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Inference in Hybrid Bayesian Networks Using Mixtures of Polynomials 

Prakash P. Shenoy and James C. West 
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Summerfield Hall, Lawrence, KS 66045-7601 USA 
<pshenoy@ku.edu>, <cully@ku.edu> 

Abstract 

The main goal of this paper is to describe inference in hybrid Bayesian networks (BNs) using 
mixture of polynomials (MOP) approximations of probability density functions (PDFs). Hybrid 
BNs contain a mix of discrete, continuous, and conditionally deterministic random variables. The 
conditionals for continuous variables are typically described by conditional PDFs. A major 
hurdle in making inference in hybrid BNs is marginalization of continuous variables, which 
involves integrating combinations of conditional PDFs. In this paper, we suggest the use of MOP 
approximations of PDFs, which are similar in spirit to using mixtures of truncated exponentials 
(MTEs) approximations. MOP functions can be easily integrated, and are closed under 
combination and marginalization. This enables us to propagate MOP potentials in the extended 
Shenoy-Shafer architecture for inference in hybrid BNs that can include deterministic variables. 
MOP approximations have several advantages over MTE approximations of PDFs. They are 
easier to find, even for multi-dimensional conditional PDFs, and are applicable for a larger class 
of deterministic functions in hybrid BNs. 

1 Introduction 

Bayesian networks (BNs) and influence diagrams (IDs) were invented in the mid 80s (see e.g., 
[Pearl 1986], [Howard and Matheson 1984]) to represent and reason with large multivariate 
discrete probability models and decision problems, respectively. Several efficient algorithms 
exist to compute exact marginals of posterior distributions for discrete BNs (see e.g., [Lauritzen 
and Spiegelhalter 1988], [Shenoy and Shafer 1990], and [Jensen et al. 1990]) and to solve 
discrete IDs exactly (see e.g., [Olmsted 1983], [Shachter 1986], [Shenoy 1992], and [Jensen et 
al. 1994]). 
 Hybrid Bayesian networks contain a mix of discrete and continuous variables. A continuous 
variable is said to be deterministic if its conditional distributions have zero variances. The 
conditional distributions of deterministic variables are typically described by equations that 
describe the deterministic variable as a function of its continuous parents. Deterministic variables 



Prakash P. Shenoy and James C. West  2 

pose a problem in inference since the joint density of all continuous variables does not exist. 
Shenoy and West [2009a] describe an extension of the Shenoy-Shafer architecture [Shenoy and 
Shafer 1990] to enable inference in hybrid BNs with deterministic variables. 
 The state of the art exact algorithm for mixtures of Gaussians hybrid BNs is the Lauritzen-
Jensen [2001] algorithm implemented with Madsen’s [2008] lazy propagation technique. This 
requires the conditional PDFs of continuous variables to be conditional linear Gaussians (CLGs), 
and that discrete variables do not have continuous parents. Marginals of multivariate normal 
distributions can be found easily without the need for integration. The disadvantages are that in 
the inference process, continuous variables have to be marginalized before discrete ones. In some 
problems, this restriction can lead to large cliques [Lerner and Parr 2001]. 
 If a BN has discrete variables with continuous parents, Murphy [1999] uses a variational 
approach to approximate the product of the potentials associated with a discrete variable and its 
parents with a CLG distribution. Lerner [2002] uses a numerical integration technique called 
Gaussian quadrature to approximate non-CLG distributions with CLG distributions, and this 
same technique can be used to approximate the product of potentials associated with a discrete 
variable and its continuous parents. Murphy’s and Lerner’s approach is then embedded in the 
Lauritzen and Jensen [2001] algorithm to solve the resulting mixtures of Gaussians BN. 
 Shenoy [2006] proposes approximating non-CLG distributions by mixtures of Gaussians 
using a nonlinear optimization technique, and using arc reversals to ensure discrete variables do 
not have continuous parents. The resulting mixture of Gaussians BN is then solved using the 
Lauritzen and Jensen [2001] algorithm. 
 Moral et al. [2001] proposes approximating PDFs by mixtures of truncated exponentials 
(MTEs), which are easy to integrate in closed form. Since the family of mixtures of truncated 
exponentials is closed under combination and marginalization, the Shenoy-Shafer [1990] 
architecture can be used to solve an MTE BN. Cobb and Shenoy [2006] and Cobb et al. [2006] 
propose using a non-linear optimization technique for finding MTE approximations for several 
commonly used one-dimensional distributions. Cobb and Shenoy [2005a, b] extend this 
approach to BNs with linear and non-linear deterministic variables. In the latter case, they 
approximate non-linear deterministic functions by piecewise linear ones. Rumi and Salmeron 
[2007] describe approximate probability propagation with MTE approximations that have only 
two exponential terms in each piece. Romero et al. [2006] describe learning MTE potentials 
from data, and Langseth et al. [2010] investigate the use of MTE approximations where the 
coefficients are restricted to integers. 
 In this paper, we propose using mixture of polynomials (MOP) approximations of PDFs. 
Mixtures of polynomials are widely used in many domains including computer graphics, font 
design, approximation theory, and numerical analysis. They were first studied by Schoenberg 
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[1946]. When the MOP functions are continuous, they are referred to as polynomial splines [de 
Boor 2001, Schumaker 2007]. The use of splines to approximate PDFs was initially suggested by 
Curds [1997]. For our purposes, continuity is not an essential requirement, and we will restrict 
our analysis to piecewise polynomial approximations of PDFs. 
 Using MOP is similar in spirit to using MTEs. MOP functions can be easily integrated, and 
they are closed under combination and marginalization. Thus, the extended Shenoy-Shafer 
architecture [Shenoy and West 2009a] can be used to make inferences in BN with deterministic 
variables. However, there are several advantages of MOP functions over MTEs. 
 First, we can find MOP approximations of differentiable PDFs easily by using the Taylor 
series approximations. Finding MTE approximations as suggested by Cobb et al. [2006] 
necessitates solving non-linear optimization problems, which is not as easy a task as it involves 
navigating among local optimal solutions. 
 Second, for the case of conditional PDFs with several parents, finding a good MTE 
approximation can be extremely difficult as it involves solving a non-linear optimization 
problem in a high-dimensional space for each piece. The Taylor series expansion can also be 
used for finding MOP approximations of conditional PDFs. In Section 2, we describe a MOP 
approximation for a 2-dimensional CLG distribution. 
 Third, if a hybrid BN contains deterministic functions, then the MTE approach can be used 
directly only for linear deterministic functions. By directly, we mean without approximating a 
non-linear deterministic function by a piecewise linear one. This is because the MTE functions 
are not closed under transformations needed for non-linear deterministic functions. MOP 
functions are closed under a larger family of deterministic functions including linear functions 
and quotients. This enables propagation in a bigger family of hybrid BNs than is possible using 
MTEs. 
 An outline of the remainder of the paper is as follows. In Section 2, we define MOP 
functions and describe how one can find MOP approximations with illustration for the univariate 
normal distribution, chi-square distribution, and for a two-dimensional CLG distribution. In 
Section 3, we sketch the extended Shenoy-Shafer architecture for inference in hybrid BNs with 
deterministic variables. In Section 4, we solve three small examples designed to demonstrate the 
feasibility of using MOP approximations with non-linear deterministic functions. Finally, in 
Section 5, we end with a summary and discussion of some of the challenges associated with 
MOP approximations. 
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2 Mixtures of Polynomials Approximations 

In this section, we describe MOP functions and some methods for finding MOP approximations 
of PDFs. We illustrate our method for the normal distribution, the chi-square distribution, and 
the CLG distribution in two dimensions. 
 A one-dimensional function f: R → R is said to be a mixture of polynomials (MOP) function 
if it is a piecewise function of the form: 

 f(x) = a0i + a1i x + a2i x
2 + … + ani x

n,  for x ∈ Ai, i = 1, …, k, and 
   = 0, otherwise, (2.1) 

where A1, …, Ak are disjoint intervals in R that do not depend on x, and a0i, …, ani are constants 
for all i. We will say that f is a k-piece (ignoring the 0 piece), and n-degree (assuming ani ≠ 0 for 
some i) MOP function. 
 The main motivation for defining MOP functions is that such functions are easy to integrate 
in closed form, and that they are closed under multiplication and integration. They are also 
closed under differentiation and addition. 
 An m-dimensional function f: Rm → R is said to be a MOP function if 

  f(x1, …, xm) = f1(x1)⋅f2(x2)⋅ … ⋅fm(xm), (2.2) 

where each fi(xi) is a one-dimensional MOP function as defined in (2.1). If fi(xi) is a ki-piece and 
ni-degree, then f is k1⋅ … ⋅km piece, degree n1 + … + nm MOP function. Therefore, it is important 
to keep the number of pieces and degrees to a minimum. 

 Example 2.1. Consider the univariate standard normal PDF ϕ(z) = (1/ 2! ) e−z2/2. A 1-piece, 
28-degree, MOP approximation ϕ1p(z) of ϕ(z) in the interval (−3, 3) is as follows: 

 ϕ1p(z) = c−1(1 − z2/2 + z4/8 − z6/48 + z8/384 + … + z28/1,428,329,123,020,800), if −3 < z < 3, 

  = 0, otherwise, 

where c−1 ≈ 0.4. This MOP approximation was found using the Taylor series expansion of e−z2/2 
at z = 0, to degree 28, restricting it to the region (−3, 3), verifying that ϕ1p(z) ≥ 0 in the region 
(−3, 3), and normalizing it with constant c so that ∫ ϕ1p(z) dz = 1 (whenever the limits of 
integration of an integral are not specified, the entire range (−∞, ∞) is to be understood). We will 
denote these operations by writing: 

 ϕ1p(z) = TSeries[e−z2/2, z = 0, d = 28] if −3 < z < 3 
  = 0,  otherwise (2.3) 
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 We can verify that ϕ1p(z) ≥ 0 as follows. First, we plot the un-normalized MOP 
approximation, denoted by, say, ϕu(z). From the graph, we identify approximately the regions 
where ϕu(z) could possibly be negative. Then starting from a point in each of these regions, we 
compute the local minimum of ϕu(z) using, e.g., gradient descent. Since MOP functions are 
easily differentiable, the gradients can be easily found. If ϕu(z) ≥ 0 at all the local minimums, 
then we have verified that ϕ1p(z) ≥ 0. If ϕu(z) < 0 at a local minimum, then we need to either 
increase the degree of the polynomial approximation, or increase the number of pieces, or both. 
 We have some very small coefficients in the MOP approximation. Rounding these off to a 
certain number of decimal places could cause numerical instability. Therefore, it is important to 
keep the coefficients in their rational form. A similar idea is proposed by Langseth et al. [2010] 
where they restrict the coefficients in MTE approximations to integers for reasons of stability. 
 A graph of the MOP approximation ϕ1p overlaid on the actual PDF ϕ is shown in Figure 1 
and it shows that there are not many differences between the two functions in the interval (−3, 3). 
The main difference is that ϕ1p is restricted to (−3, 3), whereas ϕ is not. The mean of ϕ1p is 0, 
and its variance ≈ 0.976. Most of the error in the variance is due to the restriction of the 
distribution to the interval (−3, 3). If we restrict the standard normal density function to the 
interval (−3, 3), renormalize it so that it is a PDF, then its variance ≈ 0.973. 

Figure 1. The PDF of the standard normal distribution (in blue) and its polynomial 
approximation ϕ1p (in red). 
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 In some examples, working with a 28-degree polynomial may not be tractable. In this case, 
we can include more pieces to reduce the degree of the polynomial. For example, a 6-piece, 3-
degree MOP approximation of ϕ(z) is as follows: 
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 ϕ6p(z) = TSeries[e−z2/2, z = −5/2, d = 3] if −3 ≤ z < −2, 
  = TSeries[e−z2/2, z = −3/2, d = 3] if −2 ≤ z < −1, 
  = TSeries[e−z2/2, z = −1/2, d = 3] if −1 ≤ z < 0, 
  = TSeries[e−z2/2, z = 1/2, d = 3] if 0 ≤ z < 1, 
  = TSeries[e−z2/2, z = 3/2, d = 3] if 1 ≤ z < 2, 
  = TSeries[e−z2/2, z = 5/2, d = 3] if 2 ≤ z ≤ 3, 
  = 0,  otherwise. (2.4) 

 Notice that ϕ6p is discontinuous at the end points of the intervals. A graph of ϕ6p overlaid on 
the graph of ϕ is shown in Figure 2. Also, E(ϕ6p) = 0, and V(ϕ6p) ≈ 0.974. The variance of ϕ6p is 
closer to the variance of the truncated normal (≈ 0.973) than ϕ1p. 

Figure 2. A graph of ϕ6p (in blue) overlaid on the graph of ϕ (in red) 
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 In some examples, for reasons of precision, we may wish to work with a larger interval than 
(−3, 3) for the standard normal. For example, an 8-piece, 4-degree MOP approximation of ϕ in 
the interval (−4, 4) is as follows: 

 ϕ8p(z) = TSeries[e−z2/2, z = −7/2, d = 4] if −4 < z < −3, 
  = TSeries[e−z2/2, z = −5/2, d = 3] if −3 ≤ z < −2, 
  = TSeries[e−z2/2, z = −3/2, d = 3] if −2 ≤ z < −1, 
  = TSeries[e−z2/2, z = −1/2, d = 3] if −1 ≤ z < 0, 
  = TSeries[e−z2/2, z = 1/2, d = 3] if 0 ≤ z < 1, 
  = TSeries[e−z2/2, z = 3/2, d = 3] if 1 ≤ z < 2, 
  = TSeries[e−z2/2, z = 5/2, d = 3] if 2 ≤ z < 3, 
  = TSeries[e−z2/2, z = 7/2, d = 4] if 3 ≤ z < 4, 
  = 0,  otherwise. (2.5) 

 Notice that the degree of the first and the eighth piece is 4 to avoid ϕ8p(z) < 0. E(ϕ8p) = 0, 
and V(ϕ8p) ≈ 0.99985. Due to the larger interval, the variance is closer to 1 than the variance for 
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ϕ6p. If we truncate the PDF of the standard normal to the region (−4, 4) and renormalize it, then 
its variance is ≈ 0.99893. 
 To find a MOP approximation of the PDF of the N(µ, σ2) distribution, where µ and σ > 0 are 
constants, we exploit the fact that MOP functions are invariant under linear transformations. 
Thus, if f(x) is a MOP function, then f(ax + b) is also a MOP function. If Z ~ N(0, 1), its PDF is 
approximated by a MOP function ϕp(x), and X = σZ + µ, then X ~ N(µ, σ2), and a MOP 
approximation of the PDF of X is given by ξ(x) = (1/σ)ϕp((x − µ)/σ). 

 Example 2.2. Consider the chi-square distribution with 15 degrees of freedom, denoted by 
χ2(15). Let χ15(y) denote the PDF of this distribution. The 0.50 percentile of χ15 is ≈ 4.6, and 
99.5 percentile is 32.8. Therefore, we will find a MOP approximation on the interval (4, 33). The 
mode of χ15(y) is 13, the inflection points are at 13 –  26 and 13 +  26 Therefore, we split the 
domain of χ15(y) into 4 pieces, (4, 8], (8, 13], (13, 18], and (18, 33), and then we find a MOP 
approximation of each piece. A 4-piece, 3-degree, MOP approximation of χ15 on the interval 
(4, 33), denoted by χ4p, is as follows: 

 χ4p(y) = TSeries[χ15(y), y = 6, d = 3] if 4 < y < 8, 
  = TSeries[χ15(y), y = 21/2, d = 3] if 8 ≤ y < 13, 
  = TSeries[χ15(y), y = 31/2, d = 3] if 13 ≤ y < 18, 
  = TSeries[χ15(y), y = 51/2, d = 3] if 18 ≤ y < 33, and 
  = 0,  otherwise. (2.6) 

 The degree of the approximation in each piece was determined by graphing χ15 and χ4p, 
making sure χ4p ≥ 0, and ensuring that we have a good approximation. 
 A graph of the MOP approximation χ4p overlaid on the actual PDF χ15 is shown in Figure 3. 
The mean of χ4p is ≈ 14.94 (compared to 15 for χ15) and its variance ≈ 27.71 (compared to 30 for 
χ15). The errors in the mean and variance are mostly the result of truncation of the right and left 
tails of the distribution. If we restrict the χ15 PDF to the interval (4, 33), normalize it so that it is 
a PDF, then its mean is ≈ 14.93, and its variance is ≈ 27.77. 
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Figure 3. The PDF of χ2(15) (in red) and its polynomial approximation χ4p (in blue). 
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 Example 2.3. Consider the CLG distribution Y|z ~ N(z, 1), where Z ~ N(0, 1). Let ϕ(z, y) = 
(1/ 2! )e−(y − z)2/2 denote the PDF of N(z, 1). Using three standard deviations, the conditional PDF 
of Y is on the two-dimensional space −3 ≤ z ≤ 3, z − 3 ≤ y ≤ z + 3. This space is covered by 
twelve squares as shown in Figure 4. We find a MOP approximation for each square at the mid-
point in the square. Let ψ(z, y) denote a 12-piece, 14-degree MOP approximation of ϕ(z, y). 
Then, 

ψ(z, y) = TSeries[e−(y − z)2/2, z = −2, dz = 7, y = −5, dy = 7] if −3 ≤ z ≤ −1, −6 ≤ y < −4; 
   = TSeries[e−(y − z)2/2, z = −2, dz = 7, y = −3, dy = 7]  if −3 ≤ z ≤ −1, −4 ≤ y < −2; 
   = TSeries[e−(y − z)2/2, z = −2, dz = 7, y = −1, dy = 7]  if −3 ≤ z ≤ −1, −2 ≤ y < −0; 
   = TSeries[e−(y − z)2/2, z = −2, dz = 7, y = 1, dy = 7] if −3 ≤ z ≤ −1, 0 ≤ y ≤ 2; 
   = TSeries[e−(y − z)2/2, z = 0, dz = 7, y = −3, dy = 7] if −1 < z ≤ 1, −4 ≤ y < −2; 
   = TSeries[e−(y − z)2/2, z = 0, dz = 7, y = −1, dy = 7] if −1 < z ≤ 1, −2 ≤ y < 0; 
   = TSeries[e−(y − z)2/2, z = 0, dz = 7, y = 1, dy = 7] if −1 < z ≤ 1, 0 ≤ y < 2; 
   = TSeries[e−(y − z)2/2, z = 0, dz = 7, y = 3, dy = 7] if −1 ≤ z ≤ 1, 2 ≤ y ≤ 4; 
   = TSeries[e−(y − z)2/2, z = 2, dz = 7, y = −1, dy = 7] if 1 < z ≤ 3, −2 ≤ y < 0; 
   = TSeries[e−(y − z)2/2, z = 2, dz = 7, y = 1, dy = 7] if 1 < z ≤ 3, 0 ≤ y < 2; 
   = TSeries[e−(y − z)2/2, z = 2, dz = 7, y = 3, dy = 7] if 1 < z ≤ 3, 2 ≤ y < 4; 
   = TSeries[e−(y − z)2/2, z = 2, dz = 7, y = 5, dy = 7] if 1 ≤ z ≤ 3, 4 ≤ y ≤ 6; 
  = 0,  otherwise (2.7) 
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Figure 4. The region over which a MOP approximation of ϕ(z, y) is computed. 

 

 In (2.7), we are using the two-dimensional Taylor series approximation of ϕ(z, y). Notice that 
for any function f(x, y), the two dimensional Taylor series expansion of f at the point (a, b), 
TSeries[f(x, y), x = a, dx, y = b, dy] can be written as a product of two one-dimensional Taylor 
series expansions as follows: 

 TSeries[f(x, b), x = a, dx] TSeries[f(a, y), y = b, dy]. 

Thus, the two-dimensional Taylor series expansion in (2.7) yields a two-dimensional MOP 
function by definition in (2.2). 
 Let ψu(z, y) denote the un-normalized MOP approximation of the PDF of Y|z. Since h(z) = 
∫ ψu(z, y) dy is a function of z, we cannot normalize the MOP approximation in the usual way 
since (1/h(z)) ψu(z, y) may not be a MOP function. However, we can partially normalize it as 
follows. Let ϕ6p(z) described in (2.4) denote the (normalized) 6-piece, 3-degree MOP 
approximation of the PDF of N(0, 1) on (−3, 3). Then ϕ6p(z) ψu(z, y) represents the un-
normalized joint PDF of (Z, Y). We compute the normalization constant 
c = ∫∫ ϕ6p(z) ψu(z, y) dy dz, and ψ(z, y) = c−1 ψu(z, y) represents the partially normalized PDF of 
Y|z in (2.7). 
 As a first check on the quality of the MOP approximation of Y|z, we computed the MOP 
approximation of the marginal distribution of Y as follows: ψ′(y) = ∫ ϕ6p(z) ψ(z, y) dz. ψ′(y) is 
computed as an 8-piece, 7-degree MOP function. The exact marginal of Y is N(0, 2). A plot of 
ψ′(y) overlaid on the PDF of N(0, 2) is shown in Figure 5. Also, ∫ ψ′(y) dy = 1, the mean of ψ′ = 
0, and the variance of ψ′ ≈ 1.970. 
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Figure 5. The graph of ψ′ (in blue) overlaid on the PDF of N(0, 2) (in red). 
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 As a second check on the quality of the MOP approximation of the PDF of N(z, 1), consider 
the Bayesian network as shown in Figure 6 that includes W with a deterministic conditional W = 
Z + Y. 

Figure 6. A Bayesian network with a sum deterministic function 

 

 Suppose we use ϕ6p(z) as a MOP approximation for the PDF of Z, and ψ(z, y) as a MOP 
approximation of the conditional PDF of Y. The marginal distribution of W is given by the 
convolution formula:  

 ω(w) = ∫ ϕ6p(z) ψ(z, w − z) dz (2.8) 

 Notice that ω(w) is a MOP function. The integration in (2.8) was done in Mathematica®. ω is 
computed as a 33-piece, 18-degree MOP function. The exact joint distribution of (Z, Y) is 
bivariate normal with parameters µZ = µY = 0, σZ

2 = 1, σY
2 = 2, σZY = 1. Therefore, the exact 

marginal distribution of W is N(0, 5). A graph of ω overlaid on the graph of the PDF of N(0, 5) is 
shown in Figure 7. Also, ∫ ω(w) dw = 1, E(ω) = 0, and V(ω) ≈ 4.892. 
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Figure 7. The graph of ω (in blue) overlaid on the graph of the PDF of N(0, 5) 
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 As a third check on the quality of the MOP approx. of the PDF of N(z, 1), suppose we 
observe Y = 1, and we wish to compute the posterior marginal of Z. Suppose ϕ6p(z) denotes the 
MOP approximation of the prior PDF of Z, and ψ(z, y) the conditional PDF of Y given z. The un-
normalized posterior marginal of Z is given by ϕ6p(z) ψ(z, 1), and the normalized posterior 
marginal of Z is given by 

 ζ(z) = c−1 ϕ6p(z) ψ(z, 1), where c = ∫ ϕ6p(z) ψ(z, 1) dz. (2.9) 

 The exact posterior marginal of Z is N(½, ½). A plot of the function ζ(z) overlaid on the exact 
PDF of N(½, ½) is shown in Figure 8. E(ζ) ≈ 0.4999, and V(ζ) ≈ 0.4992. 
 Based on the results of the three checks described above, we conclude that the partial 
normalization of the MOP approximation of Y given z does not introduce any problems. In the 
first two checks, the results are exactly normalized as a result of partial normalization. In the 
third check, since we have to normalize the posterior marginal in light of the observation, the 
partial normalization is sufficient. 
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Figure 8. A plot of ζ(z) (in blue) overlaid on the exact PDF of N(½, ½) (in red) 
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 As described for the normal distribution, one can extend the MOP approximation of N(z, 1) 
to an arbitrary CLG distribution W|x ~ N(ax + b, d2) in two dimensions. Suppose, for example, 
we wish to have the MOP approximation of PDF of W|x ~ N(ax + b, d2), where X ~ N(µ, σ2) and 
µ, σ > 0, a, b, and d > 0 are some specified constants . Let ψ(z, y) denote the MOP 
approximation of PDF of Y|z ~ N(z, 1), where Z ~ N(0, 1). Suppose X = σZ + µ, and 
W|x = d(Y|z) + (ax + b − (dx/σ)) + dµ/σ). First, notice that both are linear transformations. 
Second, since Z ~ N(0, 1), X ~ N(µ, σ2). Third, Y|z = Y|(x − µ)/σ ~ N((x − µ)/σ, 1). Therefore, 
W|x = d(Y|z) + (ax + b − dx/σ + dµ/σ) ~ N(ax + b, d2). Finally, a MOP approximation of the PDF 
of W|x is given by: 

 ω(x, w) = 
  

1
d
!

x " µ
#

,
w " (ax + b " dx / # + dµ / #)

d
$
%&

'
()

 (2.10) 

3 The Extended Shenoy-Shafer Architecture 

In this section, we sketch the extended Shenoy-Shafer architecture [Shenoy and West 2009a] for 
representing and solving hybrid BNs with deterministic variables. The Shenoy-Shafer 
architecture [Shenoy and Shafer 1990] was initially proposed for computing marginals in 
discrete Bayesian networks. It was extended by Moral et al. [2001] to include continuous 
variables for propagation of mixtures of truncated exponentials. Cobb and Shenoy [2005a] 
extended it further to include linear deterministic variables. Cinicioglu and Shenoy [2009] 
extended it further to include linear and non-linear deterministic functions to define arc reversals. 
They propose the use of Dirac delta functions for representing conditionals of deterministic 
functions. Finally, Shenoy and West [2009a] extended it further to include mixed potentials to 
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compute marginals in Bayesian networks with differentiable deterministic functions. Since an 
architecture to propagate the MOP potentials is essential, we will sketch it here. Most of the 
material in this section is taken from Shenoy and West [2009a]. 

 Variables and States. We are concerned with a finite set V of variables. Each variable X ∈ V 
is associated with a set ΩX of its possible states. If ΩX is a finite set or countably infinite, we say 
X is discrete, otherwise X is continuous. We will assume that the state space of continuous 
variables is the set of real numbers (or some subset of it), and that the state space of discrete 
variables is a set of symbols (not necessarily real numbers). If r ⊆ V, r ≠ ∅, then Ωr = 
×{ΩX | X ∈ r}. If r = ∅, we will adopt the convention that Ω∅ = {♦}. 
 In a BN, each variable has a conditional distribution function for each state of its parents. A 
conditional distribution function associated with a continuous variable is said to be deterministic 
if the variances (for each state of its parents) are all zeros. For simplicity, henceforth, in the 
context of a BN representation, we will refer to continuous variables with non-deterministic 
conditionals as continuous, and continuous variables with deterministic conditionals as 
deterministic. In a BN, discrete variables are denoted by rectangular-shaped nodes, continuous 
by oval-shaped nodes, and deterministic variables by oval-shaped nodes with a double border. 

 Projection of States. If x ∈ Ωr, y ∈ Ωs, and r∩s = ∅, then (x, y) ∈ Ωr∪s. Thus, (x, ♦) = x. 
Suppose x ∈ Ωr, and suppose s ⊆ r. Then the projection of x to s, denoted by x↓s, is the state of s 
obtained from x by dropping states of r\s. Thus, (w, x, y, z)↓{W, X} = (w, x), where w ∈ ΩW, and 
x ∈ ΩX. If s = r, then x↓s = x. If s = ∅, then x↓s = ♦. 

 Discrete Potentials. In a BN, the conditional probability functions associated with the 
variables are represented by functions called potentials. If A is discrete, it is associated with 
conditional probability mass functions, one for each state of its parents. The conditional 
probability mass functions are represented by functions called discrete potentials.  
 Suppose r ⊆ V is such that it contains a discrete variable. A discrete potential α for r is a 
function α: Ωr → [0, 1]. The values of discrete potentials are probabilities. 
 Although the domain of the function α is Ωr, for simplicity, we will refer to r as the domain 
of α. Thus, the domain of a potential representing the conditional probability function associated 
with some variable X in a BN is always the set {X}∪pa(X), where pa(X) denotes the set of 
parents of X in the BN graph. 
 Notice that a discrete potential can have continuous variables in its domain, but if so, it has to 
include a discrete variable, and its values are in units of probability. For example, if A is a 
discrete variable with two states a1 and a2, the values of a discrete potential for A, α(a1) = ½ and 
α(a2) = ½, are in units of probability. 
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 Density Potentials. If Z is continuous, then it is usually associated with a density potential. 
Suppose r ⊆ V is such that it contains a continuous variable. A density potential ζ for r is a 
function ζ: Ωr → R+, where R+ is the set of non-negative real numbers. The values of density 
potentials are probability densities. 
 Notice that a density potential can have discrete variables in its domain, but if so, it has to 
include a continuous variable, and its values are in units of density. For example, if Z is a 
continuous variable with the standard normal distribution, then the values of a continuous 
potential for Z, ζ(z) = (1/ 2! )e−z2/2, are in units of density. 

 Dirac Delta Functions. Deterministic variables have conditional distributions containing 
equations. We will represent such functions by Dirac potentials based on the Dirac delta function 
δ. 
 δ: R → R+ is called a Dirac delta function if δ(x) = 0 if x ≠ 0, and ∫ δ(x) dx = 1. δ is not a 
proper function since the value of the function at 0 doesn’t exist (i.e., is not finite). It can be 
regarded as a limit of a certain sequence of functions (such as, e.g., the Gaussian density function 
with mean 0 and variance σ2 in the limit as σ → 0). However, it can be used as if it were a 
proper function for practically all our purposes without getting incorrect results. It was first 
defined by Dirac [1927]. 
 As defined above, the value δ(0) is undefined, i.e., ∞, when considered as probability 
density. We argue that we can interpret the value δ(0) as probability 1. Consider the normal PDF 
with mean 0 and variance σ2. Its moment generating function (MGF) is M(t) = eσ2t. In the limit 
as σ → 0, M(t) = 1. Now, M(t) = 1 is the MGF of the distribution X = 0 with probability 1. 
Therefore, we can interpret the value δ(0) (in units of density) as probability 1 at the location 
x = 0. 
 Some basic properties of the Dirac delta function are as follows [Dirac 1927, Dirac 1958, 
Hoskins 1979, Kanwal 1998, Saichev and Woyczynski 1997, Khuri 2004]. 

1. If f(x) is any function that is continuous in the neighborhood of a, then ∫ f(x) δ(x – a) dx = f(a). 

2. ∫ δ(x − h(u, v)) δ(y − g(v, w, x))  dx = δ(y − g(v,  w,  h(u,  v))). 

3. If g(x) has real (non-complex) zeros at a1, …, an, and is differentiable at these points, and 
g′(ai) ≠ 0 for i = 1, …, n, then δ(g(x)) = Σi δ(x − ai)/|g′(ai)|. 

4. Suppose continuous variable X has PDF fX(x) and Y = g(X). Then Y has PDF fY(y) = 
∫ fX(x) δ(y − g(x)) dx. 

 A more extensive list of properties of the Dirac delta function that is relevant for uncertain 
reasoning can be found in [Cinicioglu and Shenoy 2009]. 
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 Dirac Potentials. Suppose t = r∪s is a set of variables containing some discrete variables r 
and some continuous variables s. We assume s ≠ ∅. A Dirac potential ξ for t is a function 
ξ: Ωt → R+ such that ξ(r, s) is of the form: 

 ξ(r, s) = Σ{pr,i δ(z − gr,i(s↓(s\{Z}))) | r ∈ Ωr, and i = 1, …, nr}, (3.1) 

where r ∈ Ωr, s ∈ Ωs, Z ∈ s is a continuous or deterministic variable, z ∈ ΩZ, δ(z − gr,i(s↓(s\{Z}))) 
are Dirac delta functions, pr,i are probabilities for all i = 1, …, nr, and nr is a positive integer. 
Here, we are assuming that continuous or deterministic variable Z is a weighted sum of 
deterministic functions gr,i(s↓(s\{Z})) of the other continuous variables in s, with probability 
weights pr,i, and that the nature of the deterministic functions and weights may depend on the 
state r of the discrete variables in r, or on some latent index i. 
 Suppose Y is a deterministic variable with continuous parent X, and suppose that the 
deterministic relationship is Y = X2. This conditional distribution is represented by the Dirac 
potential δ(y − x2) for {X, Y}. Here r = ∅, and n♦ = 1, in the definition in (3.1). 
 A second example of a Dirac potential for {A, X} where A is discrete with states a and na, 
and X is continuous is as follows. ξ(a, x) = (½)δ(x − 1) + (½)δ(x − 2), ξ(na, x) = (1/3)δ(x − 1) + 
(1/3)δ(x − 2) + (1/3)δ(x − 3). Here, r = {A}, na = 2, nna = 3, in the definition in (3.1). ξ can be 
interpreted as follows: ξ is the conditional for X given A; if A = a, then X = 1 with probability ½, 
and X = 2 with probability ½; if A = na, then X = 1 with probability 1/3, X  = 2 with probability 
1/3, and X = 3 with probability 1/3. 
 A third example of a Dirac potential for {Z, X}, where Z and X are both continuous variables 
is as follows: ξ(z, x) = (1/2)δ(x − z) + (1/2)δ(x − 1). Here, r = ∅, n♦ = 2, p1 = ½ and p2 = ½ in the 
definition in (3.1). The two probability weights correspond to some latent index (the states of a 
marginalized discrete variable). This Dirac potential can be interpreted as a conditional for X 
given {Z} as follows: Given Z = z, X = z with probability ½, and X = 1 with probability ½. 

 Continuous Potentials. Both density and Dirac potentials are special instances of a broader 
class of potentials called continuous potentials. Suppose t ⊆ V is such that it contains a 
continuous variable. Then, a continuous potential ξ for t is a function ξ: Ωt → R+. The values of 
continuous potentials are in units of density. For example, consider a continuous variable X with 
a mixed distribution: a probability of 0.5 at X = 1, and a probability density of 0.5 f(x), where f(x) 
is a PDF. This mixed distribution can be represented by a continuous potential ξ for {X} as 
follows: ξ(x) = 0.5 δ(x − 1) + 0.5 f(x). Notice that ∫ ξ(x) dx = 0.5 ∫ δ(x − 1) dx + 0.5 ∫ f(x) dx = 0.5 + 
0.5 = 1. 
 Consider the BN in Figure 9. A is discrete (with two states, a1 and a2), Z is continuous, and X 
is deterministic. Let α denote the discrete potential for {A}. Then α(a1) = 0.5, α(a2) = 0.5. Let ζ 
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denote the density potential for {Z}. Then ζ(z) = f(z). Let ξ denote the Dirac potential for 
{A, Z, X}. Then ξ(a1, z, x) = δ(x − z), and ξ(a2, z, x) = δ(x − 1). 

Figure 9. A hybrid BN with a discrete, a continuous and a deterministic variable. 

 

 Mixed Potentials. To reason with hybrid models, we need to define mixed potentials. A 
mixed potential has two parts, the first part is a discrete potential and the second part is a 
continuous potential. Formally, suppose α is a discrete potential for r. Then a mixed potential 
representation of α is µ1 = (α, ιc) for r, where ιc denotes the identity continuous potential for the 
empty set, ιc(♦) = 1. Suppose ζ is a continuous potential for s. Then, a mixed potential 
representation of ζ is µ2 = (ιd, ζ) for s, where ιd denotes the identity discrete potential for the 
empty set, ιd(♦) = 1. The difference between ιc and ιd is that the former is in unit of density, 
whereas the latter is in unit of probability. Mixed potentials can have non-vacuous discrete and 
continuous parts. Thus µ3 = (α, ζ) is a mixed potential for r∪s. Such a mixed potential would be 
the result of combining µ1 and µ2, which we will define next. The main idea behind mixed 
potentials is to represent the nature (discrete or continuous) of potentials. 

 Combination of Potentials. Suppose α is a discrete or continuous potential for some subset 
a of variables, and β is a discrete or continuous potential for some subset b. Then the 
combination of α and β, denoted by α⊗β, is the potential for a∪b obtained from α and β by 
pointwise multiplication, i.e.,  

 (α⊗β)(x) = α(x↓a) β(x↓b), for all x ∈ Ωa∪b.  (3.2) 

 If α and β are both discrete potentials, then α⊗β is a discrete potential, and if α and β are 
both continuous potentials, then α⊗β is a continuous potential. The definition of combination in 
(3.2) is valid also if α is discrete and β is continuous and vice-versa, and will be used when we 
define marginalization of mixed potentials. However, the nature of the potential α⊗β when α is 
discrete and β is continuous (or vice-versa) will not arise in the combination operation. We will 
use mixed potentials, and as we will see, a combination of mixed potentials avoids such 



Inference in hybrid Bayesian networks using mixtures of polynomials 17 

 

combinations. However, the combination defined in (3.2) will arise in the marginalization 
operation for mixed potentials, and we will describe the nature of the combination at that point. 

 Combination of Mixed Potentials. Suppose µ1 = (α1, ζ1), and µ2 = (α2, ζ2) are two mixed 
potentials with discrete parts α1 for r1 and α2 for r2, respectively, and continuous parts ζ1 for s1 
and ζ2 for s2, respectively. Then, the combination µ1⊗µ2 is a mixed potential for r1∪s1∪r2∪s2 
given by 

 µ1⊗µ2 = (α1⊗α2, ζ1⊗ζ2). (3.3) 

 Since α1⊗α2 is a discrete potential and ζ1⊗ζ2 is a continuous potential, the definition of 
combination of mixed potentials in (3.3) is consistent with the definition of mixed potentials. 
If µ1 = (α, ιc) represents the discrete potential α for r, and µ2 = (ιd, ζ) represents the continuous 
potential for s, then µ1⊗µ2 = (α, ζ) is a mixed potential for r∪s. 
 Since combination is pointwise multiplication, and multiplication is commutative, 
combination of potentials (discrete or continuous) is commutative (α⊗β = β⊗α) and associative 
((α⊗β)⊗γ = α⊗(β⊗γ)). Since the combination of mixed potentials is defined in terms of 
combination of discrete and continuous potentials, each of which is commutative and associative, 
combination of mixed potentials is also commutative and associative. 

 Marginalization of Potentials. The definition of marginalization depends on whether the 
variable being marginalized is discrete or continuous. We marginalize discrete variables by 
addition and continuous variables by integration. Integration of potentials containing Dirac delta 
functions is done using properties of Dirac delta functions. In addition, after marginalization, the 
nature of a potential could change, e.g., from continuous to discrete (if the domain of the 
marginalized potential contains only discrete variables) and from discrete to continuous (if the 
domain of the marginalized potential contains only continuous variables). We will make this 
more precise when we define marginalization of mixed potentials. 
 Suppose α is a discrete or continuous potential for a, and suppose X is a discrete variable in 
a. Then the marginal of α by deleting X, denoted by α−X, is the potential for a\{X} obtained from 
α by addition over the states of X, i.e.,  

 α−X(y) = Σ{α(x, y) | x ∈ ΩX} for all y ∈ Ωa\{X}. (3.4) 

 If X is a continuous variable in a, then the marginal of α by deleting X is obtained by 
integration over the state space of X, i.e., 

 α−X(y) = ∫ α(x, y) dx for all y ∈ Ωa\{X}. (3.5) 

 If ξ is a discrete or continuous potential for {X}∪pa(X) representing the conditional 
distribution for X in a BN, then ξ−X is an identity potential for pa(A), i.e., a potential whose 
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values are all ones. The nature of this potential (discrete or continuous) will be described when 
we discuss marginalization of mixed potentials. 
 If we marginalize a discrete or continuous potential by deleting two (or more) variables from 
its domain, then the order in which the variables are deleted does not matter, i.e., (α−A)−B = 
(α−B)−A = α−{A, B}. 
 If α is a discrete or continuous potential for a, β is a discrete or continuous potential for b, 
A ∈ a, and A ∉ b, then (α⊗β)−A = α−A⊗β. This is a key property of combination and 
marginalization that allows local computation [Shenoy and Shafer 1990]. We will refer to this 
property as local computation. 

 Marginalization of Mixed Potentials. Mixed potentials allow us to represent the nature of 
potentials, and marginalization of mixed potentials allows us to represent the nature of the 
marginal. Suppose µ = (α, ζ) is a mixed potential for r∪s with discrete part α for r, and 
continuous part ζ for s. Let C denote the set of continuous variables, and let D denote the set of 
discrete variables. The marginal of µ by deleting X ∈ r∪s, denoted by µ−X, is defined as follows. 

 ⎧(α−X, ζ) if X ∈ r, X ∉ s, and r\{X} ⊄ C; (3.6) 
 ⎪(ιd, α−X⊗ζ) if X ∈ r, X ∉ s, and r\{X} ⊆ C; (3.7) 
 ⎪(α, ζ−X) if X ∉ r, X ∈ s, and s\{X} ⊄ D; (3.8) 
µ−X = ⎨(α⊗ζ−X, ιc) if X ∉ r, X ∈ s, and s\{X} ⊆ D; (3.9) 
 ⎪((α⊗ζ)−X, ιc) if X ∈ r, X ∈ s, and (r∪s)\{X} ⊆ D; (3.10) 
 ⎩ (ιd, (α⊗ζ)−X) if X ∈ r, X ∈ s, and (r∪s)\{X} ⊄ D. (3.11) 

 Some comments about the definition of marginalization of mixed potentials are as follows. 
First, if the variable being deleted belongs only to one part (discrete or continuous, as in cases 
3.6−3.9), then the local computation property allow us to delete the variable from that part only 
leaving the other part unchanged. If the variable being deleted belongs to both parts (as in cases 
3.10–3.11), then we first need to combine the two parts before deleting the variable. Second, 
when we have only continuous variables left in a discrete potential after marginalization, we 
move the potential to the continuous part (3.7) and when we only have discrete variables left, we 
move the potential to the discrete part (3.9), otherwise we don’t change the nature of the 
marginalized potentials (3.6 and 3.8). In cases 3.10 and 3.11, when we have to combine the 
discrete and continuous potentials before marginalizing X, if only discrete variables are left, then 
we have to classify it as a discrete potential (3.10), and if we have only continuous variables left, 
then we have to classify it as a continuous potential (3.11). However, if it has discrete and 
continuous variables, then it is classified as continuous since the product of probability and 
density is in units of density. 
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 This completes the sketch of the extended Shenoy-Shafer architecture. Shenoy and West 
[2009a] solve exactly an extended version of the crop problem [Murphy 1999, Lerner 2002] that 
has been extended further to include deterministic variables with non-linear functions. 

4 Some Examples 

In this section, we describe three small examples to demonstrate the feasibility of using MOP 
approximations in hybrid BN with deterministic variables. The examples are chosen so that the 
exact answers are known. This allows us to check how close the MOP approximations are to the 
exact answers. 
 In some of these examples, the use of MTE approximations is not possible. Cobb and Shenoy 
[2005b] propose approximating non-linear deterministic functions by piecewise linear 
deterministic functions, and then using MTEs. However, they do not report the extent of the 
errors introduced by using piecewise linear functions as approximations of non-linear 
deterministic functions. 

4.1 Example 1: A Quotient Deterministic Function 

Consider a BN as shown in Figure 10. X and Y are independent with χ2(5) and χ2(15) 
distributions, respectively, and W = 3X/Y. We know from probability theory that W has the F-
distribution with 5 and 15 numerator and denominator degrees of freedom, respectively, which 
we denote by F(5, 15). 

Figure 10. A BN with a quotient deterministic function. 

 

 In Section 2, we have described a 4-piece, 3-degree MOP approximation of the PDF of 
χ2(15) on the interval (4, 33), which is denoted by ψ(y). We find a MOP approximation of χ2(5) 
in a similar manner. The mode of χ2(5) is 3 and ∫0.5

18
 χ5(x) dx ≈ 0.99. Let ξ(x) denote a 3-piece, 

4-degree MOP approximation of χ2(5) on the interval (0.5, 18) as follows. 
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ξ(x) = TSeries[χ5(x), x = 7/4, d = 3] if 1/2 < x ≤ 3, 
  = TSeries[χ5(x), x = 17/4, d = 3] if 3 < x ≤ 11/2,  
  = TSeries[χ5(x), x = 47/4, d = 4] if 11/2 < x < 18, and 
  = 0 otherwise,  (4.1) 

where χ5(x) denotes the PDF of χ2(5). The mean of ξ(x) is ≈ 5.01 (compared to 5 for χ5(x)) and 
the variance is ≈ 9.19 (compared to 10 for χ5(x)). 
 Let ω(x, y, w) = δ(w − 3x/y) denote the Dirac potential associated with W. To find the 
marginal for W, first we delete X, and then Y. To delete X, we first combine ξ and ω, and then 
marginalize X from the combination.  

(ξ⊗ω)−X(y, w) = ∫ ξ(x) δ(w −3x/y) dx = (|y|/3) ∫ ξ(x) δ(x − wy/3) dx = (|y|/3) ξ(wy/3) 

 Next, we delete Y by combining (ξ⊗ω)−X and ψ, and then marginalizing Y. The result, 
denoted by ω′ is the marginal PDF of W. 

ω′(w) = ((ξ⊗ω)−X⊗ψ)−Y(w) = ∫0
∞

 (y/3) ξ(wy/3) ψ(y) dy (4.2) 

Notice that since ψ(y), ξ(wy/3), and y/3 are MOP functions that are closed under integration, 
ω′(w) is a MOP function. 
 ω′ was computed as a 29-piece, 9-degree polynomial in Mathematica®. A graph of ω′ 
overlaid on the PDF of the F(5, 15) distribution is shown in Figure 11. Notice how well the MOP 
approximation tracks the exact PDF. The mean of ω′ is ≈ 1.150 (compared to 15/13 ≈ 1.154 for 
F(5, 15)) and the variance of ω′ is ≈ 0.779 (compared to 1,620/1,859 ≈ 0.871 for F(5, 15)). Some 
of the error in the mean and variance is due to the truncation of the right and left tails of W. The 
smallest value of W in the MOP approximation is 3(0.5)/33 = 0.045, and the largest is 3(18)/4 = 
13.5. If we restrict the F(5,15) distribution to (0.045, 13.5), and normalize it so that it is a PDF, 
then its mean is 1.155, and its variance is 0.861. 

Figure 11. The PDF ω′ (in red) overlaid on the PDF of F(5, 15) (in blue). 
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4.2 Example 2: The Max Deterministic Function 

Consider a BN as shown in Figure 12. X and Y are continuous variables and W is deterministic 
with a non-differentiable function of X and Y, W = Max{X, Y}. 

Figure 12. A BN with a max deterministic function 

 

 The conditional associated with W is represented by the Dirac potential ω(x, y, w) = 
δ(w − Max{x, y}). To compute the marginal PDF of W, we need to evaluate the integral 

 fW(w) = ∫ fX(x) (∫ fY(y) δ(w − Max{x, y}) dy) dx (4.3) 

where fW(w), fX(x), and fY(y) are the marginal PDF of W, X, and Y, respectively. Since the 
deterministic function is not differentiable, the integrals in (4.3) cannot be evaluated as written. 
 One solution to finding the marginal PDF of W is to use theory of order statistics. Let FW(w), 
FX(x), and FY(y) denote the marginal cumulative distribution functions (CDF) of W, X, and Y, 
respectively. Then: 

 FW(w) = P(W ≤ w) = P(X ≤ w, Y ≤ w) = FX(w) FY(w). (4.4) 

Differentiating both sides of the equation with respect to w, we have 

 fW(w) = fX(w) FY(w) + FX(w) fY(w) (4.5) 

 In our example, X and Y have normal PDF, which does not have a closed form CDF. 
However, using MOP approximations of the normal PDF, we can easily compute a closed form 
expression for the CDF, which will remain MOP functions. Then, using (4.5), we will have a 
closed-form MOP approximation for the PDF of W. Assuming we start with the 8-piece, 4-
degree MOP approximation ϕ8p of N(0, 1) on the interval (−4, 4) as described in (2.5), we can 
find a MOP approximation of the PDF of N(5, 0.252) and N(5.25, 1) as discussed in Section 2 as 
follows. 

 ξ(x) = 4 ϕ8p(4(x − 5)), 
 ψ(y) = ϕ8p(y – 5.25) 



Prakash P. Shenoy and James C. West  22 

 Next we find the MOP approximations of the CDF of X and Y, and then the MOP 
approximation of the PDF of W using (4.5). A graph of the MOP approximation of fW(w) is 
shown in Figure 13. 

Figure 13. A graph of the MOP approximation of the PDF of W. 
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 The mean and variance of the MOP approximation of fW are computed as 5.5484 and 0.4574. 
Clark [1961] provides formulae for exact computation of the mean and variance of the max of 
two normals as follows: 

 E(W) = E(X) FZ(b) + E(Y) FZ(−b) + a fZ(b), 
  E(W2) = (E(X)2 + V(X)) FZ(b) + (E(Y)2 + V(Y)) FZ(−b) + (E(X) + E(Y)) a fZ(b), where 

 a2 = V(X) + V(Y) − 2C(X, Y), 
 b = (E(X) − E(Y))/a, and fZ and FZ are the PDF and CDF of N(0, 1), respectively. 

 In our example, E(X) = 5, E(Y) = 5.25, V(X) = 0.252, V(Y) = 1, C(X, Y) = 0. Thus, 
E(W) ≈ 5.5483, and V(W) ≈ 0.4576. The mean and variance of the MOP approximation of W are 
accurate to three decimal places. Unfortunately, the reasoning behind this computation of the 
marginal of W is not included in inference in Bayesian networks. 
 Another solution to computing the marginal of W using Bayesian network inference is to 
convert the Max function to a differentiable function as follows. Max{X, Y} = X if X ≥ Y, and = Y 
if X < Y. We include a discrete variable A with two states, a and na, where a indicates that X ≥ Y, 
and make it a parent of W. The revised Bayesian network is shown in Figure 14. 
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Figure 14. The revised Bayesian network for the max deterministic function 

 

 Starting with the Bayesian network in Figure 14, the marginal of W can be computed using 
the extended Shenoy-Shafer architecture described in Section 3. We start with mixed potentials 
as follows. 

µX(x) = (1, ξ(x)); (4.6) 
µY(y) = (1, ψ(y));  (4.7) 
µA(a, x, y) = (H(x − y), 1), µA(na, x, y) = (1 − H(x − y), 1); and (4.8) 
µW(a, x, y, w) = (1, δ(w − x)), µW(na, x, y, w) = (1, δ(w − y)). (4.9) 

In (4.8), H(.) is the Heaviside function such that H(x) = 1 if x ≥ 0, and = 0 otherwise. The 
Heaviside function is a MOP function. 
 To find the marginal for W, we sequentially delete X, Y, and A. To delete X, first we combine 
µX, µA, and µW, and then marginalize X from the combination. 

(µX⊗µA⊗µW)(a, x, y, w) = (H(x − y), ξ(x) δ(w − x)),  
(µX⊗µA⊗µW)(na, x, y, w) = (1 − H(x − y), ξ(x) δ(w − y)); 
(µX⊗µA⊗µW)−X(a, y, w) = (1, ∫ H(x − y) ξ(x) δ(w − x) dx) = (1, H(w − y) ξ(w)), 
(µX⊗µA⊗µW)−X(na, y, w) = (1, ∫ (1 − H(x − y)) ξ(x) δ(w − y) dx)  

 = (1, δ(w − y) ∫ (1 − H(x − y)) ξ(x) dx) = (1, δ(w − y) θ(y)), where  
 θ(y) = ∫ (1 − H(x − y)) ξ(x) dx. 

 Next, we delete Y. To do so, we combine (µX⊗µA⊗µW)−X and µY, and then marginalize Y. 

((µX⊗µA⊗µW)−X⊗µY)(a, y, w) = (1, H(w − y) ξ(w) ψ(y)), 
((µX⊗µA⊗µW)−X⊗µY)(na, y, w) = (1, δ(w − y) θ(y) ψ(y)); 
((µX⊗µA⊗µW)−X⊗µY)−Y(a, w) = (1, ξ(w) ∫ H(w − y) ψ(y) dy) = (1, ξ(w) ρ(w)), where 

ρ(w) = ∫ H(w − y) ψ(y) dy, 
((µX⊗µA⊗µW)−X⊗µY)−Y(na, w) = (1, θ(w) ψ(w)),  

 Finally, we delete A by marginalizing A out of ((µX⊗µA⊗µW)−X⊗µY)−Y. 
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(((µX⊗µA⊗µW)−X⊗µY)−Y)−A(w) = (1, ξ(w) ρ(w) + θ(w) ψ(w)) = (1, ω(w)), where  
ω(w) = ξ(w) ρ(w) + θ(w) ψ(w). 

 ω(w) is a MOP approximation of fW(w). Notice that 

 ρ(w) = ∫ H(w − y) ψ(y) dy = P(Y ≤ w) = FY(w), and  
 θ(w) = ∫ (1 − H(x − w)) ξ(x) dx = 1 − P(X > w) = FX(w), 

and therefore, ω(w) = ξ(w) ρ(w) + θ(w) ψ(w) is a MOP approximation of fX(w) FY(w) + 
FX(w) fY(w). We get exactly the same results as those obtained by order statistics, but using 
Bayesian network inference. 

4.3 Example 3: The Product Deterministic Function 

The main point of this example is to demonstrate that not all deterministic functions can be 
handled by MOP approximations. Consider a BN as shown in Figure 15. 

Figure 15. A BN containing a deterministic variable with the product function. 

 

 We approximate the PDF of X and Y by MOP approximations as follows. 

  ξ(x) = 2 ϕ6p(2(x − 5)); 
  ψ(y) = (1/4) ϕ6p((y − 15)/4), 

where ϕ6p(z) is the 6-piece, 3-degree MOP approximation of the PDF of N(0, 1) on the interval 
(−3, 3) described in (2.4). Notice that ξ(x) and ψ(y) are piecewise functions that are non-zero on 
the intervals (3.5, 6.5) and (3, 27), respectively. The deterministic conditional of W is represented 
by the Dirac potential ω(x, y, w) = δ(w − x y). To find the marginal distribution of W, first we 
marginalize X, resulting in the potential 
  (ξ⊗ω)−X(w, y) = ∫ ξ(x) δ(w − x y) dx = (1/|y|) ∫ ξ(x) δ(x − w/y) dx = (1/|y|) ξ(w/y). 
 Next we marginalize Y. This results in the potential ω′ for W as follows. 

 ω′(w) = ∫ (1/|y|) ξ(w/y) ψ(y) dy (4.10) 

 Notice that the integrand (1/y) ξ(w/y) ψ(y) is not a MOP function since neither 1/|y| nor 
ξ(w/y) are MOP functions. Nevertheless, given the nature of the integrand, it is integrable.  
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The integral in (4.10) was evaluated using Mathematica®. The evaluation took 608 seconds on a 
desktop PC. The resulting function, ω′(w), is not a MOP function, but remains integrable. A 
graph of ω′(w) is shown in Figure 16. 

Figure 16. A graph of ω′(w) 
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 It is confirmed that ∫ ω′(w) dw = 1. The mean and variance of ω′ were computed as 75.0 and 
448.293, respectively. These two computations took 248 and 253 seconds, respectively. The 
exact mean of W is E(X) E(Y) = 5⋅15 = 75. We do not know the exact variance of W. Using 
Monte Carlo simulation, the variance of W is estimated to be 460.42 with a 95% confidence 
interval of (459.83, 461.02). 
 If a deterministic variable with the product function is the main variable of interest, then 
using MOP functions is viable. If it is not the main variable of interest, then using MOP 
functions is not. 
 In summary, in this section, we have described three examples of hybrid Bayesian networks 
with deterministic variables. In the first example, we have a deterministic variable with the 
quotient function. The point of this example is to demonstrate that MOP functions are closed for 
quotient deterministic functions. In the second example, we have a hybrid Bayesian network 
with a deterministic variable with a non-differentiable function, W = max{X, Y}. This 
deterministic function can be converted to a linear differentiable function by the addition of a 
discrete indicator variable that tells us whether X ≥ Y or X < Y. This allows us to use MOPs for 
inference. In the third example, we have a hybrid Bayesian network with a deterministic variable 
W = X⋅Y. MOPs are not closed under the transformations needed to find the marginal for W. 
However, even though the marginal for W is not a MOP, it remains integrable. Thus, if W is the 
variable of interest, then we can use MOPs for finding the marginal of W. If W is just an 
intermediate variable that is a parent of other variables of interest, then since the marginal of W is 
not a MOP, continuing with a non-MOP function may not be viable. 
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5 Summary and Discussion 

The biggest problem associated with inference in hybrid BNs is the integration involved in 
marginalization of continuous variables. As a remedy, we have proposed MOP approximations 
for PDFs in the same spirit as MTE approximations [Moral et al. 2001]. Like MTE functions, 
MOP functions are easy to integrate, and are closed under combination and marginalization. This 
allows propagation of MOP potentials using the extended Shenoy-Shafer architecture [Shenoy 
and West 2009a]. 
 MOP approximations have several advantages over MTE approximations of PDFs. First, 
they are easy to find using the Taylor series expansion of differentiable functions. Second, 
finding MOP approximations of multi-dimensional conditional PDFs is also relatively 
straightforward using the multi-dimensional Taylor series expansion. Third, MOP 
approximations are closed for a larger family of deterministic functions including the quotient 
functions. Beyond these observations, a formal empirical comparison of MOP vs. MTE 
approximations is an issue that needs further study. 
 Some issues associated with MOP approximations that need to be investigated are as follows. 
There is a tradeoff between the number of pieces and the degree of the polynomial. More pieces 
mean smaller intervals and consequently smaller degrees. Assuming the goal is to find marginals 
most efficiently, what is the optimal # pieces/degrees? 
 Another challenge is to describe the effect of pieces/terms on the errors in the moments of 
marginals. It appears that most of the errors in the moments are caused by truncating the domain 
of variables to some finite intervals. Thus, it may be possible to decide on what intervals should 
be used if we wish to compute marginals within some prescribed error bounds for the moments 
of the marginal of variable of interest. 
 High degree MOP approximations lead to very small coefficients that need to be kept in 
rational form. This may decrease the efficiency of computation, and may limit the size of BN 
models that can be solved. One solution here is to use more pieces, which lowers the degrees of 
the MOP approximations. 
 MOP approximations are not closed for many classes of deterministic functions such as 
products and exponentiation. If we can expand the class of MOP functions to include positive 
and negative rational exponents and maintain the properties of MOP functions —easily 
integrable, closed under combination and marginalization—then we can solve hybrid BNs with a 
larger class of deterministic functions. 
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