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Summary

This paper describes decision trees and influence diagrams…

1. Introduction

The main goal of this paper is to describe decision trees and influence diagrams, both of which are
formal mathematical techniques for representing and solving one-person decision problems under
uncertainty.

Decision trees have their genesis in the pioneering work of von Neumann and Morgenstern on
extensive form games. Decision trees graphically depict all possible scenarios. The decision tree
representation allows computation of an optimal strategy by the backward recursion method of
dynamic programming. Howard Raiffa calls the dynamic programming method for solving decision
trees “averaging out and folding back.”

Influence diagram is another method for representing and solving decision problems. Influence
diagrams were initially proposed as a method only for representing decision problems. The
motivation behind the formulation of influence diagrams was to find a method for representing
decision problems without any preprocessing. Subsequently, Scott Olmsted and Ross Shachter
devised methods for solving influence diagrams directly, without first having to convert influence
diagrams to decision trees. In the last decade, influence diagrams have become popular for
representing and solving decision problems.

2. A Medical Diagnosis Problem

In this section, we will state a simple symmetric decision problem that involves Bayesian revision
of probabilities. This will enable us to show the strengths and weaknesses of the various methods
for such problems.
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A physician is trying to decide on a policy for treating patients suspected of suffering from a disease
D. D causes a pathological state P that in turn causes symptom S to be exhibited. The physician first
observes whether or not a patient is exhibiting symptom S. Based on this observation, she either
treats the patient (for D and P) or not. The physician’s utility function depends on her decision to
treat or not, the presence or absence of disease D, and the presence or absence of pathological state
P. The prior probability of disease D is 10%. For patients known to suffer from D, 80% suffer from
pathological state P. On the other hand, for patients known not to suffer from D, 15% suffer from P.
For patients known to suffer from P, 70% exhibit symptom S. And for patients known not to suffer
from P, 20% exhibit symptom S. We assume D and S are probabilistically conditionally
independent given P. Table 1 shows the physician’s utility function.

Table 1. The Physician’s Utility Function For All Act-State Pairs

Physician’s States

Utilities Has pathological state (p) No pathological state (~p)

(υ) Has disease (d) No disease (~d) Has disease (d) No disease (~d)

Treat (t) 10 6 8 4
Acts

Not treat (~t) 0 2 1 10

3. Decision Trees

In this section, we describe a decision tree representation and solution of the Medical Diagnosis
problem. Also, we describe the strengths and weaknesses of the decision tree representation and
solution techniques.

3.1. Decision Tree Representation

Figure 1 shows the preprocessing of probabilities that has to be done before we can complete a
decision tree representation of the Medical Diagnosis problem. In the probability tree on the left, we
compute the joint probability distribution by multiplying the conditionals. For example,
Pr(d, p, s) = Pr(d) Pr(p|d) Pr(s|p) = (.10)(.80)(.70) = .0560.
In the probability tree on the right, we compute the desired conditionals by additions and divisions.
For example,
Pr(s) = Pr(s, p, d) + Pr(s, p, ~d) + Pr(s, ~p, d) + Pr(s, ~p, ~d)

= .0560 + .0945 + .0040 + .1530 = .3075,
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Figure 1. The Preprocessing of Probabilities in the Medical Diagnosis Problem
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Figure 2 shows a complete decision tree representation of the Medical Diagnosis problem. Each
path from the root node to a leaf node represents a scenario. This tree has 16 scenarios. The tree is
symmetric, i.e., each scenario includes the same four variables S, T, P, and D, in the same sequence
STPD.
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Figure 2. A Decision Tree Representation of the Medical Diagnosis Problem
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Figure 3. A Decision Tree Solution of the Medical Diagnosis Problem using Coalescence
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3.2. Decision Tree Solution

In the decision tree in Figure 2, there are four sub-trees that are repeated once. We can exploit this
repetition during the solution stage using coalescence. Figure 3 shows the decision tree solution of
the Medical Diagnosis problem using coalescence. Starting from the leaves, we recursively delete
all random and decision variable nodes in the tree. We delete each random variable node by
averaging the utilities at the end of its edges with the probability distribution at that node
(“averaging out”). We delete each decision variable node by maximizing the utilities at the end of
its edges (“folding back”). The optimal strategy is to treat the patient if and only if the patient
exhibits the symptom S. The expected utility of this strategy is 7.988.

3.3. Strengths and Weaknesses of the Decision Tree Representation

The strengths of the decision tree representation method are its simplicity and its flexibility.
Decision trees are based on the semantics of scenarios. Each path in a decision tree from the root to
a leaf represents a scenario. These semantics are very intuitive and easy to understand. Decision
trees are also very flexible. In asymmetric decision problems, the choices at any time and the
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relevant uncertainty at any time depend on past decisions and revealed events. Since decision trees
depict scenarios explicitly, representing an asymmetric decision problem is easy.

The weaknesses of the decision tree representation method are its modeling of uncertainty, its
modeling of information constraints, and its combinatorial explosiveness in problems in which
there are many variables. Since decision trees are based on the semantics of scenarios, the
placement of a random variable in the tree depends on the point in time when the true value of the
random variable is revealed. Also, the decision tree representation method demands a probability
distribution for each random variable conditioned on the past decisions and events leading to the
random variable in the tree. This is a problem in diagnostic decision problems where we have a
causal model of the uncertainties. For example, in the Medical Diagnosis example, symptom S is
revealed before disease. For such problems, decision tree representation method requires
conditional probabilities for diseases given symptoms. But, assuming a causal model, it is easier to
assess the conditional probabilities of symptoms given the diseases. Thus a traditional approach is
to assess the probabilities in the causal direction and compute the probabilities required in the
decision tree using Bayes theorem. This is a major drawback of decision trees. There should be a
cleaner way of separating a representation of a problem from its solution. The former is hard to
automate while the latter is easy. Decision trees interleave these two tasks making automation
difficult.

In decision trees, the sequence in which the variables occur in each scenario represents information
constraints. In some problems, the information constraints may only be specified up to a partial
order. But the decision tree representation demands a complete order. This over-specification of
information constraints in decision trees makes no difference in the final solution. However, it may
make a difference in the computational effort required to compute a solution. In the Medical
Diagnosis example, the information constraints specified in the problem requires S to precede T,
and T to precede P and D. The information constraints say nothing about the relative positions of P
and D. The relative positions of P and D in each scenario make no difference in the solution. But, it
does make a difference in the computational effort required to solve the problem. After we have
drawn the complete tree, drawing D after P allows us to use coalescence, whereas drawing P after
D does not. (This is because P probabilistically shields D from S, and the utility function υ does not
depend on S.) Unfortunately, decision tree representation forces us at this stage to choose a
sequence with little guidance. This is a weakness of the decision tree representation method.

The combinatorial explosiveness of decision trees stems from the fact that the number of scenarios
is an exponential function of the number of variables in the problem. In a symmetric decision

problem with n variables, where each variable has 2 possible values, there are 2n scenarios. Since a
decision tree representation depicts all scenarios explicitly, it is computationally infeasible to
represent a decision problem with, say, 50 variables.

3.4. Strengths and Weaknesses of the Decision Tree Solution Method

The strength of the decision tree solution procedure is its simplicity. Also, if a decision tree has
several identical sub-trees, then the solution process can be made more efficient by coalescing the
sub-trees.

The weakness of the decision tree solution procedure is the preprocessing of probabilities that may
be required prior to the decision tree representation. A brute-force computation of the desired
conditionals from the joint distribution for all variables is intractable if there are many random
variables. Also, although preprocessing is required for representing the problem as a decision tree,
some of the resulting computations are unnecessary for solving the problem.
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In the preprocessing stage for the Medical Diagnosis example, the brute-force computation of the
desired conditionals does not exploit the conditional independence of D and S given P. As we will
see in the next section, the arc-reversal method of influence diagrams exploits this conditional
independence to save some computations. Also, all additions and divisions done in the probability
tree on the right in Figure 1 are unnecessary. These operations are required for computing the
conditionals, not for solving the decision problem.

How efficient is the decision tree solution technique for the Medical Diagnosis example? In the
preprocessing stage, a brute-force computation of the desired conditionals involves 30 operations
(multiplications, divisions, additions, or subtractions). Of the 30 operations, 12 multiplications are
required for computing the joint distribution, and 18 operations (including 10 divisions) are
required to compute the desired conditionals. In the solution stage, computing the utility of the
optimal strategy using coalescence involves 29 operations (multiplications, additions, or
comparisons). Thus, an efficient solution using the decision tree method involves a total of 59
operations.

As we will see in succeeding sections, solving this problem using the arc-reversal method of
influence diagrams requires 49 operations. The savings of 10 operations using the arc-reversal
method comes from using local computation in the computation of the conditionals.

4. Influence Diagrams

In this section, we describe an influence diagram representation and solution of the Medical
Diagnosis problem. The influence diagram representation method was pioneered by Ron Howard
and Jim Matheson. The arc-reversal method for solving influence diagrams was first described by
Scott Olmsted and Ross Shachter.

4.1. Influence Diagram Representation

The diagram in Figure 4 and the information in Tables 1 and 2 constitute a complete influence
diagram representation of the Medical Diagnosis problem.

Figure 4. An influence diagram for the Medical Diagnosis problem
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Table 2. The Conditional Probability Functions Pr(D), Pr(P|D), and Pr(S|P)

Pr(D) Pr(P|D) P Pr(S|P) S
D δ π p ~p σ s ~s
d .10 d .80 .20 p .70 .30

D P
~d .90 ~d .15 .85 ~p .20 .80

In influence diagrams, circular nodes represent random variables, rectangular nodes represent
decision variables, and diamond-shaped nodes (also called value nodes) represent utility functions.
Arcs that point to a random variable specify the existence of a conditional probability distribution
for the random variable given the variables at the tails of the arcs. Arcs that point to a decision
variable indicate what information is known to the decision maker at the point in time when an act
belonging to that decision variable has to be chosen. And, finally, arcs that point to value nodes
indicate the domains of the utility functions.

In the influence diagram in Figure 4, there are 3 random variables, S, P, and D; there is one decision
variable T; and there is one utility function υ. There are no arcs that point to D—this means we
have a prior probability distribution for D associated with D. There is one arc that points to P from
D—this means we have the conditional probability distribution for P given D associated with P.
There is one arc that points to S from P—this means we have a conditional distribution for S given
P associated with S. There is only one arc that points to T from S—this means that the physician
knows the true value of S (and nothing else) when she has to decide whether to treat the patient or
not. Finally, there are three arcs that point to υ from T, P, and D—this means that the utility
function υ depends on the values of T, P, and D. Table 2 shows the conditional probability
distributions for the random variables. These are readily available from the statement of the
problem. The utility function υ is also available from the statement of the problem (Table 1).

Thus, an influence diagram representation of the Medical Diagnosis problem includes a qualitative
description (the graph in Figure 4) and a quantitative description (Tables 1 and 2). Note that no
preprocessing is required to represent this problem as an influence diagram.

4.2. The Arc-Reversal Technique for Solving Influence Diagrams

We now describe the arc-reversal method for solving influence diagrams. The method described
here assumes there is only one value node. If there are several value nodes, the solution procedure is
described by Tatman and Shachter.

Solving an influence diagram involves sequentially “deleting” all variables from the diagram. The
sequence in which the variables are deleted must respect the information constraints (represented by
arcs pointing to decision nodes) in the sense that if the true value of a random variable is not known
at the time a decision has to be made, then that random variable must be deleted before the decision
variable, and vice versa. For example, in the influence diagram in Figure 4, random variable D and
P must be deleted before T, and T must be deleted before S. This requirement may allow several
deletion sequences, for example, the influence diagram in Figure 4 may be solved using deletion
sequences DPTS or PDTS. All deletion sequences will lead to the same final answer. But, different
deletion sequences may involve different computational efforts. We will comment on good deletion
sequences in section 5.

Before we delete a random variable, we have to make sure there are no arcs leading out of that
variable (pointing to other random variables). If there are arcs leading out of the random variable,
then these arcs have to be reversed before we delete the random variable. What is involved in arc
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reversal? To reverse an arc that points from random variable A to random variable B, first we
multiply the conditional probability functions associated with A and B, next we marginalize A out of
the product and associate this marginal with B, and finally we divide the product by the marginal
and associate the result with variable A. Graphically, when we reverse the arc from A to B, A and B
inherit each others direct predecessors. Arc-reversal is defined formally later in this section after we
have introduced some notation, and is illustrated in Figure 6. Arc reversals achieve the same results
as the preprocessing of probabilities in the decision tree method.

What does it mean to delete a random variable? If the random variable is in the domain of the utility
function, then deleting the random variable means we (1) average the utility function using the
conditional probability function associated with the random variable, (2) erase the random variable
and related arcs from the diagram, and (3) add arcs from the direct predecessors of the random
variable to the value node (if they are not already there). If the random variable is not in the domain
of the utility function, then deleting the random variable simply means erasing the random variable
and related arcs from the diagram and discarding the conditional probability function associated
with the random variable. In the latter case, the random variable is said to be barren. Deleting a
random variable corresponds to the averaging-out operation in the decision tree solution method.

What does it mean to delete a decision variable? Deleting a decision variable means we (1)
maximize the utility function over the values of the decision variable and associate the resulting
utility function with the value node, and (2) erase the decision node and all related arcs from the
diagram. Deleting a decision variable corresponds to the folding-back operation in the decision tree
solution method.

Figure 5 shows the solution of the Medical Diagnosis influence diagram using deletion sequence
DPTS. Influence diagram labeled 0 is the original influence diagram. Influence diagram 1 is the
result of reversing the arc from D to P. Influence diagram 2 is the result of deleting D. Influence
diagram 3 is the result of reversing the arc from P to S. Influence diagram 4 is the result of deleting
P. Influence diagram 5 is the result of deleting T. And influence diagram 6 is the result of deleting
S. Tables 3−7 show the numerical computations behind the influence diagram transformations.
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Figure 5. The Solution of the Influence Diagram Representation of the Medical Diagnosis Problem
using Deletion Sequence DPTS
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We will now describe the notation used in Tables 3–7. This notation is very powerful, as it will
enable us to describe algebraically in closed form the solution of an influence diagram. The notation
is taken from the axiomatic framework of valuation-based systems proposed by Prakash Shenoy.

If X is a variable, ΘX denotes the set of possible values of variable X. We call ΘX the frame for X.
Given a nonempty subset h of variables, Θh denotes the Cartesian product of ΘX for X in h, i.e., Θh

= ×{ΘX | X ∈  h}. If h is a subset of variables, a potential (or a probability function) α for h is a
function α:Θh → [0, 1]. We call h the domain of α. The values of a potential are probabilities.
However, a potential is not necessarily a probability distribution, i.e., the values need not add to 1.
If h is a subset of variables, a utility function υ for h is a function υ:Θh → —, where — is the set of
all real numbers. The values of utility function υ are utilities, and we call h the domain of υ.

Suppose h and g are subsets of variables, suppose α is a function for h, and suppose β is a function
for g. Then α⊗β (read as α combined with β) is the function for h∪g obtained by pointwise
multiplication of α and β, i.e., (α⊗β)(x, y, z) = α(x, y) β(y, z) for all x ∈ Θh–g, y ∈ Θh∩g, and
z ∈ Θg–h. See Table 3 for an example.
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Suppose h is a subset of variables, suppose R is a random variable in h, and suppose α is a function

for h. Then α↓(h–{R}) (read as marginal of α for h–{R}) is the function for h–{R) obtained by

summing α over the frame for R, i.e., α↓(h−{R})(c) = α(c,r)
r∈ΘR

∑  for all c ∈ Θh−{R}. See Table 3 for an

example.

Suppose h is a subset of variables, suppose D is a decision variable in h, and suppose υ is a utility

function for h. Then υ↓h–{D} (read as marginal of υ for h–{D}) is the utility function for h−{D)

obtained by maximizing υ over the frame for D, i.e., υ↓(h−{R})(c) = MAX
d∈ΘD

υ(c,d) for all c ∈ Θh−{D}.

See Table 7 for an example.

Each time we marginalize a decision variable out of a utility valuation using maximization, we store
a table of optimal values of the decision variable where the maxima are achieved. We can think of
this table as a function. We will call this function “a solution” for the decision variable. Suppose h
is a subset of variables such that decision variable D ∈ h, and suppose υ is a utility function for h. A

function ΨD: Θh−{D} → ΘD is called a solution for D (with respect to υ) if υ↓(h−{D})(c) = υ(c,
ΨD(c)) for all c ∈ Θh−{D}. See Table 7 for an example.

Finally, suppose α is a potential for h, and suppose R is a random variable in h. Then we define

α/α↓(h–{R}) (read as α divided by α↓(h–{R})) to be a potential for h obtained by pointwise division of

α by α↓(h–{R}), i.e., (α/α↓(h–{R}))(c, r) = α(c, r)/α↓(h–{R})(c) for all c ∈ Θh–{R}, and r ∈ ΘR. In this
division, the denominator will be zero only if the numerator is zero, and we will consider the result
of such division as zero. In all other respects, the division is the usual division of two real numbers.
See Table 3 for an example.

We can now define arc-reversal formally in terms of our notation. The situation before arc-reversal
of arc (A, B) is shown in the left-part of Figure 6. Here r, s and t are subsets of variables. Thus α is a
potential for {A}∪r∪s representing conditional probability for A given r∪s, and β is a potential for
{A, B}∪s∪t representing conditional probability for B given {A}∪s∪t. The situation after arc-
reversal is shown in the right-part of Figure 6. The changes in the potentials associated with the two
nodes A and B is indicated at the top of the respective nodes.

Figure 6. Arc-Reversal in Influence Diagrams.
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In the initial influence diagram, D has potential δ for {D}, P has potential π for {P, D}, and S has
potential σ for {S, P}. In influence diagram 1 (after reversal of arc from D to P), D has potential δ1

for {P, D}, P has potential π1 for {P}, and S has potential σ for {S, P}. Table 3 shows the
computation of potentials δ1 and π1. In influence diagram 2 (after deletion of D), P has potential π1

for {P}, and S has potential σ for {S, P}. In influence diagram 3 (after reversal of arc from P to S),
P has potential π2 for {S, P}, and S has potential σ1 for {S}. Table 5 shows the computation of
potentials π2 and σ1. In influence diagram 4 (after deletion of P), S has potential σ1 for {S}. In
influence diagram 5 (after deletion of T), S has potential σ1 for {S}. Tables 4, 6, and 7 show the
computation of utility functions υ1, υ2, υ3, and υ4.

As can be seen from Table 7, the maximum expected utility value is 7.988 (the value of υ4). An
optimal strategy is encoded in ΨT, the solution for T. As can be seen from ΨT in Table 7, an optimal
strategy is to treat the patient if and only if symptom S is exhibited.

Table 3. The Numerical Computations Behind Reversal of Arc (D, P)

Θ{P, D} δ π δ⊗π (δ⊗π)↓{P}= π1

δ π
δ π

⊗
( ⊗ )↓{ }P

= δ1

p d .10 .80 .080 .215 .3721
P ~d .90 .15 .135 .6279

~p d .10 .20 .020 .785 .0255
~p ~d .90 .85 .765 .9745

Table 4. The Numerical Computations Behind Deletion of Node D

Θ{T, P, D} υ δ1 υ⊗δ1 (υ⊗δ1)↓{T, P} = υ1

t p d 10 .3721 3.7209 7.4884
t p ~d 6 .6279 3.7674
t ~p d 8 .0255 0.2038 4.1019
t ~p ~d 4 .9745 3.8981

~t p d 0 .3721 0 1.2558
~t p ~d 2 .6279 1.2558
~t ~p d 1 .0255 0.0255 9.7707
~t ~p ~d 10 .9745 9.7452

Table 5. The Numerical Computations Behind Reversal of Arc (P, S)

Θ{S, P} π1 σ π1⊗σ (π1⊗σ)↓{S}= σ1

π1⊗σ

(π1⊗σ)↓{S}  = π2

s p .215 .70 .1505 .3075 .4894
s ~p .785 .20 .1570 .5106

~s p .215 .30 .0645 .6925 .0931
~s ~p .785 .80 .6280 .9069



13

Table 6. The Numerical Computations Behind Deletion of Node P

Θ{S, T, P} υ1 π2 υ1⊗π2 (υ1⊗π2)↓{S,T} = υ2

s t p 7.4884 .4894 3.6650 5.7593
s t ~p 4.1019 .5106 2.0943
s ~t p 1.2558 .4894 0.6146 5.6033
s ~t ~p 9.7707 .5106 4.9886

~s t p 7.4884 .0931 0.6975 4.4173
~s t ~p 4.1019 .9069 3.7199
~s ~t p 1.2558 .0931 0.1170 8.9776
~s ~t ~p 9.7707 .9069 8.8606

Table 7. The Numerical Computations Behind Deletion of Nodes T and S

Θ{S, T} υ2 υ2
↓{S} = υ3 ΨT σ1 υ3⊗σ1 (υ3⊗σ1)↓∅ = υ4

s t 5.7593 5.7593 t .3075 1.771 7.988
s ~t 5.6033

~s t 4.4173 8.9776 ~t .6925 6.217
~s ~t 8.9776

4.3. Strengths and Weaknesses of the Influence Diagram Representation

The strengths of the influence diagram representation are its intuitiveness and its compactness.
Influence diagrams are based on the semantics of conditional independence. Conditional
independence is represented in influence diagrams by d-separation of variables. Practitioners who
have used influence diagrams in their practice claim that it is a powerful tool for communication,
elicitation, and detailed representation of human knowledge.

Influence diagrams do not depict scenarios explicitly. They assume symmetry (i.e., every scenario
consists of the same sequence of variables) and depict only the variables and the sequence up to a
partial order. Therefore, influence diagrams are compact and computationally more tractable than
decision trees.

The weaknesses of the influence diagram representation are its modeling of uncertainty and
requirement of symmetry. Influence diagrams demand a conditional probability distribution for
each random variable. In causal models, these conditionals are readily available. However, in other
graphical models, we don’t always have the joint distribution expressed in this way. For such
models, before we can represent the problem as an influence diagram, we have to preprocess the
probabilities, and often, this preprocessing is unnecessary for the solution of the problem.

Influence diagrams are suitable only for decision problems that are symmetric or almost symmetric.
A decision problem is said to be asymmetric if there exists a decision tree representation such that
the number of scenarios in the decision tree representation is less that the product of the
cardinalities of the states spaces of the chance and decision variables in the problem. The Medical
Diagnosis problem is symmetric since the number of scenarios is 16 = |ΘS| |ΘT| |ΘP| |ΘD| = 2⋅2⋅2⋅2
For decision problems that are very asymmetric, influence diagram representation is awkward and
inefficient. For such problems, there are several techniques as reviewed by Concha Bielza and
Prakash Shenoy.
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4.4. Strengths and Weaknesses of the Arc-Reversal Solution Technique

A strength of the influence diagram solution procedure is that, unlike decision trees, it uses local
computation to compute the desired conditionals in problems requiring Bayesian revision of
probabilities. This makes possible the solution of large problems in which the joint probability
function decomposes into small functions.

A weakness of the arc-reversal method for solving influence diagrams is that it does unnecessary
divisions. The solution process of influence diagrams has the property that after deletion of each
variable, the resulting diagram is an influence diagram. As we have already mentioned, the
representation method of influence diagrams demands a conditional probability distribution for each
random variable in the diagram. It is this demand for conditional probability distributions that
requires divisions, not any inherent requirement in the solution of a decision problem.

How efficient is the influence diagram solution technique in the Medical Diagnosis example? A
count of the operations reveals that reversing arc (D, P) requires 10 operations (Table 3) and
reversing arc (P, S) requires 10 operations (Table 5). These two arc reversals achieve the same
results as the preprocessing stage of decision trees. Since we use local computation here, we save
10 operations compared to decision trees. The remaining computations are identical to the
computations in the decision tree method. Deletion of D requires 12 operations (Table 4), deletion
of P requires 12 operations (Table 6), deletion of T requires 2 comparisons (Table 7), and deletion
of S requires 3 operations (Table 7). Thus the arc-reversal method requires a total of 49 operations
to solve the Medical Diagnosis problem, 10 operations fewer than the decision tree method.

For the Medical Diagnosis problem, the influence diagram solution method computes υ4 =

(υ3⊗σ1)↓∅ = (υ2
↓{S}⊗(π1⊗σ)↓{S})↓∅ = ([(υ1⊗π2)↓{S,T}]↓{S}⊗[(δ⊗π)↓{P}⊗σ]↓{S})↓∅ =

([((υ⊗δ1)↓{T,P}⊗
π σ

π σ
1

1

⊗
( ⊗ )↓{ }S )↓{S,T}]↓{S}⊗((δ⊗π)↓{P}⊗σ)↓{S})↓∅ =

([((υ⊗
δ⊗π

(δ⊗π)↓{P} )
↓{T,P}⊗

(δ⊗π)↓{P}⊗σ

((δ⊗π)↓{P}⊗σ)↓{S} )
↓{S,T}]↓{S}⊗((δ⊗π)↓{P}⊗σ)↓{S})↓∅. As is clear

from this expression, the division by the potential (δ⊗π)↓{P} is neutralized by the subsequent

multiplication by the same potential, and division by the potential [(δ⊗π)↓{P}⊗σ]↓{S} is also

neutralized by the subsequent multiplication by the same potential. It is these unnecessary divisions

and multiplications that make the influence diagram solution method inefficient. The influence

diagram solution method requires these divisions because the influence diagram representation

method demands a conditional probability distribution for each random variable in the diagram.

Prakash Shenoy has proposed a new representation and solution technique called valuation

networks that does not demand a conditional probability distribution for each random variable in

the diagram. Therefore, the solution technique of valuation networks, called the fusion algorithm,

avoids these unnecessary divisions and multiplications.

In summary, for problems in which the joint probability distribution is specified as a conditional
probability distribution for each random variable, no preprocessing is required before the problem
can be represented as an influence diagram. But, for problems in which the joint probability
distribution is not specified as a conditional probability distribution for each random variable,
preprocessing will be required before the problem can be represented as an influence diagram. The
arc-reversal method uses local computation for computing the desired conditionals. And in the
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solution stage, influence diagrams allow the use of heuristics for selecting good deletion sequences.
In all other respects, the arc-reversal method of influence diagrams does exactly the same
computations as in the backward recursion method of decision trees.

5. Summary and Conclusions

We have compared the expressiveness of the three graphical representation methods for symmetric
decision problems. And we have compared the computational efficiencies of the solution techniques
associated with these methods.

The strengths of decision trees are their flexibility that allows easy representation for asymmetric
decision problems, and their simplicity. The weaknesses of decision trees are the combinatorial
explosiveness of the representation, their inflexibility in representing probability models that may
necessitate unnecessary preprocessing, and their modeling of information constraints.

The strengths of influence diagrams are their compactness, their intuitiveness, and their use of local
computation in the solution process. The weaknesses of influence diagrams are their inflexibility in
representing non-causal probability models, their inflexibility in representing asymmetric decision
problems, and the inefficiency of their solution process.
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