
Propagating Belief Functions
with Local Computations

Prakash P. Shenoy and Glenn Shafer

University of Kansas

In this article, we describe a way to propagate belief
functions in certain kinds of trees using only local com-
putations. This scheme generalizes the computational
scheme proposed by Shafer and Logan ' for diagnostic

trees of the type studied by Gordon and Shortliffe2,3 and the
slightly more general scheme proposed by Shafer4 for hierar-
chical evidence. It also generalizes the computational scheme
proposed by Pearl5 for Bayesian causal trees.

Pearl's causal trees and Gordon and Shortliffe's diagnostic
trees are both ways of breaking down the evidence that bears
on a large problem into smaller items of evidence that bear on
smaDler parts of the problem so that these smaller problems
can be dealt with one at a time. This localization of effort is
often essential to make the process of probability judgment
feasible, both for the person who is making probability judg-
ments and for the machine that is combining them. The basic
structure for our scheme is a type of tree that generalizes both
Pearl's and Gordon and Shortliffe's trees. Trees of this type
permit localized computation in Pearl's sense. They are based
on qualitative judgments of conditional independence.
We believe that the scheme we describe here will prove

useful in expert systems. It is now clear that the successful
propagation of probability or certainty factors in expert sys-
tems requires much more structure than can be provided in a
pure production-system framework. Bayesian schemes, on
the other hand, often make unrealistic demands for structure.
The propagation of belief functions in trees and more general
networks occupies a middle ground where some sensible and
useful things can be done.

We would like to emphasize that the basic idea of local
computation for propagating probabilities is Judea Pearl's. It
is an innovative idea; we do not believe that it can be found
in the Bayesian literature prior to Pearl's work. We see our
contribution as extending Pearl's idea from Bayesian prob-
abilities to belief functions.
We wil describe the scheme proposed by Pearl5 for Baye-

sian causal trees. Then, we will describe the scheme proposed
by Shafer and Logan I for diagnostic trees, and, afterwards,
as a background to our own scheme, we will describe qualita-
tive Markov trees. Finaly, we wil describe our belief-
function scheme, which has Pearl's and Shafer and Logan's
schemes as special cases.

Pearl's scheme for Bayesian causal trees

A Bayesian causal tree is a directed tree-i.e., a graph in
which the links are directed, each node has only one incoming
link, and there are no cycles. A typical node, say B,
represents a random variable with a fnite number of possible
values, say b 1, ... , b,n. IfB is the answer to a theoretical
question, then the values are hypotheses; if B is an observ-
able, then the values are possible observations. It is assumed
that the variables in the tree have a joint probability distribu-
tion, and the structure of the tree reflects assumptions about
this distribution. If B separates A and C (as in Figure 1), this
is interpreted to mean that A and C are conditionally in-

0885-9000186 /0800-0043 $01.0001986 IEEE 43FALL 1986

Figure 1. An example
of a causal tree (left).

Figure 2. A typical node processor
with two daughters (right).

dependent given B with respect to this distribution. In par-
ticular, daughter nodes are conditionally independent given
their mother. Intuitively, a link from A to B means that A
directly causes or influences B.

Conceptually, a prior joint probability distribution for all
the variables in a Bayesian causal tree is determined by a prior
probability distribution for the topmost (initial) node and
transition probabilities from each node to its daughters. This
prior joint distribution can be updated to a posterior distribu-
tion when values for particular variables are observed. It may
be prohibitively difficult to actually compute the prior and
posterior joint distributions. It is clear, however, that the
prior distributions for the individual nodes can be obtained
by working down the tree, step-by-step. This step-by-step
process obviously involves only local computations; we go
from each node to its daughters, without having to consider
the joint distribution for nodes that are widely separated in
the tree. Pearl has shown that the posterior distributions for
the individual nodes can be obtained by a similar process, one
that similarly propagates information through the tree using
only local computations.

In the following description of Pearl's computational
scheme we assume, for simplicity, that the variables whose
values we observe are represented by terminal nodes.

Processors. There is a processor at each node of the tree,
and also at each link. Each node stores (or is prepared to pro-
duce on demand) the current probability distribution for its
variable. Each link stores the probability transition matrix
connecting its two variables-the matrix that gives prob-
abilities for the lower variable conditional on values of the
upper variable.

Typical node processor. Each node has input-output ports
for each neighboring node and also an output port for report-
ing its current probability distribution P. Figure 2 shows the
action of the processor for a typical node, which we denote
by B. The symbols P, X, q, rj, and si in this figure all repre-
sent column vectors. These vectors all have the same dimen-
sion, equal to the number of possible values of the variable
represented by the node B. Multiplication of these vectors is
component-wise. The arrows represent the direction of data
flow. The vectors rj and X represent what statisticians call
likelihoods-conditional probabilities of the evidence given
each possible value of the variable represented by B. Here the
evidence consists of observed values of some of the terminal
nodes. The ith component of X is the conditional probability
of all the observed values below B given that the actual value

of B is bi. The ith component of rj is the conditional prob-
ability of all the observed values at or below the jth daughter
of B given that the actual value ofB is bi. Since the daughter
nodes are independent given the mother node, the likelihood
vector X is simply the product of the likelihood vectors rj.
The vectors q and si represent (non-normalized) posterior

marginal probability distributions for node B, i.e., some con-
stant times the vector (P(b E), ..., P(bn E)), where E
denotes the evidence accounted for so far. The vector q
represents the marginal probability distribution of node B
posterior only to the evidence coming from the node set com-
plement to the set of nodes at or below node B. It is not
necessary to normalize the vectors q and si so that their com-
ponents add to one. We do want to normalize the vector P,
however, since it will go outside the system and be interpreted
as a vector of probabilities. The vector si represents the
marginal probability distribution of node B posterior only to
the evidence coming from the node set complement to the set
of nodes at or below the ith daughter of node B. The for-
mulae for the si's and P in Figure 2 result from Bayes's rule
and the fact that the evidence coming from the nodes at or
below node B and the evidence coming from the complemen-
tary set of nodes are conditionally independent given node B.

As Figure 3 shows, the initial (topmost) node and the ter-
minal nodes are slightly different. In particular, the vector q
entering the initial node from above and the vector r entering
a terminal node from below are inputs from outside the
system.

Typical link processor. In Figure 4, the matrix M, which
is stored permanently at the link, has entries Mij =

Pr(bj ai). The multiplications at the link processors are
matrix multiplications. The symbol Mt denotes the transpose
of the matrix M.

Timing. A processor does nothing so long as it is in
equilibrium-i.e., the contents of its output ports match the
values calculated from the formulae using the contents of its
input ports. If there is a mismatch, then the processor will
eventually update its outputs. It does not matter whether the
updating occurs regularly or at random intervals in time.

Initial values. Just for fun, let us initially put q = (0, ...,
0) into the initial node and r = (1, ... , 1) into the terminal
nodes. This results in an equilibrium with all r = s = X =

(1, ... , 1) and all q = (0, ... , 0) (of the appropriate dimen-
sions) though the normalization required to produce the out-

IEEE EXPERT44

Figure 3. An initial
and a terminal node processor

put probabilities is impossible. Now change q at the topmost
node to a vector of initial probabilities for the variable
represented by that node. This will propagate through the
network to result in corresponding initial probabilities for all
the other nodes.

Instantiation of erninal nodes. Whenever thejth state of a
terminal node is observed to be true, we change its input to r
= (0, ... , 0, 1, 0, ..., 0), where the I occurs in the jth
position.

Pearl's scheme fuses and propagates the effect of new
evidence and beliefs through the causal tree in such a way
that, when equilibrium is reached, each proposition will be
assigned a probability consistent with the axioms of probabil-
ity theory. As a whole, the system has as inputs the prior
probability q for the initial node and the likelihoods r for the
terminal nodes. As outputs, it has a probability distribution P
for each node. Notice that the r's and X's are not affected by
changes in the q's and s's. Changes in the r's and X's are
communicated upwards only. They do, however, cause
changes in q's and s's, which are communicated downwards.
Input of a new q to the initial node will therefore result in
equilibrium after one pass down the tree. An input of new r's
to terminal nodes will cause a change in the r's and X's prop-
agating up the tree; from each node reached on the path up
the tree, we will then have changes in the P's, q's and s's
propagating back down the tree. So equilibrium will be
reached in the time it takes to go up the tree and back down.
It is clear that the values of X and r throughout are deter-
mined by the values of r input at the terminal nodes. Once
these values are fixed, the values of P, q, and s throughout
are determined by the value of q input at the initial node. So
all the equilibrium values are uniquely determined by the in-
put values.

Belief functions in diagnostic trees

Gordon and Shortliffe2'3 discuss the problem of pooling
evidence in the case where all that evidence is focused for or
against subsets of a frame of discernment that can be
arranged hierarchically in a tree. An example of such a
diagnostic tree is shown in Figure 5. In this example, a
motorist is contemplating some of the possible causes of his
car's failure to start.
The tree could be extended to take account of more and

more detail, but as it stands, there are nine terminal nodes,

Figure 4. A typical link processor.

corresponding to nine mutually exclusive and exhaustive
hypotheses. (We assume there is only one problem that is
keeping the car from starting.) Let this set of nine hypotheses
be denoted by 0;

0 = [fuel system at fault, other system at fault, battery weak,
battery connections faulty, transmission not in park or
neutral, some other aspect of starting system at fault, igni-
tion switch defective, starter relay defective, some other
switch defective]

The set e is called theframe ofdiscernment for the problem.
Notice that each node in the tree corresponds to a subset of
0. The terminal nodes correspond to singleton subsets; for
example,

G = [battery weak
The other subsets correspond to larger subsets; for example,

C = [battery weak, battery connections faulty J
The topmost node corresponds to the whole set 0.
Gordon and Shortliffe suggest that each item of diagnostic

evidence will bear most directly on a single node of the tree,
either supporting or refuting the hypothesis represented by
that node. The problem is to combine all this diagnostic
evidence. As Gordon and Shortliffe point out, this problem

FALL 1986 45

Figure 5. An example of a diagnostic tree.

can be formulated in terms of belief functions. In this for-
mulation, each item of evidence is represented by a special
kind of belief function called a simple support function. Each
simple support function is focused on a subset of 0 corre-
sponding to a node or on the complement of such a subset.
These simple support functions must then be combined by
Dempster's rule.
The reader who is not familiar with the theory of belief

functions will need to consult Shafer. 6 We can, however, pro-
vide some insight into the mathematics of the theory by
relating it to the idea of a random subset. A function Bel
which assigns a number to every subset A of a finite frame e
is a belieffunction if there exists a random non-empty subset
S ofe such that Bel(A) = Pr(ScA). A subset A of e is a
focal element of Bel if there is a non-zero probability that S
will equal A. The belief function Bel is a simple supportfunc-
tion focused on A ifA and e are its only focal elements. It is
vacuous if e is its only focal element. Dempster's rule of
combination is a rule for calculating a new belief function
from two or more belief functions. The result of combining
Bel1 and Bel2 by this rule is denoted by Bel Ge Bel2 apd is
called the orthogonal sum of Bel I and Bel2 . Intuitively,
Bel1 3 Bel2 represents the result of pooling the evidence
represented by the separate belief functions whenever these
items of evidence are independent. Mathematically, Bel1 e
Bel 2 is the belief function corresponding to a random subset
that has the distribution of s l n s 2 conditional on s ilnS2
being non-empty, under the assumption that S, and S2 are
independent and correspond to Bel I and Bel2, respectively.

Dempster's rule can involve a prohibitive amount of com-
putation when the frame e is large. Shafer and Logan I

showed, however, that efficient implementation of the rule is
possible in the problem formulated by Gordon and Short-
liffe. The efficiency of their method derives mainly from the
fact that it does not actually perform combinations on the
whole frame e. Instead it operates on local families of

hypotheses. Like Pearl's scheme, Shafer and Logan's scheme
can be implemented so that its computations are both locally
carried out and locally controlled. Here, however, we will
follow Shafer and Logan's original exposition, in which the
computations are globally controlled. The global control calls
for computations moving up the tree and then back down.

Let D denote the collection of all non-initial nodes. Let us
call a set of nodes that consists of all the daughters of a given
non-terminal node a sib. Let SA denote the sib consisting of
the daughters of A. A non-terminal node together with its sib
is afamily. We suppose that for each node A in D, we have
one simple support function focused on A and another fo-
cused on the complement A. The goal is to combine these
belief functions by Dempster's rule to get overall degrees of
belief for and against each node.
We begin by combining the two simple support functions

for each A in 6. This yields a single dichotomous belief func-
tion BelA with dichotomy [A, A]. We assume that BelA (A)
and BelA (A) are both strictly less than one, but we allow
either or both to be zero. For any node A in the tree, we
denote by BelA I the orthogonal sum of all BelB for all nodes
B in tD that are strictly below A. In Figure 5, for example,
BelcI = BeloG®BelH, and Bel I = BelCC EBelD G
BelE (3 BelF (D BeldC 3 BelE 1. IfA is a terminal node
then BelA I is vacuous. For each node A, we denote by BelA t
the orthogonal sum of Be'B for all node B in D that are
neither below A nor equal to A. Bel(t is vacuous. For any
node A, we set BelA L = BelA (D BelA I and set BelAU =
BelA /D BelA t. Our goal, of course, is to calculate values of
Bel T = ED [BelA A E tj. Note that Bel T = BelA 0
BelA t ® BeIA I = BelA L ® BelA t = BelA U ® BelA I for
any node A.
The algorithm can be divided into three stages-Stage I

goes up the tree, Stage 2 goes down the tree, and Stage 3
computes total beliefs for all nodes in D. We sketch each stage
here and give detai;s in the appendix.

IEEE EXPERT46

Stage I (Going up the tree). Let [AI U SA be a family for
which the following values are available: BelB L (B) and
BelB L (B) for every B E SA. First compute

BeIAI(A) =c I BelB L IBESAI (A)
and BelA 1(A) likewise. Then compute

BeIA L (A)= (BeIA (BeIA 1)(A)
and BelA L (A) likewise. These computations can be per-
formed using [A U SA as the frame, and they will therefore
be feasible ifA does not have too many daughters. Addi-
tional efficiency can be gained by using Barnett's7 technique
for the first calculation.
We begin with families whose sibs are terminal nodes (since

if B is a terminal node, then BelB L = BelB), combine the
belief functions attached to them to find degrees of belief for
and against their mothers, then do the same for the mother's
mother, and so on until we have BelA L (A) and BelA L (A)
for every node A E 0. It is not necessary to apply this stage to
the family whose mother is the initial node 9.

Stage 2 (Going down the tree). Let [A] U SA be a family
for which the following information is available: BelB L (B)
and BelBL (B) for all BE SA, BelA U(A), and BelA U(A)
First, for each B in SA we compute

Bell(B) = (BelA U ® (0 J BelCL C E SA \ [BI X)) (B)
and Bel 1(B) likewise. Then for each B E SA we compute

BelB U(B) =(BelB BelB)(B),
and Bel B U(B) likewise. Again, the computations use
[AIUSA as their frame and the first step can use Barnett's
technique.
We begin Stage 2 for the family whose mother is the initial

node 9, since it is the only family that has the required values
(Bel e u (9) = I and Bel 0 u(b) = 0). We then continue
Stage 2 for all those families whose mothers are daughters of
0, and so on until we have Bel t (A) and Bel t (A) for all A E
0. It is not necessary to perform Step 2 for terminal nodes.

Stage 3 (Computing total beliefs). For each node A, we
compute

BelT(A) = (BelA I GBelAL)(A)
and Bel T(A) likewise. Here we use [A,AJ as our frame.
The scheme assumes that at each node A, we store the

following twelve belief values: BelA (A), BelA (A),
BelA 1(A), BelA 1(A), BelA L (A), BelA L(A), BelA t(A),
BelA (A), BelAU(A), BelAU(A), BelT(A), and BelT(A).
Storage of all these values will minimize computation. If
space is more at a premium than processor time, then it is
sufficient to store just six of these values (the values for A
and A of BelA, BelA 1, and BelA I) and compute the rest as
needed.

Qualitative Markov trees

networks. In this section, we introduce a purely qualitative
(non-probabilistic) concept of conditional independence and
the corresponding concept of a qualitative Markov tree.
Qualitative Markov trees are the setting for our general com-
putational scheme for propagating belief functions.

Recall that a set 4) of subsets of 9 is a partition of 9 if the
sets in 4) are all non-empty and disjoint, and their union is 9.
Both belief functions and random variables can be described
qualitatively by partitions. Given a random variable X de-
fined on 9, the partition 4) of 9 associated with X is defined
as follows: two distinct outcomes in 9 belong to the same set
P in 4) if the real numbers assumed by X when each of these
two outcomes happen are the same. Given a belief function
Bel on a frame 9, the partition associated with Bel is the
coarsest partition of 9 that carries Bel. (A partition carries
Bel if the focal elements of Bel are all unions of elements of
4).)
A partition 4) of a frame 9 can itself be regarded as a

frame. If Bel is a belief function on 9, then the coarsening of
Bel to 4) is the belief function Bel,p on 4) given by
Bel,,([PI,..., Pk}) = Bel(PI U... U Pk) for every subset
[PI ,..-,Pk} of 4). If Bel is a belief function on 4), then the
vacuous extension of Bel to 9 is the belief function Bel0
given by Bel0 (A) = Bel(U [P IP c A, PE 4)). If a belief
function is carried by 4), then Belt contains all the informa-
tion about Bel. In fact, in this case, Bel can be recovered
from Belt by vacuous extension: (Belt)0 = Bel. If 4 1 and
4 2 are two partitions, and Bel is a belief function on)I,
then the projection of Bel to 4 2 is the result of vacuously ex-
tending Bel to 9 and then coarsening to 4 2.

Recall that the coarsest common refinement of 4),,
4),n, written as (D1 A...A4,n or asAt4) 1j = I, ... ,n,is the
partition

P1n...npn P e 4j for allj, and Pln... nP, .}
We say that the partitions 4) 1, ..., n are qualitatively

conditionally independent given the partition 4), written as
[4 1.... n I -4 t if Pnp I n... nPn ;,- whenever P E +b, Pi
E 4)i for all i, and PnPi .o for all i. This definition does not
involve probabilities, just logical relations. But stochastic
conditional independence does imply qualitative conditional
independence.

Lemma 1. Let X, X, X,, be random variables de-
fined on a finite sample space 0, and let Pr: 20 - [0, 11 be a
probability distribution on 9 such that Pr(9) > 0 for all 9 E
9. IfX,. Xn are conditionally independent given X,
then 4)I, ..., 4),n are qualitatively conditionally independent
given 4), where 4) is the partition associated with X, and 4)i is
the partition associated with Xi for i = 1, ..., n.

Qualitative conditional independence is important for
belief functions because it is used in defining the circum-
stances under which we get the right answer when we imple-
ment Dempster's rule on a partition rather than on a finer
frame. This is expressed technically by saying that if Bel1 and
Bel2 are carried by 4) and (2, respectively, and [4) , (D21J--i
then (Bel1 (Bel2)4, = (Bel 1) , ® (Bel2) 4, . 8

FALL 1986

The concept of conditional independence is familiar from
probability theory, and it leads within probability theory to
many other concepts, including Markov chains and Markov

47

Figure 6. A qualitative Markov tree constructed from the causal tree in Figure 1.

An (undirected) network is a pair (J; E), where J, the
nodes of the network is a finite set, and E, the links of the
network is a set of unordered pairs of distinct elements of J.
We say the elements i and j of J are adjacent or neighbors if
(i, j) E E. A network is a tree if it is connected and there are
no cycles.

Let T = (J, E) be a tree. Given any node i in J, deletion
of i from j and deletion of all edges incident to i from E
results in a forest of k subtrees. Let the collection of nodes in
the jth subtree be denoted by ac (i).

Definition. Let [j j E J J be a finite collection of parti-
tions and let T = (J, E) be a tree. We say that [$j IjE J3 is
qualitative Markov with respect to T or equivalently that T is
qualitative Markov for [,j j E J J, if for every i in J, the
coarsest common refinements of partitions in am (i) for m =
1, ... , k are qualitatively conditionally independent given the
partition i, i.e.,

[A [4j ij E I (i) J, A 4'j 1i ak (i)}J] 'D.
Using Lemma 1, we can show that a Bayesian causal tree

becomes a qualitative Markov tree when we associate with
each node B the partition $ B associated with the random
variable corresponding to B. It remains a qualitative Markov
tree if we interpolate between each daughter node and its
mother a node corresponding to the common refinement of
the two. Figure 6 shows the result of this interpolation for the
causal tree of Figure 1.
A qualitative Markov tree can also be constructed from a

diagnostic tree. Indeed, if [A] USA is a family in the
diagnostic tree, then [A I U SA is a partition of e. The
qualitative Markov tree has a node for each of these parti-
tions, and it has a link between [A I U SA and FBI USB
whenever B is a daughter of A. Figure 7 shows the qualitative
Markov tree that is constructed in this way from Figure 5.
(Notice that the topmost family consists just of the daughters
of e; e is not included since it is the empty set.)

A qualitative Markov tree identified in this way remains a
qualitative Markov tree if [A,A3 is interpolated between
[Ai USA and the family in which A is a daughter. We may
also link [A,AJ to A's family ifA is a terminal node. Figure 8
shows the qualitative Markov tree that results when such
dichotomies are added to Figure 7.

Propagating belief functions in qualitative
Markov trees

Our general computational scheme applies to any
qualitative Markov tree. Each of the belief functions being
combined must be carried by one of the partitions in the tree.
The efficiency of the scheme will depend on the size of the
partitions, since Dempster's rule increases in complexity ex-
ponentially with the size of the frame7 and the essence of the

Figure 7. A qualitative Markov tree
constructed from the diagnostic tree in Figure 5.

48 IEEE EXPERT

scheme is to substitute multiple implementations of the rule
over each partition for a single implementation over the
whole frame e.
We imagine that a processor is located at each node. The

processors run in parallel, without synchronization. There is
direct communication only between processors at adjacent
nodes. The processor at node D i combines belief functions
using 4i as a frame and also projects belief functions from
$i to its neighbors.
The belief functions we want to combine are input directly

to the nodes; each belief function is input to a node cor-
responding to a partition that carries it. The eventual result is
that the processor at each node arrives at the coarsening to
that node of the orthogonal sum of all the belief functions
that have been input.

It does not matter when belief functions are input to the
processors; additional belief functions may be input after the
system has reached equilibrium. For the sake of exposition,
however, let us suppose that all belief functions are input at
the beginning, and that the processor at '1i initially combines
the belief functions input to it to form a belief function Bel1.
In this case, the final result at ,i should be (C [Beli iEJA)$,
the combination of all the Beli coarsened to 4i.

Figure 9 shows a typical processor. As this figure shows, each
node shares random access memory with each of its neighbors.
The memory shared between two adjacent nodes, say i and j, is
divided into two parts: node i has read-only access (ROA) to
one part and write-only access (WOA) to the other part. The
read-only access part for node i is where nodej writes messages
it transmits to node i. The write-only access part for node i is
where nodej has read-only access and is where node i writes in-
formation it wishes to transmit to node j.
The belief functions calculated by the processor at i are

denoted by (Bel T)4bi and Beliy. (Bel T) i jis the belief function
for 4i calculated on the total evidence received by i so far.
Beli,y is the belief function most recently transmitted from i to
Y.

Let NT (i) represent the set of all neighbors of node i in
the tree T Initially, Bel i is entered at each node in the tree.
The processor at i then projects Beli to each of its
neighbors; for each XE NT(i), it writes Belix,-(Bel,)$x
in the WOA portion of the memory it shares with x. At con-
stant or random intervals, each processor scans all ROA sec-
tions of its memory. If i reads something new, it (1) com-
putes (BelT),- (BelX,J 1 EIE T(i)T 3j Beli and stores
this information in its cumulative belief function registers
and (2) computes Bel,i -(G [Belx,i x E NT(i) \ LyVI (3
Beli) 4y for each y E NT (i) and writes this information in
the WOA portion of the memory it shares with node y. Part 2
of the computation involves projection as well as combination
by Dempster's rule. The details of the computation involved in
this projection will depend, of course, on the details of the tree.

This process is repeated until nothing new is read by any
node in any of the ROA sections of the memory it shares with
its neighbors. When this condition is reached, we say the net-
work is in equilibrium. It can be shown that at equilibrium, the

Figure 8. The enlarged qualitative Markov tree
for the car that won't start.

Figure 9. A typical node processor
(with three neighbors).

FALL 1986 49

belief function in the cumulative belief function register of
node i will be

® [BelxiIx E NT(i), ® Beli = (®[Belj li E J1})
which represents the total belief coarsened to the partition at
node i. The time required to reach equilibrium is proportional
to the maximum diameter of the tree (the length of the
longest path between two nodes in the tree).
We have already asserted that Pearl's computational

scheme for Bayesian causal trees and Shafer and Logan's
computational scheme for diagnostic trees are special cases of
this general scheme. This is demonstrated in detail by Shafer,
Shenoy, and Mellouli. 9 Here we will merely sketch how the
two schemes fit in as special cases.
To fit Pearl's scheme into our general scheme, we shift

from the Bayesian causal tree of Figure 1 to the qualitative
Markov tree of Figure 6. There are processors for each node
in this qualitative Markov tree; the processor at node A in the
causal tree is associated with -)A in the qualitative Markov
tree, and the processor at the link between A and B is
associated with FA A4 B in the qualitative Markov tree. The
initial inputs into the Bayesian causal tree consisted of a prior
probability distribution at the initial node and matrices of
transition probabilities between nodes. The prior probability
distribution is a belief function. The matrixMof transition
probabilities from A to B is not a belief function but it can be
represented by a belief function. What is needed is a belief
function BelM on 4'A A4 B such that (BelM)+A and
(BelM)4B are vacuous but (BelM (3 Bela.)({bj}) = Miis
where Belai is a belief function that has A = [a i as its only
focal element. There are many such belief functions BelM,
and the choice among them does not matter; see Shafer. 10
Finally, the new evidence taken into account by Pearl's
scheme consists of observed values for terminal nodes. Each
of these observed values can be represented by a belief func-
tion that has it as its only focal element.
Once we see Pearl's scheme as a special case of belief func-

tion scheme, we see that any causal tree used by Pearl's Baye-
sian analysis can also be used for more flexible belief-function
analyses. We might, for example, want to relate a daughter
and mother node using a belief function that falls short of
determining a complete probability transition matrix. We
might want to represent evidence bearing on the initial node
by a belief function that is not a probability distribution, and
we might want to represent evidence bearing on other nodes
using belief functions that are more complex than likelihoods.

To see that Shafer and Logan's scheme is a special case of
our general scheme, we shift from the diagnostic tree of
Figure 5 to the enlarged qualitative Markov tree shown in
Figure 8. The evidence in the form of dichotomous belief
functions are input at the corresponding dichotomous nodes
in Figure 8. There are no non-vacuous belief functions input
at the nodes corresponding to families in the tree. The first
computation in Stage 1 of Shafer and Logan's scheme con-
sists of a family node combining all the belief functions
received from its dichotomous daughters and projecting the
sum to its dichotomous mother. The second computation in

this stage consists of combining this projection and the belief
function input at the dichotomous mother node. The first
computation in Stage 2 consists of a family node projecting
to each of its dichotomous daughters the sum of the belief
functions received from all other daughters and the mother.
The second computation in this stage consists of each
dichotomous daughter of the family node combining the
belief function input to it and the belief function it receives
from its mother. Stage 3 of the scheme simply consists of each
dichotomous node combining the belief functions it receives
from its mother, daughter and the belief function input to it
from outside. The timing of the stages in Shafer and Logan's
scheme simply serves to minimize computations assuming one
central serial processor. If minimizing the total number of
computations is not important (as will be the case if there are
several processors running in parallel), then of course, the
timing aspect of the Shafer and Logan scheme is not impor-
tant. This is because in the general scheme, each processor
does the computations each time it receives a new message
(projection) from one or more of its neighbors. Hence, only
the most recent messages received from the neighbors matter
in the final result.
Once we see that the Shafer and Logan's scheme is a

special case of our scheme, we see that the qualitative Markov
tree resulting from a diagnostic tree can be used for more
flexible analysis. For example, we could input at each family
node a more complicated belief function that is carried by
the partition represented by the family node. This is the
generalization of the Shafer and Logan's scheme described in
Shafer. 4 In this case, Barnett's technique can no longer be
applied but the computations remain feasible if the families
are not too large.

I n this article we have described a computational scheme
that is applicable whenever evidence can be broken
down into independent components that bear most
directly on the nodes of a qualitative Markov tree. We

believe that this scheme is promising for use in expert sys-
tems, but fulfillment of the promise will require methods for
helping users of expert systems construct qualitative Markov
trees that fit the problem and their evidence.

Pearl5 has proposed methods for constructing Bayesian
causal trees from joint probability distributions. These
methods are intriguing, but their use is clearly limited to the
case where quite detailed meaningful joint distributions are
available. Straightforward interactive systems for constructing
diagnostic trees are possible, but this also will have limited
applicability.
We believe that broad use of our scheme will require in-

teractive systems that take advantage of people's general
ability to decompose evidence and their ability to make
judgments of qualitative independence. What is needed are
systems that can use such judgments to construct qualitative
Markov trees. Cl

IEEE EXPERT50

Appendix

Here we describe in detail the computations involved in
Stages 1 to 3 of the scheme for diagnostic trees. The details of
Stage 2 and Stage 3 computations are slightly different from
those described in Shafer and Logan. 1

Let us use the following notation:
BelA (A) := A° BelAL (A):= AL BelAU(A):= Au

BeIA(A):= A Be A):- AL BeAU(A): =AU

BelAI(A):= Al BelAI(A):= At; BelT(A):= AT

BelA l(A):=Al BelA t(A):=At Bel T(A) : =AT.

Stage 1 (Going up the tree).
Step 1. Calculating A I and A I from BL and BL for B in
SA

Al = I - K,

A I = K(HI [BL (1 - BL) I BE SA}), where

K = 1 / (1 + , [BL (1 -BL) B E SA)^

Step 2. Calculating A L and AL from A 0, A °, A 1, and A 1:
AL - 1 -K(1 - AO)(1 - Al),

AL = 1 - K(1 -A0)(1 -Al), where

K = 1/ (1 -AOAI -A0 Al).

Stage 2 (Going down the tree).
Step 1. Calculating Bt and Bt for B in SA from A U, A u
and CL, CL for Cin SA\ B:

Bt = 1 - K,

Bt = K(I CL /(1 - CL) ICE SA\IB])(AU/(l-Au))
where

K= 1/ (1 + S [CL /(1 - CL) ICE SA \B +

(AU /(1 -AU)))
Step2. Calculating Bu and Bu from B°, B°, Bt, and Bt:
BU -I K(1 - BO) (1 - Bt),

BU = 1 - K (1 -B0) (1 -Bt), where

K = 1 / (1 - B°Bt - B° Bt).

Stage 3 (Calculating total belief for a node).
Calculating A T and A T for any A in 0 from A t,A t,A L,
and AL:
AT= 1 -K(1 -Al)(I -AL),

AT = 1 - K(1 -At) (I _AL), where

K= 1/(1
/

-
AALAt AL).

Acknowledgment
Research for this article has been partially supported by

NSF grant IST-8405210 and grant P.O. S-25780 from Har-
vard University.

References

1. G. Shafer and R. Logan, "Implementing Dempster's Rule For
Hierarchical Evidence," working paper No. 174, 1985, School
of Business, University of Kansas.

2. J. Gordon and E. H. Shortliffe, "A Method For Managing
Evidential Reasoning In Hierarchical Hypothesis Spaces," Ar-
tificial Intelligence, Vol. 26, 1985, pp. 323-358.

3. J. Gordon and E. H. Shortliffe, "The Dempster-Shafer Theory
of Evidence," Rule-Based Expert Systems: The MYCIN Ex-
periments of The Stanford Heuristic Programming Project,
eds., B. G. Buchanan and E. H. Shortliffe, Addison-Wesley,
1985.

4. G. Shafer, "Hierarchical Evidence," The Second Conference
on Artificial Intelligence Applications - The Engineering of
Knowledge-Based Systems, IEEE Computer Society Press,
1985, pp. 16-25.

5. J. Pearl, "Fusion, Propagation, And Structuring In Bayesian
Networks," tech. report No. CSD-850022, 1985, Computer
Science Department, University of California, Los Angeles.

6. G. Shafer, A Mathematical Theory ofEvidence, Princeton
University Press, 1976.

7. J. A. Barnett, "Computational Methods For A Mathematical
Theory Of Evidence," Proc. 7th Int'l Joint Conf. AI, 1981, pp.
868-875.

8. G. Shafer, A Mathematical Theory ofEvidence, p. 177.
9. G. Shafer, P. P. Shenoy, and K. Mellouli, "Propagating Belief

Functions in Qualitative Markov Trees," working paper (in
preparation), 1986, School of Business, University of Kansas.

10. G. Shafer, "Belief Functions and Parametric Models," The
Journal of the Royal Statistical Society, Series B, Vol. 44, 1982,
pp. 322-352.

FALL 1986 51

Prakash P. Shenoy is an associate professor in the School of
Business at the University of Kansas at Lawrence where he
has been since 1978. Before that, he was with the Mathemat-
ics Research Center at the University of Wisconsin at
Madison for one year.

His research interests are in the areas of artificial in-
telligence, information and knowledge-based systems and
operations research. He has published many articles on the
mathematical theory of games. He is a member of AAAI,
ACM, and IEEE Computer Society.

Shenoy received a BTech in mechanical engineering from
the Indian Institute of Technology at Bombay in 1973, and a
MS and a PhD in operations research from Cornell Universi-
ty in 1975 and 1977 respectively.

Glenn Shafer is a professor in the School of Business at the
University of Kansas. His current interests range from the
history of probability (he is collaborating with A. W. F. Ed-
wards and Edith Sylla on an edition of James Bernoulli's
work on probability) to the applications of probability in ar-
tificial intelligence, especially expert systems and associative
memory.

Shafer received an AB degree in mathematics from
Princeton University in 1968. After serving in the Peace
Corps in Afghanistan and attending graduate school in
statistics at Berkeley and Harvard, he completed a PhD in
statistics at Princeton in 1973. He taught for three years in the
Statistics Department at Princeton. He has been an NSF post-
doctoral fellow and a Guggenheim fellow.

I S II. , 0 . I S.

Everybody wants them: cutting-edge capabilities with the confidence that comes from long familiarity. In this rapidly changing
field, our expertise can help you increase profits, save time and money, avoid frustration, and minimize risk

We help you select expert system development software without the bias ofa one-tool vendor. We helpyou get
your systems up and running in minimum time, with minimum expense and maximum payback.

We provide powerful software tools running on microcomputers to handle a wide variety ofexpert system applications. We
recommend and supply tools to facilitate upward migration to larger systems. When circumstances demand it, we provide
sophisticated software running on chipsets, workstations, minicomputers and mainfiames.

Our tools include:
* Advisor'"
* Expert-Ease'"

* Expert Edge'"
* EXSYS'"

* EX-TRAN'"
. I st CLASS'"

* INSIGHT'"
* INSIGHT 2+'"

* GURU'"

Demos are available for EXSYS, Ist-CLASS and INSIGHT 2+.
We can also provide customized expert system development tools or applications.

With on-site seminars for management, we address strategic issues of expert system implementation. We
also lead workshops to introduce attendees to expert system software, and focus their efforts on practical
development ofexpert systems. Seminars and workshops are tailored to your organization's special needs.

We work with you to implement expert system technologywithin your organization. Focus is on selecting
optimal application areas to enhance profitability, choosing correct tools, building prototypes and en-
suring organizational acceptance.

LET US HELP YOU TAKE ADVANTAGE
OF EXPERT SYSTEMTECHNOLOGY NOW.

The Expert Systerns Source" is a service mark ofJP & A Inc.

contact: Jeffrey Perrone & Associates, Inc.
3685 17th Street
San Francisco, California 94114-2663
Telephone: (415) 431-9562
Telex: 288568JPA UR

Reader Service Number 15

-

