δ(x − h(u, v)) δ(y − g(v, w, x)) dx = δ(y − g(v, w, h(u, v))). This follows from property 
(ii) of Dirac delta functions if we regard δ(y − g(v, w, x)) as a function of x. 

(iv) (Rescaling) If g(x) has real (non-complex) zeros at a1, …, an, and is differentiable at 
these points, and g′(ai) ≠ 0 for i = 1, …, n, then δ(g(x)) = Σi δ(x − ai)/|g′(ai)|. In 
particular, if g(x) has only one real zero at a0, and g′(a0) ≠ 0, then δ(g(x)) = 
δ(x − a0)/|g′(a0)|. 

(v) Consider the Heaviside function H(x) = 0 if x < 0, H(x) = 1 if x ≥ 0. Then, δ(x) can be 
regarded as the “generalized” derivative of H(x) with respect to x, i.e., (d/dx)H(x) = 
δ(x). H(x) can be regarded as the limit of certain differentiable functions (such as, e.g., 
the cumulative distribution functions (CDF) of the Gaussian random variable with mean 
0 and variance σ2 in the limit as σ → 0). Then, the generalized derivative of H(x) is the 
limit of the derivative of these functions. 

(vi) Suppose continuous variable X has PDF fX(x) and Y = g(X). Then Y has PDF fY(y) = 
∫ fX(x) δ(y − g(x)) dx. The function g does not have to be invertible. To show the validity 
of this formula, let FY(y) denote the cumulative distribution function of Y. Then, FY(y) = 
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P(g(X) ≤ y) = ∫ fX(x) H(y − g(x)) dx, where H(⋅) is the Heaviside function defined in 
(vii). Then, fY(y) = (d/dy)(FY(y)) = ∫ fX(x) (d/dy)(H(y − g(x))) dx = ∫ fX(x) δ(y − g(x)) dx. 

(vii) Suppose continuous variable X has PDF fX(x) and Y = g(X), where g is invertible and 
differentiable on ΩX. Then the PDF of Y is fY(y) = ∫ fX(x) δ(y − g(x)) dx = 
|(d/dy)(g−1(y))| ∫ fX(x) δ(x − g−1(y)) dx = |(d/dy)(g−1(y))| fX(g−1(y)). 

(viii) The definition of δ can be extended to Rn, the n-dimensional Euclidean space. Thus, if 
x ∈ Rn, δ(x) = 0 if x ≠ 0, and ∫…∫ δ(x) dx = 1, where dx = dx1…dxn. Thus, e.g., 
∫…∫ f(x) δ(x − x0) dx = f(x0). 

(ix) Suppose X1, …, Xn are continuous variables with joint PDF fX(x). Then, the 
deterministic variable Y = g(X1, …, Xn) has PDF fY(y) = ∫…∫ fX(x) δ(y − g(x)) dx. The 
function g does not have to be invertible. 

(x) Suppose X1, …, Xn are continuous variables with joint PDF fX(x). Then the joint PDF of 
deterministic variables Y = g(X1, …, Xn) and Z = h(X1, …, Xn) is given by 
fY,Z(y, z) = ∫…∫ fX(x) δ(y − g(x)) δ(z − h(x)) dx. The functions g and h do not have to be 
invertible. 
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