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a b s t r a c t 

Realistic decision-making often occurs with insufficient time to gather all possible evidence before a decision 

must be rendered, requiring an efficient process for prioritizing between potential action sequences. This work 

aims to develop a rigorous framework for gathering evidence to resolve hypotheses notwithstanding ambigu- 

ous, incomplete, and uncertain evidence. Studies have shown that decision-makers demonstrate several biases in 

decisions involving probability judgment, so decision-makers must be confident that the evidence-based hypoth- 

esis resolution is strong and impartial before declaring a resolution. The proposed Judicial Evidential Reason- 

ing framework encodes decision-maker questions as rigorously testable hypotheses to be interrogated through 

evidence-gathering actions. Dempster–Shafer theory is applied to model hypothesis knowledge and quantify am- 

biguity, and an equal-effort heuristic is proposed to balance time-efficiency and impartiality. Adversarial opti- 

mization techniques are used to make many-hypothesis resolution computationally tractable. This work includes 

derivation of the generalized formulation, computational tractability considerations for improved performance, 

several illustrative examples, and application to a space situational awareness sensor network tasking scenario. 

The results show strong hypothesis resolution and robustness to fixation due to poor prior evidence. 
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. Introduction 

Endsley [1] defines situation awareness as “the perception of the
lements in the environment within a volume of time and space, the
omprehension of their meaning, and the projection of their status in
he near future ”. Frequently, decision-making occurs in environments
here there is insufficient time to gather all available evidence before
 decision must be rendered, requiring efficient processes for priori-
izing between candidate action sequences. The evidence-gathering or
cheduling problem addresses how to obtain, process, and utilize evi-
ence to improve understanding of the state of the environment, as in
he use of a sensor network [2] . This is often a high-dimensional, multi-
bjective, mixed-integer, non-linear optimization problem, so many ap-
roaches focus on tractable sub-problems (e.g. single objectives, limited
argets, limited actors). 

Allocating resources to gather evidence in support of decision-
aking is an active area of research, and “important and challenging
roblem in the field of multi-agent systems ” [3] . In sensor networks,
vidence-gathering often takes the form of target tracking and esti-
ation, such as multi-target tracking (MTT) approaches [4] . Multiple
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ypothesis tracking (MHT) is a widely-accepted approach for data asso-
iation tasks [5] , such as maintaining a catalog of space objects [6,7] and
ssociating uncorrelated tracks with a catalog [8] . However, MHT hy-
otheses are often limited in their form to data association-related ques-
ions: e.g. does this new observation belong to an existing tracked ob-
ect? These types of questions can often be expressed in terms of a
tate estimate, allowing uncertainty in that state estimate to be reduced
hrough a number of MTT approaches. However, in realistic, complex
ecision-making scenarios, it is desirable to represent a wider variety
f hypotheses (e.g. what is the active mode of this object?) that are
ot readily related to a state estimate or state uncertainty. This cre-
tes a need for the development of generalized hypothesis-resolution
pproaches that use a rigorous formulation allowing for hypothesis in-
errogation by gathered evidence [9,10] . 

Gathered evidence must be fused into a coherent understanding of
he environment via association, correlation, and combination [2] . In
lassical Bayesian approaches, evidence is used to form deterministic
robabilities placed on event hypotheses. However, in complex decision-
aking contexts with uncertainty, evidence also carries ignorance or

mbiguity. For this reason, evidential reasoning methods, such as
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empster–Shafer theory, quantify ambiguity, leading to more realistic
odeling of human analyst processes [11–13] . This motivates the use

f evidential reasoning approaches, such as Dempster–Shafer theory, to
uantify ambiguity and realistically model decision-making processes
11–13] . Dempster–Shafer theory has gained significant traction in var-
ous applications, including classification [14,15] , monitoring and fault
etection [16,17] , and decision-making [18] . 

Another concern in evidence-gathering is confirmation bias, a pref-
rential tendency to gather evidence that confirms prior beliefs [19] .
n regimes with uncertainty and ambiguity, this effect also applies by
nterpreting ambiguous evidence in favor of prior beliefs. Appropriate
ypothesis resolution should efficiently and conclusively confirm or re-
ute each proposition while avoiding fixation based on prior informa-
ion, which may be plagued with uncertainty or ambiguity. Studies have
hown that decision-makers demonstrate several biases in decisions in-
olving probability judgment [19–22] , so decision-makers must be con-
dent that the evidence-based hypothesis resolution is strong and im-
artial before declaring an resolution. 

The contributions of this work are as follows: (1) a generalized
vidence-gathering framework for hypothesis-resolution, (2) the appli-
ation of evidential reasoning to quantify hypothesis ignorance, (3) a
echnique for mitigating confirmation bias in action sequence selection,
nd (4) a computationally tractable approach to the evidence-gathering
roblem using adversarial optimization techniques. 

The remainder of this paper is organized as follows: Section 2 in-
roduces background theory relevant to the theoretical contributions in
ection 3, Section 4 presents illustrative examples for application of the
ramework, Section 5 applies the framework to a simulated space situa-
ional awareness problem and Section 6 provides concluding remarks. 

. Background 

This section introduces background material relevant to the theoret-
cal developments in the following sections. The focus of this section is
ntroducing the concept of ambiguity aversion, describing its observed
mpact on decision-making, and introducing the Dempster–Shafer the-
ry of belief functions as a tool to address this phenomenon. 

.1. Ambiguity aversion 

Multiple methodologies exist for modeling and reasoning in uncer-
ain domains to provide graphical and numerical representations of
ncertainty [23] . One prevailing methodology is Bayesian probability
heory, which models knowledge about propositions using true-or-false
robabilities. However, probability theory struggles to express ambigu-
ty in proposition knowledge, often due to some ignorance on the part
f the expert or evidence source. 

For illustration, consider an expert with vacuous knowledge, or total
gnorance, on a proposition. In probability theory, this is often repre-
ented using the principle of non-information: each state in the proposi-
ion state space is assigned equal probability. This equally-likely proba-
ility mass function can also arise naturally when an expert has certain
nowledge that places equal probability on each state. Therefore, the
ame probability mass function can represent two very different knowl-
dge states, one with wholly ambiguous information and the other with
ertain but conflicting evidence, due to the inability to encode ambigu-
ty in Bayesian probability [23] 

It has been shown that human decision-makers overwhelmingly pre-
er known risks to unknown risks, making ambiguity a major concern in
odeling knowledge states [22] . Ellsberg’s paradox, re-stated here, is a
ell-known example that violates Savage’s theory of subjective expected
tility [22] . Consider two urns, each filled with 100 red or yellow balls.
he first urn contains an unknown distribution of red and yellow balls.
he second urn contains an equal distribution of red and yellow balls,
0 of each. The goal is to draw a red ball from one of the urns, and
he human decision-maker is allowed to choose which urn they draw
27 
rom. The results of Ellsberg’s study show that humans overwhelmingly
hose to draw from the second urn, which has a known probability dis-
ribution, even though the first urn may contain a favorable distribution
f red balls. This is a phenomenon known as “ambiguity aversion ” and
s a predictable characteristic of human decision-making in the face of
ncertainty. 

The first urn in Ellsberg’s paradox represents a vacuous knowledge
tate, while the second urn represents the equal-probability knowledge
tate. Using Bayesian probability, both knowledge states would be rep-
esented with the same probability mass function, meaning the infor-
ation presented to the decision-maker would not adequately convey

nformation on the presence or lack of ambiguity that would impact
he decision. This highlights a deficiency in Bayesian probability theory
hat has a significant impact in human decision-making contexts, which
otivates the use of alternative methodologies such as evidential rea-

oning. One of the most prevalent alternatives to Bayesian probability
s Dempster–Shafer theory, and the relevant aspects of the theory are
resented in the following section. 

.2. Dempster–Shafer theory 

Dempster–Shafer theory, based on Dempster’s work on probability
ntervals [24] , is considered more expressive than probability theory
n representing ambiguity or ignorance [25] . This is accomplished by
llowing assignment of belief to non-singleton propositions, admitting
mbiguity on the part of the expert when necessary. 

In Dempster–Shafer theory, the possible propositions of a given hy-
othesis form a set called the frame of discernment, Ω. The frame must
e a set of mutually exclusive and collectively exhaustive propositions
11] , though some alternative formulations such as the Transferable Be-
ief Model allow for relaxation of the latter constraint [26] . Elements of
 

Ω, the set of all subsets of Ω, are referred to as propositions. 

.2.1. Belief functions 

A basic probability assignment (bpa) m , as defined in Eq. (1) , maps
 belief mass to each possible proposition: 

 ∶ 𝐴 ↦ [0 , 1] , 𝐴 ∈ 2 Ω (1) 

∑
𝐴 ∈2 Ω

𝑚 ( 𝐴 ) = 1 (2) 

 

(
∅
)
= 0 (3) 

otationally, { 𝜃1 , 𝜃2 } is equivalent to { 𝜃1 } ∪ { 𝜃2 }, the disjunctive com-
ination of propositions 𝜃1 and 𝜃2 , or “𝜃1 or 𝜃2 . ” The constraint in
q. (2) enforces the mutually exclusive and collectively exhaustive prop-
rties as the belief masses must sum to one, while the constraint in
q. (3) is similar to Kolmogorov’s axiom of zero probability for the
mpty set. 

Using bpas, Shafer defines notions of belief (or support) and plausi-
ility, which form lower and upper bounds respectively on the proba-
ility that a proposition is true given the available evidence [27] . The
elief in, or support for, proposition A ∈2 Ω is defined in Eq. (4) as the
um of belief masses attributed to A and its subsets. 

el m ( 𝐴 ) = 

∑
𝐵 |𝐵 ⊆𝐴 𝑚 ( 𝐵 ) (4) 

he plausibility of proposition A ∈2 Ω is defined in Eq. (5) as the sum of
he belief masses for propositions that do not explicitly refute A : 

l m ( 𝐴 ) = 

∑
𝐵 |𝐵 ∩𝐴 ≠∅𝑚 ( 𝐵 ) = 1 − Bel m ( ¬𝐴 ) (5) 

here ¬𝐴 = Ω ⧵ 𝐴 is the negation of A , or “not A . ” The representations
f belief mass m , belief Bel, and plausibility Pl are all interchangeable
ia the above linear relationships [28] . 
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Fig. 1. Predictive and reactive evidence-gathering. 
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e  
.2.2. Combination 

Various bpa combination rules have been developed to fuse evidence
rom multiple sources into one bpa [29] . The most common combination
ule is Dempster’s conjunctive rule [27] , defined in Eq. (6) : 

 1 ⊕2 ( 𝐴 ) = 

(
𝑚 1 ⊕𝑚 2 

)
( 𝐴 ) = ( 1 − 𝐾 ) −1 

∑
𝐵 ,𝐶⊆Ω|𝐵 ∩𝐶= 𝐴 

𝑚 1 ( 𝐵) 𝑚 2 ( 𝐶) , (6)

here 𝐾 = 

∑
𝐵 ,𝐶⊆Ω|𝐵 ∩𝐶=∅

𝑚 1 ( 𝐵) 𝑚 2 ( 𝐶) (7)

he normalization constant K , defined in Eq. (7) , quantifies the conflict
etween the two bpas. 

.2.3. Decision-making 

While the ability to represent ambiguity in belief functions is useful
or accurately representing knowledge states, a key criticism is that the
heory of belief functions lacks a coherent decision theory [23] . Multiple
ethods exist for translating between Dempster–Shafer belief functions

nd probability models, allowing the use of Bayesian decision theory.
mets suggested the use of the pignistic transformation [26] , but it has
een argued that the pignistic transformation may not be consistent with
empster’s rule of combination [23] . An alternative method, the plau-

ibility transformation [23] , is defined in Eq. (8) : 

r pl m ( 𝑥 ) = 𝐾 

−1 Pl m ( { 𝑥 } ) , (8)

here 𝐾 = 

∑
𝑥 ∈Ω

Pl m ( { 𝑥 } ) (9)

ote that the normalization constant K in (9) is different from the nor-
alization constant for Dempster’s conjunctive rule in Eq. (7) . The plau-

ibility transformation is consistent with Dempster’s rule, particularly in
ituations where pignistic probability is inconsistent [23] . 

Another important concept in both probablistic and evidential rea-
oning is entropy as an information content measure. For Dempster–
hafer theory, multiple definitions of entropy have been proposed, many
f which are summarized by Jirousek and Shenoy [25] . Conflict in the
elief structure is measured through Shannon entropy using the plausi-
ility transform, where low conflict means a significant belief mass at-
ributed to a singleton proposition. Non-specificity captures ambiguity
s the entropy associated with non-singleton focal sets of the bpa using
he Dubois–Prade entropy. The Jirousek–Shenoy (J–S) definition of en-
ropy combines Shannon and Dubois–Prade entropy to capture both con-
ict and non-specificity. Minimizing both conflict and non-specificity
nsures that the resulting belief structure is internally consistent (i.e.
refers strong hypothesis resolution over an equally-probable result)
nd is non-ambiguous. Numerous other definitions of entropy also exist
o address the related concept of hypothesis uncertainty with difference
mphases and properties. Jirousek and Shenoy describe a set of desirable
raits for any bpa entropy definition and compare a number of existing
efinitions against this list [25] . 

One useful property of J–S entropy, in contrast to similar entropy
efinitions such as Deng entropy [30] , is that maximum entropy is only
ttained by a vacuous bpa, which is the bpa where all belief mass is
ssigned to the entire frame: 𝑚 ( Ω) = 1 . Including both conflict and non-
pecificity (or ambiguity) in the entropy calculation allows for appro-
riate modeling of the ambiguity aversion phenomenon [25] . Recalling
llsberg’s paradox, the first urn is an equally-likely belief structure and
he second urn is a vacuous belief structure: 

 1 
({

red 
})

= 𝑚 1 
({

yellow 

})
= 0 . 5 , 𝑚 1 

({
red, yellow 

})
= 0 

 2 
({

red 
})

= 𝑚 2 
({

yellow 

})
= 0 , 𝑚 2 

({
red, yellow 

})
= 1 

he Shannon entropy, Dubois–Prade entropy, and J–S entropy for these
elief structures are shown in Table 1 . As expected, Shannon entropy
hows high conflict for both belief structures, but Dubois–Prade entropy
s only non-zero for the ambiguous distribution, so the second urn has
28 
 higher J–S entropy. The decision-maker wants to minimize conflict
nd non-specificity, so selecting urn 1 with the lower J–S entropy is
onsistent with the result from Ellsberg’s paradox. 

Importantly, J–S entropy scales both the conflict and non-specificity
ortions equally, allowing the use of this single objective without the
eed for scaling parameters. Therefore, minimizing J–S entropy can be
sed as a reliable and consistent metric for a strong hypothesis resolu-
ion. For further discussion and comparison of entropy definitions, refer
o Deng [30] or Jirousek and Shenoy [25] . 

. Theory 

The following section builds upon the background material from the
revious section to motivate the development of Judicial Evidential Rea-
oning (JER). The JER approach hinges upon three primary considera-
ions: hypothesis abstraction, ambiguity aversion, and unbiased hypoth-
sis resolution. The theory is developed as a general evidence-gathering
pproach applicable to a wide variety of hypothesis-resolution tasks, as
hown by the medical diagnosis examples in Section 4 and the sensor
etwork tasking application in Section 5 . 

.1. Hypothesis abstraction 

Many evidence-gathering approaches (e.g. sensor network tasking)
perate on maintaining a low overall uncertainty (e.g. information-
aximum); however, it may not be readily apparent to a decision-maker
ow reducing state uncertainty by a certain amount affects situation
wareness or answers decision-making questions. This motivates an ap-
roach that encodes decision-making priorities as hypotheses that can
e interrogated by evidence-gathering actions. 

Hypothesis-driven approaches enable a predictive mode of evidence-
athering designed to answer specific questions, using prior knowl-
dge of relevant hypotheses to estimate information-gain from potential
ourses of action and propose actions that are predicted to resolve the
ypotheses. This is fundamentally different from reactive approaches,
here the gathered information is used to form hypotheses a posteriori

bout what caused the observed behavior. This relationship between hy-
otheses and information in predictive and reactive evidence-gathering
s illustrated in Fig. 1 . 

Re-framing evidence-gathering in terms of hypotheses supports hu-
an decision-making strengths in abstract-level cognitive tasks required

or objective prioritization and goal-adjustment [31] . Forcing an oper-
tor to switch between different levels of the abstraction, effectively
pproaching the problem at multiple different levels of detail, leads
o increased frustration and workload and decreased situation aware-
ess [10] . Designing a decision-support system that directly conveys hy-
othesis resolution information ensures that the human decision-maker
pends more time on strategic cognitive tasks. 

.2. General evidence-gathering problem definition 

Consider a set of hypotheses and a set of actors tasked with gathering
vidence to resolve these hypotheses over a given T -step time horizon,
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Table 1 

Ellsberg’s paradox belief structures and entropy. 

Urn m ({red}) m ({yellow}) m ({red, yellow}) H S ( m ) H DP ( m ) H JS ( m ) 

1 0.5 0.5 0 1 0 1 

2 0 0 1 1 1 2 
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t

𝐻

rom t k to 𝑡 𝑘 + 𝑇 . The finite set of hypotheses under consideration can be
epresented as Ω = 

{
Ω1 , … , Ω𝑛 

}
, where Ωi is the frame of discernment

or the i th hypothesis and |Ω| = 𝑛 ∈ ℤ 

+ is the number of hypotheses.
ecall that each hypothesis frame of discernment Ωi ∈Ω contains a set
f mutually exclusive and collectively exhaustive propositions for reso-
ution of that hypothesis. 

At time t k , define the actions available to the s th actor as the finite
et 𝔸 𝑠,𝑘 . Under the assumption that each actor can only perform one
ction at a given time t k , the available action sets for all m actors in the
etwork at time t k are described through the Cartesian product: 

 𝑘 = 𝔸 1 ,𝑘 ×… ×𝔸 𝑚,𝑘 (10) 

here an action set  𝑘 ∈ 𝔸 𝑘 denotes a valid set of m actions at time t k 
nd 𝐴 𝑠,𝑘 ∈  𝑘 is a valid action for actor s from that action set. 

Define an actor’s sequence of actions over the time horizon 𝑡 𝑘 +1 to
 𝑘 + 𝑇 as the following ordered list (or T -tuple): 

 𝑠, 1∶ 𝑇 = 

(
𝐴 𝑠, 1 , … , 𝐴 𝑠,𝑇 

)
, 𝑠 = 1 , … , 𝑚 (11) 

imilarly, define a set of action sequences for all actors as the finite set: 

 1∶ 𝑇 = 

{
 1 , 1∶ 𝑇 , … ,  𝑚, 1∶ 𝑇 

}
(12) 

his set contains an action sequence for each of the m actors in the
etwork and thus fully defines the actions taken by the network over the
ime horizon. Furthermore, the set of all valid sets of action sequences
all valid combinations of action sequences) is also represented by a
artesian product: 

 1∶ 𝑇 =  1∶ 𝑇 ×… × 1∶ 𝑇 (13) 

The goal is to select the set of action sequences that minimizes a to-
e-defined cost function at the end of the T -step receding time horizon.
enerically, this cost function may be represented as follows: 

 𝑇 ∶ 
(
Ω,  ;  1∶ 𝑇 

)
↦ ℝ (14) 

here  is a user-defined set of weights such that 𝑤 𝑖 ∈  quanti-
es the priority of hypothesis Ωi relative to the other hypotheses in Ω,
nd T indicates that the cost function is evaluated at the end of the
ime horizon, time 𝑡 𝑘 + 𝑇 . It stands to reason that some hypotheses will
e more important to decision-makers than others, so this weighting is
onsidered a user-defined (potentially time-varying) parameter. It is not
ubject to optimization in this study but is instead treated as a tunable
arameter. 

Therefore, the generic hypothesis-based evidence-gathering opti-
ization problem is: 

 

∗ 
1∶ 𝑇 = arg min 

 1∶ 𝑇 ∈𝔸 1∶ 𝑇 
𝐽 𝑇 

(
Ω,  ;  1∶ 𝑇 

)
(15) 

n other words, the optimal set of action sequences minimizes the cost
unction J T , evaluated at time 𝑡 𝑘 + 𝑇 subject to the evidence from each ac-
ion 𝐴 𝑠, ⋅ ∈  𝑠, 1∶ 𝑇 in each action sequence  𝑠, 1∶ 𝑇 ∈  1∶ 𝑇 for each actor
 = 1 , … , 𝑚. In the following sections, a specific cost function is devel-
ped based on reaching strong (unambiguous and unbiased) hypothesis
esolutions. 

.3. Evidence-gathering for hypothesis entropy reduction 

Hypothesis resolution refers to the goal of determining which propo-
ition is true from the set of propositions in the frame of discernment. Re-
all that Jirousek–Shenoy (J–S) entropy [25] quantifies both conflict and
on-specificity in hypothesis knowledge, providing an apt minimization
29 
bjective for strong hypothesis resolution. In particular, the conflict and
on-specificity portions of J–S entropy have equal scaling, allowing for
he use of this single objective in the measurement of both phenomena
ithout need for scaling parameters. Many different measures of bpa

ntropy have been presented in recent years, including some which also
ncorporate both conflict and non-specificity, such as Deng entropy [30] .
–S entropy has the additional advantage of reaching maximum entropy
nly with a vacuous bpa, providing a clear indication of when conflict
nd non-specificity are both at a maximum. As this paper focuses on
he development of a hypothesis-resolution approach as a whole, com-
arisons between different implementations of hypothesis entropy will
e left for future work. J–S entropy quantifies (in equal scaling) both
onflict and non-specificity and ensures that the vacuous bpa receives
aximum entropy, which satisfies the desired entropy properties for this
ypothesis-resolution task. 

At a given time t k , each candidate action 𝐴 ∈  𝑘 gathers evidence
hat may be used to resolve hypotheses. Denote the total amount of
vidence gathered through action set  𝑘 as p , noting that a single
ction may gather multiple distinct pieces of evidence or may gather
o evidence, restricting p to the non-negative integers. The hypothesis-
esolution contribution of a given piece of evidence is represented by
he bpa: 

 𝑖,𝑗,𝑘 ∶ 2 Ω𝑖 ↦ [ 0 , 1 ] (16) 

here the subscript i indicates that this bpa is related to hypothesis Ωi ,
he subscript 𝑗 = 1 , … , 𝑝 refers to the piece of evidence relevant to this
pa, and the subscript k indicates the evidence is gathered at time t k .
he bpas for all p pieces of evidence can be fused using Dempster’s rule
o arrive at a hypothesis update bpa: 

̃  𝑖,𝑘 = 

𝑝 ⨁
𝑗=1 

𝑚 𝑖,𝑗,𝑘 (17) 

ecall that Dempster’s rule is associative and commutative, meaning the
ombination can be done sequentially and order doesn’t matter [32] .
owever, Dempster’s rule is not idempotent so the pieces of evidence
eing combined must be independent to avoid artificially inflating the
ffect of a particular piece of evidence. If a particular piece of evidence
 gathered at time t k does not contribute to hypothesis Ωi , then m i, j, k 

s simply the vacuous bpa, ensuring that each term in the summation is
efined. 

Therefore, the resulting knowledge state for hypothesis Ωi , incorpo-
ating all evidence from time from t 0 to t k is denoted as: 

 

+ 
𝑖,𝑘 

= 𝑚 

− 
𝑖,𝑘 

⊕ 𝑚̃ 𝑖,𝑘 (18) 

here 𝑚 

+ 
𝑖,𝑘 

is the a posteriori knowledge state and 𝑚 

− 
𝑖,𝑘 

is the a pri-
ri knowledge state for hypothesis Ωi at time t k based on all evidence
athered prior to t k . 

Note that, while this approach implements evidence fusion, combi-
ation rules (i.e. Dempster’s rule), and hypothesis entropy definitions,
mproving upon evidence combination rules or entropy definitions is
ot a focus of this work. Instead, the goal of this work is to develop an
mproved method for evidence search and resource allocation. 

.3.1. Normalized Jirousek–Shenoy entropy 

The resolution of hypothesis Ωi based on bpa m i , as measured
hrough J–S entropy [25] , is defined as: 

 𝐽𝑆 

(
𝑚 𝑖 

)
= 

( ∑
𝑥 ∈Ω𝑖 

Pl P m i ( 𝑥 ) log 2 

( 

1 
Pl P m i 

) ) 

+ 

( ∑
𝐴 ∈2 Ω𝑖 

𝑚 𝑖 ( 𝐴 ) log 2 ( |𝐴 |) ) 

(19) 
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here the first summation term, related to Shannon entropy, quantifies
onflict and the second summation term, called Dubois–Prade entropy,
uantifies non-specificity. Theorem 3.1 shows that J–S entropy is on the
cale [0, 2log 2 (| Ωi |)] [25] . 

heorem 3.1 (Maximum Entropy) . Consider a bpa m for discrete ran-

om variable X with frame of discernment Ω𝑋 = 

{
𝑥 1 , … , 𝑥 𝑛 

}
. The maximum

alue of J–S entropy for m is 

 𝐽𝑆 ( 𝑚 ) = 2 log 2 ( 𝑛 ) (20)

roof. The maximum entropy principle [25] states that the maximum
alue of entropy is attained by the vacuous bpa. Therefore, assume m is
acuous: 

 (Ω𝑥 ) = 1 , 𝑚 ( 𝑥 ) = 0 ∀ 𝑥 ∈ 2 Ω𝑋 ⧵Ω𝑋 (21)

he plausibility transformation yields the following plausibility proba-
ility function: 

l P m ( 𝑥 ) = 

1 
𝑛 
∀ 𝑥 ∈ Ω𝑋 (22)

omputing the Shannon entropy: 

∑
 ∈Ω𝑖 

Pl P m i ( 𝑥 ) log 2 

( 

1 
Pl P m i 

) 

= 𝑛 

(1 
𝑛 
log 2 ( 𝑛 ) 

)
= log 2 ( 𝑛 ) (23)

imilarly, computing the Dubois–Prade entropy for the vacuous bpa m : ∑
 ∈2 Ω𝑖 

𝑚 𝑖 ( 𝐴 ) log 2 ( |𝐴 |) = log 2 ( 𝑛 ) (24)

ecause m ( A ) is non-zero only for 𝐴 = Ω𝑋 , in which case the cardinality
𝐴 | = |Ω𝑋 | = 𝑛. Maximum J–S entropy is therefore the sum: 𝐻 𝐽𝑆 ( 𝑚 ) =
 log 2 ( 𝑛 ) . □

To use entropy as a cost function while accounting for hypotheses
ith different numbers of propositions, the normalized J–S entropy is
efined as: 

̃
 𝐽𝑆 ( 𝑚 𝑖 ) = 

𝐻 𝐽𝑆 ( 𝑚 𝑖 ) 
2 log 2 

(|Ω𝑖 |) (25)

here m i is the bpa representing knowledge of hypothesis Ωi . 

.3.2. Optimization formulation 

To accomplish the goal of minimizing hypothesis conflict and non-
pecificity, the normalized entropy defined in Eq. (25) is employed
s the cost function to further specify the optimization problem in
q. (15) . 

 

∗ 
1∶ 𝑇 = arg min 

 1∶ 𝑇 ∈𝔸 1∶ 𝑇 

|Ω|∑
𝑖 =1 

𝑤 𝑖 𝐻̃ 𝐽𝑆 

(
𝑚̂ 𝑖,𝑇 

)
(26)

here 𝑤 𝑖 ∈  are the hypothesis weights used to denote relative prior-
ties such that 

∑
𝑖 𝑤 𝑖 = 1 , and 𝑚̂ 𝑖,𝑇 is the estimated bpa for hypothesis

i at the end of the time horizon 𝑡 𝑘 + 𝑇 . In this work, the weights w i are
onsidered tunable parameters that the operator may modify to reflect
elative priorities between the hypotheses (e.g. some hypotheses may
e more time-critical than others). Selecting an optimal set of weights
s a challenging multi-objective optimization problem of its own that is
ot within the scope of this development; instead, this work shows that,
iven a set of weights determined by the operator, the JER algorithm
s able to select an optimal set of action sequences. This optimal set of
ction sequences,  

∗ 
1∶ 𝑇 , are actions estimated to gather evidence that

inimizes conflict and non-specificity in user-prioritized hypotheses. 

.3.3. Computational complexity 

The general formulation in Eq. (26) suffers from a number of prac-
ical issues in implementation. Most notably, the number of action se-
uences to evaluate can quickly preclude brute-force evaluation of all
ossible action sequences over the time horizon. Computational com-
lexity of a brute-force approach to this optimization problem scales
30 
ith the number of hypotheses | Ω|, the number of sensors m , the num-
er of valid actions for each sensor n m 

, and the time horizon T : 

 

( 

𝑇 ∏
𝑡 =1 

( 

𝑚 ∏
𝑗=1 

𝑛 𝑠,𝑡 

) ) 

(27) 

here m is the number of actors and n s, t is the number of valid ac-
ions for the s th actor at time 𝑡 𝑘 + 𝑡 . The upper bound on this com-
lexity is found by defining the worst-case number of valid actions as
 = max 

(
𝑛 𝑠,𝑡 | 𝑠 = 1 , … , 𝑚 ; 𝑡 = 1 , … , 𝑇 

)
, yielding a worst-case computa-

ional complexity: 

 

(
( 𝑛 𝑚 ) 𝑇 

)
(28) 

As expected, computational complexity for a brute-force approach
cales exponentially with the number of valid actions, the number of
ctors, and the length of the time horizon. Depending on the resources
equired to estimate the hypothesis resolution after a set of action se-
uences, this algorithm can become computationally restrictive, moti-
ating several complexity mitigations. 

.4. Implementation considerations 

This section modifies the general optimization approach in
q. (26) to arrive at a computationally tractable solution by decompos-
ng the problem into individual sub-problems and applying adversarial
ptimization techniques to reduce the number of action sequence eval-
ations. An additional concern with the entropy-reduction algorithm is
he effect of evidence ambiguity and evidence-gathering bias induced
y prior information. Adversarial optimization is applied to reduce the
umber of action sequence evaluations and combat confirmation bias. 

.4.1. Unbiased hypothesis resolution 

Confirmation bias is a cognitive phenomenon where prior belief
auses fixation on a particular proposition, causing the human to fa-
or evidence that confirms prior beliefs and overlook conflicting evi-
ence [19] . In regimes with uncertainty and ambiguity, this effect also
pplies by interpreting ambiguous evidence in favor of prior beliefs.
imilar to human cognitive fixation, socio-technical systems might also
xhibit confirmation bias. For instance, a most-probable-first evidence-
athering approach would prioritize actions estimated to gather further
vidence to confirm prior knowledge. However, spurious detections or
alse alarms may lead to increased belief in the incorrect proposition. In
his way, prior information has the potential to skew future evidence-
athering actions, so technological fixation may be induced by measure-
ent noise, sensor bias, or other sources of uncertainty. 

For illustration, consider a binary frame Ω = 

{
𝑥 1 , 𝑥 2 

}
and a prior

hat places slight belief in the x 1 proposition: 𝑚 

({
𝑥 1 
})

= 0 . 1 , 𝑚 

({
𝑥 2 
})

=
 , 𝑚 

({
𝑥 1 , 𝑥 2 

})
= 0 . 9 . A most-probable-first approach would focus future

ctions on confirming { x 1 }, while ignoring the (much larger) ignorance
n the estimated proposition. If the true resolution of this hypothesis is
ctually { x 2 }, evidence gathered from tasking on the incorrect propo-
ition ({ x 1 }) may be vacuous, causing the knowledge state stagnate. In
his case, the most-probable-first approach stalls as no further evidence
s admitted to increase belief in { x 2 } and change the proposed tasking. 

It is important to avoid fixating on any particular proposition where
ncorrect priors or evidence ambiguity may be the cause of any bias,
dding a competing objective to the requirement of minimizing hypoth-
sis entropy. Just as fixation should not be ignored in favor of time
ptimality, fixation should not be the only focus at the cost of resolving
ypotheses within time constraints. Quantifying confirmation bias is an
ctive area of research, with cognitive sciences researchers using various
easures comparing selection of supporting versus refuting evidence

19,21] . One such measurement is the difference between numbers of
elected supporting and refuting evidence elements [20] , meaning an
nbiased sequence of actions selects equal numbers of supporting and
efuting elements. 
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The proposed approach employs a related heuristic, a principle of
qual effort that distributes resources (e.g. actions, time, money) evenly
mongst propositions. An apt analogy for this heuristic is the fair trial
ystem, wherein the defense and prosecution are given equal opportu-
ity to present the strongest evidence to confirm or refute a hypoth-
sis. Similarly, the proposed framework employs a pair of agents for
ach proposition, advocate and critic, which alternate action turns to
llow equal opportunity for gathering supporting or refuting evidence,
espectively. Due to strong parallels to the fair trial system, the proposed
ramework is called Judicial Evidential Reasoning (JER). 

Application of this alternating-turns heuristic encourages resolution
uided by evidence, not prior beliefs, biases, or ambiguity. In the event
f multiple competing resources, the principle of equal effort creates an
dditional multi-objective optimization and uniqueness of the solution
sing this heuristic is not guaranteed. However, improved measures for
onfirmation bias are an area for future research and could extend the
ER approach by altering the agent-pair action ordering. 

.4.2. Sub-problem definition 

The primary intuition that allows decomposition of the entropy-
eduction approach in Eq. (26) is that not all sensor actions contribute
vidence related to all hypotheses. The sub-problems can be solved in-
ependently (and in parallel), resulting in | Ω| sub-problem action se-
uence sets that must be combined into a single optimal set of action
equences. 

Consider one of the hypotheses Ωi ∈Ω and the subset of valid actions
elevant to that hypothesis as 𝔸 𝑠,𝑘,𝑖 : 

 𝑠,𝑘,𝑖 ⊆ 𝔸 𝑠,𝑘 (29) 

here 𝔸 𝑠,𝑘 are all the valid actions for sensor 𝑠 = 1 , … , 𝑚. Similarly,
he action sequences relevant to hypothesis Ωi over the time horizon t k 
o 𝑡 𝑘 + 𝑇 𝑖 are denoted 

 1∶ 𝑇 𝑖 ,𝑖 ⊆ 𝔸 1∶ 𝑇 𝑖 (30) 

y definition, |𝔸 𝑠,𝑘,𝑖 | ≤ |𝔸 𝑠,𝑘 | and |𝔸 1∶ 𝑇 𝑖 ,𝑖 | ≤ |𝔸 1∶ 𝑇 𝑖 |. Note that the time
orizon T i is allowed to be different for each hypothesis since, in oper-
tion, not all hypotheses need to have the same optimization horizon. 

The sub-problem optimization objective is first represented using a
eneric cost function specific to each hypothesis: 

 𝑇 𝑖 ,𝑖 
∶ 
(
Ω𝑖 ;  1∶ 𝑇 𝑖 ,𝑖 

)
↦ ℝ (31) 

ote that w i is not relevant to this portion of the optimization as the
ub-problems are being solved independently, but it will play a role in
he combination of the sub-problem sequences. The sub-problem opti-
ization problem is defined as: 

 

∗ 
1∶ 𝑇 𝑖 ,𝑖 

= arg min 
 1∶ 𝑇 𝑖 ,𝑖 ∈𝔸 1∶ 𝑇 𝑖 ,𝑖 

𝐽 𝑇 𝑖 ,𝑖 

(
Ω𝑖 ;  1∶ 𝑇 𝑖 ,𝑖 

)
(32) 

This sub-problem decomposition approach allows for parallel com-
utation of action sequence sets for each agent-pair. However, if the
ntropy-reduction cost function is employed as in Eq. (26) , the same
oncerns related to confirmation bias will arise: an incorrect prior in-
uces actions against the incorrect proposition, leading to weak or vac-
ous evidence and weak hypothesis resolution. Therefore, a different
ptimization approach is employed for the sub-problems while entropy-
inimization is reserved for the combination of the sub-problem solu-

ions. 

.4.3. Combating confirmation bias 

Adversarial optimization techniques are employed to reduce confir-
ation bias, similar to the opposing counsel in the judicial system. Ap-
roaches such as minimax optimization have been heavily applied in
ame theory for turn-based, zero-sum games such as Chess and GO. In
inimax optimization, an agent plans its actions with the knowledge

hat the opposing agent will select actions toward the opposite goal. In
ight of this conflict, both agents attempt to minimize potential loss in
31 
 worst-case scenario. Conversely, for a maximizing objective, maximin
ptimization represents agents maximizing the minimum gain from a se-
uence of actions. The adversarial minimax approach ensures that the
vidence gathered equitably presents available hypothesis resolution in-
ormation while remaining impartial to the hypothesis resolution result.

Consider a single hypothesis from the set of considered hypotheses at
ime t k : Ωi ∈Ω. Each proposition must be either conclusively confirmed
r refuted with evidence, so each proposition is assigned a pair of JER
gents. Therefore, for hypothesis Ωi there are | Ωi | alternating JER agent-
airs. When the advocate agent is active, its goal is to maximize belief
n the proposition { 𝜃}, accomplished using maximin optimization with
he plausibility probability transformation: 

 

∗ 
1∶ 𝑇 𝑖 |{ 𝜃} = arg max min 

 1∶ 𝑇 𝑖 ,𝑖 ∈𝔸 1∶ 𝑇 𝑖 ,𝑖 
Pr pl 

(
𝜃; 𝑚 𝑖 | 1∶ 𝑇 𝑖 ,𝑖 

)
(33) 

here 𝑚 𝑖 | 1∶ 𝑇 𝑖 ,𝑖 
is the estimated bpa resulting from the proposed action

equence  1 ,𝐻 

. The plausibility transformation is applied here because
f its relationship and consistency with decision-making. The maximum
ttainable value for this objective is 1 when proposition { 𝜃} has full
elief, and the minimum attainable value for this objective is 0 when
roposition {¬𝜃} has full belief. When the critic agent is active, its goal is
o maximize belief in the alternative proposition ({¬𝜃}) or equivalently
inimize belief in the null proposition ({ 𝜃}). Therefore, the formulation

imply flips to a minimax optimization: 

 

∗ 
1∶ 𝑇 𝑖 |{ ¬𝜃} = arg min max 

 1∶ 𝑇 𝑖 ,𝑖 ∈𝔸 1∶ 𝑇 𝑖 ,𝑖 
Pr pl 

(
𝜃; 𝑚 𝑖 | 1∶ 𝑇 𝑖 ,𝑖 

)
(34) 

The result of the JER agent-pair schedule optimization is a minimax-
ptimal action sequence for each agent-pair. In the next section, these
ub-problem action sequences are combined to arrive at a single optimal
chedule. If an agent-pair’s action is selected in the final schedule for this
teration, that agent-pair flips its active agent for the next time step. 

.4.4. Resolving combined schedule incongruity 

After determining optimal schedules for each agent-pair, the sched-
les must be combined into a single schedule. Depending on the hy-
otheses, it is possible or even likely that two or more agent-pairs will
equire the same actor for different actions. These incongruities are re-
olved by choosing the actions that lead to the strongest hypothesis res-
lution as measured by entropy. 

Using the set of actions from all sub-problem optimal sequences
 

∗ 
1∶ 𝑇 ⋅ , ⋅

, all possible combinations of these actions are used to form candi-

ate congruous action sequences. The combination schedules are evalu-
ted up to the longest time horizon. The evaluation criterion for select-
ng the optimal combined schedule is the weighted-sum of entropy: 

 

∗ 
1 ,𝑇 = arg min 

 1∶ 𝑇 ∈𝔸 ∗ 1∶ 𝑇 ⋅ , ⋅

|Ω|∑
𝑖 =1 

𝑤 𝑖 𝐻̃ 𝐽𝑆 

(
𝑚 𝑖 | 1∶ 𝑇 

)
(35) 

here w i is the weighting for the 𝑖 th hypothesis, and 𝐻̃ 𝐽𝑆 is the nor-
alized J–S entropy as defined in Eq. (25) . Since J–S entropy quantifies

oth conflict and non-specificity, and the weighting parameters encode
ecision-maker priorities, the resulting action sequence  

∗ 
1∶ 𝑇 is the ac-

ion sequence with the strongest priority-weighted resolution. 
At worst case, this is the same as a brute-force re-evaluation, but this

ould require all hypotheses to have the same applicable action subsets
nd all possible actions produce an optimal result for at least one hypoth-
sis. This implies an extreme interdependence between the hypotheses
hat is unlikely to occur in operation. In more realistic cases, where at
east some hypotheses are distinct enough to have different applicable
ctions, this re-evaluation is much less computationally complex than
rute-force. 

.4.5. Efficient minimax optimization 

To further reduce the number of action sequences evaluated, the
lternating-agent formulation of the sub-problems can be further ex-
loited using adversarial optimization techniques. Combinatorial opti-
ization techniques often employ methods for intelligently exploring
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Fig. 2. Sample alpha-beta pruning. 
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c  
r pruning expansive decision trees (e.g. branch and bound) to quickly
liminate costly or infeasible options. 

In naive minimax (or maximin) optimization, the number of se-
uences evaluated grows exponentially with the number of valid ac-
ions and the search depth, as in Eqs. (27) and (28) . However, depend-
ng on the order in which the tree of action sequences is traversed,
ome sequences do not need to be evaluated if they are known never
o lead to the optimal solution. A popular technique to accomplish
his is called alpha-beta pruning [33] . Determined by previously evalu-
ted sequences, alpha represents the minimum score that the maximiz-
ng player is already guaranteed, while beta represents the maximum
core that the minimizing player is guaranteed. These values function
s thresholds to prune branches of the search tree that cannot possibly
esult in the optimal sequence. 

The effect of pruning the known sub-optimal branches early is to re-
uce the number of required sequence evaluations while still arriving at
he same optimal solution as naive minimax. In an ideal case, the com-
utational complexity reduces to Eq. (36) , a significant improvement
ver the brute-force complexity in Eq. (28) . 

 

( √ 

( 𝑛 𝑚 ) 𝑇 
) 

(36)

hile this idealized complexity may not be fully realized in application,
lpha-beta pruning is still likely to eliminated unnecessary searches to
rovide a more efficient minimax search. 

Fig. 2 illustrates the internal logic of an alpha-beta pruning search.
ach node represents an action and a sample objective-function return
esulting from that action in the minimax approach. The maximizing
gent at the middle-depth recognizes that, if it were to take the second
vailable action (from the left), the minimizing agent has an opportu-
ity to choose an action to reach an objective function value of 3, pos-
ibly less. Since this is less than the guaranteed 7 from the maximizing
gent’s first action, the remainder of that branch is pruned. Similarly,
he minimizing agent recognizes that, at the top-node, taking the sec-
nd available action allows the maximizing agent to attain an objective
alue of 8, possibly greater. Therefore, the remainder of the right-side of
he evaluation tree is eliminated. This reduces the number of sequence
valuations required from a maximum of 8 (in naive minimax) to just 5.
ection 4.1 further illustrates the benefits of alpha-beta pruning in ex-
mple case 1, specifically Fig. 5 . The implemented JER algorithm for
his paper uses alpha-beta pruning for efficient minimax optimization. 

.4.6. Hypothesis pruning via entropy stopping condition 

A final computational consideration is the pruning of resolved hy-
otheses. Once sufficient evidence has been gathered to resolve a hy-
othesis, it is beneficial to remove that hypothesis from consideration
or future tasking evaluations. Decision-makers should be able to indi-
ate an acceptable level of conflict and ambiguity, manifesting as J–S
ntropy thresholds 𝐻̃ 𝐽𝑆,𝑡ℎ 

(
𝑚 𝑖 

)
for each hypothesis Ωi . If the entropy for

 given hypothesis falls below this threshold, that hypothesis is consid-
red adequately resolved and action sequences related to that hypothesis
32 
o longer need to be considered. This improves computational complex-
ty further by removing entire sub-problems from consideration. 

.5. Judicial evidential reasoning summary 

The three primary considerations of the JER framework, as described
n the preceding sections, are: hypothesis abstraction, ambiguity aver-
ion, and unbiased hypothesis resolution. Employing a hypothesis ab-
traction enables predictive tasking and supports human cognition at a
trategic and planning level. The use of evidential reasoning, specifically
empster–Shafer theory, to model hypothesis knowledge allows quan-

ified conflict and ambiguity together in the entropy measurement. Ap-
lying a principle of equal effort through the alternating-turns heuristic,
nspired by the fair trial system, provides impartial or unbiased hypoth-
sis resolution to guard against confirmation bias while also prioritizing
ime-efficient hypothesis resolution. The inclusion of efficient minimax
lgorithms and a hypothesis resolution pruning condition further im-
rove computational tractability. 

The JER framework developed in the previous sections is summa-
ized graphically in Fig. 3 . Algorithm 1 outlines the JER algorithm outer-

lgorithm 1 JER manager, subproblem schedule combination. 

1: 𝑡 𝑘 : current time 
2: 𝑡 𝑇 : horizon time 
3: 𝑤 𝑗 : weight for hypothesis 𝑗 
4:  

∗ 
𝑖 
: sub-problem solution for 𝑖 th JER agent-pair 

5: procedure OptimizeActionSequence 
6: Solve sub-problem schedules 

7: for each agent-pair 𝑖 do 

8: 𝑚 

− 
𝑖,𝑘 

← a priori bpa for relevant hypothesis of agent-pair 𝑖 at
time 𝑡 𝑘 

9: 𝑖𝑠𝑀𝑎𝑥 𝑖 ← flag, true if advocate agent is active for agent-pair
𝑖 at time 𝑡 𝑘 

10: 𝐴 𝑖 ← [] : initialize empty sequence 

11: 
(
𝑠 ∗ 
𝑖 
, 𝐴 

∗ 
𝑖 

)
← EvaluateAgentPair 

(
𝑡 𝑘 , 𝑡 𝑇 , 𝑚̂ 

− 
𝑖,𝑘 
, 𝑖𝑠𝑀𝑎𝑥 𝑖 , 𝐴 𝑖 

)
12: end for 

13: Resolve combined schedule incongruity 

14: 𝔸 

∗ ← 𝐴 

∗ 
1 ×… × 𝐴 

∗ 
𝑁 

: Cartesian product of subproblem sequences
15: 𝔸 

∗ 
𝑢 
← unique ( 𝔸 

∗ ): unique combination sequences 
16: for each sequence 𝐴 𝑖 in 𝔸 

∗ 
𝑢 

do 

17: for each hypothesis  𝑗 do 

18: 𝑚̂ 

+ 
𝑗 
← 𝑚 

− 
𝑗 
: initialize updated hypothesis estimates 

19: end for 

20: for each action 𝑎 in 𝐴 𝑖 do 

21: for each hypothesis  𝑗 do 

22: 𝑚̂ 𝑗,𝑎 ← estimated evidence for hypothesis  𝑗 from ac-
tion 𝑎 

23: 𝑚̂ 

+ 
𝑗 
← 𝑚̂ 

+ 
𝑗 
⊕ 𝑚̂ 𝑗,𝑎 

24: end for 

25: end for 

26: 𝐽 𝑖 ← 

∑
𝑗 𝑤 𝑗 𝐻̃ 𝐽𝑆 

(
𝑚̂ 

+ 
𝑗 

)
: total weighted entropy objective 

27: end for 

28: 𝐴 

∗∗ ← sequence corresponding to minimum total weighted en-
tropy 

29: Flip active agent-pairs 

30: for each sub-problem sequence 𝐴 

∗ 
𝑖 

do 

31: if any action 𝑎 in 𝐴 

∗ 
𝑖 

is in 𝐴 

∗∗ then 

32: 𝑖𝑠𝑀 𝑎𝑥 𝑖 ← ! 𝑖𝑠𝑀 𝑎𝑥 𝑖 
33: end if 

34: end for 

35: return 𝐴 

∗∗ 

36: end procedure 

oop process, termed the JER schedule manager. The manager starts by
alling each agent-pair inner-loop process in parallel. Each agent-pair
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Fig. 3. Judicial evidential reasoning algorithm. 
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olves its sub-problem using the alternating-agent minimax optimization
n the plausibility probability transformation, outlined in Algorithm 2
sing a naive minimax algorithm for ease of description. Recall that the
lpha-beta pruning enhancement is simply an efficient minimax that
educes the search space, so both the naive and alpha-beta implementa-
ions reach the same result. The JER manager combines the sub-problem
chedules and determines the optimal combined action sequence  

∗∗ 

sing the total weighted entropy objective. Once the optimal action se-
uence is determined, the active agent-pairs (those whose actions are
hosen in the optimal sequence) are flipped for the next iteration. 

The following sections apply the JER algorithm described above to
llustrative medical diagnosis examples as well as a sensor network task-
ng scenario. 

. Examples 

This section contains illustrative examples of the JER approach us-
ng simplified medical diagnosis situations. The first example is intended
o illustrate the JER agent-pair sub-problem optimization in detail, and
he second example illustrates the combination of multiple JER agent-
airs to form a unified schedule. In each case, the relevant hypotheses
nd propositions are outlined, available tests are outlined as potential
33 
ctions, and the JER approach is applied to determine the sequence of
ests ordered. Since this is intended to be an illustrative example, the di-
gnosis details have been simplified and constraints have been enforced
uch that not all actions may be taken within the diagnosis window
i.e. time-critical decision-making). Section 5 contains a more detailed
nd nuanced application of JER to a real-world sensor network tasking
roblem. 

.1. Case 1: single JER agent-pair 

The first example involves a single hypothesis with two competing
mutually exclusive and collectively exhaustive) propositions, yielding
he following frame of discernment: { 𝜃, ¬𝜃}. To simplify notation, define
he corresponding propositions as: 𝐴 = { 𝜃} and ¬𝐴 = { ¬𝜃} . Since this
s a single hypothesis problem with a binary frame of discernment, only
ne JER agent-pair is needed, and this example serves to illustrate the
ER inner-loop: minimax optimization using plausibility probability. 

Assuming no prior information on the correct resolution (i.e. full
gnorance), the prior belief assignment is vacuous; this is to say that
ach proposition has the same belief and plausibility, zero and one re-
pectively, prior to any evidence gathering. Three tests are available to
nform this diagnosis, but time and cost constraints limit the number of
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Algorithm 2 JER agent-pair evaluation, recursive naive minimax im- 
plementation. 

1: 𝑡 𝑘 : current time 
2: 𝑡 𝑇 : horizon time 
3: 𝑚̂ 

− 
𝑘 
: estimated a priori bpa at time 𝑡 𝑘 

4: 𝑖𝑠𝑀𝑎𝑥 : flag, true if advocate is active at 𝑡 𝑘 
5:  : action sequence 
6: procedure EvaluateAgentPair ( 𝑡 𝑘 , 𝑡 𝑇 , 𝑚̂ 

− 
𝑘 
, 𝑖𝑠𝑀𝑎𝑥 ,  ) 

7: if 𝑡 𝑘 > = 𝑡 𝑇 then 

8: return 

(
Pr pl ( { θ} ) ,  

)
9: else 

10: if 𝑖𝑠𝑀𝑎𝑥 then 

11: 𝑠 ∗ ← − inf 
12: else 

13: 𝑠 ∗ ← + inf 
14: end if 

15:  

∗ ←  

16: 𝔸 𝑘 ← candidate actions relevant to this agent-pair at 𝑡 𝑘 
17: 𝑡 𝑘𝑝 ← next time step 
18: for each action set 𝐴 in 𝔸 𝑘 do 

19:  [ 𝑡 𝑘 ] ← 𝐴 

20: 𝑚̂ 𝐴 ← estimated bpa from action set 𝐴 

21: 𝑚̂ 

+ ← 𝑚̂ 

− ⊕ 𝑚̂ 𝐴 

22: 
(
𝑠 ,  

+ ) ← EvaluateAgentPair ( 𝑡 𝑘𝑝 , 𝑡 𝑇 , 𝑚̂ 

+ 
𝑘 
, ! 𝑖𝑠𝑀𝑎𝑥 ,  ) 

23: if 𝑖𝑠𝑀𝑎𝑥 then 

24: if 𝑠 > 𝑠 ∗ then 

25: 𝑠 ∗ ← 𝑠 

26:  

∗ [ 𝑡 𝑘 ∶ 𝑡 𝑇 ] ←  

+ [ 𝑡 𝑘 ∶ 𝑡 𝑇 ] 
27: end if 

28: else 

29: if 𝑠 < 𝑠 ∗ then 

30: 𝑠 ∗ ← 𝑠 

31:  

∗ [ 𝑡 𝑘 ∶ 𝑡 𝑇 ] ←  

+ [ 𝑡 𝑘 ∶ 𝑡 𝑇 ] 
32: end if 

33: end if 

34: end for 

35: return ( 𝑠 ∗ ,  

∗ ) 
36: end if 

37: end procedure 

Table 2 

Example Case 1: Basic proba- 

bility assignments for diagnostic 

tests. 

Test # A ¬A A ∪¬A 

1 0.7 0.0 0.3 

2 0.0 0.7 0.3 

3 0.3 0.3 0.4 
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Fig. 4. Example Case 1: Brute force evaluation tree. 

Fig. 5. Example Case 1: Alpha-beta evaluation tree. 
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i  
ests to two. Therefore, the goal is to determine which two tests result in
 strong-but-unbiased resolution. Table 2 lists basic probability assign-
ents (bpas) for each available test, functions of known statistics on the

est such as false alarm rate. Test 1 is a strong indicator of the confir-
ation of proposition A but does not carry information to negate A (or

quivalently, confirm ¬A ). Similarly, Test 2 is a strong indicator for con-
rming proposition ¬A . Both tests have non-zero probabilities of false
larm, meaning that neither can contribute complete belief to either
roposition, resulting in non-zero belief mass attributed to the frame.
est 3 does operate as an indicator of both confirmation and negation
f A , but provides weaker evidence toward both. 

Fig. 4 shows the tree of all possible evaluations, easily visualized due
o the low dimensionality of this example. Each edge of this tree is a po-
ential test (action), and each terminating node denotes the plausibility
robability of A as a result of the two actions leading to it. For instance,
34 
he left cluster of three terminating nodes represents all possible action
equences beginning with Test 1. Traversing down the tree, each succes-
ive level alternates the active agent: supporting A or ¬A . This results
n a two-step minimax optimization on Pr pl ( 𝐴 ) . The non-terminating
odes display the chosen node from below based on the active mini-
ax mode at that step (max or min). Therefore, the minimizing agent

supporting ¬A ) will select the lowest plausibility probability from each
luster of three terminating actions to populate the middle nodes, and
he maximizing agent (supporting A ) will select the highest plausibil-
ty probability from those three middle nodes to determine the selected
ction sequence (highlighted in blue in the figure). 

Following test 1 with another test 1 yields an estimated bpa that may
trongly indicate the diagnosis A but does not carry any unique evidence
o confirm ¬A . Therefore, if ¬A is the correct result, performing test 1
wice would not provide a strong result. Following test 1 with test 2
r test 3 results in estimated belief mass attributed to both A and ¬A ,
esulting in (at least partial) proposition confirmation regardless of the
orrect (true) result. 

Fig. 4 shows that the unbiased solution in this minimax optimization
cheme is Test 1 followed by Test 2, resulting in Pr pl ( 𝐴 ) = Pr pl ( ¬𝐴 ) = 0 . 5 .
This indicates that both propositions are given equal opportunity since
he prior information (vacuous) did not indicate a preference toward
ither proposition. This result matches intuition that, in the case of vac-
ous prior information, both strong indicator tests should be run to en-
ure the true diagnosis is confirmed. 

In Fig. 4 , all nine possible test sequences are computed in a brute-
orce manner. However, this is not required as alpha-beta pruning pro-
ides a more efficient approach to minimax optimization by eliminating
ranches of the evaluation tree that need not be searched based on the
reviously-searched nodes. Fig. 5 demonstrates this approach, reducing
he number of sequence evaluations from nine to seven. As expected,
lpha-beta pruning efficiently finds the same end-result as naive brute-
orce minimax using less evaluations. 

.2. Case 2: multiple JER agent-pairs 

The second example involves a single hypothesis with three compet-
ng (mutually exclusive and collectively exhaustive) propositions, yield-



A.D. Jaunzemis et al. Information Fusion 49 (2019) 26–45 

Table 3 

Example Case 2: Basic probability assignments for diagnostic tests. 

Test # A B C A ∪B A ∪C B ∪C A ∪B ∪C 

1 (Pass) 0.9 0.0 0.0 0.0 0.0 0.0 0.1 

1 (Fail) 0.0 0.0 0.0 0.0 0.0 0.9 0.1 

2 (Pass) 0.0 0.7 0.0 0.0 0.0 0.0 0.3 

2 (Fail) 0.0 0.0 0.0 0.0 0.7 0.0 0.3 

3 (Pass) 0.0 0.0 0.5 0.0 0.0 0.0 0.5 

3 (Fail) 0.0 0.0 0.0 0.5 0.0 0.0 0.5 
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(

ng the following frame of discernment: { 𝜃1 , 𝜃2 , 𝜃3 }. Once again, for
ase of notation, define the corresponding propositions as: 𝐴 = 

{
𝜃1 
}
, 

 = 

{
𝜃2 
}
, 𝐶 = 

{
𝜃3 
}
. Since this case contains a non-binary frame of dis-

ernment, three JER agent-pairs are needed (to ensure one advocate for
ach proposition). Each agent-pair solves its own minimax sub-problem
as in Case 1), and the sub-problem solutions are combined to resolve in-
ongruity between the sub-problem schedules. Therefore, this example
erves to illustrate the application of the entropy-minimization objec-
ive to resolve schedule incongruity, as well as updating the prior with
est results iteratively in receding-horizon optimization. 

As before, the prior belief assignment is assumed vacuous: each
roposition starts with a belief of zero and plausibility of one, repre-
enting full ignorance or ambiguity. Three tests are available to inform
his diagnosis, but time and cost constraints limit the number of tests
o two. Table 3 lists basic probability assignments (bpas) for each avail-
ble test, functions of known statistics on the test such as false alarm
ate. Each test has two possible outcomes, pass and fail, which affect
he knowledge state based on the test’s evidence and therefore affect
he test bpas. For instance, test 1 is a strong indicator for proposition
 , so a pass outcome gives strong belief for A whereas a fail outcome
ives strong belief for 𝐵 ∪ 𝐶 = ¬𝐴. In both cases, though, there is still a
on-zero chance of false alarm, so some belief mass is still given to the
rame as ignorance. Tests 2 and 3 are similar for propositions B and C ,
espectively, though test 2 is only moderately strong and test 3 is even
eaker. 

For each iteration, each JER agent-pair must solve its own sub-
roblem, selecting the two minimax-optimal tests in a similar manner to
he previous example case, using the alpha-beta pruning improvement.
ach agent operates under the supposition that its desired proposition is
orrect. In other words, the advocate agent for proposition A estimates
hat test 1 will return successful while tests 2 and 3 will return failed,
ttempting to contribute belief to proposition A . On the other hand, the
ritic agent for proposition A estimates the opposite test results, since it
s attempting to reduce plausibility of proposition A . 

After the sub-problem test schedules are optimized, all unique test
equences are found from the Cartesian product of these schedules. The
stimated bpa result is computed for each under the assumption of a
uccessful test return, and the sequences are ranked according to nor-
alized J–S entropy. The test sequence resulting in the lowest entropy is

elected, and its first test action implemented for that iteration. Finally,
he agent-pairs that were active during this iteration (i.e. the agent-pairs
hat requested the selected action) are flipped so that, in the next itera-
ion, the critic agent is active first. 

In order to simulate this algorithm in action, one of the propositions
ust be selected as the “truth ” hypothesis resolution, which affects the

esult of each test. For instance, if proposition A is assumed to be true,
hen test 1 would pass while tests 2 and 3 would fail. The appropriate
vidence bpa is selected from Table 3 based on the test result, and the
esult after one iteration is computed by combining the prior bpa with
his evidence bpa. The procedure above is repeated for the second test
teration in a receding-horizon approach, using the updated bpa as the
ew prior. 

Table 4 shows three different simulated example cases: the first
here A is the true resolution, another where B is true, and the third
here C is true. In each case, a first test is selected and the vacuous
35 
rior is updated with the appropriate evidence bpa from Table 3 based
n the case’s assumed true resolution. A second test is then selected
ased on the updated bpa, and the appropriate evidence bpa is used to
urther updating the hypothesis knowledge. Table 4 details the hypoth-
sis resolution after each test to illustrate the evolution of probability
nd entropy. 

Since the initial prior is vacuous, the chosen first test in each realiza-
ion is test 1, matching intuition because test 1 yields the strongest result
nd therefore minimizes entropy. If proposition A is true, as in the top
ow of Table 4 , test 1 passes and significant belief is already attributed
o A . In the second iteration, test 1 is repeated because, in this case, the
ntropy will not be significantly decreased by the contribution of other
weaker) test results. Even though the critic agent is active for A , test
 is still the strongest potential belief contribution for ¬A , providing
he strongest entropy reduction. Instead, test 1 passes again, confirm-
ng proposition A and further reducing entropy since A is the probable
orrect resolution. If either proposition B or C are true, test 1 fails, re-
ulting in significant ambiguity after the first test (as seen in the higher
ormalized J–S entropy after test 1). In both cases, the next test selected
s test 2 because it is the strongest remaining test and proposition A has
nearly) been eliminated. If proposition B is true, test 2 passes and now
 significant belief is attributed to B . If proposition C is true, test 2 fails
s well, resulting in a less-significant but still distinct belief attributed
o C : the fail result in test one indicates B or C and the fail result in test
 indicates A or C , leaving C as the only logically consistent option. In
his case, the belief attributed to A slightly increases after the second
est result, but evidence still overwhelmingly indicates proposition C . 

Once again, this result matches intuition. Since test 3 has the weak-
st belief contribution and only two tests may be executed, it is never
elected. The correct resolution is determined with high probability
hrough the use of only two tests in each case. 

Note that, while this example case did require more test sequence
valuations than a brute-force implementation, this is only because each
vailable test is relevant to each agent-pair (for simplicity). Computa-
ional complexity of this evaluation scales exponentially with the num-
er of available actions, so in a low-dimensional scenario such as this
xample, more available actions may not be an issue. In real-life complex
ecision-making scenarios with multiple propositions or hypotheses, it
s likely that this computational burden can be significantly reduced by
nly considering relevant actions for each agent-pair. 

.3. Example summary 

The two example cases presented illustrate both key components of
he JER approach. Case one demonstrates the inner-loop sub-problem
esolution using agent-pairs and efficient minimax with the plausibility
robability transformation. Case two demonstrates the outer-loop com-
ination of sub-problem schedules and resolution of incongruities using
ntropy. 

While both cases illustrated use a single hypothesis, multiple hy-
otheses do not significantly change the implementation. New agent-
airs are introduced for the new hypotheses, The only additional mecha-
ism required is the hypothesis weighting, which is applied in the sched-
le incongruity resolution step of the outer-loop. The following section
f simulated results illustrates this through a more realistic decision-
aking scenario with multiple hypotheses. 

. Simulation results 

This section contains a more nuanced application of JER scheduling
ensor network actions to resolve multiple space situational awareness
SSA) hypotheses. 
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Table 4 

Example Case 2: results based on true hypothesis realization. 

Truth Test 1 Test 2 

Result Pr pl : A, B, C 𝐻̃ 𝐽𝑆 Result Pr pl : A, B, C 𝐻̃ 𝐽𝑆 

A 1 - Pass 0.84, 0.08, 0.08 0.308 1 - Pass 0.98, 0.01, 0.01 0.055 

B 1 - Fail 0.04, 0.48, 0.48 0.721 2 - Pass 0.02, 0.75, 0.02 0.389 

C 1 - Fail 0.04, 0.48, 0.48 0.721 2 - Fail 0.07, 0.21, 0.71 0.468 
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.1. Scenario motivation 

SSA is particularly concerned with accurately representing the state
nowledge of objects in the space environment to provide better pre-
iction capabilities for threats such as potential conjunction events. Po-
ential SSA needs include maintaining catalogs of space object state ob-
ervations [34,35] , detecting maneuvers or other anomalies [36] , and
stimating control modes or behavior [37,38] . Currently, there are over
0,000 trackable objects in the space object catalog [39,40] ranging
rom decommissioned rocket bodies to active telecommunications as-
ets to university science and technology experiments. While Earth or-
it is a vast volume, useful or strategic orbit regimes (e.g. low Earth or-
it (LEO), geostationary Earth orbit (GEO), sun-synchronous LEO) have
uickly become congested and contested [38] . The number of track-
ble space objects is continually growing with expanded use of small
pacecraft technologies [41] and increased sensor capabilities. Growing
lutter poses safety concerns, accentuated by the high-profile LEO col-
ision event in 2009 between a defunct COSMOS satellite and an active
ridium satellite [42] . With such diverse involvement in the space arena,
here is a large economic incentive to understand the space environment
o ensure continued operation of assets. 

Maintaining SSA is essential to the command and control missions
f the Joint Space Operations Center (JSpOC) [43] . Discourse and ac-
ivity in SSA increasingly focuses on decision-making in the presence
f limited resources, uncertain information, and a contested space en-
ironment. Establishing protocols and regulations in the use of space
epends upon the “availability of quantifiable and timely information
egarding the behavior of resident space objects ” [38] . Unfortunately,
onstraints imposed by non-linear orbital dynamics and the disparity
etween the number of space objects and the number of sensors hinder
he ability to reliably provide information on maneuvers or other events.
n increasing emphasis is being placed on algorithms and processes that
ave an ability to ingest disparate data from many sources and fuse an
nderstanding of the greater situation of the space domain [43,44] . 

Tracking techniques used in the space surveillance system still
argely rely upon models and applications from the 1950s and 1960s
31] , which are human-intensive. For instance, current space object
ustody tasking requires human analyst to compare candidate tasking
chedules while incorporating constraints such as observation condi-
ions (e.g. sky brightness, cloud cover). In the event that an object is
ot detected, a human analyst may be required to inspect the observa-
ion conditions visually before declaring lost custody or anomaly. This
pproach is reactive and rigid, necessitating improved automated ap-
roaches to data collection and processing that incorporate auxiliary
ensor data to operate in a more predictive manner and dynamically ad-
ust the algorithm objectives and actions. Hypothesis-driven approaches
re not new to SSA; for instance, multiple hypothesis testing (MHT) tech-
iques have been applied to object detection within electro-optical im-
ges [45–47] . As the space object population increases, the amount of
ata required to maintain SSA also increases [48] , which makes human-
n-the-loop involvement in space surveillance particularly troublesome
nd motivates the development of autonomous sensor tasking capabili-
ies. 

SSA sensor tasking suffers from many competing objectives. For in-
tance, maintaining a catalog of space object estimates requires observa-
ions of many different space objects. Information-maximizing methods,
 g  

36 
s characterized through covariance estimates, minimize state estimate
ncertainty for all catalog objects [8,34] . Other objectives may require
ore data of specific targets or events. Space object association may

e handled by quantifying a state anomaly or maneuver required to as-
ociate two uncorrelated tracks (UCTs) [36,49] , classification methods
ay employ taxonomies trained on representative space object feature

ets to categorize space objects [50] , and attitude or control mode esti-
ation requires many observations of a single object to develop a light

urve, a time-history of photons received from the target space object
37] . The competing objectives are generally not complementary, espe-
ially given limited sensor resources, so different objectives may prefer
ifferent tasking approaches. 

.2. Scenario description 

Operators in a SSA decision-support environment receive notice from
 space launch entity that a planned geostationary transfer orbit (GTO)
nsertion maneuver has experienced an anomaly. The anomaly is esti-
ated to have occurred 5 min prior to the notification during a critical

rbit-raising maneuver. In addition to existing priorities and tasking re-
uirements, the two available sensors must be re-tasked to accommodate
his new tasking priority. The objective is to re-acquire the space object
nd diagnose the anomaly to regain situation awareness. 

This simulated scenario is a lower-dimensional (fewer sensors and
bjects) example of a very relevant research problem in SSA sensor task-
ng. Anomalous GTO objects are particularly difficult to characterize as
he range prohibits use of radar, requiring a wide state-space search
sing electro-optical sensors. Timely re-acquisition is critical as the
pacecraft was nominally bound for Geostationary Earth Orbit (GEO),
 densely populated orbit regime with many high-value defense and
elecommunications assets. The nominal transfer time from LEO to GEO
s just over five hours, placing additional time-pressure on resolving the
nomaly to complete conjunction analyses and alert other satellite op-
rators. If the anomaly resulted in a GEO-intersecting trajectory, it is
rucial to characterize the new orbit to inform conjunction analyses.
imilarly, if the resultant trajectory remains close to low-Earth orbit
LEO), it becomes a collision risk in a densely populated orbit regime. 

After a 5-minute delay between the anomaly event (at 2:00 UTC) and
he beginning of the sensor tasking window (at 2:05 UTC), a simulated
ommunication delay between the spacecraft operators and sensor net-
ork schedulers, the sensor operators have at most 10 minutes to gather
bservations and characterize the event. The sensor tasking time span is
imited by observation constraints (e.g. short horizon-to-horizon times
n LEO, eclipse, adverse weather), placing time pressure on the hypoth-
sis resolution. At the end of this simulation the sensor positions will
rohibit gathering further evidence, so the anomaly must be fully char-
cterized by 02:15 UTC. 

.3. Dynamics 

The nominal transfer orbit geometry is shown in Fig. 6 . The pri-
ary spacecraft begins in a 1000 km altitude circular parking orbit.

pace objects are propagated using Keplerian two-body dynamics to
ompute lines-of-sight to sensors. The sensor network is comprised of
wo 3-degree field-of-view electro-optical sensors, separated by 20 de-
rees in longitude for geometric diversity. Observations are taken with a
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Fig. 6. Nominal GTO transfer orbit and target GEO orbit. 
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ne-minute cadence and are simulated using a radiometric model,
ncluding simulated effects for background sky irradiance and at-
ospheric transmittance (e.g. cloud cover, atmospheric turbulence)

51] with illumination conditions estimated using a cannonball model. 
The sensor-tasking time span is limited by observation constraints

e.g. short horizon-to-horizon times in LEO, eclipse, adverse weather),
lacing an upper time-limit on the hypothesis resolution. The sensors
ay change actions each minute, and a receding time-horizon of two
inutes is used to evaluate potential action sequences. 

.4. Belief function models 

A limited subset of potential failure modes is analyzed for illustra-
ive purposes in this test case. As shown in Fig. 7 , the anomaly is char-
cterized at the subsystem level to determine root-cause. Since multiple
oint-of-failure events are exceedingly rare, an assumption is made that
he anomaly results from a single point-of-failure, isolating the anomaly
o one of these subsystems. 

The hypotheses considered for this GTO insertion maneuver anomaly
nclude: propulsion status, navigation status, and collision in LEO. To
onstruct JER agent-pairs, each hypothesis is further decomposed into
rames of discernment: 

= Ω𝑚𝑎𝑛 × Ω𝑝𝑟𝑜𝑝 × Ω𝑛𝑎𝑣 × Ω𝑐𝑜𝑙𝑙 (37) 

ypotheses are considered resolved if the normalized J–S entropy drops
elow the threshold value of 𝐻̃ 𝐽𝑆,𝑡ℎ𝑟 = 0 . 05 . 

The following sections describe each hypothesis, and the available
vidence, in more detail. 

.4.1. Propulsion status 

The propulsion status hypothesis, Ωprop , yields a three-element
rame: 

𝑝𝑟𝑜𝑝 = 

{
𝜔 𝑝𝑟𝑜𝑝,𝑛𝑜𝑚 , 𝜔 𝑝𝑟𝑜𝑝,𝑛𝑠 , 𝜔 𝑝𝑟𝑜𝑝,𝑒𝑥𝑝 

}
ominal propulsion status, 𝜔 prop, nom 

, represents the case where the
ropulsion subsystem is not the cause of the anomaly. The non-start
roposition, 𝜔 prop, ns , occurs when the propulsion system fails to fire,
37 
eaving the spacecraft in its LEO parking orbit. The explosion proposi-
ion, 𝜔 prop, exp , occurs when there is a catastrophic failure, resulting in
ebris in LEO near the spacecraft’s parking orbit. 

.4.2. Navigation status 

The navigation status hypothesis, Ωnav , yields a binary frame: 

𝑛𝑎𝑣 = 

{
𝜔 𝑛𝑎𝑣,𝑛 , 𝜔 𝑛𝑎𝑣,𝑎 

}
(38) 

ominal navigation status, 𝜔 nav, n , represents the case where the naviga-
ion subsystem is not the cause of the anomaly. Anomalous navigation,
 nav, a , results in an off-nominal transfer orbit due to pointing error,
ausing detection of the primary spacecraft off-track near the nominal
TO orbit. 

.4.3. Collision in LEO 

The collision in LEO hypothesis, Ωcoll , yields the following non-
inary frame: 

𝑐𝑜𝑙𝑙 = 

{
𝜔 𝑐𝑜𝑙 𝑙 ,𝑛𝑜𝑛𝑒 , 𝜔 𝑐𝑜𝑙 𝑙 , 1 , … , 𝜔 𝑐𝑜𝑙 𝑙 ,𝑅 

}
here R is the number of resident space objects (RSOs) considered. For

his illustrative example, three RSOs ( 𝑅 = 3 ) will be considered. The
none ” proposition, 𝜔 coll, none , represents the case where a collision has
ot occurred and therefore is not the cause of the anomaly. Collision
ith object j, 𝜔 Coll, j where 𝑗 = 1 , … , 𝑅, results in debris in both or-
its as well as missing nominal tracks for both object j and the primary
pacecraft. Recall that explosion also generates debris in the LEO park-
ng orbit, so the missing LEO object j and debris in its orbit differentiate
he hypotheses. Nominal detection of an RSO refutes that RSO’s collision
roposition. 

.4.4. JER agent-pairs 

The full problem considers each frame described in the decomposi-
ion above to investigate the cause of a maneuver anomaly. Each frame
inary frame contributes one JER agent-pair, while each non-binary
rame contributes | Ω · | JER agent-pairs. Therefore, for this simulation,
here are eight JER agent-pairs: three for propulsion status, one for nav-
gation status, and four for collision in LEO. 

.5. Evidence to belief function mappings 

Before utilizing any hypothesis-based approach, such as JER, ana-
ysts must develop a database of evidence-to-belief-function mappings
hat describe how gathered data affects hypothesis resolution. The pro-
ess to develop these mappings is highly problem-specific, requiring the
nalyst to carefully consider what each potential successful or missed
etection means with respect to each hypothesis. For instance, a missed
etection of the nominal GTO orbit may indicate anomaly, but if the
stimated electro-optical probability of detection [51] predicted a low
hance of success, that evidence is vacuous and belief mass should be at-
ributed to ignorance instead. In operation, each gathered piece of data
s evaluated against the database to construct bpas that represent the
ffect of that piece of evidence on the hypotheses. The fusion of these
vidence bpas with the a priori bpa generates an updated bpa represent-
ng an updated hypothesis knowledge. 

In addition to explicit information carried by observational data, im-
licit knowledge about relationships between these frames can be im-
osed through conditional bpas [52] . While the propositions of a hy-
othesis are required by definition to be mutually exclusive, the hy-
otheses themselves do not need to be independent, and relationships
etween the hypotheses can be exploited through conditional bpas to
esolve many hypotheses simultaneously. In this particular scenario, it
s known that, if evidence confirms that none of the subsystems are nom-
nal, the maneuver status is likely nominal. A small chance (0.01) is al-
owed that there may be other causes for maneuver anomaly even if the
odeled causes are nominal to account for mis-modeling of the prob-

em. Similarly, if any one of the other causes is anomalous, then the
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Fig. 7. Possible causes for GTO insertion failure. 

Fig. 8. Case 1: nominal maneuver (baseline). 
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aneuver status is likely anomalous. Conditional bpas are fused with
he updated bpa, just like any other evidence bpa, to further update the
ypothesis knowledge. 

.6. Case 1: nominal maneuver 

As a baseline, the true proposition for this first test case is the nom-
nal maneuver status. The resulting sensor tasking schedule is shown in
ig. 8 (a) and (b) shows the normalized J–S entropy for each hypothesis.
he resolutions of each proposition (belief and plausibility) are plotted

n Fig. 9 (a), (b), and (c). 
The schedule in Fig. 8 (a) indicates actions for each sensor at each

ime step, overlaid with target observability and tasking mode informa-
ion. Together with Fig. 8 (b), these figures provide an overview of the
lgorithm performance, allowing inspection of how each action taken
in the schedule) impacts the overall goal of resolving hypotheses. Note
hat, although the simulation begins at the anomaly epoch (2:00 UTC),
he sensor-tasking window does not begin until five minutes later (2:05
TC), as indicated on the schedule and results graphs. This is the same

or all simulation cases, simulating a delay caused by required com-
unication between the spacecraft operators and the sensor network

perators. 
For sensor 1, only the GTO target is valid for the first two steps.

ts first attempted observation is missed, but the radiometric model for
robability of detection confirms that the observation conditions (tar-
et near the horizon) contributed to this miss. As such, this missed
bservation does not affect the hypothesis resolution. Meanwhile, sen-
or 2 makes multiple successful observations early in the simulation,
38 
ncluding a task on the nominal GTO spacecraft that results in combined
etection of the GTO object (supporting “nominal ” propulsion and nav-
gation statuses) and the collision objects “Coll 0 ” and “Coll 2 ”. These
etections result in strong resolution of the respective collision propo-
itions (see Fig. 9 (c) at 02:06), followed by successful detection of the
Coll 1 ” collision object (at 02:07). Sensor 2 also confirms the propul-
ion status “nominal ” proposition by making a successful detection of
he GTO object (at 02:05) and failing to detect the space object in its
EO parking orbit (at 02:06). 

All hypotheses are resolved within the prescribed entropy tolerance
ithin four steps (see Fig. 8 (b)), so for the remainder of the simulation

from 02:09 onward) the sensors are free to perform other actions as nec-
ssary, as indicated by the none-of-the-above (NOTA) option and blue
asking mode. Using the sub-problem decomposition and efficient mini-
ax search, JER only required a maximum of 271 sequence evaluations

including all agent-pairs and the combination schedule evaluations) in
ny iteration, far less than the theoretical brute-force maximum of 1024
valuations. 

.7. Case 2: Propulsion non-start 

In this test case, a propulsion anomaly occurs resulting in no maneu-
er and leaving the spacecraft in its LEO parking orbit. The resulting sen-
or tasking schedule and hypothesis entropies are shown in Fig. 10 (a),
nd (b), respectively. The resolutions of each proposition are plotted in
ig. 11 (a)–(c). 

Similar to the baseline test case, strong evidence is available to con-
rm hypothesis resolutions quickly despite observability concerns. The
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Fig. 9. Case 1: nominal maneuver (baseline), hypothesis resolutions (solid line for belief, dashed line for plausibility). 

Fig. 10. Case 2: propulsion non-start. 
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nitial action by sensor 2 misses an expected observation of the GTO ob-
ect, and since observation conditions did not preclude this observation,
his action contributes strong evidence to refute the “nominal ” propul-
ion status proposition. Simultaneously, this action successfully detects
n object in the LEO parking orbit, correlating it to the non-maneuvered
rajectory and contributing strong evidence to confirm the “non-start ”
ropulsion status proposition. Subsequent successful detections of each
ollision object (including a combined detection of “Coll 0 ′′ and “Coll
 ” at 02:05) refute each collision proposition, and the navigation status
s confirmed nominal by detection of the primary spacecraft in LEO. 
s  

39 
Once again, all hypotheses are resolved within prescribed tolerances
uickly, within four minutes, allowing the sensors to resume other task-
ng priorities as indicated by the “NOTA ” option. 

.8. Case 3: propulsion system explosion 

In this test case, a propulsion anomaly occurs resulting in an explo-
ion, scattering debris in the LEO parking orbit. In total, five pieces of
ebris large enough for electro-optical detection are generated, origi-
ating from the LEO parking orbit at the anomaly epoch. The resulting
ensor tasking schedule and hypothesis entropies are shown in Fig. 12 (a)
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Fig. 11. Case 2: propulsion non-start, hypothesis resolutions (solid line for belief, dashed line for plausibility). 

Fig. 12. Case 3: propulsion explosion. 
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nd (b), respectively. The resolutions of each proposition are plotted in
ig. 13 (a)–(c). 

This test case features weaker evidence, resulting in more actions
equired to reach adequate hypothesis resolution within prescribed tol-
rances. Initial attempts by both sensors to observe the object in GTO
esult in missed detections, contributing weak evidence toward both the
nomalous propositions for both navigation status and propulsion sta-
us (non-start and explosion). The sensor network also initiates a search
n GTO (as indicated by the red region on Fig. 12 (a)) to confirm that
a  

40 
he navigation status is not anomalous, searching for the object in an
ff-nominal GTO state. 

In the course of this search, several pieces of debris are detected,
ontributing evidence toward both the propulsive explosion and colli-
ion propositions. This initially inflates the belief in a collision with ob-
ect “Coll 1 ” that is later refuted through positive detection of the “Coll
 ′′ object in its nominal orbit. Evidence mounts toward the propulsive
xplosion proposition as further debris is detected in the LEO parking
rbit, the target object is not found in GTO or LEO (refuting navigation
nomaly and propulsion non-start), and each collision object is success-
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Fig. 13. Case 3: propulsion explosion, hypothesis resolutions (solid line for belief, dashed line for plausibility). 
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ully detected (refuting any belief that the debris was generated by col-
ision). 

This test case serves as a prime example of the unbiased resolution
ocus of JER, as the prior induced by the initial debris detection is re-
ected by further evidence. Despite the weaker available evidence in this
cenario, all hypotheses are resolved within tolerance by the end of the
ensor tasking window. 

.9. Case 4: collision with object in LEO 

In this test case, the true proposition is a collision in LEO with the
bject labeled “Coll 0. ” This event generates multiple debris objects in
oth the LEO parking orbit and the nominal orbit of the collision ob-
ect, with five unique detectable debris in each orbit. The resulting sen-
or tasking schedule and hypothesis entropies are shown in Fig. 14 (a),
nd (b), respectively. The resolutions of each proposition are plotted in
ig. 15 (a)–(c). 

Similar to the propulsion explosion test case, detected debris in-
reases belief in the collision hypothesis for object “Coll 0 ”, and success-
ul detections of “Coll 1 ” and “Coll 2 ” refute those collision propositions.
n this case, debris is detected throughout the simulation in both the
EO and “Coll 0 ” orbits, which differentiates the explosion and collision
ropositions, contributing weak evidence to refute the explosion propo-
ition. A navigation anomaly is also ruled out through search of the GTO
rbit, despite an initial slight belief in navigation anomaly, once again
ndicating an ability to overcome poor or incorrect prior knowledge. 

As the simulation progresses, continued detections of debris objects
uilds to a strong resolution of collision with object “Coll 0 ” and nearly-
efuted propulsion explosion. At the end of the tasking window, the
ropulsion status hypothesis is not fully resolved within the prescribed
olerance, but the collision status resolution paints a clear picture of
ebris in both the LEO parking and collision object orbits. 

.10. Comparison to entropy-greedy scheduler 

Comparing this SSA application of JER to other sensor-tasking ap-
roaches is difficult, primarily because SSA sensor tasking algorithm
evelopment currently focuses on the reduction of space object state
41 
stimate uncertainty. Characterized through state covariance estimates,
he state uncertainty is a natural scheduling algorithm metric due to
ts direct relationship to some decision-making questions (i.e. collision).
owever, not all decision-making hypotheses can be readily transposed

o state covariance thresholds; for instance, the active mode of a space
bject is inferred from light-curve inversion [37] , not state estimate un-
ertainty. This makes comparisons to JER in SSA hypothesis resolution
asks difficult, as the direct emphasis on varied decision-maker objec-
ives is unique to SSA sensor tasking. 

Instead, a brute-force entropy-greedy scheduler was implemented for
omparison to the JER approach. The entropy-greedy scheduler evalu-
tes all valid action sequences over the scheduler horizon and selects
he action sequence that minimizes the weighted-sum entropy. This
epresents the brute-force solution to the hypothesis-based evidence-
athering optimization problem in Eq. (15) , presented to analyze pro-
osed computational complexity and bias-related improvements of the
ER approach. 

The biggest immediate difference between the approaches is
he number of sequence evaluations required. Even in these low-
imensional scenarios, the brute-force evaluation of all possible tasking
equences (two sensors, five targets, two-step horizon) requires 1,024
equence evaluations each iteration for all test cases. In comparison, for
he nominal maneuver scenario (Case 1), recall that JER only required
 maximum of 271 sequence evaluations (including all agent-pairs and
he combination schedule evaluations) in any iteration. 

While the entropy-greedy scheduler sometimes performs identically
o JER in hypothesis resolution (as in Case 1 and 2), it predictably strug-
les with confirmation bias. The comparison scenario presented is iden-
ical to the propulsion anomaly in Case 3. The resulting sensor tasking
chedule and hypothesis entropies are shown in Fig. 16 (a), and (b), re-
pectively. The resolutions of each proposition are plotted in Figs. 13 (a),
7 (b) and (c). 

As with Case 3 above, detection of debris early in the simulation con-
ributes evidence toward both the (correct) explosion proposition and
he (incorrect) collision propositions. With JER, the alternating-agent
cheme overcomes the incorrect collision prior by searching for confirm-
ng evidence for each collision proposition. However, in the entropy-
reedy approach, once the other propositions are ruled out and only the
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Fig. 14. Case 4: collision in LEO. 

Fig. 15. Case 4: collision in LEO, hypothesis resolutions (solid line for belief, dashed line for plausibility). 
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Coll 1 ” proposition remains, the algorithm is satisfied with its hypoth-
sis resolution. This results in an incorrect resolution of the collision
tatus hypothesis. 

This is a phenomenon also experienced in previous work using DST
or sensor tasking [53] , where the mutually exclusive and collectively
xhaustive nature of the propositions does not always encourage posi-
ive confirmation of the hypothesis resolution. The entropy-greedy re-
ults, contrasted with the JER results, further underscore the impact of
he alternating-agent scheme in rejecting confirmation bias. 
42 
.11. Discussion 

These simulated cases show that the JER algorithm performs as de-
igned, seeking strong evidence to resolve hypotheses without fixating
n any particular proposition. Weak evidence from missed detections
esults in the algorithm moving to other hypotheses or propositions
hat will plausibly produce stronger evidence. Additionally, decompos-
ng the sensor tasking problem into tractable sub-problems through JER
gent-pairs increases the feasible time horizon, which is computation-
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Fig. 16. Entropy-greedy scheduler: propulsion explosion. 

Fig. 17. Entropy-greedy scheduler: propulsion explosion, hypothesis resolutions (solid line for belief, dashed line for plausibility). 
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lly constrained in a brute-force approach, even for this relatively low-
imensional example. 

The test cases range from clear scenarios with strong evidence to
nomalous scenarios with weak and ambiguous evidence. The nominal
aneuver scenario (Case 1) provides a baseline for comparison, quickly

esolving the hypotheses with strong evidence. The propulsion non-start
cenario (Case 2) shows an ability to ingest both weak evidence (missed
etections from GTO) and strong evidence (successful detections in LEO)
o explore the hypotheses efficiently. The propulsion explosion and col-
ision scenarios (Cases 3 and 4) highlight the ability to avoid confirma-
43 
ion bias induced by poor prior knowledge or ambiguous evidence by
ontinuing to seek evidence to reject the incorrect propositions. 

In comparison, the entropy-greedy approach struggled to overcome
onfirmation bias, resulting in an incorrect hypothesis resolution for
he propulsion explosion test case shown. The incorrect resolution is
voided by JER through the alternating-turn adversarial approach of
he agent-pairs, accounting for and avoiding confirmation bias by en-
uring an advocate exists for each proposition. Despite the limited na-
ure of this SSA application scenario (relatively few hypotheses, sen-
ors, and available actions), the JER approach demonstrates a marked
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ifference over an entropy-greedy approach, indicating that the intu-
tion to gather the estimated strongest-available evidence can lead to
ncorrect resolutions due to confirmation bias. These results provide a
ore thorough and realistic JER application illustration than the med-

cal examples, and future work will continue to refine this application
o improve realism through increased numbers and difficulties of hy-
otheses and more sensors with more available actions. In addition to
ddressing problems with many more hypotheses and actions, a diverse
ensor network presents additional challenges, including asynchronous
perations that must be balanced in the agent-pair implementation. 

Further comparisons to existing and proposed SSA sensor tasking
ethods are confounded by the lack of clear translations from decision-
aker hypotheses to state estimate covariance, the commonly-used SSA

ensor tasking optimization metric. JER can be applied to any decision-
aking hypothesis (not just those related to covariance), and this dif-

erence in optimization focus (hypothesis-resolution vs. state estimate
ncertainty) make JER too distinct for direct performance comparisons.
owever, comparisons between the operator decision-making and cog-
itive effects of covariance- and hypothesis-based methods are relevant
o the development of proposed sensor tasking approaches. Concurrent
ork has investigated cognitive support, situation awareness, workload,
nd performance effects of the two scheduling approaches [54] , but
ince this paper focuses on the technical details of the development of
he JER algorithm, the cognitive effects comparisons are considered out
f scope of this development. 

. Conclusion 

The proposed Judicial Evidential Reasoning (JER) evidence-
athering framework arranges decision-maker questions as rigorously
estable hypotheses to enable predictive evidence-gathering for hypoth-
sis resolution. The use of a hypothesis abstraction supports human
ecision-making strengths of planning and strategy, off-loading process-
ng work to the algorithm and fusing evidence into intuitive hypothesis
esolutions. Recognizing the need to account for ambiguity aversion in
ecision-making, the use of Dempster–Shafer theory allows for quantifi-
ation of evidence ambiguity. Finally, applying the principle of equal ef-
ort through an alternating-turn adversarial optimization scheme avoids
onfirmation bias induced by improper prior beliefs or evidence uncer-
ainty and ambiguity, avoiding fixation on incorrect propositions. 

This approach values impartiality in addition to time-efficiency
n many-hypothesis resolution, while breaking the greater evidence-
athering problem into a number of sub-problems for each hypothesis
educes computational complexity and allows for a receding horizon op-
imization of the total schedule. Selecting the final optimal schedules as
he minimum total weighted entropy ensures that the selected actions
inimize conflict and non-specificity according to priorities set by the
ecision-makers. 

The provided example cases illustrate the application of both the JER
gent-pairs and the overall JER schedule manager approach to evidence-
athering. The simulated results for a GTO insertion maneuver anomaly
cenario show that the algorithm performs as expected: the appropri-
te hypotheses are confirmed via evidence and in the process the JER
lgorithm does not fixate on any particular proposition, instead accru-
ng evidence that gradually leads to the correct conclusion. The JER
pproach also compares well against an entropy-greedy approach that
ocuses actions on the most-probable propositions only, avoiding im-
roper hypothesis resolution caused by confirmation bias. 

Continuing research investigates the human cognitive effects of a
ER-like hypothesis-based evidence gathering approach to further de-
elop decision support systems that effectively support human-in-the-
oop decision-making [54] . Additionally, the principle of equal effort
s currently based on a heuristic in lieu of well-developed metrics for
onfirmation bias. Further research in defining methods for measuring
onfirmation bias would provide a more quantitative means for estimat-
ng and mitigating confirmation bias. A related concern is the consid-
44 
ration of asynchronous evidence-gathering tasks. If evidence-gathering
ources in a given network operate at different rates, care must be taken
o ensure that one faster sensor’s evidence does not overwhelm evidence
athered by other slower sensors. Further comparison studies can also
e conducted using different measures of bpa entropy to examine dif-
erent approaches to quantifying and reducing hypothesis uncertainty. 

The developed JER algorithm allows the application of a hypothesis
bstraction, quantified ambiguity, and considerations for confirmation
ias in order to rigorously address decision-maker hypotheses through
he timely application of appropriate evidence. Through these combined
mphases, JER enables predictive evidence-gathering for hypothesis res-
lution. 
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