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Abstract—Realistic decision-making often occurs with insuf-
ficient time to gather all possible evidence before a decision
must be rendered, requiring efficient processes for prioritizing
between candidate action sequences. The proposed Judicial
Evidential Reasoning framework encodes decision-maker ques-
tions as rigorously testable hypotheses and proposes actions to
resolve the hypotheses in the face of ambiguous, incomplete,
and uncertain evidence. Dempster-Shafer theory is applied to
model hypothesis knowledge and quantify ambiguity, and an
equal-effort heuristic is proposed time-efficiency and impartiality
to combat confirmation bias. This work includes derivation of
the generalized formulation, computational tractability consider-
ations for improved performance, several illustrative examples,
and sample application to a space situational awareness sensor
network tasking scenario. The results show strong hypothesis
resolution and robustness to fixation due to poor prior evidence.

I. INTRODUCTION

Endsley [1] defines situation awareness as “the perception of
the elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projection
of their status in the near future”. The evidence gathering
or scheduling problem addresses how to obtain, process, and
utilize evidence to improve understanding of the state of
the environment [2]. This is often a high-dimensional, multi-
objective, mixed-integer, non-linear optimization problem, so
many approaches focus on tractable sub-problems (e.g. single
objectives, limited targets, limited actors).

Gathered evidence must be fused into a coherent under-
standing of the environment via association, correlation, and
combination [2]. In classical Bayesian approaches, evidence
is used to form deterministic probabilities placed on event
hypotheses. However, in complex decision-making contexts
with uncertainty, evidence also carries ignorance or ambiguity.
This motivates the use of evidential reasoning approaches,
such as Dempster-Shafer theory, to quantify ambiguity and
realistically model decision-making processes.

Another concern in evidence-gathering is confirmation bias,
a preferential tendency to gather evidence that confirms prior
beliefs. Appropriate hypothesis resolution should efficiently
and conclusively confirm or refute each proposition while
avoiding fixation based on prior information, which may be
plagued with uncertainty or ambiguity.

This work develops the Judicial Evidential Reasoning (JER)
approach, improving upon preliminary work [3] by generaliz-
ing the framework to any hypothesis-resolution domain while
also improving computational tractability. The contributions of
this work are as follows: 1) a generalized evidence-gathering
framework for hypothesis-resolution, 2) the application of
evidential reasoning to quantify hypothesis ignorance, 3) a
technique for mitigating confirmation bias in action sequence
selection, and 4) a computationally tractable approach to
the sensor tasking problem using adversarial optimization
techniques. Several examples and simulations are provided to
illustrate the application of this framework.

II. BACKGROUND

This section introduces background material relevant to the
theoretical developments.

A. Ambiguity Aversion

Bayesian probability theory is a prevailing methodology for
reasoning in uncertain domains by modeling knowledge about
propositions using true-or-false probabilities [4]. However,
probability theory struggles to express evidence ambiguity due
to noise, poor observability, or ignorance on the part of the
evidence source.

A phenomenon known as ambiguity aversion shows that
decision-makers overwhelmingly prefer known risks to un-
known risks, making ambiguity a major concern in modeling
knowledge states [5]. Ellsberg’s paradox shows that humans
overwhelmingly prefer to bet on an equal-probability prior
than a fully ambiguous prior. In Baysian probability, both
priors would be represented as the same (equal-probability)
probability mass function, so information on the presence or
lack of ambiguity is not adequately conveyed to the decision-
maker. This deficiency in Bayesian probability theory that
has a significant impact in human decision-making contexts
and motivates alternative methodologies such as evidential
reasoning [4].

B. Dempster-Shafer Theory

Dempster-Shafer theory is considered more expressive than
probability theory in representing ambiguity or ignorance [6].



This is accomplished by allowing assignment of belief to non-
singleton propositions, admitting ambiguity on the part of the
expert when necessary.

In classical Dempster-Shafer theory, mutually exclusive and
collectively exhaustive propositions form the frame of discern-
ment, Ω, for a given hypothesis. Elements of the powerset 2Ω,
the set of all subsets of Ω, are referred to as propositions.

1) Belief Functions: A basic probability assignment (bpa)
m, as defined in Eqn. (1), maps a belief mass to each
proposition:

m : A 7→ [0, 1] , A ∈ 2Ω (1)∑
A∈2Ω

m (A) = 1 (2)

m (∅) = 0 (3)

The constraint in Eqn. (2) enforces the mutually exclusive and
collectively exhaustive properties, while the constraint in Eqn.
(3) is similar to Kolmogorov’s axiom of zero probability for
the empty set.

Using bpas, Shafer defines notions of belief (or support) and
plausibility, which form lower and upper bounds respectively
on the probability that a proposition is true given the available
evidence [7]. Various bpa combination rules have been devel-
oped to fuse evidence from multiple sources into one bpa [8],
with the most common being Dempster’s conjunctive rule [7].

2) Decision-Making: While the ability to represent ambi-
guity in belief functions is useful for accurately representing
knowledge states, a key criticism is that the theory of be-
lief functions lacks a coherent decision theory [4]. Multiple
methods exist for translating between Dempster-Shafer belief
functions and probability models, allowing the use of Bayesian
decision theory. One such method, the plausibility probability
transformation defined in Eqn (4), is more consistent with
Dempster’s rule [4]:

Prplm (x) = K−1Plm ({x}), (4)

where K =
∑
x∈Ω

Plm ({x}) (5)

Entropy is also frequently used as an information content
measure in both probablistic and evidential reasoning. Multiple
proposed definitions of entropy for Dempster-Shafer theory
are summarized in [6]. The Jirousek-Shenoy (J-S) definition
of entropy combines Shannon and Dubois-Prade entropy to
capture both conflict and non-specificity, appropriately mod-
eling hypothesis knowledge to handle ambiguity aversion [6].
Maximum J-S entropy is attained by a vacuous bpa, which
is the bpa where both conflict and ambiguity are highest
as all belief mass is assigned to the frame: m (Ω) = 1. A
decision-maker wants to minimize conflict and non-specificity
in hypothesis resolution, so minimizing J-S entropy is a
reliable metric for strong hypothesis resolution considering
ambiguity aversion.

III. GENERALIZED JER APPROACH

The following section further develops the Judicial Evi-
dential Reasoning (JER) approach to evidence-gathering hy-

pothesis resolution. This work generalizes the framework first
presented in [3] to arbitrary hypothesis-resolution domains and
addresses several computational tractability considerations.
The JER approach hinges upon three primary considerations:
hypothesis abstraction, ambiguity aversion, and unbiased hy-
pothesis resolution.

A. Hypothesis Abstraction

Many evidence-gathering approaches (e.g. sensor network
tasking) operate on maintaining a low overall state uncertainty;
however, it may not be readily apparent to a decision-maker
how reducing state uncertainty affects situation awareness or
answers decision-making questions. This motivates an ap-
proach that encodes decision-making priorities as hypotheses
that can be interrogated by evidence-gathering actions.

Re-framing evidence-gathering in terms of hypotheses sup-
ports human decision-making strengths in abstract-level cog-
nitive tasks required for objective prioritization and goal-
adjustment [9]. Forcing an operator to switch between different
levels of the abstraction, approaching the problem at multiple
different levels of detail, leads to increased frustration and
workload and decreased situation awareness. Designing a
decision-support system that directly conveys expected hy-
pothesis resolution from candidate actions allows the human
decision-maker to focus effort on strategic cognitive tasks.

B. General Problem Definition

Consider a set of hypotheses and a set of actors tasked with
gathering evidence to resolve these hypotheses over a given T -
step time horizon, from tk to tk+T . The finite set of hypotheses
under consideration can be represented as Ω = {Ω1, . . . ,Ωn},
where Ωi is the frame of discernment for the ith hypothesis
and |Ω| = n ∈ Z+ is the number of hypotheses.

At time tk, define the actions available to the sth actor as the
finite set As,k. Under the assumption that each actor can only
perform one action at a given time tk, the available action sets
for all m actors at time tk are described through the Cartesian
product:

Ak = A1,k × . . .× Am,k (6)

where an action set Ak ∈ Ak denotes a valid set of m actions
at time tk and As,k ∈ Ak is a valid action for actor s from
that action set.

Define an actor’s sequence of actions over the time horizon
tk+1 to tk+T as the following ordered list (or T -tuple):

As,1:T = (As,1, . . . , As,T ) , s = 1, . . . ,m (7)

Similarly, define a set of action sequences for all actors as the
finite set:

A1:T = {A1,1:T , . . . ,Am,1:T } (8)

This set contains an action sequence for each of the m
actors and thus fully defines all actions over the time horizon.
Furthermore, the set of all valid sets of action sequences (all



valid combinations of action sequences) is also represented by
a Cartesian product:

A1:T = A1:T × . . .×A1:T (9)

The goal is to select the set of action sequences that
minimizes a to-be-defined cost function at the end of the T -
step receding time horizon. Generically, this cost function may
be represented as follows:

JT : (Ω,W;A1:T ) 7→ R (10)

where W is a user-defined set of weights such that wi ∈ W
quantifies the priority of hypothesis Ωi relative to the other
hypotheses in Ω, and T indicates that the cost function is
evaluated at the end of the time horizon, time tk+T . It stands
to reason that some hypotheses will be more important to
decision-makers than others, so this weighting is considered
a user-defined (potentially time-varying) parameter. It is not
subject to optimization in this study but is instead treated as
a tunable parameter.

The general hypothesis-based evidence-gathering optimiza-
tion problem is:

A∗1:T = arg min
A1:T∈A1:T

JT (Ω,W;A1:T ) (11)

The optimal set of action sequences minimizes the cost func-
tion JT , evaluated at time tk+T subject to the evidence from
each action As,· ∈ As,1:T in each action sequence As,1:T ∈
A∗1:T for each actor s = 1, . . . ,m. In the following sections,
a specific cost function is developed based on reaching strong
(unambiguous and unbiased) hypothesis resolutions.

C. Hypothesis Resolution and Entropy

Hypothesis resolution refers to the goal of determining
which proposition is true from the set of propositions in the
frame of discernment. Recall that J-S entropy [6] quantifies
both conflict and non-specificity in hypothesis knowledge,
providing an apt minimization objective for strong hypothesis
resolution.

At a given time tk, each candidate action A ∈ Ak gathers
evidence that may be used to resolve hypotheses. Denote the
total amount evidence gathered through action set Ak as p,
noting that a single action may gather multiple distinct pieces
of evidence or may gather no evidence, restricting p to the
non-negative integers. The hypothesis-resolution contribution
of a given piece of evidence is represented by the bpa:

mi,j,k : 2Ωi 7→ [0, 1] (12)

where i indicates that this bpa is related to hypothesis Ωi,
j = 1, . . . , p refers to the piece of evidence relevant to this bpa,
and k indicates the evidence is gathered at time tk. The bpas
can be fused using Dempster’s rule to arrive at a hypothesis
update bpa:

m̃i,k =

p⊕
j=1

mi,j,k (13)

Recall that Dempster’s rule is associative and commutative,
meaning the combination can be done sequentially in any
order [10]. However, Dempster’s rule is not idempotent, so
the pieces of evidence must be independent to avoid artificially
inflating evidence. If a particular piece of evidence j gathered
at time tk does not contribute to hypothesis Ωi, then mi,j,k

is simply the vacuous bpa, ensuring that each term in the
summation is defined.

The resultant knowledge state for hypothesis Ωi, incorpo-
rating all evidence from time from t0 to tk is denoted as:

m+
i,k = m−i,k ⊕ m̃i,k (14)

where m+
i,k is the a posteriori knowledge state and m−i,k is the

a priori knowledge state for hypothesis Ωi at time tk based on
all evidence gathered prior to tk.

1) Normalized Jirousek-Shenoy Entropy: The resolution of
hypothesis Ωi based on bpa mi, as measured through J-S
entropy [6], is defined as:

HJS (mi) =
∑
x∈Ωi

PlPmi
(x) log2

(
1

PlPmi

)
(15)

+
∑
A∈2Ωi

mi(A)log2 (|A|)

where the first summation term, related to Shannon entropy,
quantifies conflict and the second summation term, called
Dubois-Prade entropy, quantifies non-specificity.

To use entropy as a cost function while accounting for
hypotheses with different numbers of propositions, the nor-
malized Jirousek-Shenoy entropy is defined as follows:

H̃JS(mi) =
HJS(mi)

2log2 (|Ωi|)
(16)

where mi is the bpa representing hypothesis Ωi.
2) Optimization Formulation: To accomplish the goal of

minimizing hypothesis conflict and non-specificity, the nor-
malized entropy defined in Eqn. (16) is employed as the cost
function for the optimization problem in Eqn. (11).

A∗1:T = arg min
A1:T∈A1:T

|Ω|∑
i=1

wiH̃JS (m̂i,T ) (17)

where wi ∈ W are the hypothesis weights used to denote
relative priorities such that

∑
i wi = 1, and m̂i,T is the

estimated bpa for hypothesis Ωi at the end of the time horizon
tk+T . The optimal set of action sequences, A∗1:T , are actions
estimated to gather evidence that minimizes conflict and non-
specificity in user-prioritized hypotheses.

3) Computational Complexity: The general formulation in
Eqn. (17) suffers from a number of practical issues in im-
plementation. Most notably, computational complexity scales
with the number of hypotheses |Ω|, the number of actors m,
the number of valid actions for each actor nm, and the time
horizon T :

O

(
T∏
t=1

(
m∏
s=1

ns,t

))
(18)



where ns,t is the number of valid actions for the sth actor
at time tk+t. Using the worst-case number of valid actions
n = max (ns,t | s = 1, . . . ,m ; t = 1, . . . , T ):

O
(

(nm)
T
)

(19)

provides an upper bound on the brute-force complexity.

D. Implementation Considerations

This section modifies the general optimization approach
in Eqn. (17) to arrive at a computationally-tractable solution
by decomposing the problem into independent sub-problems.
An additional concern with the entropy-reduction algorithm
is evidence-gathering bias induced by prior information and
ambiguity. Adversarial optimization is applied to reduce action
sequence evaluations and combat confirmation bias.

1) Unbiased Hypothesis Resolution: Confirmation bias is
a cognitive phenomenon where prior belief causes fixation
on a particular proposition. If biased, the human may favor
evidence that confirms prior beliefs and overlook conflicting
evidence [11] or interpret ambiguous evidence in favor of prior
beliefs. Similar to human cognitive fixation, socio-technical
systems can also exhibit confirmation bias. Prior information
has the potential to skew future evidence-gathering actions,
inducing fixation through measurement noise, sensor bias, or
other sources of uncertainty.

Avoiding fixation and confirmation bias adds a competing
objective to the requirement of minimizing hypothesis entropy.
Quantifying confirmation bias is an active area of research,
with cognitive sciences researchers using various measures
comparing selection of supporting versus refuting evidence
[11], [12]. One such measurement is the difference between
numbers of selected supporting and refuting evidence elements
[13], meaning an unbiased sequence of actions selects equal
numbers of supporting and refuting elements.

The proposed approach employs a related heuristic, a prin-
ciple of equal effort that distributes resources (e.g. actions,
time, money) evenly amongst propositions. An apt analogy
for this heuristic is the fair trial system, wherein the defense
and prosecution are given equal opportunity to present the
strongest evidence to confirm or refute a hypothesis. Similarly,
the proposed framework employs a pair of agents for each
proposition, advocate and critic, which alternate action turns
to allow equal opportunity for gathering supporting or refuting
evidence, respectively. Due to strong parallels to the fair trial
system, the proposed framework is called Judicial Evidential
Reasoning (JER).

Application of this alternating-turns heuristic encourages
resolution guided by evidence, not prior beliefs, biases, or
ambiguity. In the event of multiple competing resources, the
principle of equal effort creates an additional multi-objective
optimization and uniqueness of the solution using this heuristic
is not guaranteed. However, improved measures for confirma-
tion bias are an area for future research and could extend the
JER approach by altering the agent-pair action ordering.

2) Sub-Problem Definition: The primary intuition that al-
lows decomposition of the entropy-reduction approach in Eqn.
(17) is that not all actions contribute evidence related to
all hypotheses. The sub-problems can be solved in parallel,
resulting in |Ω| sub-problem action sequence sets that must
be combined into a single optimal set of action sequences.

Consider one of the hypotheses Ωi ∈ Ω and the subset of
valid actions relevant to that hypothesis as As,k,i:

As,k,i ⊆ As,k (20)

where As,k are all the valid actions for actor s = 1, . . . ,m .
Similarly, the action sequences relevant to hypothesis Ωi over
the time horizon tk to tk+T are denoted

A1:T,i ⊆ A1:T (21)

The sub-problem optimization objective is first represented
using a generic cost function:

JT,i : (Ωi;A1:T,i) 7→ R (22)

Note that wi is not relevant to this portion of the optimization
as the sub-problems are being solved independently, but will
factor into combination of the sub-problem sequences. The
sub-problem optimization is defined as:

A∗1:T,i = arg min
A1:T,i∈A1:T,i

JT,i (Ωi;A1:T,i) (23)

This sub-problem decomposition approach allows for par-
allel computation of action sequence sets for each agent-pair.

3) Combating Confirmation Bias: The adversarial opti-
mization minimax technique is employed to reduce confirma-
tion bias. In minimax optimization, both agents attempt to
minimize potential loss in a worst-case scenario. Conversely,
for a maximizing objective, maximin optimization represents
agents maximizing the minimum gain from a sequence of
actions.

Consider a single hypothesis from the set of considered
hypotheses at time tk: Ωi ∈ Ω. Each proposition must be
either conclusively confirmed or refuted with evidence, so
each proposition is assigned a pair of JER agents. When the
advocate agent is active, its goal is to maximize belief in the
proposition {θ}, accomplished using maximin optimization
with the plausibility probability transformation:

A∗1:T |{θ} = arg max min
A1:T,i∈A1:T,i

Prpl

(
θ;mi|A1:T,i

)
(24)

where mi|A1:T,i
is the estimated bpa for hypothesis Ωi result-

ing from the proposed action sequence A1:T,i. The maximum
attainable value for this objective is 1 when proposition {θ}
has full belief, and the minimum attainable value for this
objective is 0 when proposition {¬θ} has full belief. When
the critic agent is active, its goal is to maximize belief in
the alternative proposition ({¬θ}) or equivalently minimize
belief in the null proposition ({θ}). Therefore, the formulation
simply flips to a minimax optimization:

A∗1:T |{¬θ} = arg min max
A1:T,i∈A1:T,i

Prpl

(
θ;mi|A1:T,i

)
(25)



Each JER agent-pair returns its own minimax-optimal ac-
tion sequence. In the next section, these sub-problem action
sequences are combined to arrive at a single optimal action
schedule. If an agent-pair’s action is selected in the optimal
schedule for this iteration, that agent-pair flips its starting
active agent for the next time step.

4) Resolving Combined Schedule Incongruity: It is possi-
ble, or even likely, that the sub-problem optimal schedules
for two or more agent-pairs use the same actor for different
actions. These incongruities are resolved by choosing the
actions that lead to the strongest hypothesis resolution using
entropy.

Using the set of actions from all sub-problem optimal
sequences A∗1:T,·, all possible combinations form candidate
congruous action sequences. The evaluation criterion for se-
lecting the optimal combined schedule is the weighted-sum of
entropy:

A∗1,T = arg min
A1:T∈A∗

1:T,·

|Ω|∑
i=1

wiH̃JS

(
mi|A1:T

)
(26)

where wi is the weighting for the ith hypothesis, and H̃JS

is the normalized J-S entropy as defined in Eqn. (16). Since
Jirousek-Shenoy entropy quantifies both conflict and non-
specificity, and the weighting parameters encode decision-
maker priorities, the resulting action sequence A∗1:T is the
action sequence with the strongest priority-weighted resolu-
tion.

5) Efficient Minimax Optimization: To further reduce the
number of action sequences evaluated, the alternating-agent
minimax formulation of the sub-problems can be further
exploited using alpha-beta pruning [14]. In naive minimax (or
maximin) optimization, the number of evaluations grows expo-
nentially with the number of valid actions and the search depth,
as in Eqns. (18) and (19). However, some action sequences can
be pruned to quickly eliminate costly or infeasible options.

Pruning the known sub-optimal branches reduces the num-
ber of required sequence evaluations while still arriving at the
same optimal solution as naive minimax. In an ideal case, the
computational complexity reduces to Eqn. (27), a significant
improvement over the brute-force complexity in Eqn. (19).

O
(√

(nm)
T

)
(27)

While this idealized complexity may not be fully realized in
application, alpha-beta pruning is likely to eliminate unneces-
sary searches to provide a more efficient minimax search.

6) Hypothesis Pruning via Entropy Stopping Condition: A
final computational consideration is the pruning of resolved
hypotheses. Once sufficient evidence has been gathered to
resolve a hypothesis, it is beneficial to remove that hypothesis
from consideration for future tasking evaluations. Decision-
makers should be able to indicate an acceptable level of
conflict and ambiguity, manifesting as J-S entropy thresholds
H̃th (mi) for each hypothesis Ωi. If the entropy for a given

hypothesis falls below this threshold, that hypothesis is con-
sidered adequately resolved and action sequences related to
that hypothesis no longer need to be considered.

IV. EXAMPLES

This section contains illustrative examples of the JER ap-
proach using simplified medical diagnosis situations with con-
straints enforced such that not all actions may be taken within
the diagnosis window (i.e. time-critical decision-making).

A. Case 1: Single JER Agent-Pair

The first example involves a single hypothesis with two
propositions, yielding the following frame of discernment:
{θ,¬θ}. To simplify notation, define the corresponding propo-
sitions as: A = {θ} and ¬A = {¬θ}. Since this is a
single hypothesis problem with a binary frame of discernment,
only one JER agent-pair is needed, and this example serves
to illustrate the JER inner-loop: minimax optimization using
plausibility probability.

Assuming no prior information on the correct resolution (i.e.
full ignorance), the prior belief assignment is vacuous. Three
tests are available to inform this diagnosis, but time and cost
constraints limit the number of tests to two. Therefore, the goal
is to determine which two tests result in a strong-but-unbiased
resolution. Table I lists basic probability assignments (bpas)
for each available test, functions of known statistics on the test
such as false alarm rate.

TABLE I
EXAMPLE CASE 1: BASIC PROBABILITY ASSIGNMENTS FOR TESTS

Test # A ¬A A ∪ ¬A
1 0.7 0.0 0.3
2 0.0 0.7 0.3
3 0.3 0.3 0.4

Fig. 1 shows the tree of all possible test sequences, easily
visualized due to the low dimensionality of this example.
Traversing down the tree, each successive level alternates the
active agent between advocate and critic (of A) for a two-step
minimax optimization on Prpl (A). Each edge of this tree is
a candidate action (test), and each terminating node denotes
the plausibility probability of A as a result of the two actions
leading to it. The non-terminating nodes display the chosen
node from below based on the active agent at that step (min
or max).

Fig. 1. Example Case 1: Evaluation tree with alpha-beta pruning

The minimax-optimal test sequence (tests 1 followed by test
2) is highlighted in blue, resulting in Prpl (A) = Prpl (¬A) =



0.5. This result matches intuition that, in the case of vacuous
prior information, both strong indicator tests should be run
to ensure the true diagnosis is confirmed. The nodes marked
with an X in Fig. 1 are pruned before evaluation via alpha-beta
pruning, reducing the required evaluations from nine to seven.

B. Case 2: Multiple JER Agent-Pairs
The second example involves a single hypothesis with three

propositions, yielding the following frame of discernment:
{θ1, θ2, θ3}. For ease of notation, define the corresponding
propositions as: A = {θ1}, B = {θ2}, C = {θ3}. Since
the frame of discernment is non-binary, three JER agent-
pairs are used. Therefore, this example serves to illustrate the
application of the entropy-minimization objective to resolve
schedule incongruity, as well as updating the prior with test
results iteratively in receding-horizon optimization.

As before, the prior belief assignment is assumed vacuous.
Three tests are available to inform this diagnosis, but time
and cost constraints limit the number of tests to two. Table II
lists basic probability assignments (bpas) for each test, with
two possible outcomes: pass and fail. For instance, test 1 is
a strong indicator for proposition A, so a pass outcome gives
strong belief for A whereas a fail outcome gives strong belief
for B ∪ C = ¬A.

TABLE II
EXAMPLE CASE 2: BASIC PROBABILITY ASSIGNMENTS FOR TESTS

Test # A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
1 (Pass) 0.9 0.0 0.0 0.0 0.0 0.0 0.1
1 (Fail) 0.0 0.0 0.0 0.0 0.0 0.9 0.1
2 (Pass) 0.0 0.7 0.0 0.0 0.0 0.0 0.3
2 (Fail) 0.0 0.0 0.0 0.0 0.7 0.0 0.3
3 (Pass) 0.0 0.0 0.5 0.0 0.0 0.0 0.5
3 (Fail) 0.0 0.0 0.0 0.5 0.0 0.0 0.5

Each agent operates under the supposition that its desired
proposition is correct. In other words, the advocate agent for
proposition A estimates that test 1 will pass while tests 2 and
3 will fail, contributing belief to proposition A.

After the sub-problem test schedules are optimized, the
estimated bpa result is computed for each combination se-
quence, and the test sequence resulting in the lowest entropy
is selected. The first test action implemented for that iteration,
and the agent-pairs that requested that action (i.e. the active
agent-pairs) are flipped so that, in the next iteration, the critic
agent is active first.

In test execution, the test bpa is determined by the true
realization of the hypothesis. The prior bpa is combined with
the test bpa after each iteration, and the procedure above is
repeated using this updated bpa as the prior.

Table III shows the resulting test sequence and probabilities
(using the plausibility transformation) after each iteration.
Three different cases are run, each with a different true
realization of the hypothesis. Since the initial prior is vacuous
and test 1 is the strongest indicator, the chosen first test in
each realization is test 1.

If proposition A is true, test 1 passes and significant belief
is already attributed to A. In the second iteration, test 1

is repeated because, in this case, the entropy will not be
significantly decreased by the contribution of other (weaker)
test results. Even though the critic agent is active for A, test
1 is still the strongest potential belief contribution for ¬A,
providing the strongest entropy reduction. Test 1 passes again,
further confirming proposition A.

If either proposition B or C are true, test 1 fails, resulting in
significant ambiguity after the first test. In both cases, the next
test selected is test 2, because it is the strongest remaining test
and proposition A has (nearly) been eliminated. If proposition
B is true, test 2 passes and now a significant belief is attributed
to B. If proposition C is true, test 2 fails as well, resulting in
a less-significant but still definitive belief attributed to C: the
fail result in test one indicates B or C and the fail result in test
2 indicates A or C, leaving C as the only logically consistent
option. In this case, the belief attributed to A slightly increases
after the second test result, but evidence still overwhelmingly
indicates proposition C.

Since test 3 has the weakest belief contribution and only
two tests may be executed, it is never selected. The correct
resolution is determined with high probability through the use
of only two tests in each case.

TABLE III
EXAMPLE CASE 2: RESULTS BASED ON TRUE HYPOTHESIS REALIZATION

Truth Tests Prpl (A) Prpl (A) Prpl (C) H̃JS

A
1 - Pass 0.84 0.08 0.08 0.308
1 - Pass 0.98 0.01 0.01 0.055

B
1 - Fail 0.04 0.48 0.48 0.721
2 - Pass 0.02 0.75 0.02 0.389

C
1 - Fail 0.04 0.48 0.48 0.721
2 - Fail 0.07 0.21 0.71 0.468

Note that, while this example case did require more test
sequence evaluations than a brute-force implementation, this
is only because each available test is relevant to each agent-pair
(for simplicity). Computational complexity of this evaluation
scales exponentially with the number of available actions, so
in a low-dimensional scenario such as this example, more
available actions may not be an issue.

C. Example Summary

The two example cases presented illustrate both key com-
ponents of the JER approach: the inner-loop sub-problem
resolution using agent-pairs and efficient minimax with the
plausibility probability transformation, and the outer-loop
schedule combination and resolution of incongruities using
entropy.

While both cases illustrated use a single hypothesis, mul-
tiple hypotheses simply require more agent-pairs for the new
propositions. The only additional requirement is user-defined
priority weightings for the hypotheses, utilized in schedule
incongruity resolution. The simulated results in Section V
illustrate multi-hypothesis resolution through a sensor network
tasking scenario.



V. SIMULATION RESULTS

This section contains a more nuanced application of JER
scheduling sensor network actions to resolve multiple space
situational awareness (SSA) hypotheses. SSA is concerned
with accurately representing the state knowledge of objects in
the space environment to provide better prediction capabilities
for threats such as potential conjunction events. There are cur-
rently over 20,000 trackable objects in the space object catalog
[15]. While Earth orbit is a vast volume, useful or strategic
orbit regimes (e.g. low Earth orbit (LEO), Geostationary Earth
Orbit (GEO)) have quickly become congested and contested
[16].

Tracking techniques used in the space surveillance system
still largely rely upon human-intensive models and appli-
cations [9]. As the space object population increases, the
amount of data required to maintain SSA also increases [16],
motivating development of autonomous sensor tasking capa-
bilities. An increasing emphasis is being placed on algorithms
and processes that have an ability to ingest disparate data
from many sources and fuse an understanding of the greater
situation of the space domain [17], [18].

A. Scenario Description

Operators in a SSA decision-support environment receive
notice from a space launch entity that a planned geostation-
ary transfer orbit (GTO) insertion maneuver has experienced
an anomaly. The anomaly is estimated to have occurred 5
minutes prior to the notification during a critical orbit-raising
maneuver. The objective is to re-acquire the space object and
diagnose the anomaly to regain situation awareness.

Anomalous GTO objects are particularly difficult to char-
acterize as the range prohibits use of radar, requiring a wide
state-space search using electro-optical sensors. Timely re-
acquisition is critical since a wayward spacecraft becomes a
collision risk in a densely populated orbit regimes of LEO or
GEO. The nominal transfer time from LEO to GEO is just
over five hours, placing additional time-pressure on resolving
the anomaly to complete conjunction analyses and alert other
satellite operators.

B. Dynamics

The primary spacecraft begins in a 1000 km altitude circular
parking orbit. Space objects are propagated using Keplerian
two-body dynamics to compute lines-of-sight to sensors. The
sensor network is comprised of two 3-degree field-of-view
electro-optical sensors, separated by 20 degrees in longitude
for geometric diversity. Observations are simulated using
a radiometric model, including simulated effects for back-
ground sky irradiance and atmospheric transmittance [19] with
cannonball-model illumination estimation. The sensor-tasking
time span is limited by observation constraints (e.g. short
horizon-to-horizon times in LEO, eclipse, adverse weather),
placing a 15-minute time limit on the hypothesis resolution.
The sensors may change actions each minute, and a receding
time-horizon of two minutes is used.

Fig. 2. Test Case: propulsion explosion, schedule and entropy

C. Belief Function Models

A limited subset of potential failure modes is analyzed for
illustrative purposes in this test case. The anomaly is char-
acterized at the subsystem level to determine root-cause. The
hypotheses considered include: propulsion status, navigation
status, and collision in LEO. Since multiple point-of-failure
events are exceedingly rare, an assumption is made that the
anomaly results from a single point-of-failure.

Each hypothesis has a unique frame of discernment, used
to construct JER agent-pairs. The propulsion status hypoth-
esis consists of three propositions: nominal, non-start, and
explosion. The navigation status hypothesis consists only of
two propositions: nominal and anomalous The collision in
LEO hypothesis consists of R + 1 propositions: none, and
R collision propositions (one for each potential collision
object). For this study, three resident space objects (RSOs)
are considered for collisions: R = 3. There are a total of
eight JER agent-pairs in this simulation: three for propulsion
failure, one for navigation status, and four for collision in
LEO. Hypotheses are considered resolved if the normalized J-
S entropy drops below the threshold value of H̃JS,thr = 0.05.

D. Evidence to Belief Function Mappings

Each candidate action is evaluated for its estimated effect
on the hypotheses to develop evidence-to-belief-function map-
pings. This process is highly problem-specific, requiring the
modeler to consider what each potential successful or missed
detection contributes to each hypothesis. For instance, a missed
detection may indicate anomaly, but if the estimated electro-
optical probability of detection [19] predicted a low chance of
success, that evidence is vacuous.

E. Test Case: Propulsion Explosion

In this test case, a catastrophic propulsion anomaly results in
an explosion, scattering debris in the LEO parking orbit. The
resulting sensor tasking schedule and hypothesis entropies are
shown in Fig. 2, and resultant hypothesis resolutions (belief
and plausibility) are plotted in Fig. 3



Fig. 3. Test Case: propulsion explosion, hypothesis resolutions (solid line for
belief, dashed line for plausibility)

The first actions, tasking against GTO and LEO, result
in missed detections of the primary spacecraft, contributing
weak evidence toward anomalous propositions for both the
propulsion and navigation statuses. However, the LEO action
also successfully detects the “Coll 0” and “Coll 2” objects,
refuting their collision propositions.

The sensor network initiates a search in GTO to confirm
the navigation status, searching for the primary spacecraft off-
nominal in GTO. During this search, several pieces of debris
are detected, contributing evidence toward both the propulsive
explosion and collision propositions. This initially inflates the
belief in a collision with object “Coll 1” that is later refuted
through positive detection of the “Coll 1” object in its nominal
orbit (at 02:11), arriving at the correct anomaly resolution of
explosion. This test case serves as a prime example of the
unbiased resolution focus of JER, rejecting the incorrect prior
using further evidence.

A brute-force entropy-greedy scheduler was also imple-
mented for comparison to the complexity and bias-related im-
provements of the JER approach. The entropy-greedy sched-
uler evaluates all valid action sequences over the scheduler
horizon and selects the action sequence that minimizes the
weighted-sum entropy.

An immediate difference is the number of sequence evalu-
ations required at each iteration: 1, 024 for brute-force com-
pared to a maximum of 271 for JER (including all agent-pairs
and the combination sequences). Furthermore, the incorrect
potential-collision prior (induced at 02:06) is never rejected in
the entropy-greedy approach: “Coll 1” is not tasked against
as other actions are predicted to reduce entropy more. The
entropy-greedy approach does not fully resolve the hypothe-
ses, further underscoring the impact of the alternating-agent
scheme in rejecting confirmation bias.

VI. CONCLUSION

This work develops the JER approach, a generalized
evidence-gathering framework for hypothesis resolution. Em-
ploying a hypothesis abstraction enables predictive tasking
and supports human cognition at a strategic and planning

level. The use of Dempster-Shafer theory to model hypoth-
esis knowledge quantifies ambiguity and conflict. Applying a
principle of equal-effort through alternating agents provides
impartial hypothesis resolution to combat confirmation bias
while also prioritizing time-efficient hypothesis resolution. The
inclusion of efficient minimax algorithms and a hypothesis
resolution pruning condition further improve computational
tractability. The simulated results for a GTO insertion ma-
neuver anomaly scenario show JER confirming or refuting
propositions appropriately using evidence, avoiding fixation
on incorrect propositions induced by confirmation bias.
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