
 
 

 
 

   

   

 

 
 



 
 

 
 

MONDAY   
  

 TIME TITLE AUTHORS ORGANIZATION 

Morning Track  10:00-10:20 
Turbulence And Aerodynamic Effect on 
Spacecraft Re-Entry 

Lin Zhong Hong Kong Polytechnic 
University 

CONTROL & 
OPTIMIZATION 10:20-10:40 Differential Drag for Collision Avoidance 

Brian Cooper & Jan King Astro Digital US, Inc. 

 10:40-11:00 

A Hybrid Adaptive Control Algorithm for 
Spacecraft Guidance Tracking Using 
Aerodynamic Drag 

Sanny Omar & Riccardo 
Bevilacqua 

University of Florida 

 11:00-11:20 

LOBO: A SmallStat Mission for ADR of GEO 
Debris Fragment with Large Area-to-Mass 
Ratios 

M Carmona, J. Bosch, A. 
Casas, D. Roma, J. Sabater, 
Norman Fitz-Coy, Stephen 
Eikenberry, Janise McNair, 
& J. Gomez 

University of Barcelona 
& University of Florida 

 11:20-11:40 
Optimization Of Space Debris Collision 
Avoidance Maneuver 

Priyatharsan E Rajasekar, 
Arun K Misra, Frédéric 
Pelletier, & Narendra 
Gollu 

McGill University & 

KinetX Aerospace 

International  

 11:40-12:00 
Simulation of Tether-Nets for Capture of Space 
Debris and Small Asteroids 

Eleonora Botta, Arun K. 
Msira, & Inna Sharf 

McGill University 

 12:00-12:20 

Removal of Orbital Debris From Geostationary 
Orbits Using Solar Radiation Pressure and 
Lyapunov Control 

Patrick Kelly & Riccardo 
Bevilacqua 

University of Florida 

   
  

Afternoon Track    
  

SENSING & 
SYSTEMS I 13:30-13:50 

Attitude States Of Space Debris Determined 
From Optical Light Curve Observations 

Thomas Schildknecht, Jiří 
Šilha, Jean-Noël Pittet, & 
Abdul Rachman 

University of Bern, 
Silderstr & Comenius 
University 

 13:50-14:10 
STARS Elevator Technology Demonstration 
and Mission Process for Debris Mitigation 

Masahiro Nohmi, Yoshiki 
Yamaiwa, & Yoshio Aoki  

Shizuoka University & 
Nlhon University 



 
 

 
 

 14:10-14:30 
A Laboratory Demonstration of Detumbling 
Space Debris 

Joseph S. Figura & Nikko 
James 

Massachusetts 
Institute of Technology 

 14:30-14:50 Close-Up Survey Of Leo Debris 

Jerome Pearson, Eugene 
Levin, Joseph Carroll 

STAR, Inc., Tether 
Applications, Inc., & 
Electrodynamic 
Technologies 

 14:50-15:10 
Data Stream-Centric SST System Architecture 
Enhancement 

Sven Müller & Enrico Stoll Technische University 
Braunschweig 

 15:10-15:30 
A Tentative Constellation for LEO RSO 
Catalogue Maintenance 

Jinali Du, Jizhang Sang, & 
Xiangxu Lu 

Wuhan University 

 15:30-15:50 

Proximity Operations About and Identification 
of Noncooperative Resident Space Objects 
Using Stereo Imaging 

Jill Davis & Henry Pernicka Missouri University of 
Science & Technology 

     

TUESDAY   
  

Morning Track 1 09:30-09:50 Multi-Fidelity Orbit Uncertainty Propagation 

Brandon A. Jones & Ryan 
Weisman 

University of Texas at 
Austin & Air Force 
Research Laboratory 

FORECASTING 09:50-10:10 

Revisit Analytical Expression for Estimating the 
Time when the Uncertainty Becomes Non-
Gaussian 

Inkwan Park & Kyle T. 
Alfriend 

LeoLabs, Inc. & Texas 
A&M University 

 10:10-10:30 

An Adaptive Monte Carlo Method for 
Uncertainty Forecasting in Perturbed Two-
Body Dynamics 

Chao Yang, Mrinal Kumar, 
& David Gedeon 

Ohio State University 

 10:30-10:50 Uncertainty Treatment In the GOCE Re-Entry 

Edmondo Minisci, Romain 
Serra, Massimiliano Vasile, 
Annalisa Riccardi, Stuart 
Grey, & Stijn Lemmens 

University of 
Strathcylde 

 10:50-11:10 

National Space Situational Awareness 
Initiative: Re-Entry Prediction Using Owl-Net 
Observation Data 

Eun-Jung Choi, Jin Choi, 
Sungki Cho, Hong-Suh Lim, 
Jang-Hyun Park, Jung 
Hyun Jo, & Deok-Jin Lee 

Korea Space & 
Astronomy Institute, 
University of Science 
Technology, & Kunsan 
University 



 
 

 
 

   
  

 
 
 
 
Morning Track 2 

 
 
 
 
09:30-09:50 

 
 
 
Laser Optical Tracking Technology for Space 
Debris Monitoring 

 
 
Wolfgang Riede, Jens 
Rodmann, Leif Humbert, 
& Daniel Hampf 

 
 
 
German Aerospace 
Center 

SENSING & 
SYSTEMS II 09:50-10:10 

Drag De-Orbit Device: A New Standard Re-
Entry Actuator for CubeStats 

David Guglielmo, Sanny 
Omar, & Riccardo 
Bevilacqua 

University of Florida 

 10:10-10:30 
Can Telescopes Help LEO Satellites Avoid Most 
Lethal Debris? 

Joseph Carroll & David 
Rowe 

PlaneWave 
Instruments 

 10:30-10:50 
CASTOR: An In-Situ Instrument for Small 
Debris Detection 

Manuel Carmona, José 
Bosch, Albert Casas, Atila 
Herms, David Roma, 
Fernando Aguado, 
Antonio Castro, & José 
Gomez  

University of 
Barcelona, University 
of Vigo, Galician 
Aerospace Research 
Center, & European 
Space Agency 

 10:50-11:10 
Real-Time Hardware-in-the-Lop Hand-Off from 
a Finder Scope to a Larger Telescope 

Daniel Aguilar Marsillach, 
Shahzad Virani, & Marcus 
J. Holzinger 

Guggenheim School of 
Aerospace Engineering 

 11:10-11:30 

Recognition of Orbiting-Objects Through 
Optical Measurements of Light-Reflecting-
Targets by Using Star-Sensors 

Fabio Curti, Dario Spiller, 
Vincenzo Schiattarella, & 
Riccardo Orsi 

Sapienza University of 
Rome & ARCA 
Dynamics 

   
  

Afternoon Track 1   
  

TRACKING  13:00-13:20 
Close Range Tracking of an Uncooperative  
Space Target in a Sequence of PMD Images 

Ksenia Klionovska, Jacopo 
Ventura, Heike 
Benninghoff, & Felix 
Huber 

DLR/GSOC 

 13:20-13:40 
Consensus-based Object Tracking within  
Heterogeneous Wireless Sensor Networks 

Alexander A. Soderlund & 
Mrinal Kumar 

Ohio State University 



 
 

 
 

 13:40-14:00 

Space Object Maneuver Detection in a Multi-
Target Environment Using a Labeled Multi-
Bernoulli Filter 

Nicholas Ravago & 
Brandon A. Jones 

University of Texas at 
Austin 

 14:00-14:20 

Optimization of Geosynchronous Space 
Situational Awareness Architectures using 
Parallel Computation 

Michael S. Felten, Dr. John 
M. Colombi, Richard G. 
Cobb, & David W. Meyer 

Air Force Institute of 
Technology 

 14:20-14:40 
Orbit Determination Performance of the 
LeoLabs Radar Network 

Nathan Griffith, Michael 
Nicolls, Ed Lu, & In-Kwan 
Park 

LeoLabs, Inc. 

 14:40-15:00 
Synthesis of Sensing Architecture for Kalman 
Filtering 

Niladri Das & Raktim 
Bhattacharya 

Texas A&M University 

 15:00-15:20 

Nonlinear Relative Motion State Estimation 
and Backstepping Control of Spacecraft 
Hovering Around an Asteroid 

Hong Yao & Dan Simon Cleveland State 
University 

 15:20-15:40 
Tensor Decomposition Based Data Association 
for Space Situational Awareness 

Sriram Krishnaswamy & 
Mrinal Kumar 

Ohio State University 

     

Afternoon Track 2   
  

RISK ASSESSMENT 13:00-13:20 
Criticality Assessment of the Italian Non-
Maneuverable Satellites in Low Earth Orbit 

Luciano Anselmo & 
Carmen Pardini 

ISTI/CNR 

 13:20-13:40 
Orbital Probability of Collision Using 
Orthogonal Polynomial Approximations 

Austin B. Probe, 
Christopher T. Shelton, 
Tarek A. Elgohary, & John 
L. Junkins 

Texas A&M University 
& University of Central 
Florida 

 13:40-14:00 

Evaluating the Threat to Space Assets and 
Activities in Cislunar Space Due to Asteroid 
Disruptions 

Thomas J. J. Kehoe & 
Ashley J. Espy Kehoe 

Florida Space Institute 
& Embry-Riddle 
Aeronautical University 

 14:00-14:20 
Sample Evaluation Criteria For Space Traffic 
Management Systems 

D.L. Oltrogge, T.M. 
Johnson, A.R. D'Uva 

AGI’s Center for Space 
Standards & Innovation 

 14:20-14:40 
Probability of Collision between Space Objects 
Including Model Uncertainty 

Christopher T. Shelton & 
John L. Junkins 

Texas A&M University 



 
 

 
 

 14:40-15:00 

Safety Analysis for Shallow Controlled Re-
Entries through Reduced Order Modeling and 
Inputs’ Statistics Method  

Simone Flavio Rafano 
Carnà, Sanny Omar, David 
Guglielmo and Riccardo 
Bevilacqua 

University of Florida 

 15:00-15:20 

Approaches to Making Best use of Two Line 
Elements Sets for Satellite Navigation and 
Collision Avoidance 

David Finkleman International Academy 
of Astronautics 

 
 
 15:20-15:40 

Space Traffic Management through the 
Control of the Space Environment’s Capacity 

Holger Krag & Stijn 
Lemmens 

ESA Space Debris Office 

WEDNESDAY   
  

Morning Track  09:30-09:50 
Methods to Build-Up and Maintain an Space 
Objects Catalogue 

D. Escobar, A. Anton, F. 
Ayuga, A. Pastpr, A. Diez, 
A. Agueda, & J. M. Lozano 

GMV 

IDENTIFICATION & 
ASSOCIATION 09:50-10:10 

Towards Pose Determination for Non-
Cooperative Spacecraft Rendezvous Using 
Convolutional Neural Networks 

Sumant Sharma, Connor 
Beierle, & Simone 
D'Amico 

Standford University 

 10:10-10:30 
Association of Very-Short-ARC Tracks with 
Geometrical and CBTA Methods 

Xiangxu Lei, Jizhang Sang, 
Donglei He, Huaifeng Li 

Wuhan University & 
China Academy of 
Space Technology 

 10:30-10:50 
Attitude Determination Using Light Curves 
From Multiple Observation Sites 

Arun Bernard & David 
Geller 

Utah State University 

 10:50-11:10 
Application of Directional Statistics to 
Problems in SSA 

Shambo Bhattacharjee, 
John T Kent, Islam I. 
Hussein, Moriba K. Jah, & 
Weston R. Faber 

University of Leeds, 
Applied Defense 
Solutions, & University 
of Texas at Austin 

     

Afternoon Track    
  

SAA SYSTEMS 13:00-13:20 
Differential Drag Demonstration: A Post-
mission Experiment with the EO-1 Spacecraft 

Scott Hull, Amanda 
Shelton, & David 
Richardson 

NASA Goddard Space 
Flight Center 



 
 

 
 

 13:20-13:40 
Yuzhnoye State Design Office’s Status on 
Mitigation Techniques and Activities 

Yuliia Lysenko, Mykhailo 
Kaliapin, & Gennadiy 
Osinovvy 

Yuzhnoye State Design 
Office 

 13:40-14:00 
Judicial Evidential Reasoning for Decision 
Support Applied to Orbit Insertion Failure 

Andris D. Jaunzemis, Dev 
Minotra, Marcus J. 
Holzinger, Karen M. Feigh, 
Moses W. Chan, & 
Prakash P. Shenoy 

Georgia Institute of 
Technology, Lockheed 
Martin, & University of 
Kansas 

 14:00-14:20 Space Test of LEO Debris Removal 

Jerome Pearson, Joseph 
Carroll, & Eugene Levin 

STAR, Inc., Tether 
Applications, Inc., & 
Electrodynamic 
Technologies 

 14:20-14:40 
Italian Space Agency Sensors Evolution for 
Space Surveillance and Tracking Operations 

Elena Vellutini, Luigi 
Muolo, Giuseppe 
D’Amore, Cosimo Marzo, 
& Claudio Portelli 

Italian Space Agency 

 14:40-15:00 
A New Approach to LEO Space Debris Survey: 
The Italian Multibeam Bi-Static Radar ‘Birales’ 

Germano Bianchi, Claudio 
Bortolotti, Alessandro 
Cattani, Franco Fiocchi, 
Andrea Maccaferri, 
Andrea Mattana, Marco 
Morsiani, Giovanni Naldi, 
Federico Perini, 
Alessandra Porfido,  
Giuseppe Pupillo, Mauro 
Roma, Marco Schiaffino, 
Tonino Pisanu, Pierluigi Di 
Lizia, Matteo Losacco, 
Mauro Massari, Josef 
Borg,  Denis Cutajar, 
Alessio Magro, Marco 
Reali, Walter Villadei 

National Institute of 
Astrophysics, 
Politecnico di Milano, 
University of Matla, & 
Italian Air Force 



 
 

 
 

 15:00-15:20 

Test Procedure to Evaluate Spacecraft 
Material Ejecta Upon Hypervelocity Impact 
and its Systematic Review 

Yasuhiro Akahoshi & 
Akifumi Sato 

Kyushu Institute of 
Technology 
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Realistic decision-making often occurs with insufficient time to gather all possible
evidence before a decision must be rendered, requiring an efficient process for priori-
tizing between potential action sequences. This work aims to develop a decision sup-
port system for tasking sensor networks to gather evidence to resolve hypotheses in
the face of ambiguous, incomplete, and uncertain evidence. Studies have shown that
decision-makers demonstrate several biases in decisions involving probability judge-
ment, so decision-makers must be confident that the evidence-based hypothesis reso-
lution is strong and impartial before declaring an anomaly or reacting to a conjunction
analysis. Providing decision-makers with the ability to estimate uncertainty and ambi-
guity in knowledge has been shown to augment effectiveness. The proposed frame-
work, judicial evidential reasoning (JER), frames decision-maker questions as rigor-
ously testable hypotheses and employs an alternating-agent minimax optimization on
belief in the null proposition. This approach values impartiality in addition to time-
efficiency: an ideal action sequence gathers evidence to quickly resolve hypotheses
while guarding against bias. JER applies the Dempster-Shafer theory of belief func-
tions to model knowledge about hypotheses and quantify ambiguity, and adversarial
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optimization techniques are used to make many-hypothesis resolution computation-
ally tractable. This work includes derivation and application of the JER formulation to
a GTO insertion maneuver anomaly scenario.

1. Introduction

Endsley defines situation awareness as “the perception of the elements in the en-
vironment within a volume of time and space, the comprehension of their meaning,
and the projection of their status in the near future” [1]. Space situational awareness
(SSA) is particularly concerned with accurately representing the state knowledge of
objects in the space environment to provide better prediction capabilities for threats
such as potential conjunction events. While Endsley’s construct of situation aware-
ness refers to a cognitive state in an individual’s mind, space situational awareness is
used as an organizational construct referring to the distributed state of knowledge at
the organizational level. Potential SSA needs include maintaining catalogs of space
object state observations [12, 13], detecting maneuvers or other anomalies [14], and
estimating control modes or behavior [15, 4]. Currently, there are over 20,000 track-
able objects in the space object catalog [2, 3] ranging from decommissioned rocket
bodies to active telecommunications assets to university science and technology ex-
periments. While Earth orbit is a vast volume, useful or strategic orbit regimes (e.g.
low Earth orbit (LEO), Geostationary Earth Orbit (GEO), sun-synchronous LEO) have
quickly become congested and contested [4]. The number of trackable space objects
is continually growing with expanded use of small spacecraft technologies [6] and in-
creased sensor capabilities. Growing clutter poses safety concerns, accentuated by
the high-profile LEO collision event in 2009 between a defunct COSMOS satellite and
an active Iridium satellite [7]. With such diverse involvement in the space arena, there
is a large economic incentive to understand the space environment to ensure contin-
ued operation of assets.

Maintaining SSA is essential to the command and control missions of the Joint
Space Operations Center (JSpOC) [5]. Discourse and activity in SSA increasingly fo-
cuses on decision-making in the presence of limited resources, uncertain information,
and a contested space environment. Establishing protocols and regulations in the use
of space depends upon the “availability of quantifiable and timely information regard-
ing the behavior of resident space objects” [4]. Unfortunately, constraints imposed by
non-linear orbital dynamics and the disparity between the number of space objects
and the number of sensors hinder the ability to reliably provide information on ma-
neuvers or other events. An increasing emphasis is being placed on algorithms and
processes that have an ability to ingest disparate data from many sources and fuse an
understanding of the greater situation of the space domain [8, 5].

Tracking techniques used in the space surveillance system still largely rely upon
models and applications from the 1950s and 1960s [9], which are human-intensive.
For instance, current space object custody tasking requires human analyst to compare
candidate tasking schedules while incorporating constraints such as observation con-
ditions (e.g. sky brightness, cloud cover). In the event that an object is not detected,
a human analyst may be required to inspect the observation conditions visually before
declaring lost custody or anomaly. This approach is reactive and rigid, necessitating
improved automated approaches to data collection and processing that incorporate
auxiliary sensor data to operate in a more predictive manner and dynamically adjust
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the algorithm objectives and actions. As the space object population increases, the
amount of data required to maintain SSA also increases [10], which makes human-in-
the-loop involvement in space surveillance particularly troublesome and motivates the
development of autonomous sensor tasking capabilities.

The sensor tasking or sensor scheduling problem addresses how to obtain, pro-
cess, and utilize information about the state of the environment [11]. The SSA sen-
sor tasking problem is a high-dimensional, multi-objective, mixed-integer, non-linear
optimization problem, so current approaches focus on tractable sub-problems (e.g.
single objectives, limited target objects, limited sensors). For instance, catalog main-
tenance requires observations of many different space objects. Entropy-minimizing or
information-maximizing methods, as characterized through covariance estimates, min-
imize state estimate uncertainty for all catalog objects [16, 12]. Other objectives may
require more data of specific targets or events. Space object association may be han-
dled by quantifying a state anomaly or maneuver required to associate two uncorre-
lated tracks (UCTs) [17, 14], classification methods may employ taxonomies trained on
representative space object feature sets to categorize space objects [18], and attitude
or control mode estimation requires many observations of a single object to develop a
light curve, a time-history of photons received from the target space object [15]. The
competing objectives are generally not complementary, especially given limited sensor
resources, so the different objectives prefer different tasking approaches.

Sensor information must be fused into a coherent understanding of the environment
via association, correlation, and combination [11]. In classical Bayesian approaches,
sensor data is used to form deterministic probabilities placed on event hypotheses un-
der the assumption that the only possible realizations of this hypothesis are true or
false. However, in complex decision-making contexts, information is not always rep-
resented in a strictly binary manner, needing to account for uncertain information and
ambiguity. An expert might be able to confirm or refute a given set of hypotheses,
but it cannot attribute belief to any hypotheses for which it is not an expert. For this
reason, evidential reasoning methods, such as Dempster-Shafer theory, quantify am-
biguity, leading to more realistic modeling of human analyst processes [19, 20, 21].
Dempster-Shafer theory has gained significant traction in various applications, includ-
ing classification [22, 23], monitoring and fault detection [24, 25], and decision-making
[26].

This work formulates a sensor tasking algorithm to eliminate both conflict and am-
biguity in user-prioritized specific hypotheses, gathering evidence that yields a more
precise understanding of the relevant hypotheses. Beginning with an analysis of the
work domain of an SSA decision-maker, the three primary concerns that the proposed
framework addresses are discussed: hypothesis abstraction, ambiguity aversion, and
unbiased hypothesis resolution. The proposed framework is developed and simulated
results are presented for an orbit insertion maneuver failure.

2. Theory

2.1. Work-Domain Analysis
The Joint Space Operations Center (JSpOC) plays the role of maintaining space

situational awareness to carry out command and control operations pertaining to the
protection of civil, defense, and national space assets [27]; tasks in JSpOC support
the monitoring, integration, and reporting of space asset state changes [5]. In order
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to respond to routine and anomalous events in space and maintain the space object
catalog, JSpOC is responsible for issuing requests to task sensors maintained by other
organizations such as the US Space Surveillance Network. Various tasks compete for
the limited number of sensors available, and various human analysts are involved in
making decisions pertaining to sensor tasking.

To support decisions in SSA processes such as sensor tasking and conjunction
assessment, decision-support systems should provide the analysts with the relevant
information in such a manner as to help the operators identify possible conjunctions
and take the correct action to avoid likely conjunctions as soon as possible while mini-
mizing unnecessary maneuvering.

2.1.1. What is a work-domain analysis?
A work-domain analysis [28] is a method to obtain requirements for support sys-

tems through the development of a work-domain model that describes work that com-
prises a socio-technical system. A work-domain model is a complete description of a
system in the form of multi-level diagrams referred to as abstraction hierarchies (AH).
In an abstraction hierarchy, each level describes the system at a different level of ab-
straction. The highest level describes the purpose of the work domain and the lowest
levels list components and their attributes. The levels are connected to each other
via a why-what-how decomposition. Elements above the current level describe why
an element in the current level is included; elements below the current level describe
how an element will be achieved. Burns and Hajdukiewicz [29] provide an example
of a work-domain analysis of a car, which has a purpose of transporting people from
A to B safely (top level: purpose). This is achieved through conservation of energy
and energy flow (second level: principles, priorities, and values), which is achieved
with the help of combustion (third level: processes). Combustion requires a combus-
tion chamber (fourth level: components), which has a particular location and color
(fifth level: attributes). Here, we have listed only one element from each level of this
example provided by Burns and Hajdukiewicz (2004). This “means-ends” structure
to organize information on displays is intended to support decision making in a wide
range of scenarios.

2.1.2. Why is a work-domain analysis being conducted?
The value of a work-domain analysis can be seen in displays that organize infor-

mation in a hierarchical structure in accordance with the abstraction hierarchy. Vicente
states that prior studies applying work-domain analysis have shown that the use of
functional level information (level 2 and level 3 of an abstraction hierarchy) can be
critical in task performance [30]. Solving a problem can require operators to look at
information and variables typically present in the lower levels (level 4 and level 5); how-
ever, initiation of the problem-solving process with the functional levels (levels 2 and
3) and using means-ends linkages between higher and lower levels is more efficient
as it constrains the operators goal-directed search within information relevant to the
given problem [31]. Vicente has argued that the an abstraction hierarchy can repre-
sent problem spaces in various tasks as this has been shown in empirical studies that
map abstraction hierarchy representations to verbal protocols or behaviors of expert
performers [31]. These mappings have been verified in studies of expert computer pro-
grammers, world-class chess players, nuclear power plant operators, and equipment
repair professionals [31].
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Table 1: Abstraction hierarchy for SSA decision-support

A work-domain model consists of a boundary that provides a scope for the socio-
technical system being studied. The boundary for our analysis can be circumscribed
around the sensor network and resources, earths atmosphere, and regions in the
space environment that are pertinent to the safety of monitored space assets. This
may require two abstraction hierarchies, in addition to which a third abstraction hier-
archy for the space surveillance network would be useful as a separate entity with
closely shared. Such a work-domain model consisting of multiple, related abstraction
hierarchies has been reported by Burns, Bryant, and Chalmers (2005).

In this paper, we report a draft abstraction hierarchy for a SSA decision-support
environment, as shown in Table 1. The work-domain model presented here is based
on interviews with subject-matter experts with extensive experience in SSA decision-
support environments and processes involved in maintaining SSA. The highest level of
the abstraction hierarchy in Table 1 describes the purposes of SSA decision-support
systems, which include space asset safety and security, national security, and work-
flow efficiency. These purposes are achieved through effective prioritization of critical
assets, expectations generated about space objects through the knowledge of physics,
and a sufficient understanding of uncertainty in the environment. Several processes
are in place to support expectations and the minimization of uncertainty. These pro-
cesses can be maintained by various resources listed in the fourth row referred to as
components, which have specific attributes listed in the lowest level.

2.2. Hypothesis Abstraction
Many existing sensor tasking approaches perform well in maintaining a low overall

uncertainty (e.g. information-maximum), but this tasking does not necessarily support
the needs of a decision-maker. It may not be readily apparent to a decision-maker or
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Figure 1: Predictive and reactive sensor tasking.

sensor-tasker how reducing a specific object’s uncertainty by a certain amount affects
situation awareness or answers decision-making questions. This motivates an ap-
proach that encodes tasking opportunities and decision-making priorities as hypothe-
ses that can be interrogated by evidence. If a potential target’s orbit and operational
capabilities (or lack-thereof) are well-known, it might not be necessary to minimize its
associated uncertainty. Conversely, many consecutive follow-ups might be desired on
a newly-acquired object to fully characterize its orbit, or on an object approaching a
congested volume of space (such as a GTO object approaching apogee).

Hypothesis-driven approaches are not new to SSA; for instance, multiple hypoth-
esis testing (MHT) techniques have been applied to object detection within electro-
optical images [32, 33, 34]. Applied to sensor-tasking, hypothesis-driven approaches
enable a predictive mode of tasking to answer specific relevant questions. This is
fundamentally different from reactive sensor tasking approaches, where the gathered
information is used to form hypotheses about what caused the observed behavior.
Predictive sensor tasking uses prior knowledge of relevant hypotheses to estimate
information-gain from potential courses of action. This relationships between hypothe-
ses and information in predictive and reactive sensor tasking are illustrated in Fig. 1.

Re-framing sensor tasking in terms of hypotheses supports human cognition in
decision-making. While automation excels at performing computation-heavy analyses
such as data reduction and processing, humans excel at more abstract-level cognitive
tasks required for objective prioritization and goal-adjustment [9]. This corresponds to
the top-levels of the abstraction hierarchy in Table 1, while successively lower levels
refer to finer-detailed portions of the levels above. Forcing an operator to switch be-
tween different levels of the abstraction hierarchy, effectively approaching the problem
at multiple different levels of detail, leads to increased frustration and workload and de-
creased situation awareness. Designing a decision-support system that directly con-
veys hypothesis resolution information ensures that the human decision-maker spends
more time on strategic cognitive tasks.

2.3. Ambiguity Aversion
Multiple methodologies exist for modeling and reasoning in uncertain domains to

provide graphical and numerical representations of uncertainty [35]. One prevailing
methodology is Bayesian probability theory, which models knowledge about proposi-
tions using true-or-false probabilities. However, probability theory struggles to express
ambiguity in proposition knowledge, often due to some ignorance on the part of the
expert or evidence source.

For illustration, consider an expert with vacuous knowledge, or total ignorance, on
a proposition. In probability theory, this is often represented using the principle of non-
information: each state in the proposition state space is assigned equal probability.
This equally-likely probability mass function can also arise naturally when an expert
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has certain knowledge that places equal probability on each state. Therefore, the
same probability mass function can represent two very different knowledge states, one
with wholly ambiguous information and the other with certain but conflicting evidence,
due to the inability to encode ambiguity in Bayesian probability [35]

It has been shown that human decision-makers overwhelmingly prefer known risks
to unknown risks, making ambiguity a major concern in modeling knowledge states
[36]. Ellsberg’s paradox, re-stated here, is a well-known example that violates Sav-
age’s theory of subjective expected utility [36]. Consider two urns, each filled with 100
red or yellow balls. The first urn contains an unknown distribution of red and yellow
balls. The second urn contains an equal distribution of red and yellow balls, 50 of each.
The goal is to draw a red ball from one of the urns, and the human decision-maker is
allowed to choose which urn they draw from. The results of Ellsberg’s study show
that humans overwhelmingly chose to draw from the second urn, which has a known
probability distribution, even though the first urn may contain a favorable distribution of
red balls. This is a phenomenon known as “ambiguity aversion” and is a predictable
characteristic of human decision-making in the face of uncertainty.

The first urn in Ellsberg’s paradox represents a vacuous knowledge state, while the
second urn represents the equal-probability knowledge state. Using Bayesian prob-
ability, both knowledge states would be represented with the same probability mass
function, meaning the information presented to the decision-maker would not ade-
quately convey information on the presence or lack of ambiguity that would impact the
decision. This highlights a deficiency in Bayesian probability theory that has a signifi-
cant impact in human decision-making contexts, which motivates the use of alternative
methodologies such as evidential reasoning. One of the most prevalent alternatives to
Bayesian probability is Dempster-Shafer theory, and the relevant aspects of the theory
are presented in the following section.

2.3.1. Dempster-Shafer Theory Background
Dempster-Shafer theory is considered more expressive than probability theory in

representing ambiguity or ignorance [37]. This is accomplished by allowing assign-
ment of belief to non-singleton propositions, admitting ambiguity on the part of the
expert when necessary.

In Dempster-Shafer theory, the possible propositions of a given hypothesis form
a set called the frame of discernment, Ω. The frame must be a set of mutually ex-
clusive and collectively exhaustive propositions [19], though some alternative formula-
tions such as the Transferable Belief Model allow for relaxation of the latter constraint
[38]. A basic belief assignment (BBA), as defined in Eqn. (1), maps a belief mass to
each possible proposition:

m : θ 7→ [0, 1] , θ ∈ 2Ω (1)∑
θ∈2Ω

m (θ) = 1 (2)

m (∅) = 0 (3)

where m is the BBA and 2Ω is the set of all subsets of Ω. Elements of 2Ω are referred
to as propositions. Note that, notationally, {θ1, θ2} is equivalent to θ1∪ θ2. The constraint
in Eqn. (2) enforces the mutually exclusive and collectively exhaustive properties as
the belief masses must sum to one, while the constraint in Eqn. (3) is similar to Kol-
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mogorov’s axiom of zero probability for the empty set. Allowing attribution of belief
mass to non-singleton propositions enables encoding of evidence ambiguity.

Using BBAs, Shafer defines notions of belief (or support) and plausibility, which
form lower and upper bounds respectively on the probability that a proposition is try
given the available evidence [39]. The belief in, or support for, proposition A ∈ 2Ω is
defined in Eqn. (4) as the sum of belief masses attributed to A and its proper subsets.

Belm (A) =
∑
θ|θ⊆A

m (θ) (4)

The plausibility of proposition A ∈ 2Ω is defined in Eqn. (5) the sum of the belief masses
that do not explicity refute proposition A:

Plm (A) =
∑

θ|θ∩A,∅

m (θ) = 1 − Belm (¬A) (5)

where ¬A = 2Ω \ A is the negation of hypothesis A, or “not A.” The BBA representa-
tions of belief mass, belief, and plausibility are all interchangeable via the above linear
relationships [40].

Various BBA combination rules have been developed to fuse evidence from mul-
tiple sources into one BBA [41]. The most common combination rule is Dempster’s
conjunctive rule [39], defined in Eqn. (6):

m1⊕2 (A) = (m1 ⊕ m2) (A) =
∑

B,C⊆Ω|B∩C=A

(1 − K)−1 m1(B) m2(C) (6)

K =
∑

B,C⊆Ω|B∩C=∅

m1(B) m2(C) (7)

where K, defined in Eqn. (7) is a normalization conflict that quantifies internal conflict
in the BBAs.

2.3.2. Decision-Making with Dempster-Shafer Theory
While the ability to represent ambiguity in belief functions is useful for accurately

representing knowledge states, the theory of belief functions lacks a coherent decision
theory [35]. Multiple methods exist for translating between Dempster-Shafer belief
functions and probability models, allowing the use of Bayesian decision theory. Smets
suggested the use of the pignistic transformation [38], but it has been argued that
the pignistic transformation may not be consistent with Dempster’s rule of combination
[35]. An alternative method, the plausibility transformation, is defined in Eqn (8) [35]:

PlPm (x) = K−1Plm ({x}) (8)

K =
∑
x∈Ω

Plm ({x}) (9)

Note that the normalization constant K in (9) is different from the normalization con-
stant for Dempster’s conjunctive rule in Eqn. (7). The plausibility transformation is
consistent with Dempster’s rule, particularly in situations where pignistic probability is
inconsistent [35].

Another important concept in both probablistic and evidential reasoning is entropy
as an information content measure. For Dempster-Shafer theory, multiple definitions of

8



Table 2: Ellsberg’s paradox belief structures and entropy

Urn m ({red}) m
(
{yellow}

)
m

(
{red, yellow}

)
HS (m) HDP HJS

1 0.5 0.5 0 1 0 1
2 0 0 1 1 1 2

entropy have been proposed, many of which are summarized by Jirousek and Shenoy
[37]. Conflict in the belief structure is measured through Shannon entropy using the
plausibility transform, where low conflict means a significant belief mass attributed to
a singleton proposition. Non-specificity captures ambiguity as the entropy associated
with non-singleton focal sets of the bba using the Dubois-Prade entropy. The Jirousek-
Shenoy (J-S) definition of entropy combines Shannon and Dubois-Prade entropy to
capture both conflict and non-specificity. Minimizing both conflict and non-specificity
ensures that the resulting belief structure is internally consistent (i.e. prefers strong
hypothesis resolution over an equally-probable result) and is non-ambiguous.

One useful property of J-S entropy is that maximum entropy is only attained by a
vacuous bba, which is the bba where all belief mass is assigned to the entire frame:
m (Ω) = 1. Including both conflict and non-specificity (or ambiguity) in the entropy
calculation allows for appropriate modeling of the ambiguity aversion phenomenon
[37]. Recalling Ellsberg’s paradox, the first urn is an equally-likely belief structure and
the second urn is a vacuous belief structure:

m1 ({red}) = m1
(
{yellow}

)
= 0.5 , m1

(
{red, yellow}

)
= 0

m2 ({red}) = m2
(
{yellow}

)
= 0 , m2

(
{red, yellow}

)
= 1

The Shannon entropy, Dubois-Prade entropy, and J-S entropy for these belief struc-
tures are shown in Table 2. As expected, Shannon entropy shows high conflict for
both belief structures, but Dubois-Prade entropy is only non-zero for the ambiguous
distribution, so the second urn has a higher J-S entropy. The decision-maker wants to
minimize conflict and non-specificity, so selecting urn 1 with the lower J-S entropy is
consistent with the result from Ellsberg’s paradox. Therefore, minimizing J-S entropy
can be used as a reliable and consistent metric for a strong hypothesis resolution.

2.4. Unbiased Hypothesis Resolution
Hypothesis resolution refers to the goal of determining which proposition is true

from the set of propositions in the frame of discernment. The previous section dis-
cussed the use of Dempster-Shafer belief structures to determine when a strong reso-
lution is reached. However, one phenomenon worth considering in any hypothesis res-
olution task is confirmation bias. Confirmation bias is a human cognitive phenomenon
where a prior belief causes fixation on a particular proposition, causing the human to
favor evidence that confirms prior beliefs and overlook conflicting evidence. In regimes
where uncertainty and ambiguity are a concern, this effect also applies by interpreting
ambiguous evidence in favor of the prior beliefs.

A non-human system such as a sensor network might also exhibit confirmation
bias as prior information has the potential to skew future evidence-gathering actions.
A most-probable-first sensor tasking approach would prioritize actions that gather fur-
ther evidence to confirm the prior. Similar to human cognitive fixation, a technological
fixation may result from incorrect prior assumptions or ambiguous evidence induced by
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measurement noise, sensor bias, or other sources of uncertainty. For instance, spuri-
ous detections or false alarms may lead increased belief in the incorrect proposition.
For illustration, consider a binary frame Ω = {x1, x2} and a prior that places slight belief
in the x1 proposition: m ({x1}) = 0.1, m ({x2}) = 0, m ({x1, x2}) = 0.9. A most-probable-first
sensor tasking algorithm would then focus further actions on confirming the incorrect
proposition, which ignores the (much larger) ignorance in the estimated proposition.

It is important to avoid fixating on any particular proposition where incorrect priors
or evidence ambiguity may be the cause of any bias, adding a competing objective to
the requirement of minimizing hypothesis entropy. An algorithm that is only conerned
with resolving hypotheses in minimum time would prefer the most-probable tasking
appraoch and may suffer from confirmation bias. However, development of a reliable
method for detecting and avoiding confirmation bias would be highly problem depen-
dent: such a metric depends on specifics including the types of evidence and evidence
sources, known or calibrated noise and bias characteristics, how the evidence maps
to the hypotheses, and potentially many other problem specific parameters. Just as
fixation should not be ignored in favor of time optimality, fixation should not be the only
focus at the cost of resolving hypotheses within time constraints. Rigorous and time-
efficient techniques for quantifying confirmation bias from a proposed tasking schedule
are likely not to be generalized, so instead an alternating-turns heuristic is applied to
allocate equal time to confirming and refuting each hypothesis.

An apt human decision-making analogy for this heuristic is the fair trial system,
wherein opposing agents (defense and prosecution) are given equal opportunity to
present the strongest evidence to confirm or refute a hypothesis. Each agents must
select evidence to prove its assigned proposition, and at the end of the decision hori-
zon (the trial), the sum-total of the evidence is fused to render a decision based on
the proposition with the most belief. The fair trial system is by no means time optimal,
but the presence of competing agents ensures that no one side is allowed to dominate
the narrative of the case. This encourages appropriate resolution as guided by the
evidence, not prior beliefs, biases, or ambiguity.

Similarly, the proposed unbiased hypothesis resolution framework employs an agent
for each proposition of the hypothesis, and these agents alternate turns to allow equal
opportunity for gathering supporting evidence. Application of this alternating-turns
heuristic is a result of the trade between time-optimality and unbiased hypothesis res-
olution, and due to strong parallels to the fair trial system, the proposed hypothesis
resolution technique developed in this work is called Judicial Evidential Reasoning
(JER).

2.5. Judicial Evidential Reasoning
The three primary considerations of the JER framework, as described above, are:

hypothesis abstraction, ambiguity aversion, and unbiased hypothesis resolution. Em-
ploying a hypothesis abstraction enables predictive tasking and supports human cog-
nition at a strategic and planning level. The use of evidential reasoning, specifically
Dempster-Shafer theory, to model hypothesis knowledge allows quantified ambiguity
and ambiguity together in the entropy measurement. Applying the alternating-turns
heuristic, inspiried by the fair trial system, provides ensures impartial or unbiased hy-
pothesis resolution to guard against confirmation balance while still balancing a need
for time-efficient hypothesis resolution. This section further develops the JER frame-
work into an algorithmic implementation.
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This formulation uses receding horizon optimization, targeting time tk+H which is H
steps after the current time tk. Begin by defining the sets of considered hypotheses as
follows:

Hi : hypotheses at time ti (10)
H j ∈ Hi ∀ j ∈ 1, . . . , |Hi| (11)
Wi : weights corresponding to hypotheses Hi at time ti (12)

w j ∈Wi ∀ j ∈ 1, . . . , |Wi| ,
∑

j∈1,...,|Wi |

w j = 1 (13)

where the weights are assigned by decision-makers according to priority of the related
hypotheses. Similarly, sets of actions and action sequences, or actions taken over a
time-span, by all sensors in the sensor network must also be defined. The available
and selected sets of actions are defined as follows:

Ai : actions available at time tk+i ∀i ∈ 1, . . . ,H (14)
Ai : actions selected at time tk+i ∀i ∈ 1, . . . ,H (15)
Ai ⊆ Ai (16)

The available and selected sequences of actions over the time horizon are defined as
follows:

A1,H : action sequences available over the time horizon [tk+1, tk+H] (17)
A1,H = A1 × . . . × AH (18)
A1,H : action sequences selected over the time horizon [tk+1, tk+H] (19)
A1,H = A1 × . . . ×AH (20)
A1,H ∈ A1,H (21)

The multiple-hypothesis optimization problem aims to determine the action se-
quence (A∗1,H) to arrive at an unbiased resolution for all the hypotheses, prioritized
by the hypothesis weights. This is represented generically by minimizing the following
objective function at time tk+H:

A∗1,H = arg min
A1,H∈A1,H

JH
(
HH,WH;A1,H

)
(22)

JH :
(
HH,WH;A1,H

)
7→ R (23)

Due to the combinatorial nature of this problem, evaluating all possible action se-
quences over a given time horizon exhibits exponential complexity growth. For this
reason, brute-force solutions quickly become intractable and a method for efficiently
selecting action subsequences is preferred. Recalling the desired alternating-turns
heuristic, the multi-hypothesis problem is decomposed into a sub-problem for each
hypothesis.

2.5.1. JER Hypothesis Agents
Consider a single hypothesis from the set of considered hypotheses at time tk:

H ∈ Hk, where ΩH is its frame of discernment and contains |ΩH | propositions. Each
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proposition must be either conclusively confirmed or refuted with evidence, so each
proposition is assigned a pair of JER agents:

aH (θ) , aH (¬θ) ∀ θ ∈ ΩH (24)

where ¬θ = ΩH \ θ. Therefore, for hypothesis H there are |ΩH | alternating JER agent-
pairs. Each agent pair is initialized with the (aH (θ)) agent as the active agent.

For each agent-pair, compute the optimal action sequence over the time horizon
by evaluating possible action sequences. One possible computational tractability im-
provement is to limit the action sequences evaluated to only those which will impact
this agent-pair’s hypothesis. Since evaluating potential action sequences exhibits ex-
ponential growth in complexity with added actions or increased time horizon, reducing
the set of possible actions evaluated may significantly improve computational complex-
ity.

Since the goal for the null agent is to maximize belief in the null proposition θ, this
can be formulated as a maximin optimization using the plausibility transformation:

A∗1,H|aH (θ) = arg max min
A1,H∈A1,H

PlP

(
θ; mH|A1,H

)
− 0.5 (25)

where mH|A1,H is the estimated BBA resulting from the proposed action sequenceA1,H.
The plausibility transformation is applied here because of its relationship and consis-
tency with decision-making. Additionally, the quantities PlP (θ) and PlP (¬θ) always sum
to one, so to make the formulation a zero-sum game (as per convention in adversarial
optimization), the 0.5 term is subtracted from the maximin objective. The maximum
attainable value for this objective is 0.5 when proposition θ has full belief, and the min-
imum attainable value for this objective is −0.5 when proposition ¬θ has full belief.

When the alternative agent (¬θ) is active, its goal is to maximize belief in the alter-
native proposition or equivalently minimize belief in the null proposition. Therefore, the
formulation simply flips to a minimax optimization:

A∗1,H|aH (¬θ) = arg min max
A1,H∈A1,H

PlP

(
θ; mH|A1,H

)
− 0.5 (26)

The result of the JER agent-pair schedule optimization is an optimal action se-
quence for the active agent. If that agent-pair’s action is selected, that agent-pair flips
active agents for the next time step.

2.5.2. Resolving Combined Schedule Incongruity
After optimal schedules for each JER agent-pair from each hypothesis sub-problem

are evaluated, the schedules must be combined into a single schedule. Depending on
the hypotheses, it is possible or even likely that two different agent-pairs will compute
optimal sequences that use the same sensor for different actions, representing an
incongruity between the schedules. These are resolved by choosing the actions that
lead to the strongest hypothesis resolution using entropy.

Using the set of actions from all sub-problem optimal sequences A∗1,H|aH (θ) all pos-
sible combinations of these actions are used to propose congruous action sequences.
At worst case, this is the same as a brute-force re-evaluation, but that would require
that all hypotheses have the same applicable action subsets and all possible actions
produce an optimal result for at least one hypothesis. This implies an extreme in-
terdependence between the hypotheses that is unlikely to occur in operation. In more
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realistic cases, where most hypotheses are distinct enough to have different applicable
actions, this re-evaluation is much less computationally complex than brute-force.

The evaluation criterion for resolving incongruity between sub-problem action se-
quences is the weighted-sum of J-S entropy.

A∗1,H = arg min
A∗1,H|aH (θ)

|HH |∑
i=1

wiHJS

(
mHi |A1,H

)
(27)

where HJS is the J-S entropy. Since J-S entropy quantifies both conflict and non-
specificity, and the weighting parameters encode decision-maker priorities, the result-
ing action sequence A∗1,H is the action sequence with the strongest priority-weighted
resolution.

2.5.3. Stopping Criterion
Once sufficient evidence has been gathered to resolve a hypothesis, it would be

beneficial to remove that hypothesis from consideration for future tasking evaluations.
Pruning the considered hypotheses ensures that sensor resources are not used to
gather further evidence on an already-resolved hypothesis, and also reduces compu-
tational complexity because fewer JER agent-pair sub-problems need to be evaluated.
As discussed in previous sections, a hypothesis is considered resolved when there is
low conflict and low ambiguity. Therefore, an appropriate stopping criterion is the J-S
entropy.

A J-S entropy threshold can be developed based on desired levels of hypothesis
resolution, and can be customized for each hypothesis. For instance, decision-makers
may want to ensure that a conjunction assessment is correct before sending conjunc-
tion and maneuver notices, necessitating tighter thresholds for conjunction hypothesis
resolution than other hypotheses. Given a desired maximum amount of conflict as
characterized by Shannon entropy HS ,max, and a maximum level of non-specificity as
characterized by Dubois-Prade entropy HDP,max, the threshold value of Jirousek entropy
is HJS ,max = HS ,max +HDP,max. The specific values for these thresholds can be determined
by constructing a threshold bba for each hypothesis mH ,th, which represents worst-case
hypothesis knowledge for that hypothesis to be considered resolved, and computing
the Shannon and Dubois-Prade entropies for that threshold bba. See Jirousek and
Shenoy for the specific equations on computing each entropy [37].

2.5.4. JER Algorithm Summary
The JER framework developed in the previous sections is summarized in Fig. 2 to

illustrate the complete algorithm flow.

3. Simulation Results

This section contains an illustrative example application of JER autonomously schedul-
ing actions to resolve multiple hypotheses. The JER framework described above is
implemented in Python for testing. Space objects are propagated using Keplerian two-
body dynamics to compute lines-of-sight to sensors, illumination conditions using a
cannonball model. Two electro-optical sensors are simulated, separated by 20 degrees
in longitude for geometric diversity. Both sensors are 3-degree field-of-view search
telescopes. Electro-optical observations are simulated using a radiometric model, in-
cluding simulated effects for background sky irradiance and atmospheric transmittance
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Figure 2: Judicial Evidential Reasoning algorithm

(e.g. cloud cover, atmospheric seeing conditions) [42]. The sensors may change ac-
tions each minute, and a receding time-horizon of three minutes is used. Hypotheses
are considered resolved if the normalized Jirousek-Shenoy entropy drops below the
threshold value of HJS ,thr = 0.05, requiring very low conflict and ambiguity.

A limited subset of potential failure modes is analyzed for illustrative purposes for
this test case. Since multiple point-of-failure events are exceedingly rare, an assump-
tion is made that the anomaly results from a single point-of-failure.

3.1. Scenario Description
Operators in a SSA decision-support environment receive notice from a space

launch entity that a planned GTO insertion maneuver has experienced an anomaly.
The anomaly is estimated to have occurred 5 minutes prior to the notification during
a critical orbit-raising maneuver, after which no communications have been received.
The objective is to re-acquire the space object and diagnose the anomaly to regain
situation awareness.

Anomalous GTO objects are particularly difficult to characterize as the range pro-
hibits use of radar, requiring a wide state-space search using electro-optical sensors.
Timely re-acquisition is critical since the spacecraft was initially bound for Geostation-
ary Earth Orbit (GEO), a densely populated orbit regime with many high-value defense
and telecommunications assets. If the anomaly still resulted in a GEO-intersecting tra-
jectory, it is crucial to characterize the new orbit to inform conjunction analyses. Sim-
ilarly, if the resultant trajectory remains close to low-Earth orbit (LEO), it becomes a
collision risk in a densely populated orbit regime.

The entire simulation occurs over a 15 minute time span, including the 5-minute de-
lay between the anomaly event and the beginning of the sensor tasking window. The
simulation time span is limited by observation constraints (e.g. short horizon-to-horizon
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Figure 3: Nominal GTO transfer orbit and target GEO orbit.

Figure 4: Possible causes for GTO insertion failure

times in LEO, eclipse, adverse weather), placing time pressure on the hypothesis res-
olution. At the end of this simulation the sensor positions will prohibit gathering further
evidence, so the anomaly must be characterized within 25 minutes of the event.

The nominal transfer orbit is shown in Fig. 3. The spacecraft begins in a 1000
km altitude circular parking orbit. The nominal transfer time from LEO to GEO is just
over 5 hours, placing additional time-pressure on resolving the anomaly to complete
conjunction analyses with time remaining to alert other satellite operators.

3.2. Belief Function Models
As shown in Fig. 4, the anomaly is characterized at the subsystem level to deter-

mine root-cause (under the stated single-point-of-failure assumption). The considered
propositions for a GTO insertion maneuver include: maneuver status, propulsion sta-
tus, navigation status, and collision in LEO. This decomposition yields the following
top-level frame of discernment:

Ω = Ωman ×Ωprop ×Ωnav ×Ωcoll (28)

To arrive at JER agent-pair frames, each element in frame Ω is further decomposed
into sub-frames.
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3.2.1. Maneuver Status
The maneuver status hypothesis, Ωman, is simply decomposed into a binary frame

for the nominal and anomalous states:

Ωman =
{
ωman,n, ωman,a

}
(29)

Since it does not decompose further, Ωman is assigned a single JER agent-pair to test
whether the maneuver is nominal or anomalous. Evidence for the for the nominal ma-
neuver status proposition includes a successful nominal detection of the space object
in its intended geostationary transfer orbit. Additionally, evidence for the anomalous
maneuver status proposition can be stated by an implicit relationship to the other sub-
system frames: if any of these hypotheses is resolved true in an anomalous state, the
anomalous maneuver status hypothesis is true.

3.2.2. Propulsion Status
The propulsion status hypothesis, Ωprop, yields a more complex (non-binary) de-

composition using known failure modes for the propulsion subsystem:

Ωprop =
{
ωprop,nom, ωprop,ns, ωprop,exp

}
Nominal propulsion status, Ωprop,nom, is the proposition required to exhaust all possible
propulsion subsystem states, since the propulsion subsystem might not be the cause
of the anomaly. The non-start proposition, Ωprop,ns, occurs when the propulsion system
fails to fire, leaving the spacecraft in its LEO parking orbit. The explosion proposition,
Ωprop,exp, occurs when there is a catastrophic failure, resulting in debris in LEO near the
spacecraft’s parking orbit.

Evidence for the non-start proposition includes successful detection of the space-
craft in its LEO parking orbit, while evidence for the explosion proposition includes
multiple detections of debris pieces along the LEO parking orbit. Note that debris
could also be indicative of collision, so the explosion proposition must be refuted if
debris is detected in multiple orbits.

3.2.3. Navigation Status
The navigation status hypothesis, Ωnav, does not decompose into further complex

sub-frames as the only proposition to consider is an off-nominal transfer orbit due to
pointing error.

Ωnav =
{
ωnav,n, ωnav,a

}
(30)

Since it does not decompose further, Ωnav is assigned a single JER agent-pair to test
whether the navigation status is nominal or anomalous.

3.2.4. Collision in LEO
The collision in LEO hypothesis, Ωcoll, decomposes into the following non-binary

frame:

Ωcoll =
{
ωcoll,none, ωcoll,1, . . . , ωcoll,R

}
where R is the number of resident space objects (RSOs) to consider for potential col-
lisions. The “none” proposition, ωcoll,none, represents the case where a collision has not

16



occurred and therefore is not the cause of the anomaly. Collision with object j, ωColl, j

where j = 1, . . . ,R, occurs when the spacecraft collides with object j in LEO, resulting
in a debris in both orbits as well as missing nominal tracks for both object j and the
primary spacecraft. Note that the conditional evidence mentioned in the propulsion
status section handles this differentiation. Nominal detection of an RSO refutes that
RSO’s collision proposition.

For this illustrative example, three RSOs (R = 3) will be considered for close-
approach and potential collision in LEO. Therefore, three JER agent-pairs are used
to fully explore this hypothesis, one for each collision proposition.

3.2.5. JER Agent-Pairs
The full problem considers each frame described in the decomposition above to

investigate the cause of a maneuver anomaly. Each frame contains |Ω·| −1 JER agent-
pairs: two for propulsion failure, one for navigation status, and three for collision in LEO.
Therefore, there are a total of six JER agent-pairs in this simulation. The maneuver
status hypothesis does not receive its own JER agent-pair because its evidence is
modeled primarily as implicit evidence from the result of the subsystem analyses.

3.3. Evidence to Belief Function Mappings
Each potential action is evaluated for its estimated effect on the considered hy-

potheses to develop evidence-to-belief-function mappings. This process is highly problem-
specific, requiring the modeler to consider what each potential successful or missed
detection means with respect to each hypothesis. For instance, a missed detection of
the nominal orbit may indicate anomaly, but if the estimated electro-optical probability
of detection predicted a low chance of success, the belief mass should be attributed
to ignorance instead.

Additionally, implicit knowledge about relationships between these frames can be
imposed through conditional bbas [43]. In particular, it is known that, if evidence con-
firms that none of the subsystems are nominal, the maneuver status is likely nominal.
A small chance (0.01) is allowed that there may be other causes for maneuver anomaly
even if the modeled causes are nominal to account for mis-modeling of the problem.
Similarly, if any one of the other causes is anomalous, then the maneuver status is
likely anomalous. This is the implicit evidence used to relate the subsystem frames to
the maneuver status frame.

3.4. Case 1: Nominal Maneuver
As a baseline, the true proposition for this case is the nominal maneuver status.

The resulting sensor tasking schedule is shown in Fig. 5a, and Fig. 5b shows the
normalized Jirousek-Shenoy entropy for each hypothesis.

At the first observation epoch, both sensors are only able to observe GTO, and
since the maneuver was successful and observation conditions are good, it is de-
tected right away. This immediately resolves both the propulsion status and navigation
status hypotheses to “nominal” as shown in Figs. 6a and 6b, leaving only the collision
hypotheses for investigation. Also note that collision object “LEO 2” passes close-
enough to the GTO sky position to also be detected on this first step, resolving the
relevant proposition for the collision in LEO hypothesis as shown in Fig. 6c.
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 5: Case 1: nominal maneuver

As the sensors gain line-of-sight to the remaining collision objects, they are also
observed, detected, and correlated. After five minutes of observations, all hypothe-
ses have been resolved within the entropy threshold, so the remainder of the tasking
actions are spent tracking the GTO object.

This baseline test case is intended as a comparison point of a nominal event. Even
though the original notification of anomaly was incorrect (e.g. a false alarm), this does
not bias the JER algorithm and the correct hypothesis resolution is obtained quickly.
The following test cases will examine behavior in anomalous events.

3.5. Case 2: Navigation Anomaly
In the next test case, a navigation anomaly occurs resulting in a pointing error

during the maneuver and a misaligned velocity vector. The resulting sensor tasking
schedule and hypothesis entropies are shown in Figs. 7a, and 7b, respectively. Indi-
vidual hypothesis propositions are plotted in Figs. 8a, 8b, and 8c.

Once again, the first observation epoch returns strong evidence for the correct
hypothesis, but follow-up observations on the anomalous GTO object are required
for several time-steps to ensure appropriate hypothesis resolution (recall the entropy
threshold is conservative). This also serves the purpose of adequately resolving the
propulsion status hypothesis to “nominal.” The final four observation epochs are used
to observe the collision objects to refute collision in LEO. By the end of the simulation
duration, all hypotheses have been resolved appropriately.

The JER algorithm narrows down on this proposition early since GTO is the only
available tasking action at the beginning of the simulation, before the LEO objects are
within line-of-sight of the sensors. The next test case involves a propulsion system
anomaly and requires more time to discover the probable cause.
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(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 6: Case 1: nominal maneuver (baseline), hypothesis resolution

(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 7: Case 2: navigation anomaly
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(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 8: Case 2: navigation anomaly, hypothesis resolution

3.6. Case 3: Propulsion Non-Start
In the third test case, a propulsion anomaly occurs resulting in no maneuver and

leaving the spacecraft in its LEO parking orbit. The resulting sensor tasking sched-
ule and hypothesis entropies are shown in Figs. 9a, and 9b, respectively. Individual
hypothesis propositions are plotted in Figs. 10a, 10b, and 10c.

At the beginning of this simulation, the missed detections at GTO only confirm the
navigation status to be nominal after multiple actions allow exhaustive search of the
near-GTO region. Once this hypothesis is resolved, the next actions quickly detect
and correlate the spacecraft in LEO, as well as the collision objects. Since no debris is
detected either, all hypotheses are resolved by the end of the fifth minute of simulation
No further tasking is required beyond this point.

This test case shows an ability to ingest both weak evidence (missed detections
from GTO) and strong evidence (successful detections in LEO) to explore the hypothe-
ses. The final test case presents a more challenging debris-generating event.

3.7. Case 4: Collision with Object in LEO
For the final test case, the true proposition is a collision in LEO with the object

labeled “LEO 1.” This event generates multiple debris objects in both the LEO parking
orbit and the nominal orbit of the collision object. The resulting sensor tasking schedule
and hypothesis entropies are shown in Figs. 11a, and 11b, respectively. Individual
hypothesis propositions are plotted in Figs. 12a, 12b, and 12c.

Once again, the GTO missed-detections quickly resolve the navigation status hy-
pothesis. Next, observations of the collision object orbits only detect and correlate two
of the objects, so belief in the collision proposition for LEO 1 begins to increase. Sub-
sequent observations detect multiple debris objects in both the LEO parking orbit and
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 9: Case 3: propulsion non-start

(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 10: Case 3: propulsion non-start, hypothesis resolution
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 11: Case 4: collision in LEO

the nominal orbit of collision object LEO 1, while continued missed-detections of the
nominal orbit for LEO also indicate the collision proposition. Importantly, the debris in
the LEO parking orbit are not mistaken for explosion evidence due to the conditional
evidence that links these two hypotheses.

At the end of this simulated case, two of the three hypotheses have been fully
resolved, and the third (collision in LEO) has strong indication of resolution to the cor-
rect proposition. This last hypothesis is not fully resolved within the entropy tolerance
because of conservative belief values applied to the detection of debris. Each new
debris detected yields relatively low belief mass (0.25) in the relevant collision or explo-
sion hypotheses, since real-world application would involve many spurious detections
and false alarms caused by other resident space objects. Given more time or more
sensors, the algorithm would detect more debris in both orbits, leading to increased
belief and reduced entropy in the collision proposition.

3.8. Discussion
These simulated cases show that the JER algorithm performs as designed, seeking

strong evidence to resolve hypotheses without fixating on any particular proposition.
Weak evidence from missed detections results in the algorithm moving to other hy-
potheses or propositions that will plausibly produce stronger evidence. Additionally,
decomposing the sensor tasking problem into tractable sub-problems through JER
agent-pairs increases the feasible time horizon, which is computationally constrained
in a brute-force approach, even for this relatively low-dimensional example.
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(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 12: Case 4: collision in LEO, hypothesis resolution

4. Conclusion

The proposed Judicial Evidential Reasoning (JER) sensor-tasking framework ar-
ranges decision-maker questions as rigorously testable hypotheses and employs an
alternating-agent minimax optimization on belief in the null proposition. The use of
a hypothesis abstraction supports human decision-making strengths of planning and
strategy, off-loading processing work to the algorithm and fusing evidence into intu-
itive hypothesis resolutions. Recognizing the need to account for ambiguity aversion
in decision-making, the use of Dempster-Shafer theory allows for quantification of evi-
dence ambiguity. Finally, applying an alternating-turn adversarial optimization scheme
avoids confirmation bias induced by improper prior beliefs or evidence uncertainty and
ambiguity, avoiding fixation on incorrect propositions.

This approach values impartiality in addition to time-efficiency in many-hypothesis
resolution, while breaking the greater sensor-tasking problem into a number of sub-
problems for each hypothesis reduces computational complexity and allows for a re-
ceding horizon optimization of the total schedule. Selecting the final optimal schedules
as the minimum total weighted entropy ensures that the selected actions minimize con-
flict and non-specificity according to priorities set by the decision-makers. The simu-
lated results for a GTO insertion maneuver anomaly scenario show that the algorithm
performs as expected: the appropriate hypotheses are confirmed via evidence and in
the process the JER algorithm does not fixate on any particular proposition, instead
accruing evidence that gradually leads to the correct conclusion.

Continuing work focuses on applying combinatorial and adversarial optimization
approaches to the JER algorithm to prune sub-optimal sequences before deep eval-
uation, allowing application to larger multi-hypothesis problems with longer time hori-
zons. Additionally, the need to include conditional evidence that explicitly links hy-
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potheses (such as the explosion and collision hypotheses) motivates an approach
using marginal belief functions [43].
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