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Abstract

Partially consonant belief functions (pcb), studied by P. Walley, are the only
class of Dempster-Shafer belief functions that are consistent with the likeli-
hood principle of statistics. Structurally, the set of foci of a pcb is partitioned
into non-overlapping groups and within each group, foci are nested. The pcb
class includes both probability function and Zadeh’s possibility function as
special cases. This paper studies decision making under uncertainty de-
scribed by pcb. We prove a representation theorem for preference relation
over pcb lotteries to satisfy an axiomatic system that is similar in spirit to
von Neumann and Morgenstern’s axioms of the linear utility theory. The
closed-form expression of utility of a pcb lottery is a combination of linear
utility for probabilistic lottery and two-component (binary) utility for possi-
bilistic lottery. In our model, the uncertainty information, risk attitude and
ambiguity attitude are treated separately. A tractable technique to extract
ambiguity attitude from a decision maker behavior is also discussed.

1. Introduction

In recent years, Dempster-Shafer (DS) belief function theory [3, 21, 23, 28]
has drawn an increasing interest in the artificial intelligence and statistics
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community. The main appeal of the DS theory is its ability to faithfully
express a wider class of uncertainty such as the notion of ambiguity that is
not expressible by standard probability. Another advantage of DS theory,
as its proponents argue, is the close link to evidence, which is the objective
source of uncertainty.

The statistical inference problem is an important background for belief
function theory. Dempster [3] and Shafer [22] have demonstrated how belief
function theory generalizes Bayesian statistical inference. This generalization
allows prior knowledge as well as conditional models to be described by belief
functions rather than by probability functions.

The inclusion of Bayesian inference as a special case also gives rise to
an opportunity for checking the validity of belief function theory against a
number of fundamental principles on which statistics is founded. Walley [26]
studies two functionals Q and R that represent, in terms of commonality
functions, observational and prior evidences, respectively. He finds (see The-
orem 3) that in order to be consistent with Bayes rule, observations must
be represented by special belief functions. In this class, the set of foci are
partitioned. Within each partition, foci are nested. Such belief functions are
called partially consonant or pcb for short. The partially consonant class is
rich enough to include as special cases probability functions (each singleton
is a partition) and Zadeh’s possibility functions (there is only one element in
the partition).

Initially, consonant belief functions were used by Shafer [21] to represent
statistical evidence. Later, Shafer [22] renounces the idea on the grounds
that the set of consonant belief functions is not closed under Dempster’s
rule of combination. This property is desirable because from a statistical
point of view, a series of independent observations can be viewed as a single
(compound) observation. So either Dempster’s rule is not suitable for combi-
nation of independent evidences or the consonant form is not appropriate for
representation of evidence. Shafer gives up the latter and keeps the former.
However, Walley [26], facing the same choices, comes to a different conclu-
sion. Arguing that (1) the conditions by which Dempster’s rule is consistent
with Bayes’ rule are too restrictive, and (2) Dempster’s rule is not unique in
satisfying a number of desirable properties for evidence combination, Walley
concludes that Dempster’s rule is neither suitable for combining independent
observations nor for combining prior belief with observational evidence.

One still open problem is the use of belief functions for decision making.
The main issue here is that a departure from probability also means the loss of
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Bayesian decision theory which ranks alternatives by their expected utilities
(EU). A number of proposals for decision making with belief functions have
been proposed in literature. One basic idea is to find a transformation that
converts a given belief function into a probability function and then use the
probability function for decision making [23], [2]. von Neumann-Morgenstern
(vNM) linear utility can be brought to use for belief functions, which could be
viewed as lower probabilities [14], [16]. Another approach is to use techniques
developed for more general uncertainty measure, e.g., lower prevision [27],
capacity [19, 20], which includes belief functions as a special class. We will
discuss these works in more details in Section 6.

In this paper, we propose a decision theory assuming that uncertainty is
represented by a pcb. The paper is structured as follows. The derivation
of pcb by Walley is reviewed in the next section. In section 4, after a brief
review of the vNM axioms that lead to expected utility (EU) representation
of probabilistic lotteries as well as the axioms that lead to binary qualitative
utility (QU) representation of possibilistic lotteries, we introduce an axiom
system for pcb lotteries and prove a representation theorem. We present one
example in section 5. Section 6 discusses related literature. The final section
has some concluding remarks.

For convenience, we list an incomplete inventory of notations used in the
paper: Θ is used for parameter space; U - space of decision outcomes; w -
an outcome; upper case letters at the beginning of alphabet A,B,C,E, F
denote events or subsets of parameter space; upper case letters at the end
X, Y, Z for variables; lower case letters x, y, z for their values; lower case
letters f, g for acts which also are denoted as set with {, } boundaries; L
for lottery which also use square bracket boundaries [, ]; P, p for probability;
Π, π for possibility; Pl for plausibility; m for mass function; L for lottery set;
Greek lower letters λ, ρ for the left and right components of a two-component
utility; set of such elements is denoted by Ψ; � for preference relation; Lik
for (normalized) likelihood; For the rest of this paper slash “/” does not
denote arithmetic division, it is used to separate degree of uncertainty and
associated outcome.

2. Partially Consonant Belief Functions

Walley [26] has derived pcb in the context of the statistical inference
problem. The statistical inference problem is described by a triplet of sets
(X ,Θ,P) where X is the sample space, Θ is the parameter space and P is
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the set of uncertainty measures on X indexed by parameter values in Θ. A
statistical evidence/observation/data is a value x ∈ X . The prior knowledge
about parameters may or may not exist. The objective is to make inference
about the unobserved parameter θ ∈ Θ of the data generating process.

The Bayesian theory assumes that (1) P = {Pθ|θ ∈ Θ} is the set of
probability functions on X parameterized by elements of Θ; and (2) prior
knowledge exists and is represented by a probability function on Θ. The
observational evidence and prior knowledge are then combined by Bayes rule.

The likelihood principle (LP) of statistics states that information con-
tained in an observation x is adequately captured by the likelihood function
derived from it. The likelihood of a parameter θ given an observation x is
the probability of observing x if θ is the true parameter i.e., likx(θ) = Pθ(x).
Moreover, proportional likelihood functions are equivalent (see, for example,
[1] for a detailed discussion).

Dempster [3], and later Shafer [21, 22], arguing that prior knowledge and
models can not always be adequately represented by probability, suggest
a more general representation using belief functions. For the sake of self-
containedness we repeat basic definitions and well known facts about DS
theory. A basic probability assignment (bpa) or probability mass is a function

m : 2Θ → [0, 1] (1)

such thatm(∅) = 0 and
∑

A⊆Θm(A) = 1. The valuem(A) can be interpreted
as the probability that a world in A will be the true world. A set with positive
mass is called focus. From a mass function, a number of other functions can
be defined

Bel(A)
def
=

∑

B⊆A

m(B) (2)

Pl(A)
def
=

∑

B∩A 6=∅

m(B) (3)

Q(A)
def
=

∑

A⊆B

m(B) (4)

Bel is referred to as a belief function, Pl as a plausibility function and Q as
a commonality function. It should be noted m,Bel, Pl, Q are different forms
of the same belief function since starting from any of them, the other three
can be completely recovered using Möbius transforms [21].
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Belief function theory provides well-defined framework to discuss the no-
tion of ambiguity.

Definition 1. An event A is said to be ambiguous if there exists a focus
that intersects with both a A and its complement Ā.

An ambiguous event A is characterized by a strict inequality Pl(A)+Pl(Ā) >
1 (equivalently Bel(A) + Bel(Ā) < 1). This is the case because (i) there
exists a focus B whose strictly positive mass m(B) is counted twice in both
Pl(A) and Pl(Ā) and (ii) the mass of any other focus is counted at least in
either Pl(A) or Pl(Ā). Conversely, an unambiguous event is characterized by
equation Pl(A)+Pl(Ā) = 1. If A is (un)ambiguous then so is Ā. Intuitively,
an unambiguous event and its complement separates the set of foci into two
non-overlapping groups and the plausibility of an unambiguous event can be
interpreted as probability.

The combination of independent belief functions is done via Dempster’s
rule. Suppose m1,m2 are two belief functions, their combination is another
belief function denoted by (m1 ⊕m2) defined as follows:

(m1 ⊕m2)(A) = k−1
∑

B1∩B2=A

m1(B1).m2(B2) (5)

where k is a normalization constant. Since (1−k) can be viewed as the mass
assigned to the empty set, it can be interpreted as the extent of inconsistency
between m1 and m2.

In the special case when m2 represents the observation B (m2(B) = 1),
m1 ⊕m2 is called the conditional of m1 given B (m1(·|B)). In terms of Pl,
a conditional belief function assumes a familiar form

Pl(A|B) =
Pl(A ∩ B)

Pl(B)
(6)

In the statistical inference method argued by Shafer [22], prior knowledge,
models and observation are represented in terms of belief functions. The
inference is carried by combining these belief functions using Dempster’s
rule.

Since prior probability and conditional probabilities in Bayesian model
are also belief functions, Walley asks under which conditions their combi-
nation by Dempster rule is consistent with Bayes rule. He chooses to work
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with commonality form for convenience. Specifically, Walley studies func-
tional Q that translates likelihood function which summarizes the Bayesian
model (X,Θ, P ) and an observation x into a commonality function Q, and
functional R that translates prior probability into a commonality function R.
There are a number of desirable properties that Q,R (two-place mappings)
should satisfy. Some technical assumptions are made. Θ is finite |Θ| = N.
S is the set of likelihood vectors, P is the set of prior probability vectors.
In the axioms listed below (according to Walley’s original order), τ, σ stand
for arbitrary likelihood vectors in S, ρ for any prior probability in P . Their
components are denoted by subscripts. IB is the characteristic function of
subset B ⊆ Θ.

A1 Q(·, τ) is a commonality function over Θ.

A2 Q(·, τ)⊕Q(·, σ) = Q(·, τσ) if τσ ∈ S

A3 R(·, ρ) is a commonality function over Θ.

A4 If ρjτj > 0 for some j, R(·, ρ) ⊕Q(·, τ) = R(·, τ ◦ ρ) where ◦ denotes
Bayes’ rule.

A7 Q(·, τ) = Q(·, cτ) for 0 < c < 1.

A8 Q(·,1)⊕Q(·, τ) = Q(·, τ).

A9 If τ ∈ S and τIB ∈ S then Q(A, τIB) ∝ Q(A, τ) when A ⊆ B and
Q(A, τIB) = 0 otherwise.

A1 and A3 require that any observational evidence (likelihood function) and
prior probability can be converted into belief function form. A2 requires
that two views on multiple independent observations as a compound evidence
and as the combination of individual evidence are equivalent. A4 requires
that belief function treatment is consistent with Bayesian treatment when
applicable. A7 and A8 force Q under Dempster’s rule to be consistent with
the LP. A9 imposes consistency with Bayesian conditioning. Walley has the
following theorem:

Theorem 1 (Walley 1987 [26]). Assumptions A1, A3, A4, A7, A8 and
A9 and a number of technical conditions hold if and only if there is some
λ > 0 and some partition {A1, A2, . . . As} of Θ such that for all ρ ∈ P and
τ ∈ S

R({θi}, ρ) = ρλi /
N
∑

j=1

ρλj , (7)
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Q(A, τ) = k(τ)min{τλi |θi ∈ A} when A ∈
⋃

1≤i≤s

2Ai , (8)

Q(∅, τ) = 1 and Q(A, τ) = 0 otherwise (9)

where k(τ) = (
∑s

j=1 max{τλi |θi ∈ Aj})
−1.

In addition, assumption A2 is satisfied only if s = N .

It is an interesting result. It says that to be consistent with the likelihood
principle and Bayesian updating when applicable, belief function representa-
tion must have a special form. It should be mentioned that λ in (8) can be
interpreted as the scale parameter and can be used to manipulate the weight
of evidence, if necessary. For convenience, we ignore the discounting evidence
issue and assume hereafter that λ = 1.

Our attention is on belief functions that are obtained from statistical
evidence i.e., the belief functions obtained from application of functional Q
on likelihood vectors. The reason we ignore belief functions produced by the
functional R is two fold. From a practical point of view, the prior is not
always available. From a conceptual point of view, if the prior is available
then, by Bayes theorem, (posterior) probability can be computed, therefore,
Bayesian decision theory is applicable. In this case, a decision theory for
belief functions becomes unnecessary.

It can be seen that (8, 9) of Theorem 1 imply a special arrangement of the
foci of a belief function. First, (8) and (9) jointly say that the commonality
of a set can be positive if and only if it is a subset of one of A1, A2, . . . As that
form a partition of Θ. In terms of foci, because the commonality of a focus is
positive, therefore it must be a subset of some Ai. Second, for any pair of foci
B1, B2 that are subsets of Ai, one focus must be a subset of the other in order
to satisfy (8). Let us consider the commonality values Q(B1, τ), Q(B2, τ)
and Q(B1 ∪ B2, τ). By (8), Q(B1, τ) = τj1 where τj1 = min{τk|θk ∈ B1},
Q(B2, τ) = τj2 where τj2 = min{τl|θl ∈ B2} and Q(B1 ∪ B2, τ) = τj where
τj = min{τm|θm ∈ B1 ∪ B2}. Hence, either Q(B1, τ) = Q(B1 ∪ B2, τ) or
Q(B2, τ) = Q(B1 ∪ B2, τ). From Q(B1, τ) = Q(B1 ∪ B2, τ), it follows that
B1 = B1 ∪ B2, equivalently B2 ⊂ B1. Suppose the contrary B1 6= B1 ∪ B2.
Since (i) any focus that is superset of B1 ∪ B2 is also a superset of B1 and
(ii) focus B1 is superset of itself but is not a superset of B1 ∪B2, the sum of
masses of foci that go into Q(B1, τ) is strictly larger than the sum of masses
that go into Q(B1 ∪ B2, τ) i.e., Q(B1, τ) > Q(B1 ∪ B2, τ). This contradicts
condition Q(B1, τ) = Q(B1 ∪ B2, τ). A belief function that satisfies (8) and
(9) is called a partially consonant belief function.

7



 

A1 A2 

Figure 1: A partially consonant belief function: foci are depicted by ovals.

Walley’s equations (8) and (9) characterize pcb in terms of commonality
function. In the subsequent exposition, the mass and plausibility forms of
belief functions are used instead of the commonality form. For reference
convenience, we reformulate the definition of pcb in terms of mass function.

Definition 2. A belief function defined on Θ is called partially consonant
if its foci can be divided into groups such that (a) the foci of different groups
do not intersect and (b) the foci of the same group are nested.

The pcb concept includes as a special case the concept of consonant belief
function considered in [21] in which foci are nested, one inside another. For a
consonant belief function, its plausibility form Pl satisfies max-decomposition
property Pl(A ∪ B) = max(Pl(A), Pl(B)) for A,B ⊆ Θ. This property to-
gether with a normalization condition Pl(Θ) = 1 ensure that the plausibility
form of a consonant belief function satisfies characterizing axioms of the
possibility measure which has origin in fuzzy set theory [29] and has been
extensively studied by Dubois and Prade and others (see for example [5]).
In this paper, however, we use the term possibility function according to the
following definition.

Definition 3. Suppose a belief function has nested foci B1 ⊂ B2 ⊂ . . . Bn,
then its plausibility function Pl is called possibility function.

Note that the conditioning notion derived by Dempster’s rule applied for con-
sonant belief functions corresponds to the notion of quantitative conditioning
often described in possibility theory literature [5].

Because the satisfaction of Dempster’s rule requires evidence presented as
probability (s = N), Walley suggests that Dempster’s rule cannot be used to
combine independent observations. However, all the axioms above (including
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A2) are satisfied if Dempster’s rule is replaced by another rule (⊗) defined
as follows.

(Q1 ⊗Q2)(A)
def
=

{

kmin{Q1(θ)Q2(θ)|θ ∈ A} if Q1(A).Q2(A) > 0
0 otherwise

(10)

where k is a constant selected so that Q12 is a commonality function.
The significance of Walley’s result is that (1) it points out the incompat-

ibility between Dempster’s rule and the likelihood principle in general2, and
(2) it isolates a subclass of belief functions representing likelihood information
that is consistent with the likelihood principle and Bayesian inference (appli-
cable when prior is available). The pcb class includes probability functions
and possibility functions as special cases (s = N and s = 1 respectively). In
the intermediate case 1 < s < N , pcb has a remarkable interpretation: it
can be viewed as a model for several possibilistic variables conditioned on a
probabilistic variable.

Given the importance of this result, it is somewhat puzzling that pcb has
not received the attention it deserves. This situation could be explained by
the fact that Walley himself seems to dismiss pcb usefulness on the ground
that the sure-loss or “Dutch book” argument can still be made against the use
of pcb in decision making. To reach this conclusion, Walley assumes that
functions Bel and Pl of a pcb are interpreted as lower and upper betting
rates. In the subsequent sections, we develop a decision theory with pcb
which voids this Dutch book argument. Specifically, we argue that Walley’s
interpretation of plausibility as a upper betting rate is not justified for DS
functions that come from statistical evidence. The difference between our
treatment of belief functions and Walley’s betting rate mirrors the difference
between the notions of statistical likelihood and probability. It is obvious that
given prior probability, statistical likelihood and probability are functionally
dependent via Bayes formula. However, in the absence of prior, likelihood
can not be treated as probability/betting rate.

2It is necessary to note that for conditioning, the most important special case of evidence
combination (when new evidence is an observation B i.e., Q2(θ) = 1 if θ ∈ B andQ2(θ) = 0
otherwise), Dempster’s rule and Walley’s rule are equivalent (Q1 ⊕ Q2 = Q1 ⊗ Q2). For
the rest of this work, we are interested in conditioning only and therefore Dempster’s rule
is completely adequate. In other words, results in this paper are not pre-conditioned on
the rejection of Dempster’s rule.
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3. Decomposition of partially consonant belief function

In this section, we assume a pcb in the form of a plausibility function.
First we prove some useful properties of pcb.

Definition 4. Suppose {Ai}
s
i=1 is a partition of Θ. A pcb with foci Aij with

structure Ai = Ai0 ⊃ Ai1 ⊃ . . . Aiki for 1 ≤ i ≤ s. A denotes the algebra
formed from collection {A1, A2, . . . As}, and Ai - the algebra formed from the
elements of Ai.

In this definition, we make a simplifying assumption each element of Θ must
be in at least one focus.

Definition 5. (i) An event B ⊆ Θ is called possibilistic wrt a plausibility
function Pl if Pl(·|B) is a possibility function.
(ii) An event B ⊆ Θ is called maximally possibilistic if B is possibilistic and
any strict superset of B is not a possibilistic event.

Lemma 1. (a) The plausibility function of a pcb in definition 4 has the form

Pl(A) =
s

∑

i=1

max{Pl(θ) | θ ∈ Ai ∩ A} (11)

(b) A conditional pcb is again a pcb.
(c) An event B is unambiguous iff B ∈ A.
(d) B ⊆ Ai for some i iff B is possibilistic.

Proof: (a). Define K(A) = {Aij|Aij ∩ A 6= ∅} - the collection of foci that
intersect with A. By definition

Pl(A) =
∑

Aij∈K(A)

m(Aij) (12)

Pl(Ai ∩ A) =
∑

Aij∈K(Ai∩A)

m(Aij) (13)

Since {Ai}
s
i=1 is a partition, A = ∪s

i=1A∩Ai. If Aij ∩A 6= ∅ then Aij ∩ (Ai ∩
A) 6= ∅ and Aij∩(Ak∩A) = ∅ for k 6= i. In other words, if Aij intersects with
A then it intersects with (Ai∩A) only. It implies that K(A) = ∪s

i=1K(A∩Ai)
and K(A ∩ Ai) ∩K(A ∩ Ak) = ∅. From eqs. (12), (13) we have

Pl(A) =
s

∑

i=1

Pl(Ai ∩ A).
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Now consider Pl(Ai ∩ A). Since the foci inside Ai are nested, for each A
there is an innermost focus Aiℓ for some ℓ it intersects with. So Pl(Ai ∩
A) =

∑ℓ

j=0m(Aij). For θ ∈ A ∩ Aiℓ, clearly Pl(θ) =
∑ℓ

j=0 m(Aij). So,
Pl(Ai ∩ A) = Pl(θ). Since ∀θ ∈ Ai ∩ A, Pl(Ai ∩ A) ≥ Pl(θ), combine both
facts we have

Pl(Ai ∩ A) = max{Pl(θ)|θ ∈ Ai ∩ A}.

(b). By Dempster rule in eq. (5), conditioning on B creates new foci which
are Aij∩B. Clearly, if Aij have pcb structure then so do the conditional foci.
(c). Suppose B is unambiguous. This means there is no focus Aij such
that Aij ∩ B 6= ∅ and Aij ∩ B̄ 6= ∅. Equivalently, for any focus Aij either
Aij ∩ B = ∅ or Aij ∩ B̄ = ∅. This means Aij ⊆ B̄ or Aij ⊆ B. Take j = 0,
for all i either Ai = Ai0 ⊆ B̄ or Ai = Ai0 ⊆ B. Since {Ai}

s
i=1 is a partition

of Θ, B = ∪s
i=1(B ∩ Ai) = ∪{Ai|Ai ⊆ B}. If B is a union of some Ai then

no focus can intersect with both B and B̄ and hence it is unambiguous.
(d). If Pl(·|B) is a possibility function, then the foci of this conditional pcb
are nested. The conditional foci are Aij ∩ B. Suppose B ∩ Ai 6= ∅ and
B ∩Ak 6= ∅ for i 6= k. For j = 0, since Ai0 = Ai and {Ai} is a partition of Θ,
(B ∩Ai)∩ (B ∩Ak) = ∅. This contradicts the supposition, therefore B ⊆ Ai

for some i. This completes the proof.
From part (c), it follows that A is the algebra of unambiguous events

characterized by pcb i.e., restricted to A, Pl is a probability function. From
part (d) it is clear that Ai are maximally possibilistic.

Theorem 2. For the plausibility function Pl given in (11) and 1 ≤ i ≤ s

P (A)
def
= Pl(A) for A ∈ A is a probability function on A (14)

Πi(B)
def
= Pl(B|Ai) for B ∈ Ai is a possibility function on Ai (15)

Conversely, if a plausibility function Pl that satisfies (14) and (15) i.e., Pl(·)
is a probability function on A and Pl(·|Ai) are possibility functions on Ai then
it is a pcb and satisfies (11).

Proof: (⇒) Given the plausibility function in (11), we need to show that
functions P and Πi defined by (14) and (15) are probability function on
A and possibility functions on Ai. Obviously, by (14) P (A) ≥ 0 for any
A ∈ A and P (Θ) = 1. For P to be a probability, we only need to show that
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P (A ∪ A′) = P (A) + P (A′) for A,A′ ∈ A such that A ∩ A′ = ∅. By (11)

P (A ∪ A′) =
s

∑

i=1

max{Pl(θ) | θ ∈ Ai ∩ (A ∪ A′)} (16)

P (A) =
s

∑

i=1

max{Pl(θ) | θ ∈ Ai ∩ A} (17)

P (A′) =
s

∑

i=1

max{Pl(θ) | θ ∈ Ai ∩ A′} (18)

Because A and A′ are disjoint, each Ai cannot belong to both of them. If
θ ∈ Ai ∩ (A ∪ A′) then either θ ∈ Ai ∩ A (counted in (17)) or θ ∈ Ai ∩ A′

(counted in (18)) but not both. Therefore, P (A ∪ A′) = P (A) + P (A′).
Next, we need to show that Πi defined in (15) is a possibility function.

It is enough to show that Πi(Ai) = 1 and Πi(B ∪ B′) = max(Πi(B),Πi(B
′))

for B,B′ ∈ Ai. By (6)

Πi(Ai) =
Pl(Ai ∩ Ai)

Pl(Ai)
= 1 (19)

Πi(B ∪ B′) =
Pl(Ai ∩ (B ∪B′))

Pl(Ai)
=

Pl(B ∪ B′)

Pl(Ai)
(20)

The condition B,B′ ∈ Ai means B,B′ ⊆ Ai, therefore by (11)

Pl(B ∪ B′) = max{Pl(θ) | θ ∈ (B ∪ B′)} (21)

Pl(B) = max{Pl(θ) | θ ∈ B} (22)

Pl(B′) = max{Pl(θ) | θ ∈ B′} (23)

This means Πi(B ∪ B′) = max(Πi(B),Πi(B
′)).

(⇐) Suppose Pl(·) is a probability function (denoted by P ) on A and s
conditionals Pl(·|Ai) are possibility functions (denoted by Πi) on Ai, we will
show that Pl is a pcb and satisfies (11).

We use two well known facts: (1) the foci of a probability function are
singletons in its frame and (2) the foci of a possibility function are nested3.
From the fact that ∪s

i=1Ai = Θ and the sum
∑s

i=1 Pl(Ai) = 1 we conclude

3Specifically, for possibility function Πi one can stratify it domain Ai into strata
Ai1, Ai2, . . . in such a way that (1) within each stratum the possibility of any element
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that the foci of Pl are constrained within each Ai. Because if there were a
focus that intersected with at least two Ai, Aj then the mass of that focus
would be counted twice in Pl(Ai) and Pl(Aj) then the sum would be strictly
more than 1. Therefore, conditioning on Ai does not change the foci within
that set. It follows that the foci of conditional Πi are also the foci of original
Pl. Thus, Pl is a pcb and by lemma 1 satisfies (11).

Using variables to represent Θ, the decomposition looks even more ap-
pealing. One has a probabilistic variable X whose domain has size s i.e.
x1, x2, . . . , xs. Conditional on each value xi one has a possibilistic variable
Yi whose domain has size mi i.e., yi1, yi2, . . . yimi

. Then each element θ of Θ
is characterized by a pair of values (xiyik) of X and Y . For each i, partition
Ai is the set {(xiyik)|1 < k < mi}.

Usually, decomposition is not a information-preserving operation i.e., the
original whole is not recoverable from the decomposed parts. However, the
decomposition of a pcb into a probability function and s possibility functions
is information-preserving.
Example 1 Suppose there are two variablesX, Y whose domains are {x1, x2}
and {y1, y2, y3}. A pcb and its decomposition are given as follows.

focus {x1y1, x1y2, x1y3} {x1y1, x1y2} {x1y1} {x2y1, x2y2} {x2y1}

mass 0.3 0.2 0.1 0.1 0.3

Π(Y |X) y1 y2 y3 P (X)

x1 1.0 0.83 0.5 0.6

x2 1.0 0.25 0.0 0.4

4. Utilities

In this section we study decision making when information about the
uncertain states on which decision consequence depends is represented by a
partially consonant belief function. The basic object of study is the preference
relation over lotteries on the prize set that are induced by acts. Since the
pcb includes both probability and possibility functions as special cases, it
is natural to expect that the decision theory to be developed for pcb will

is the same and (2) among strata, possibilities are ordered in descending manner. Given
that stratification, the innermost focus is Ai1 and its mass is the difference between its
possibility and one of the next stratum i.e., Πi(Ai1)−Πi(Ai2). The next focus is Ai1∪Ai2

with mass Πi(Ai2)−Πi(Ai3) and so on.
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subsume the theories for probabilistic and possibilistic uncertainty. We start
by reviewing these special cases and then move to the general case.

4.1. Decision problem, acts and lotteries

A decision problem under uncertainty is a tuple (S,∆,A,U) where S is
assumed to be a finite set. ∆ is a uncertainty measure over algebra of subsets
of S. We assume that ∆ is equipped with a conditionalization operator that
for each event E ⊆ S maps ∆ into a new uncertainty measure ∆E on the
algebra of subsets of E. U is the set of prizes. For the sake of clarity, we
make the following assumption about prizes.

Assumption 1. (1) U is identified to the real unit interval [0, 1] and
(2) the value of prize is measured in the risk-adjusted utility unit.

This assumption allows us to ignore the scaling and risk attitude issues and
focus on the ambiguity. In discussion, we show how risk attitude can be
accounted in this framework. Thus, 1 is the best (most desirable) and 0 -
the worst (least desirable) prizes in U .

A is the set of acts which is defined recursively. Each prize w ∈ U is an
act (called constant act or act of depth 0) i.e. U = A0. A simple act is a
mapping of the form d : S → A0. The semantics of acts is obtained through
the gambling interpretation. Act d is a gamble that if s is the true state
of nature then d(s) is the prize. The set of simple acts is denoted by A1.
Clearly, A0 ⊂ A1 because a prize w can be identified mapping ∀s ∈ S, s 7→ w.

Another notation for an act is by a set of rules. A rule is denoted by a
hook arrow →֒ to differentiate from a mapping denoted by a straight arrow
→. d = {Ei →֒ wi|i ∈ I} where I is an index set, {Ei|i ∈ I} is a partition of
S and Ei = d−1(wi) - the event whose occurrence triggers prize wi.

An act of depth k is defined as a set of rules {Ei →֒ di|i ∈ I} where
di ∈ Ak−1 - an act of depth no more than k − 1. It is a gamble that instead
of a prize in U will deliver a ticket to play another gamble. The act set A is
defined as A∞.

Visually, an act is a rooted tree [4]. A rule Ei →֒ di corresponds to an
edge labeled with Ei from the root to a node which is the root of the tree
representing di. The leaves of the tree are prizes in U . An edge in a rooted
tree has a natural orientation which we use the convention to denote the
direction away from the root. For example, the tree in figure 2 represents
act {E1 →֒ {F1 →֒ w1, F2 →֒ w2}, E2 →֒ w3}. The reading of this example
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is that if E1 occurs then the decision maker receives a gamble (if F1 occurs
then w1 and if F2 then w2); if E2 occurs then w3. Logically, it is equivalent
to 3 rules: if E1 and F1 then w1; if E1 and F2 then w2; and if E2 then w3 i.e.
{E1 ∩ F1 →֒ w1, E1 ∩ F2 →֒ w2, E2 →֒ w3}.

In general, for a given leaf wi, suppose the labels on the path from the
root to the leaf are E

(i)
1 , E

(i)
2 , . . . E

(i)
k . The operational semantics of the rules

consisting the path reads: “if E
(i)
1 and E

(i)
2 and ... E

(i)
k occur then prize wi is

delivered” which means a rule ∩k
j=1E

(i)
j →֒ wi. Repeating the argument for

each leaf, we demonstrate the fact that every act is logically equivalent to a
simple act (of depth 1). This is referred to as the principle of equivalence.
The difference between an act of depth k and its equivalent version of depth
1 is in the order the information about the true state of nature is revealed.

Definition 6. Two acts f and g are equivalent if the final prizes they deliver
are the same no matter which state obtains i.e. f(s) = g(s) for any s ∈ S.

Example 2 In the fig. 2, S describes possible outcomes of a dice rolling
i.e. natural numbers from 1 to 6. E1 is “an odd number”, E2 is “an even
number”, F1 is “greater than 4” and F2 is “less than or equal to 4”. For the
gamble on the left, the outcome of rolling is revealed in two steps: the first
is whether the number is odd or even, the second is about the magnitude.
In the case of even number, the prize is w3 = 0, in the case of odd number,
the player gets a ticket to a gamble which resolved on the same dice roll, if
the roll is higher than 4 then player gets w1 = $1, if the number is 4 or less
then the player gets w2 = $0.5.

The gamble on the right has the rules: if the number is even then player
gets w3 = 0, if the number is 5 then w1 = $1, if the number is 1 or 3 then
player gets w2 = $0.5. It is easy to verify that no matter what the outcome
the dice rolling turns out, both gambles deliver the same prize and therefore
they are equivalent. Note that this equivalence is established before the issue
of uncertainty is considered. We insist that the equivalence will hold under
any uncertainty measure.

In a rooted tree, each node is associated with (a) an event which is the
conjunction of events on the path from the tree’s root to the node and (b) a
subtree that consists of the node itself and all the nodes down the stream.

Suppose di is a subtree of d (notation d[di]) and d′i is another tree. d[di/d
′
i]

denotes a tree obtained by replacing subtree di by d′i.
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Figure 2: Equivalent acts.

With introduction of uncertainty ∆, a rooted tree (act) gets uncertainty
annotation. Each node N is associated with a conditional measure ∆EN

(.) or
∆(.|EN) where EN is the conjunction of the events labeling the edges on the
path from the root to the node. The rationale for this requirement is that a
decision maker is moving along a tree as she learns events, at each node, she
would update her belief based on information learned so far. In the example
of the left tree in fig. 2, after being told that the dice roll is an odd number
(E1) she would move from the root (0) to node 1. At this point, she would
condition her belief on that fact.

Each edge labeled with F emanating from N is associated with ∆EN
(F ).

For example in the left tree in fig. 2, the root is associated with set S and
uncertainty ∆. Node 1 is associated with event E1 and conditional ∆E1

.
The edge leading to 1 is associated with ∆(E1), the edge from 1 to w1 with
∆E1

(F1) and so on.
Notice that the path leading to w1 on the left tree of fig. 2 is associ-

ated with ∆(E1) and ∆E1
(F1) while on the right tree, associated with w1

is ∆(E1&F1). All the measures of uncertainty considered subsequently have
“chain rule” property ∆(E1&F1) = ∆(E1).∆E1

(F1). This is another argu-
ment for the principle of equivalence.

When uncertainty ∆ is a pcb, a node is called ambiguous (unambiguous)
if the event associated with it is ambiguous (unambiguous).

Lottery is a concept closely related to acts. If in a tree representing an
act, all the events labeling edges are removed leaving only their uncertainty
labels then a lottery is obtained. For example, instead of E1 to label the
edge from the root to node 1 is ∆(E1) and in place of F1 is ∆E1

(F1) and so
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on. In other words, in a lottery, the nature of events are abstracted away.
It does not matter to the decision maker if Ei is “dice rolling outcome” or
“precipitation quantity at some location on earth” as long as the uncertainty
measured by ∆ is the same. This assumption is justified by an assumption
that uncertainty measure ∆ captures all information relevant to the decision
problem. For example, act {E1 →֒ {F1 →֒ w1, F2 →֒ w2}, E2 →֒ w3} cor-
responds to lottery [∆(E1)/[∆E1

(F1)/w1,∆E1
(F2)/w2],∆(E2)/w3]. Note the

notational difference: in a lottery square brackets ‘[’, ‘]’ are used instead of
curly brackets for boundary, and slash ‘/’ is used instead of →֒.

4.2. Linear utility for probabilistic lottery

When ∆ is a probability function on S, the lotteries are called proba-
bilistic. For example [p1/w1, p2/w2, . . . pk/wk] where

∑k

i=1 pi = 1. The set of
probabilistic lotteries is denoted by LP .

Von Neumann and Morgenstern’s utility theory (the exposition by Luce
and Raiffa [17]) considers a preference relation4 �P on LP that is assumed
to satisfy the following axioms.

P1 (Strong order on prizes) Preference �P on U is identical with ≥ (“greater
than or equal to”) relation on reals i.e., w1 �P w2 iff w1 ≥ w2. In
particular, 1 ≻P 0 and for all w ∈ U , 1 �P w and w �P 0.

P2 (Reduction of compound lotteries) Any compound lottery is indifferent
to a simple lottery with prizes in U . Moreover, the probability attached
to each prize in the simple lottery is the sum of the probabilities of the
paths leading to the prize in the compound lottery.

P3 (Continuity) Each prize w ∈ U is indifferent to a canonical lottery in-
volving just 1 and 0.

P4 (Substitutability) In any lottery, each prize can be replaced by the canon-
ical lottery that is indifferent to it.

P5 (Transitivity) �P on LP is transitive.

P6 (Monotonicity) [p/1, (1− p)/0] �P [p′/1, (1− p′)/0] iff p ≥ p′.

Note that the formulation of P1 is stronger than the corresponding version
found in [17] in the sense that it makes the �P restricted on U a strong rather
than weak order. This formulation is the consequence of our assumption that
U measures the risk-adjusted utility.

4Strict preference (≻P ) and indifference (∼P ) are defined from �P as usual.
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The first part of P2 is justified by the principle of equivalence. The second
part of P2 says that if a lottery L (a rooted tree) has k paths from the root
leading to prize w with path probabilities pi 1 ≤ i ≤ k then L is indifferent
to a simple lottery L′ that has probability associated with w: pw =

∑k

i=1 pi.
This is a result of additivity of probability.

The concept of canonical lottery is used in P3, P4 and P6. A lottery
that has the form [a1/1, a2/0] where 1 is the best and 0 is the worst prize in
U is called canonical.

Theorem 3 (von Neumann & Morgenstern [24]). �P satisfies axioms
P1− P6 iff there exists a utility function u : LP → [0, 1] such that L1 � L2

iff u(L1) ≥ u(L2). In particular, it satisfies

u([p1/w1, p2/w2, . . . , pn/wn]) =
n

∑

i=1

pi.wi. (24)

From (24), u(w) = w for all w ∈ U . This is the case because the risk attitude
has been assumed away and the utility scale is fixed to the unit interval.

4.3. Binary utility for possibilistic lottery

Following vNM approach, in [8, 11] a utility theory is developed for the
case when ∆ is a possibility function. For example, [π1/w1, π2/w2, . . . πk/wk]
is a possibilistic lottery. πi is the possibility of getting prize wi with maxi πi =
1. The set of possibilistic lotteries is denoted by LΠ. A preference relation
�Π on LΠ satisfies the following axioms.

PP1 (Strong order on prizes) Preference�Π on U is identical with≥ (“greater
than or equal to”) relation on reals i.e., w1 �Π w2 iff w1 ≥ w2. In par-
ticular, 1 ≻Π 0 and for all w ∈ U , 1 �Π w and w �Π 0.

PP2 (Reduction of compound lotteries) Any compound lottery is indifferent
to a simple lottery with prizes in U . Moreover, the possibility of a prize
in the simple lottery is the maximum of the possibilities of the paths
leading to the prize in the compound lottery.

PP3 (Continuity) Each prize w ∈ U is indifferent to a canonical possibilistic
lottery involving just 1 and 0.

PP4 (Substitutability) In any lottery, each prize can be replaced by the canon-
ical lottery that is indifferent to it.

PP5 (Transitivity) �Π on LΠ is transitive.
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Figure 3: Utility scale Ψ: left component is on horizontal axis, right - vertical.

PP6 (Monotonicity) [λ/1, ρ/0] �Π [λ′/1, ρ′/0] iff λ ≥ λ′ and ρ ≤ ρ′.

This axiom system PP has the same structure as the vNM system P except
for the replacement of probability by possibility which is not additive. In
particular, PP2 says that if lottery L has k paths from the root leading to
prize w with possibilities πi, 1 ≤ i ≤ k then L is indifferent

Definition 7 (Ordered set of two-component elements).
Let Ψ be the set of two-component (binary) elements such that each compo-
nent of an element is a real number in the unit interval and the maximum of
two components of an element is 1

Ψ
def
= {〈λ, ρ〉 |λ, ρ ∈ [0, 1],max(λ, ρ) = 1}

An order ≫ together with two operations: component-wise maximization
cmax and product are defined on Ψ as follows:

〈λ, ρ〉 ≫ 〈λ′, ρ′〉 iff λ ≥ λ′ and ρ ≤ ρ′ (25)

cmax(〈λ, ρ〉 , 〈λ′, ρ′〉)
def
= 〈max(λ, λ′),max(ρ, ρ′)〉 (26)

π. 〈λ, ρ〉
def
= 〈π.λ, π.ρ〉 for 0 ≤ π ≤ 1 (27)

Two comments are in order. First, two components of an element can be
conveniently thought of as the indices of goodness (left) and badness (right).
The more the left index the better and the less the right index the bet-
ter. The only thing unusual in this case is that the goodness and badness
are not additively complementary (if they were a single number would be
enough). Thus according to ≫ , 〈1, 0〉 is the top element while 〈0, 1〉 is the
bottom element. Second, it is not necessary cmax(〈λ, ρ〉 , 〈λ′, ρ′〉) ≫ 〈λ, ρ〉
nor cmax(〈λ, ρ〉 , 〈λ′, ρ′〉) ≫ 〈λ′, ρ′〉. Given this notation, there is a represen-
tation theorem for possibilistic lottery.
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Theorem 4 (Giang & Shenoy 2002). �Π satisfies axioms PP1−PP6 iff
there exists a utility function t : LΠ → Ψ that satisfies:

(a) Π1,Π2 ∈ LΠ, Π1 �Π Π2 iff t(Π1) ≫ t(Π2) (28)

(b) t(1) = 〈1, 0〉 ; t(0) = 〈0, 1〉 (29)

(c) t([π1/w1, π2/w2, . . . , πm/wm]) = cmax1≤i≤m{πi.t(wi)} (30)

The difference between this theorem and one by vNM is that for possibilistic
lotteries the binary utility scale Ψ and cmax are used instead of the real unit
interval and summation. The relation between the binary utility and the
scalar utility has a parallel in the relation between possibility and probability.
In possibility theory, uncertainty of an event is characterized by a pair of
necessity and possibility while the probability of an event is a single number.
Interested readers are referred to [7] for a detailed discussion.

An issue that needs clarification is the operational semantics of binary
utility. In [10, 11] we propose a framework called the likelihood gamble.
This is a betting framework but instead of using probability, a person uses
statistical likelihood information to make her bets. The rules of the game
are the following.

R1 A parameter ǫ has two possible values {ǫ1, ǫ2}. Each parameter value
corresponds to a probability distribution Pǫi(·) on a sample space X .
The gambler is told about this information.

R2 A computer selects a value for the parameter and generates an obser-
vation according to the corresponding probability distribution. Suppose
that the obtained observation is x.

R3 The observation x, but not the value of the parameter, is disclosed to
the gambler.

R4 The gambler is offered the following contract:

Payoff =

{

$1 if ǫ1 is the computer selected value
$0 if ǫ2 is the computer selected value

If w is the price that the gambler is willing to pay for the contract then we say
she is indifferent between w and possibilistic lottery [Likx(ǫ1)/1, Likx(ǫ2)/0]
where Likx(ǫi) is normalized likelihood of observing x if ǫi is selected i.e.,

Likx(ǫi) =
Pǫi(x)

maxi(Pǫi(x))
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The reason that allows us to make the connection between gambler’s choice
and her indifference is the likelihood principle. Because likelihood function
is sufficient statistic, without loss of information, in rule R3, instead of being
told about the observation, she can be told about the likelihood function
associated with it. And since proportional likelihood functions are equivalent,
instead of a likelihood function, one can use its normalized version.

A discernible reader will notice both the similarity and the distinction
between this likelihood gamble and the classic coin tossing gamble used to
assess linear utility. The main difference is that in coin tossing gamble, the
rewards depend on the states (head/tail) for which gambler knows probability
while in the likelihood gamble she knows only the likelihood of undisclosed
parameter value.

In this likelihood gamble approach, the possibility degree of an event -
the plausibility of a consonant belief function - is not treated as an upper
betting rate (probability) as suggested by Walley [27] but as the (statistical)
likelihood. Obviously, Walley’s sure-loss argument against the use of pcb has
no force with respect to likelihood gambles.

Another remark is that as it is the case with linear utility for probabilistic
lotteries, the possibilistic utility function (eq. (30)) is determined by its values
on U . The behavior of t on U reveals what we call attitude toward ambiguity.
Let us denote by tU the restriction of t on U i.e. tU : U → Ψ defined as
tU(w) 7→ t(w). tU can be viewed as a pair of functions 〈ℓ, r〉 where ℓ : U →
[0, 1] and r : U → [0, 1]. However, not all function pairs can be tU because of
constraint max(ℓ(x), r(x)) = 1. In general there is no requirement for ℓ and
r to be continuous. For example, the following is perfectly acceptable.

ℓ(x) =

{

1 if x ≥ 0.5
1.4x if x < 0.5

and r(x) =

{

1.6(1− x) if x ≥ 0.5
1 if x < 0.5

In this paper, for the sake of regularity, we make the following assumption.

Assumption 2. t, as a vector function, is continuous in both components
i.e., for component functions ℓ and r of t limx→a ℓ(x) = ℓ(a) and limx→a r(x) =
r(a) for a ∈ [0, 1].

Lemma 2. Under continuity assumption of t, t(U) = Ψ.

Proof: Suppose, on the contrary, there is 〈λ, ρ〉 such that there does not
exist any w ∈ U = [0, 1] for which t(w) = 〈λ, ρ〉. Consider two sets U1 =
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{w ∈ [0, 1]| 〈λ, ρ〉 ≫ t(w)} and U2 = {w ∈ [0, 1]| t(w) ≫ 〈λ, ρ〉}. Because
the order ≫ on Ψ is complete which is directly derived from the definition,
for any w ∈ U either w ∈ U1 or w ∈ U2 i.e. U1 ∪ U2 = U . Also U1 ∩
U2 = ∅ because if the intersection is not empty then it is equal to 〈λ, ρ〉. It
must be the case that supU1 = inf U2 because otherwise a w3 in between
would belong to neither U1 nor U2 which contradicts U1 ∪ U2 = U . Denote
w∗ = sup U1 = inf U2, let t(w∗) = 〈λ′, ρ′〉. For sequences w1i in U1 with
limi→∞ w1i = w∗ and w2i in U2 with limi→∞ w2i = w∗, because of continuity
assumption limi→∞ ℓ(w1i) = limi→∞ ℓ(w2i) = ℓ(w∗) = λ′. On the one hand,
because w1i ∈ U1, ℓ(w1i) ≤ λ so at the limit λ′ ≤ λ. On the other hand,
because w2i ∈ U2, ℓ(w2i) ≥ λ and at the limit λ′ ≥ λ. Thus, λ′ = λ. Similarly
it can be shown that ρ′ = ρ. So w∗ is the point in U with t(w∗) = 〈λ, ρ〉.
This contradicts the supposition that there does not exist any w ∈ U = [0, 1]
for which t(w) = 〈λ, ρ〉 and completes the proof.

Recall that U ⊂ LΠ because w ∈ U can be identified with lottery [1/w].
By the representation result, t(L) = t(w) for any L ∈ LΠ such that L ∼Π w.
Technically, the inverse of t is undetermined. However, abusing the notation
slightly we define a function.

Definition 8. Function t−1 : Ψ → U is defined by the condition

t−1(t(w)) 7→ w for w ∈ U . (31)

This implicit function is well defined. For any 〈λ, ρ〉 ∈ Ψ by lemma 2, there
exists w ∈ U such that t(w) = 〈λ, ρ〉 and therefore by eq. (31) t−1(〈λ, ρ〉) = w.
Moreover w that satisfies t(w) = 〈λ, ρ〉 is unique because if, on the contrary,
there were another w′ 6= w such that t(w′) = 〈λ, ρ〉. By representation
theorem, w ∼Π w′. This would violate the strong order on prizes PP1.

While t−1 is defined to satisfy the cancellation t−1(t(w)) = w. The can-
cellation tt−1 also holds. Suppose that 〈λ, ρ〉 = t(w) for some w ∈ U . Then
t−1(〈λ, ρ〉) = t−1(t(w)) = w. Applying t on both sides we have:

t(t−1(〈λ, ρ〉)) = t(w) = 〈λ, ρ〉 (32)

We use the cancellations to derive the certainty equivalence of a possibilistic
lottery. An application of t−1 on both sides of (30) yields

t−1(t([π1/w1, π2/w2, . . . , πm/wm])) = t−1(cmax1≤i≤m{πi.t(wi)}) (33)

= u for some u ∈ U (34)
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Applying t on both sides of (34) and using tt−1 cancellation, we have

t([π1/w1, π2/w2, . . . , πm/wm]) = t(u).

By Theorem 4, [π1/w1, π2/w2, . . . , πm/wm] ∼Π u. Thus, we arrive at a useful
view: u = t−1(cmax1≤i≤m{πi.t(wi)}) is the certainty equivalence or scalar
utility of [π1/w1, π2/w2, . . . , πm/wm].

Lemma 3. t−1 is strictly increasing

t−1(〈λ, ρ〉) ≥ t−1(〈λ′, ρ′〉) iff 〈λ, ρ〉) ≫ 〈λ′, ρ′〉)

Proof: For w,w′ ∈ U , t(w) ≫ t(w′) iff w �Π w′ iff w ≥ w′. The first link is
due to Theorem 4, the second is due to axiom PP1. Setting w = t−1(〈λ, ρ〉)
and w′ = t−1(〈λ′, ρ′〉) and using tt−1 cancellation we have the lemma.

4.4. Utility representation of pcb lottery

Let us now turn to the situation described by a partially consonant belief
function (∆ is a pcb and denoted by Pl). Specifically, Pl is a plausibility
function over Θ. For example, [a1/w1, a2/w2, . . . , ak/wk] denotes a pcb lot-
tery where ai = Pl(d−1(wi)) is the plausibility of an event whose occurrence
triggers prize wi. Notice that while probabilistic and possibilistic lotteries
have normalization conditions (

∑

i ai = 1 and maxi ai = 1), for a pcb lottery
a necessary condition is

∑

i ai ≥ 1.
Denote by L the set of (pcb) lotteries. Since pcb class includes both prob-

ability and possibility functions, we have inclusions: LP ⊂ L and LΠ ⊂ L.
As before we are interested in a preference relation � on L that is a weak
order (complete and transitive). Because LP and LΠ are subsets of L we can
consider the restrictions of � on LP and LΠ denoted by �P and �Π respec-
tively. We want �P to satisfy vNM axioms P1 through P6 and �Π satisfies
axioms PP1 through PP6. Note that LP ∩LΠ is the set of constant lotteries.
To see that suppose [a1/w1, a2/w2, . . . , ak/wk] ∈ LP then the normalization
condition is

∑k

i=1 ai = 1. At the same time [a1/w1, a2/w2, . . . , ak/wk] ∈ LΠ

implies that maxi ai = 1. Since ai ≥ 0 it follows that ai = 1 for some i and
aj = 0 for i 6= j. Thus the [a1/w1, a2/w2, . . . , ak/wk] is the same a wi. Natu-
rally, because �P and �Π are restrictions of the same � on LP and LΠ, they
must be identical on the intersection of LP and LΠ which is U i.e. w �P w′

iff w �Π w′ iff w � w′ (by definition). Now we describe a list of axioms which
amount to pulling together P1− P6 and PP1− PP6 for relation � on L.
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B1 (Strong order on prizes) Preference � on U is identical with ≥ (“greater
than or equal to”) relation on reals i.e., w1 � w2 iff w1 ≥ w2.

B2 (Reduction of compound lotteries) Any compound probabilistic (possi-
bilistic) lottery is indifferent to a simple probabilistic (possibilistic) lot-
tery with prizes in U . The plausibilities on the simple probabilistic (pos-
sibilistic) are calculated according to belief function calculus.

B3 (Continuity of prize) Each prize w ∈ U is indifferent to a canonical
possibilistic lottery involving just 1 and 0.

B4 (Substitutability) In any lottery, a probabilistic lottery on an unambigu-
ous node can be replaced by another probabilistic lottery indifferent to
it; a possibilistic lottery can be replaced by an indifferent possibilistic
lottery.

B5 (Transitivity) � on L is transitive.

B6 (Monotonicity) For possibilistic (probabilistic) canonical lotteries
[λ/1, ρ/0] � [λ′/1, ρ′/0] iff λ ≥ λ′ and ρ ≤ ρ′.

B7 (Equivalence between two forms) Each canonical possibilistic lottery is
indifferent to a canonical probabilistic lottery.

B1, the same as P1 or PP1, is about the preference order on the set of prizes
is the same as the numerical order. The statement of B2 is an aggregation
of P2 and PP2. The second part of B2 takes advantage of the fact that the
belief function calculus subsumes probabilistic and possibilistic calculi. Note
that B2 does not say how a generic pcb compound lottery is converted to a
simple one. The reason for this silence is that in general case, belief function
theory does not have an operator that calculates the plausibility of the union
of two events directly from the plausibilities of each events.

Axiom B3 is identical to PP3 which requires that each prize w ∈ U is
indifferent to a canonical possibilistic lottery.

Axiom B4 implies both P4 and PP4. In a probabilistic lottery, every
node is unambiguous, so the unambiguity qualification is not necessary. In
the case of pcb lottery, this qualification becomes necessary because besides
unambiguous nodes, there are ambiguous nodes for which the substitutability
may not hold. Restriction of probabilistic lottery substitutability for unam-
biguous nodes only is similar to weakening of sure-thing principle considered
in [16].

Specifically, if (1) L contains probabilistic L1 and the node associated with
L1 is unambiguous and (2) L2 is a probabilistic lottery such that L1 ∼ L2

then B4 requires that L ∼ L[L1/L2] where L[L1/L2] is obtained from L by
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replacing subtree L1 with tree L2. Also if L contains possibilistic L1 and L2 is
a possibilistic lottery such that L1 ∼ L2 then B4 requires that L ∼ L[L1/L2].

B5 - transitivity of � is identical to P5 and PP5. B6 is pulling together
P6 and PP6 and ensures the completeness of � which together with B5
makes � a weak order. The rationale of B6 is summarized as “the more
plausible the best the better” and “the less plausible the worst the better”.
This monotonicity requirement holds for both probabilistic and possibilis-
tic comparisons in the sense that the numbers can be interpreted either as
probability or possibility as long as both canonical lotteries are of the same
type i.e. they are both possibilistic or probabilistic. B6 can not be used to
compare a possibilistic lottery with a probabilistic lottery.

B7 requires that each canonical possibilistic lottery is indifferent to a
canonical probabilistic lottery (a probability distribution on {0, 1}). The
above argument for the equivalence between 1 and possibilistic lottery can
be repeated to arrive at the equivalence5 1 and probabilistic lottery [1/1, 0/0].
Since both possibilistic and probabilistic canonical lotteries span the whole
range from 0 to 1, given any canonical possibilistic lottery, there exists a
probabilistic canonical lottery equivalent to it.

B7 may seems harder to accept if one think of it as the requirement for
a decision maker (DM) to be able to switch between the probability and
possibility forms of uncertainty attached to the prizes in a canonical lottery.
The difficulty, in our opinion, is cognitive rather than intrinsic. A person
may be more comfortable thinking in terms of probability than possibility.
This is reasonable because of the long history of probability concept and its
prevalent exposure in everyday discourse. However this epistemic challenge
in no way would void the validity of the assumption. Instead, it points to the
need of finding a probability-possibility conversion that is easy to understand.

Our strategy to find utility representation for � is to find representations
for � restricted on LΠ and LP and then use constant lotteries which are
intersection LΠ ∩ LP to connect the preference. We have a lemma.

Lemma 4. Suppose preference relation � on L satisfies B1 − B7 then its
restriction on LP denoted by �P satisfies P1−P6 and the restriction on LΠ

denoted by �Π satisfies PP1− PP6.

5In the canonical lotteries [0/1, 1/0] and [1/1, 0/0] the numbers can be interpreted either
as possibility or probability: 0 means impossible/improbable while 1 means sure/certain.
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Proof: Let us consider the case of �P . Since U ⊂ L, for w,w′ ∈ U , w �P w′

iff w � w′. By B1, w � w′ iff w ≥ w′. So �P satisfies P1.
B2 implies P2. Suppose L is a compound lottery and L′ is the equivalent

lottery obtained from L by collapsing paths from the root to leaves. If (a)
L is probabilistic i.e. the uncertainty on each node is described by a (con-
ditional) probability function; (b) the plausibility on each collapsed edge of
L′ is obtained by multiplying the plausibilities on the path (belief function
calculus) then L′ is also a probabilistic i.e. the sum of plausibilities on its
edges is 1. Since both L and L′ are probabilistic, L ∼P L′ iff L ∼ L′. The
latter is guaranteed by B2 so B2 implies P2.

B3, B5 and B7 imply P3. For each w ∈ U , by B3 there is a possibilistic
canonical CΠ such that w ∼ CΠ. By B7 there is a probabilistic canonical CP

such that CP ∼ CΠ. By transitivity B5, w ∼ CP .
B4 implies P4. Suppose w ∼ CP where CP is a probabilistic canonical

lottery, L[w] is a probabilistic lottery containing leaf w and L[x/CP ] is the
lottery obtained by substituting w by CP . Because constant lotteries are
probabilistic and any node in a probabilistic lottery is unambiguous, by B4,
L[w] ∼ L[w/CP ]. If L is probabilistic then L[w/CP ] is also probabilistic.
Therefore, L[w] ∼P L[w/CP ].

B5 implies P5. Because � on L is transitive and �P is a restriction of �
on LP then �P is also transitive.

B6 implies P6. If [λ/1, ρ/0] and [λ′/1, ρ′/0] are probabilistic canonical
lotteries i.e. ρ = 1 − λ and ρ′ = 1 − λ′. By B6 [λ/1, ρ/0] � [λ′/1, ρ′/0] iff
λ ≥ λ′ and ρ ≤ ρ′ iff λ ≥ λ′ because of additivity. Thus, [λ/1, (1− λ)/0] �P

[λ′/1, (1− λ′)/0] iff λ ≥ λ′.
The case of �Π is similar.

Theorem 5. � on L satisfies axioms B1−B7 iff (a) and (b) and (c).
(a) There exists a function u : L → [0, 1] such that L � L′ iff u(L) ≥ u(L′);

(b) Restricted on LΠ, u has the form

u([π1/w1, π2/w2, . . . , πm/wm]) = t−1(cmax1≤i≤m{πit(wi)})

for a function t defined in Theorem 4 and t−1 defined in (31);

(c) Suppose Li = [πi1/w1, πi2/w2, . . . πik/wk] for 1 ≤ i ≤ s are possibilistic
lotteries, the utility of pcb lottery [p1/L1, p2/L2, . . . ps/Ls] has the form

u([p1/L1, p2/L2, . . . ps/Ls]) =
s

∑

i=1

pit
−1(cmax1≤j≤k{πijt(wj)}) (35)
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Before proving the theorem, we describe the intuition of the utility expression.
First, note that the lottery in part (c) [p1/L1, p2/L2, . . . ps/Ls] with pi are
probabilities and Li are possibilistic lotteries must come from act of the form
{Ai →֒ fAi

|1 ≤ i ≤ s} where fAi
is an act defined on Ai - the maximal

foci of pcb. This is an implication of lemma 1. On the one hand, in order
for pi to be additive each conditioning event must be a union of some foci
Ai of the pcb. On the other hand, in order for Li to be possibilistic, the
conditioning event must be a subset of some Ai. To satisfy both conditions
the conditioning event must be exact Ai.

Next, we note that unlike its special cases for probabilistic and possibilis-
tic lotteries, for a general pcb lottery [ai/wi]

s
i=1 where ai are plausibilities

the closed form expression of u([ai/wi]
s
i=1) does not directly include ai. To

compute utility of an arbitrary act (tree), its equivalent simple version is con-
structed by collapsing the paths leading to prizes. Then formula in eq. (35)
is applied for the equivalent version in the form of (c) which is constructed
by conditioning the simple act on maximal foci of the pcb.

Third, the key fact that allows a combination two utility representations
is that a prize w ∈ U has a dual views as probabilistic and possibilistic lottery
i.e., LP ∩ LΠ = U .
Proof: (⇒) We prove (b), (c) and (a) in that order.
(b) Suppose � on L satisfies B1 − B7. By lemma 4, the restriction on
LΠ, �Π, satisfies PP1 − PP6. By Theorem 4, �Π is represented by utility
function t given by eq. (30). In particular, t([π1/w1, π2/w2, . . . , πm/wm]) =
cmax1≤i≤m{πit(wi)}. It follows that for L,L

′ ∈ LΠ, L �Π L′ iff t(L) ≫ t(L′).
By lemma 3, t(L) ≫ t(L′) iff t−1(t(L)) ≥ t−1(t(L′)). So, L �Π L′ iff t−1(t(L)) ≥
t−1(t(L′)). Thus, t−1(cmax1≤i≤m{πit(wi)}) is the certainty equivalence of
[π1/w1, π2/w2, . . . , πm/wm], hence, is its utility.

(c) Suppose L = [p1/L1, p2/L2, . . . ps/Ls] where pi are probabilities i.e.,
∑s

i=1 pi = 1 and Li = [πi1/w1, πi2/w2, . . . πik/wk] are possibilistic lotteries.
By part (b), Li ∼Π ui for 1 ≤ i ≤ s where ui = t−1(cmax1≤j≤k{πijt(wj)}).
Since �Π is the restriction of �, Li ∼Π ui also means Li ∼ ui. Because
ui is a possibilistic lottery, axiom B4 allows Li to be substituted by ui i.e.,
[p1/L1, p2/L2, . . . ps/Ls] ∼ [p1/u1, p2/u2, . . . ps/us]. The right hand side is a
probabilistic lottery. By lemma 4, �P the restriction of � on probabilistic
lotteries satisfies axioms P1 − P6. By Theorem 3, �P is represented by
linear utility function u([p1/u1, p2/u2, . . . ps/us]) =

∑s

i=1 piui. Substituting
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the expression for ui we have the certainty equivalence of L i.e.,

L ∼
s

∑

i=1

t−1(cmax1≤i≤m{πit(wi)}) (36)

(a) Let us consider a pcb lottery Lf = [a1/w1, a2/w2, . . . ak/wk] that is
induced by act f = {C1 →֒ w1, C2 →֒ w2, . . . Ck →֒ wk} with {Ci} is a
partition of Θ and pcb Pl has the focus structure: Ai0 ⊃ Ai1 . . . ⊃ Aimi

for
1 ≤ i ≤ s such that {Ai0} is a partition of Θ. The link between the lottery
and the act is via ai = Pl(Ci) for 1 ≤ i ≤ k.

Consider the following act: g = {A10 →֒ f, A20 →֒ f, . . . As0 →֒ f}. It is
not difficult to show that f and g are equivalent acts. As functions from Θ
to U no matter which θ ∈ Θ is the true parameter, the prize delivered by f
and g are the same. Viewing g as a rooted tree, we note (Theorem 2) that
restricted on the algebra formed from {Ai0|1 ≤ i ≤ s} Pl is additive and
conditional plausibilities Pl(·|Ai0) are possibility functions. So, the lottery
induced by g has the form of part (b). Namely, denote pi = Pl(Ai0) and πij =
Pl(Cj|Ai0) for 1 ≤ i ≤ s and 1 ≤ j ≤ k. The lottery induced from g is Lg =
[p1/L1, p2/L2, . . . ps/Ls] where Li = [πi1/w1, πi2/w2, . . . πik/wk]. By eq. (36)
∑s

i=1 t
−1(cmax1≤i≤m{πit(wi)}) ∼ Lg. Due to the principle of equivalence

Lf ∼ Lg and transitivity of � it follows
∑s

i=1 t
−1(cmax1≤i≤m{πit(wi)}) ∼ Lf .

For an arbitrary lottery in L, due to the principle of equivalence, one can
find one-stage lottery that is indifferent to. Suppose u and u′ are certainty
equivalences of single-stage L and L′ calculated by eq. (36) i.e. L ∼ u and
L′ ∼ u′. So L � L′ iff u � u′. Because of axiom B1, u � u′ iff u ≥ u′. Thus,
L � L′ iff u ≥ u′.
(⇐) Suppose a preference relation �u is defined by function u given by
eq. (35) with continuous t and strictly increasing t−1 defined by eq. (31)
i.e., L1 �u L2 if u(L1) ≥ u(L2). We show that �u satisfies B1 to B7.
First, we verify the fact that pcb utility (35) subsumes both linear utility for
probabilistic lottery and the binary utility for possibilistic utility. If pcb is a
probability function, each element θ ∈ Θ is a focus and each Li is a constant
lottery wi. Because t−1(t(wi)) = wi, eq. (35) becomes

u([p1/w1, p2/w2, . . . pn/wn]) =
n

∑

i=1

piwi

If pcb is a possibility function then s = 1 and p1 = 1, eq. (35) reduces to

u(L1) = t−1(cmax1≤j≤k{π1jt(wj)})
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which is the binary utility for a possibilistic lottery wrapped by the strictly
increasing t−1. This observation allows us to use Theorems 3 and 4.

B1 is satisfied by definition because u(w) = w for w ∈ U .
B2. For a compound probabilistic (possibilistic) lottery L, because u(L) ∈

[0, 1] as an implication of the observation that u reduces to expected (binary)
utility. By definition L ∼u u(L).

B3. By the reverse clause of theorem 4, �u satisfies PP3 which is the
same as B3.

B4. Suppose L contains probabilistic L1 and the node associated with
L1 is an unambiguous node. L2 is also a probabilistic lottery such that
L1 ∼u L2. Because the node in L associated with L1 is ambiguous, by
lemma 1, the event E of that node is a union of some Ai. By definition of
�u, L1 ∼u L2 implies u(L1) = u(L2). u(L1) and u(L2) are expected utility
because L1, L2 are probabilistic. In the expressions of u(L) the part related
to L1 is p(E) ∗ u(L1). In u(L[L1/L2]) the part related to L2 is p(E) ∗ u(L2).
Therefore, u(L) = u(L[L1/L2]).

Suppose L contains possibilistic Lπ
1 and Lπ

2 is another possibilistic such
that Lπ

1 ∼u Lπ
2 . Since Lπ

1 is possibilistic, by lemma 1, the node associated
with it is a subset of some Ai. Consider the possibility lottery L′ that is
obtained from L by conditioning on Ai. Since the node associated with
Lπ
1 is a subset of Ai, L

π
1 is a subtree of L′. By Theorem 4, since Lπ

1 ∼u

Lπ
2 and L′ is a possibilistic lottery, replacement of Lπ

1 by Lπ
2 leads to an

indifferent lottery i.e., L′[Lπ
1 ] ∼u L[Lπ

1/L
π
2 ]. So by definition u(L′[Lπ

1 ]) =
u(L[Lπ

1/L
π
2 ]). In evaluation of u(L) and u(L[Lπ

1/L
π
2 ]), L

π
1 and Lπ

2 enter via
L′[Lπ

1 ] and L′[Lπ
1/L

π
2 ] respectively. Thus, u(L) = u(L[Lπ

1/L
π
2 ]) and hence

L ∼u L[Lπ
1/L

π
2 ].

B5. Because u has range in [0, 1] the �u is transitive.
B6. This is an implication of Theorems 3 and 4.
B7. Any possibilistic lottery Lπ is equivalent to the following canonical

probabilistic lottery [u(Lπ)/1, (1− u(Lπ))/0]. This completes the proof.

4.5. Binary utility extraction and ambiguity attitude

In practical applications, an operational problem a decision maker (DM)
must solve before she can use formula in (35) is how to determine function t.
The solution is that it can be determined through the exercising likelihood
gambles as described in section 4.3. This activity is analogous to the prac-
tice of extracting linear utility function from a DM with an exception that
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for likelihood gambles the DM should handle the likelihoods obtained from
observation, not probability with relative frequency semantics.

As a practical choice, the likelihood gamble game can be repeated for
a large enough number of points in Ψ and then the neighbor points are
connected to get a whole utility curve.

There is an alternative in which less DM introspection is compensated
by an assumption that utility function has a parametric form. Instead of
estimating whole empirical utility curve, decision maker’s behavioral data is
used to estimate the behavioral parameter.

Let us re-examine the likelihood gamble. Suppose that DM is indifferent
between value w and having (possibilistic) lottery [λ/1, ρ/0] where λ, ρ are
normalized likelihoods for (gamble) parameter values θ1 and θ2 respectively.
This indifference can also be analyzed from a Bayesian point of view which
assumes DM has a prior probability, says γw, on θ1. DM’s posterior of θi
would be

Pr(θ1|x) =
γwλ

γwλ+ (1− γw)ρ
Pr(θ2|x) =

(1− γw)ρ

γwλ+ (1− γw)ρ
(37)

Then expected utility principle tells us the indifference implies the following

u(w) = Pr(θ1|x).u(1) + Pr(θ2|x).u(0) = Pr(θ1|x). (38)

The last equality is due to u(1) = 1 and u(0) = 0. Substituting (37) into
(38), one can solve for γw in terms of u, λ and ρ.

γw =
ρu(w)

λ− (λ− ρ)u(w)
=

(

1 +
(1− u(w))λ

u(w)ρ

)−1

(39)

The computed quantity γw is called the implicit prior at w. In principle the
implicit prior can vary for different values of w, but we make an assumption
that it is constant i.e., γw = γ for all w. From a practical point of view, the
constant-implicit-prior assumption reduces the estimation of (binary) utility
curve to the estimation of a single number. Suppose that the likelihood
gamble exercise is conducted for k observations xi for 1 ≤ i ≤ k. The
corresponding computed implicit priors are γi. One of the most convenient
estimate suggested by the estimation theory is the average i.e.,

γ̂ =
1

k

k
∑

i=1

γi
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Given the parameter value γ the relationship between scalar value w and
equivalent binary utility 〈λ(w), ρ(w)〉 is as follows (see (37))

w = t−1(〈λ(w), ρ(w)〉) =
γλ(w)

γλ(w) + (1− γ)ρ(w)
(40)

It follows that
λ(w)

ρ(w)
=

w

(1− w)

(1− γ)

γ
(41)

Taking into account max(λ(w), ρ(w)) = 1, one can solve for 0 < w < 1

λ(w) =

{

w
1−w

1−γ

γ
if w

1−w

1−γ

γ
≤ 1

1 otherwise
(42)

ρ(w) =

{

1 if w
1−w

1−γ

γ
≤ 1

1−w
w

γ

1−γ
otherwise

(43)

Let us give an interpretation to γ. In particular, from (40), t−1(〈1, 1〉) = γ.
Recall that 〈1, 1〉 = t([1/1, 1/0]). In other words, 〈1, 1〉 is the binary utility
associated with the fair likelihood gamble in which the likelihoods of getting
1 and 0 are equal. Using a symmetry argument, one can argue that the “fair”
price or the certain equivalence for this gamble should be the middle point
0.5 between u(0) = 0 and u(1) = 1. In this case (γ = 0.5), we say DM is
ambiguity neutral. If γ > 0.5, DM is paying a “premium” price to enjoy the
ambiguity in fair gamble. In this case we say that DM is ambiguity seeking.6

In the last case of γ < 0.5 which is reasonably expected to hold for plurality
of decision makers, DM pays a “discount” price for the fair gamble because
of ambiguity in it. We say DM is ambiguity averse. Thus, γ characterizes
the ambiguity attitude of the decision maker.

This classification of ambiguity attitude mirrors the classification of atti-
tudes toward risk (probabilistic uncertainty). Risk seeking behavior is char-
acterized by the convexity of the utility curve; risk averse by concavity and
risk neutral by linearity. The differentiating term “ambiguity” signals that it
has to do with non-probabilistic uncertainty expressible by DS plausibility,

6Ambiguity seeking behavior can exist and be justified by analogous arguments used
to justify risk seeking behavior. Moreover, as it will be discussed in connection with Cho-
quet expected utility (CEU) model, ranking according to CEU calculated wrt plausibility
function exhibits ambiguity seeking character.
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Dice face 1 2 3 4 5 6
m({1}) .2
m({1, 2}) .1
m({3, 4}) .2
m({3, 4, 5, 6}) .5
Pl(.|{1, 2}) 1 1

3

Pl(.|{3, 4, 5, 6}) 1 1 5
7

5
7

Table 1: Uncertainty about the dice

statistical likelihood, or fuzzy possibility. For more discussion on ambiguity
attitude and its relation to risk attitude readers are referred to [10].

Before we move on to the next section, it is necessary to address an
assumption made at the start of section 4 to ignore the DM’s risk attitude
via a convention to measure the prize w ∈ U in risk-adjusted utility. If we
want to account for risk explicitly we can do so by introducing a function
r : $ → U where $ is monetary domain. The expression of pcb utility (35)
then becomes:

u([p1/L1, p2/L2, . . . ps/Ls]) =
s

∑

i=1

pi.t
−1(cmax1≤j≤k{πij.t(r(wj))}) (44)

In this utility expression, risk attitude is handled by r, ambiguity attitude
by t and uncertainty information by p and π. They are all separate. Notice
also that in case pcb is a probability function, because of cancellation t−1t,
decision maker’s ambiguity attitude effect disappears as naturally expected.

5. Examples

Example 3 Consider acts described in fig. 2. The situation is a dice roll
with faces numbered from 1 to 6. The act on the right is f = {{2, 4, 6} →֒
0, {1, 3} →֒ 0.5, {5} →֒ 1}.

It is known that uncertainty is described by a pcb given in table 1. For
example: m({1}) = .2, m({1, 2}) = .1, m({3, 4}) = .2 and m({3, 4, 5, 6}) =
.5; the partition size s = 2 with p1 = Pl({1, 2}) = .3, p2 = Pl({3, 4, 5, 6}) =
.7; the conditional plausibility Pl(1|{1, 2}) = 1, Pl(2|{1, 2}) = 1

3
.

The act f is equivalent to {{1, 2} →֒ {2 →֒ 0, 1 →֒ 0.5}, {3, 4, 5, 6} →֒
{{4, 6} →֒ 0, 3 →֒ .5, 5 →֒ 1}}. Assume ambiguity aversion with γ = 0.4,
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t(1) = 〈1, 0〉, t(0) = 〈0, 1〉 and from eqs. (42), (43) it follows t(0.5) = 〈1, .67〉.
The possibilistic lottery that corresponds to act {2 →֒ 0, 1 →֒ 0.5} is

[.33/ 〈0, 1〉 , 1/ 〈1, 0.67〉] has binary utility 〈1, 0.67〉 and the certainty equiva-
lence is 0.5.

The possibilistic lottery that corresponds to act {{4, 6} →֒ 0, 3 →֒ .5, 5 →֒
1} is [1/ 〈0, 1〉 , 1/ 〈1, 0.67〉 , 5

7
/ 〈1, 0〉] has binary utility

〈max(0, 1, .71),max(1, 0.67, 0)〉 = 〈1, 1〉

and the certainty equivalence by eq. (40) is 0.4.
Finally, the utility of the act or its certainty equivalence is

u(f) = 0.3 ∗ 0.5 + 0.7 ∗ 0.4 = 0.43

Example 4 We offer our treatment of Ellsberg’s paradox [6]. This kind of
experiment is used to demonstrate that rational behavior under ambiguity
violates Savage’s sure-thing principle. In an urn, there are 90 balls of the
same size. The balls are painted one of three colors: red, yellow and white.
It is known that 30 balls are red. The proportions of yellow and white are
not known.

Ellsberg considers four gambles. Gamble IA offers $1 if a randomly drawn
ball is red, nothing otherwise. Gamble IB offers $1 if the ball is yellow,
nothing otherwise. Gamble IIA offers $1 if a randomly drawn ball is red or
white, nothing if the ball is yellow. Gamble IIB offers $1 if the ball is yellow
or white and nothing if it is red.

Ellsberg discussed findings that a sizable proportion of respondents pre-
ferred IA to IB and, at the same time, preferred IIB to IIA. This observed
preference is not consistent with the sure-thing principle because the pair
(IIA, IIB) is different from the pair (IA, IB) only by the level of prize for
white balls.

The uncertainty in the problem is nicely described by a pcb with 2 foci.
m({red}) = 1

3
and m({yellow, white}) = 2

3
. This pcb decomposes into

P ({red}) = 1
3
and P ({yellow, white}) = 2

3
and Π(yellow|{yellow, white}) =

Π(white|{yellow, white}) = 1.
We consider three cases of ambiguity attitude corresponding to ambiguity

averse, neutral and seeking.
(1) Ambiguity averse attitude. We assume binary utility function ta($1) =

〈1, 0〉, ta($0) = 〈0, 1〉 and ta($.4) = 〈1, 1〉. The first two equalities are nat-
ural since $1 is the best outcome and $0 is the worst outcome. The last
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Figure 4: Ellsberg’s lotteries IA and IB
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Figure 5: Ellsberg’s lotteries IIA and IIB

equality implies that the implicit prior probability is .4 indicating somewhat
ambiguity aversion.

In Figures 4 and 5 we show the calculation of mixed utility for the gam-
bles. We have ua(IA) = .33, ua(IB) = .27, ua(IIA) = .60 and ua(IIB) = .67.
This means IIB ≻ IIA ≻ IA ≻ IB. These preferences are consistent with the
observed behavior.

(2) Ambiguity neutrality. We have tn($1) = 〈1, 0〉, tn($0) = 〈0, 1〉 and
tn($.5) = 〈1, 1〉 and un(IA) = 1

3
, un(IB) = 1

3
, un(IIA) = 2

3
, un(IIB) = 2

3
.

This means IIA ∼ IIB ≻ IA ∼ IB.
(3) Ambiguity seeking. We have ts($1) = 〈1, 0〉, ts($0) = 〈0, 1〉 and

ts($.6) = 〈1, 1〉 and us(IA) = .333, us(IB) = 0.4, us(IIA) = 0.733, us(IIB) =
0.667. This means IIA ≻ IIB ≻ IB ≻ IA.

6. Related Works

This work touches two streams of research developed somewhat separately
in economics and Artificial Intelligence communities. On the one hand, since
the pioneering work of Ellsberg [6] decision making under ambiguity has
been an active topic of discussion in economics. Two widely used models are
Choquet expected utility (CEU) model by Schmeidler [20] using capacities
and maximin expected utility with multiple priors by Gilboa and Schmeidler
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[12]. In recent years, the focus shifts to dynamic consistency issues [18]. On
the other hand, DS belief function theory originated from statistics is actively
studied by CS and AI community. DS theory offers expanded uncertainty
expressiveness and at the same time provides well defined computational
mechanism. It is not our intention to give a detailed review of what is going
on in the fields. Rather, the aim is to provide contrast and similarity with
our approach.

Smets [23] argues for a two-level process. At the credal level, an agent
uses belief functions to represent and to reason with uncertainty. When
there is a need to make a decision, the agent moves to another pignistic level
in which the belief function is transformed to a probability function. The
vNM expected utility is calculated with respect to this probability function.
Specifically, in the pignistic transformation, the mass that assigned to a sub-
set is divided equally to each element in the set. For example, the pignistic
transformation of the pcb in Ellsberg’s paradox is a probability function

Θ red yellow white

PBet .33 .33 .33

With respect to PBet the utilities of the four lotteries are u(IA) = u(IB) =
.33 and u(IIA) = u(IIB) = .66. This does not explain Ellsberg’s paradox.
Broadly speaking, DM attitude toward ambiguity (aversion/seeking) is not
accounted for in this approach.

Although Smets argued otherwise, the pignistic probability function is
obtained by invoking the principle of insufficient reasoning for non-singleton
foci. However, this goes against the main motivation for belief functions.

It should be noted however, that this preference would be observed in our
framework for ambiguity neutral DM.

Cobb and Shenoy [2] argue that the pignistic transformation is incon-
sistent with Dempster’s rule of combination. They argue, instead, for the
use of a plausibility transformation in which a probability function is ob-
tained by normalization of plausibility values of singletons. For instance, the
plausibility transformation for the same pcb Ellsberg’s example is

Θ red yellow white

PP la .20 .40 .40

With respect to PP la, the utilities of the four lotteries are u(IA) = .20,
u(IB) = .40 and u(IIA) = .60, u(IIB) = .80 These utilities are not able to
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explain Ellsberg’s paradox. Also, it suggests that IB ≻ IA, which is contrary
to the observed empirical behavior. The plausibility transformation has a
number of drawbacks. Notice that the probabilities assigned to singletons
in the original pcb are modified downward after translation. The magnitude
of distortion depends on (1) the total of masses assigned to non-singletons
and (2) the sizes of non-singleton foci. However, it is possible to argue that
the plausibility transformation is for the Dempster-Shafer theory of belief
functions, in which it is inappropriate to interpret belief and plausibility
functions as lower and upper bounds on some true but unknown probabilities
since these semantics are inconsistent with Dempster’s rule of combination.

Walley [27] studies a class of imprecise probabilities: lower prevision and,
its dual, upper prevision. This class includes belief functions as a subclass.
He argues that imprecise probability allows only a partial preference ordering
among alternatives. The most one can make from such a partial order is to
exclude all dominated alternatives. The set of remaining alternatives, which
may be large, is left to decision maker to choose by calling in an additional
choice mechanism e.g., randomization. This indeterminacy is a significant
inconvenience to the decision maker. This approach, developed for imprecise
probability in general, also fails to take into account the specific structure
offered by pcb. In a disagreement with Walley’s approach, our view is that
statistical likelihood rather than betting rate semantics is appropriate for
uncertainty expressed by belief functions.

Jaffray andWakker [14], [16] propose a decision model with belief function
that combines linear utility with Hurwicz’s α−criteria for decision under
ignorance. For example, a belief function has foci {A1, A2, . . . Ak}. An act f
maps a focus into a subset of U i.e., f(Ai) ⊆ U . Jaffray argued that if the
only information is “Ai is true” then nothing is known about how likely a
prize in f(Ai) is. Under this ignorance, an application of Hurwicz’s criterion
finds the certainty equivalence to be the linear combination of the worst in
f(Ai) and the best in f(Ai):

α ∗ inf(f(Ai)) + (1− α) ∗ sup(f(Ai))

Interpreting m(Ai) as the probability of focus Ai, the utility of f is

uJ(f) =
k

∑

i=1

m(Ai)(α ∗ inf(f(Ai)) + (1− α) ∗ sup(f(Ai)))

In this approach, the ambiguity attitude is expressed by coefficient α with
intuition that the more ambiguity averse the higher α, the weight attached
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to the worst outcome. For example at α = 0.6, the Ellsberg’s gambles
uJ(IA) = 0.33, uJ(IB) = 0.67 ∗ (0.6 ∗ 0 + 0.4 ∗ 1) = 0.268, uJ(IIA) =
0.33 + 0.67 ∗ 0.4 = 0.598 and uJ(IIB) = 0.67. These values explain Ells-
berg’s paradox nicely. Wakker [25] notes that “[Jaffray’s] models, developed
20 years ago, achieve a tractability and a separation between risk attitudes,
ambiguity attitudes, and ambiguity beliefs that have not yet been obtained
in other models popular today”. However, a problem with Hurwicz’s rule is
that it can lead to dynamically inconsistent behavior [15]. Note that our ap-
proach possesses the desirable properties mentioned in Wakker’s comments.
A detailed comparison between Jaffray’s approach and one presented in this
paper is provided in a upcoming paper.

Schmeidler [20], Sarin & Wakker [19] argue for the use of Choquet ex-
pected utility (CEU) for non-additive probability or capacity. A real value set
function ν on Θ is a capacity if it satisfies normalization conditions (ν(∅) = 0,
ν(Θ) = 1) and monotonicity (ν(A) ≤ ν(B) if A ⊂ B).

For simplicity, assume the prizes are ordered w1 > w2 > . . . > wk with
conventions wk+1 = 0 and E0 = ∅. For a decision d with d−1(wi) = Ei,
1 ≤ i ≤ k, CEU wrt capacity ν is defined as

CEU(d) =
k

∑

i=1

(wi − wi+1).ν(∪
i
j=1Ej) (45)

=
k

∑

i=1

wi(ν(∪
j=i
j=0Ej)− ν(∪j=i−1

j=0 Ej)) (46)

The CEU representation is obtained by relaxing a number of axioms that
originally leads to vNM expected utility representation for probabilistic lot-
teries. The appeal of CEU is that it leads to an (complete) order of al-
ternatives and is supported by intuitive (co-monotonic) axioms. However,
in this model the ambiguity attitude is inseparably blent with the uncer-
tainty (ambiguity) information. A capacity is said to be convex (concave)
if ν(A ∪ B) + ν(A ∩ B) is greater than or equal to (less than or equal to)
ν(A)+ν(B). Schmeidler [20] shows that a decision maker is ambiguity averse
(seeking) iff the capacity is convex (concave). Why this inseparability is un-
desirable? Most useful uncertainty information come from objective sources:
experiments, data, observations. For example, in medicine [13] the informa-
tion obtained via randomized clinical trials is considered most useful, less
useful is information obtained via systematic observational studies, the least
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useful is the kind of anecdotal observation. The subjective character of ca-
pacity measures does not facilitate information collection from the objective
sources.

For belief functions, there are many equivalent forms: bpa (m), belief
(Bel), plausibility (Pl) and commonality (Q). These are equivalent in the
sense of information i.e. knowing one form, one can calculate all other forms.
If a belief function is obtained from statistical evidence then each of the forms
embodies the same information. Among those equivalent forms, Bel and Pl
are capacities. As capacities, however, Bel and Pl are opposite. Bel is convex
while Pl is concave because Bel(A∪B)+Bel(A∩B) ≥ Bel(A)+Bel(B) and
Pl(A∪B)+Pl(A∩B) ≤ Pl(A)+Pl(B). That makes CEU with Bel exhibits
ambiguity aversion while CEU with Pl exhibits ambiguity seeking behavior.

For an illustration, let us calculate CEU wrt Bel and Pl for Ellsberg’s
gambles. For IA, E1 = {red}, E2 = {yellow, white} because red is as-
sociated with $1 prize and yellow, white with zero. Using (46), we find
CEUBel(IA) = CEUPl(IA) = .33. For IB, E1 = {yellow}, E2 = {red, white}.
We find CEUBel(IB) = 0 and CEUPl(IB) = .67. Therefore, CEUBel ranks
IA ≻ IB. However, CEUPl ranks IB ≻ IA.

In our view, the fact that CEU ranking of lotteries depends on the choice
of forms of uncertainty is problematic. Moreover, the lack of an explicit
mechanism to express/measure ambiguity attitude is a deficiency. It is un-
clear how to express/extract ambiguity aversion degree for different decision
makers e.g., a DM is more ambiguity averse than another.

7. Summary and Conclusions

In this paper we study decision making for a special class of belief func-
tions called partially consonant belief functions (pcb) introduced by Walley
[26]. Pcb is important because (1) it offers a meaningful generalization of
both probability and possibility (those are special cases); (2) it is the only
subclass of belief functions, which is consistent with the likelihood principle
of statistics. Pcb has a nice interpretation - it can be decomposed into a
probability function and a number of conditional possibility functions.

We use an axiomatic approach for the problem. A distinct feature of
our approach is interpretation of plausibility as statistical likelihood, not
as betting rates found in most other works on decision making with DS
belief functions. Our axiomatics is similar to and inspired by von Neumann-
Morgenstern’s linear utility theory [24]. We prove a representation theorem
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for a preference relation on pcb lotteries. Pcb utility is a mixed construct
that subsumes both linear utility for probabilistic lottery and binary utility
for possibilistic lottery as special cases.

Our approach is tractable and offers separate modelings of risk attitude,
ambiguity attitude and uncertainty information. This separation is impor-
tant in practice as it allows different factors that influence DM decision to
be investigated independently from each other.

An obvious open question is if and how to extend this approach for the
general case of DS belief functions. Our speculation is that it can but a
clean closed-form expression as in (35) would be unlikely. The reasoning
behind this speculation is that a neat expression for utility of an arbitrary
belief function lottery could be used to easily compute plausibility/belief of
an arbitrary event. Pcb class turns out to be useful enough while still has
nice focus structure that enables a closed-form utility expression.
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