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Abstract In probability theory, as well as in other alternative uncertainty theories,
the existence of efficient processes for the multidimensional model construction is a
basic assumption making the application of the respective theory to practical prob-
lems possible. Most of the approaches are based on the idea that a multidimensional
model is set up from a great number of smaller parts representing pieces of lo-
cal knowledge. Such a process is called knowledge integration. In the probabilistic
framework, it means that a multidimensional probability distribution is aggregated
from a number of low-dimensional (possibly conditional) ones.

Historically, two different operators of aggregation were designed for this pur-
pose: the operator of combination, and the operator of composition. This paper,
using the simplest possible framework of discrete probability theory, answers some
natural questions like: What is the difference between these operators? Is there a
need for both of them? Are there situations when they can be mutually interchanged?

Keywords: Discrete probability, aggregation of distributions, factorization, alge-
braic properties, idempotency.

1 Introduction

Broad application of probability theory in artificial intelligence that took place in
the last decades of the last century was facilitated by the development of new tools
and models that were incorporated into the basic theoretical gear of artificial intelli-
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gence. There are many of them, though not all of them are as famous as the Bayesian
networks [7], or more generally, graphical Markov models [13]. Some of them were
developed not only in the theoretical framework of probability theory but also in the
framework of other uncertainty theories like possibility [6] or belief functions theo-
ries [4, 17]. This holds true also for two operators of aggregation that belong among
the concepts of several uncertainty theories. The goal of this paper is to make clear
the difference between these two operators of aggregation and to show that both of
them have their indisputable role for uncertain knowledge modeling. Namely, they
are widely used in the process of knowledge integration, the process aiming at the
construction of big knowledge bases of intelligent systems. To make the exposition
as clear as possible we restrict our consideration only to the best-known probability
theory, we will study aggregation of (discrete) probability distributions (measures).

The basic idea of the knowledge integration process copies a human-like behav-
ior. Nobody is able to express/comprehend knowledge that is too complex. There-
fore, it should be formulated in small pieces of local knowledge, and the pieces of
local knowledge are then aggregated to form a complete knowledge of the area of in-
terest. Analogously, a probabilistic model of a knowledge base should be integrated
from a great number of pieces of local knowledge, which are represented by small
dimensional probability distributions. This way of knowledge base representation
has also an additional advantage. For such models, there exist efficient computa-
tional procedures that can be applied for making inferences [14, 15, 16, 1, 11].

In probability theory there are many ways and purposes why two or more proba-
bility distributions are aggregated; see, e.g. ”Aggregating Probability Distributions”
by Clemen and Winkler [3]. In this paper we restrict our attention only to two ways
that can be both considered as an aggregation of knowledge in AI applications:
Combination and Composition.

Combination.

The purpose of the combination of probability distributions can hardly be described
better than it was done by Arthur Dempster in [4]: A probability measure may be
regarded as defining degrees of belief which quantify a state of partial knowledge. ...
A mechanism for combining such sources of information is a virtual necessity for a
theory of probability oriented to statistical inference. The mechanism adopted here
assumes independence of the sources, a concept whose real world meaning is not
so easily described as its mathematical definition. So, by the operation of combina-
tion we understand in this paper a proper way to combine independent sources of
information. In agreement with the Dempster’s words, with the stress on the notion
of independence.

As an example, consider a situation when data files are the main source of in-
formation. Let two data files describe patients from hospitals A and B, respectively.
Then, a natural way of combining these two sources of information is to join the
records into one file. The respective estimation of the probability distribution π cor-
responding to the joint data file can be got as a weighted sum of the estimations
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of probability distributions πA and πB corresponding to the data files from hospi-
tals A and B, respectively. So, in spite of the fact that in the described situation we
do not have any objections against the employment of distribution π received as a
weighted sum distributions πA and πB (representing two sources of information),
we should not consider the weighted sum of distributions a combination operation
for probability distributions. This is because the computation of a weighted sum is
not appropriate when the sources are independent. Naturally, data collected in dif-
ferent hospitals cannot be considered independent. They are samples from different
populations, or from two disjoint parts of a population.

Composition.

As the term suggests, the operation of the composition is an inverse operation to
decomposition. By decomposition, we understand the result of a process that, with
the goal of simplification, divides an original object into its sub-objects. Thus, for
example, a problem is decomposed into two (or more) simpler sub-problems. Gen-
eral properties of such decomposition can be viewed on the example familiar to
everybody: decomposition of a positive integer into prime numbers. In this case,
an elementary decomposition is a decomposition of an integer into two factors, the
product of which gives the original integer. For this example, we see that

• the result of decomposition are two objects of the same type as the decomposed
object – an integer is decomposed into two integers;

• both these subobjects are simpler (smaller) than the original object – both factors
are smaller that the original integer, we do not consider 1×n to be a decomposi-
tion of n;

• not all objects can be decomposed – prime numbers cannot be decomposed;
• there exists an inverse operation (we will call it a composition) yielding the orig-

inal object from its decomposed parts – the composition of two integers is their
product.

It can easily be deduced from the above-presented properties that the process of a
repeatedly performed decomposition of an arbitrary (finite) object into elementary
subobjects that cannot be further decomposed is always finite.

As another example, let us note that a decomposition is studied also in graph
theory. A simple1 graph G = (V,E) is decomposed into two simple graphs G1 =
(V1,E1) and G2 = (V2,E2) if

• V1∪V2 =V , V1 6=V 6=V2,
• both G1 and G2 are induced subgraphs of G (i.e., E j = {(u− v) ∈ E : {u,v} ⊆

Vj}),
• E1∪E2 = E.

Note that the graphs that cannot be decomposed are called prime-graphs.

1 An undirected graph containing no loops and no multiple edges.
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What is a decomposition of a finite probability distribution? Consider a two-
dimensional distribution π(X ,Y ). Simpler sub-objects are just one-dimensional dis-
tribution π(X) and π(Y ). Generally, the process of marginalization is unique, but,
with the exception of a degenerate distribution, we cannot unambiguously recon-
struct the original two-dimensional distribution from its one-dimensional marginals.
To bypass this fact, we restrict the decomposition of two-dimensional distributions
π(X ,Y ) into their one-dimensional marginals only for the case of independence (to
denote that variables X and Y are independent for distribution π we use symbol
X ⊥⊥ Y [π] – for a precise definition see the next section). In this case, π(X ,Y ) can
easily be reconstructed from its marginals π(X) and π(Y ): π(X ,Y ) = π(X) ·π(Y ),
where “·” denotes pointwise multiplication, i.e., π(X ,Y )(x,y) = π(X)(x) π(Y )(y)
for all values x of X and y of Y .

Analogously, three-dimensional distribution π(X ,Y,Z) can be decomposed into
two simpler probability distributions (marginals of π(X ,Y,Z)) only if either a couple
of variables (say X ,Y ) is independent of the remaining third variable (in this case Z),
or, if two variables (say X and Z) are conditionally independent given the remaining
third variable (in this case Y ):

• {X ,Y} ⊥⊥ Z[π], then π(X ,Y,Z) can be reconstructed from π(X ,Y ) and π(Z),
• X ⊥⊥ Z|Y [π], then π(X ,Y,Z) can be reconstructed from π(X ,Y ) and π(Y,Z).

Thus, the composition considered in this paper will be an inverse operation to the
following general operation of decomposition: Probability distribution π(X1, . . . ,Xn)
can be decomposed into κ({Xi}i∈K) and λ ({Xi}i∈L) if

1. K∪L = {1,2, . . . ,n};
2. K 6= {1,2, . . . ,n}, L 6= {1,2, . . . ,n};
3. π({Xi}i∈K∪L) ·λ ({Xi}i∈K∩L) = κ({Xi}i∈K) ·λ ({Xi}i∈L).

Notice that in this case the original distribution π(X1,X2, . . . ,Xn) can be uniquely
reconstructed from distributions κ({Xi}i∈K) and λ ({Xi}i∈L).

The formal definitions of both combination and composition operators as well as
the notation used in the paper form the content of the next section. The main part of
the paper is Section 3 where we show what are the common properties of the studied
operators (Section 3.1) and in what way they differ from each other (Section 3.2).
The last section concludes the paper referring to the relation of the presented results
with other uncertainty theories.

2 Basic Definitions and Notation

In this text we deal with finite-valued random variables denoted by upper case
characters of Latin alphabet X ,Y,Z, with possible indices. The respective finite
(nonempty) sets of values of variables X ,Y,Z will be denoted by X,Y,Z, respec-
tively. Therefore, the values of (X ,Y ) are from the Cartesian product X×Y. In the
case of a subset of variables {Xi}i∈K ⊂ {X1,X2, . . . ,Xn}, we will use a simplified
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notation:

XK =×i∈KXi

to denote the set of values of {Xi}i∈K .
Distributions of subsets of variables will be denoted by lower-case Greek alpha-

bets π,κ,λ , µ,δ (again with possible indices). Thus, π(X1,X2, . . . ,Xn) denotes an
n-dimensional probability distribution. It’s marginal distribution for K ⊆ {1, . . . ,n}
will be denoted π({Xi}i∈K), or, more often simply π↓K . Analogously, for x ∈
X{1,...,n}, x↓K denote the projection of x into XK . When considering marginal dis-
tributions we do not exclude situations when K = /0. In this case, we assume that
X /0 = {�}, and naturally, π↓ /0(�) = 1.

In what follows we will also need a symbol for conditional probability distribu-
tion. For disjoint L,M ⊆ K, π↓L|M denote the conditional probability distribution of
variables {Xi}i∈L given variables {Xi}i∈M , i.e., if the marginal π↓M is positive then

π
↓L|M =

π↓L∪M

π↓M
.

In a general case, for each x ∈ XM , π↓L|M({Xi}i∈L|x) is a probability distribution of
variables {Xi}i∈L such that

π
↓L∪M({Xi}i∈L,{Xi}i∈M = x) = π

↓L|M({Xi}i∈L|x) ·π↓M(x).

Thus, the conditional probability distribution π↓L|M is always defined, though some-
times ambiguously (in case that π↓M(x) = 0 for some x ∈ XM).

In Section 1, we used the symbol⊥⊥ to denote the independence of variables. Let
us, now, introduce it more formally. Consider a distribution π({Xi}i∈N), and three
disjoint subset K,L,M ⊂ N, K 6= /0, L 6= /0. We say that for distribution π variables
{Xi}i∈K and {Xi}i∈L are conditionally independent given variables {Xi}i∈M , if for
all x ∈ XK∪L∪M

π
↓K∪L∪M(x) ·π↓M(x↓M) = π

↓K∪M(x↓K∪M) ·π↓L∪M(x↓L∪M).

This independence will be denoted {Xi}i∈K ⊥⊥ {Xi}i∈L|{Xi}i∈M[π]. If M = /0 the
independence simplifies to (unconditional - some authors say also marginal) inde-
pendence {Xi}i∈K ⊥⊥ {Xi}i∈L[π].

Suppose K and L are subsets of {1, . . . ,n}. Two distributions κ({Xi}i∈K) and
λ ({Xi}i∈L) are said to be consistent if their joint marginals coincide: κ↓K∩L =
λ ↓K∩L. Notice that if K ∩ L = /0 then κ({Xi}i∈K) and λ ({Xi}i∈L) are always con-
sistent.

Having two distributions defined for the same set of variables π({Xi}i∈K) and
κ({Xi}i∈K), we say that κ dominates π (in symbol π � κ) if for all x ∈ XK

κ(x) = 0 =⇒ π(x) = 0.
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Combination

Here we adopt (and adapt to the introduced notation) the definition introduced by
Dempster in [4].

Definition 1. For arbitrary two distributions κ({Xi}i∈K) and λ ({Xi}i∈L) their com-
bination is for each x ∈ X(L∪K) given by the following formula

(κ⊕λ )(x) =Const−1
κ(x↓K) λ (x↓L),

where Const is the normalization constant given by:

Const = ∑
x∈XK∪L

κ(x↓K) λ (x↓L).

In the case where Const = 0, we say that distributions κ and λ are in total conflict,
and, for this case, their combination is undefined.

Composition

The following definition was first introduced in [8].

Definition 2. For arbitrary two distributions κ({Xi}i∈K) and λ ({Xi}i∈L), for which
κ↓K∩L � λ ↓K∩L their composition is for each x ∈ X(L∪K) given by the following
formula2

(κ .λ )(x) =
κ(x↓K)λ (x↓L)

λ ↓K∩L(x↓K∩L)
.

In case that κ↓K∩L 6� λ ↓K∩L the composition remains undefined.

The reader certainly noticed that the presented definition slightly extends the no-
tion of composition discussed in Section 1. We do not require that both K and L
are proper subsets of K ∪L. There are two reasons for this. First, we are going to
compare the two operations, and combination was basically defined for the distri-
butions defined for the same variable sets. Second, this generalization makes the
formulation of some theoretical properties simpler.

3 Properties of Combination and Composition

As already said above, the two operators were designed for different purposes, and
so it is not surprising that they possess different properties. Nevertheless, from a

2 Define 0·0
0 = 0.
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formal point of view, they manifest some similar, or even identical, properties. And,
it is the purpose of this section to show what the similarities and dissimilarities
between the two operators are.

3.1 Common Properties

Theorem 1. Suppose κ({Xi}i∈K) and λ ({Xi}i∈L) are probability distributions.

1. (Domain of combination): If κ⊕λ is defined, then κ⊕λ is a probability distri-
bution for {Xi}i∈K∪L, and

κ⊕λ =
(

κ
↓K∩L⊕λ

↓K∩L
)
·κ↓K\L|K∩L ·λ ↓L\K|K∩L. (1)

2. (Domain of composition): If κ .λ is defined, then κ .λ is a probability distribu-
tion for {Xi}i∈K∪L, and

κ .λ =
(

κ
↓K∩L .λ

↓K∩L
)
·κ↓K\L|K∩L ·λ ↓L\K|K∩L. (2)

3. (Disjoint domains of arguments): If K ∩ L = /0, then both κ ⊕ λ and κ . λ are
defined and κ⊕λ = κ .λ .

4. (Simple marginalization): Let (K∩L)⊆M ⊆ K∪L. If κ⊕λ is defined, then

(κ⊕λ )↓M = κ
↓K∩M⊕λ

↓L∩M.

If κ .λ is defined, then

(κ .λ )↓M = κ
↓K∩M .λ

↓L∩M.

5. (Conditional independence): Let K \L 6= /0 6= L\K. If κ⊕λ is defined, then

{Xi}i∈K\L ⊥⊥ {Xi}i∈L\K |{Xi}i∈K∩L[κ⊕λ ],

and if κ .λ is defined, then

{Xi}i∈K\L ⊥⊥ {Xi}i∈L\K |{Xi}i∈K∩L[κ .λ ],

Proof. Ad. 1. Consider probability distributions κ({Xi}i∈K) and λ ({Xi}i∈L), such
that their combination is well defined. Then, for each x ∈ XK∪L:
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(κ⊕λ )(x) = Const−1
κ(x↓K)λ (x↓L)

= Const−1
(

κ
↓K∩L(x↓K∩L)κ↓K\L|K∩L(x↓K\L|x↓K∩L)

)
·
(

λ
↓K∩L(x↓K∩L)λ ↓L\K|K∩L(x↓L\K |x↓K∩L)

)
= Const−1

(
κ
↓K∩L(x↓K∩L) ·λ ↓K∩L(x↓K∩L)

)
·κ↓K\L|K∩L(x↓K\L|x↓K∩L)λ ↓L\K|K∩L(x↓L\K |x↓K∩L),

which yields Equation (1), because the constant Const in the definition of κ⊕λ and
κ↓K∩L⊕λ ↓K∩L is the same as shown below:

∑
x∈XK∪L

κ(x↓K)λ (x↓L) = ∑
x∈XK∪L

(
κ
↓K∩L(x↓K∩L)κ↓K\L|K∩L(x↓K\L|x↓K∩L)

)
·
(

λ
↓K∩L(x↓K∩L)λ ↓L\K|K∩L(x↓L\K |x↓K∩L)

)
= ∑

x∈XK∩L

κ
↓K∩L(x↓K∩L) ·λ ↓K∩L(x↓K∩L)

·

 ∑
y∈XK\L

κ
↓K\L|K∩L(y|x↓K∩L)

 ∑
z∈XL\K

λ
↓L\K|K∩L(z|x↓K∩L)


= ∑

x∈XK∩L

κ
↓K∩L(x↓K∩L) ·λ ↓K∩L(x↓K∩L).

The last equality holds true because both the expressions in parentheses equal 1.
Ad. 2. Equation (2) can be proven analogously to the first part of this proof.
Ad. 3. The assertion follows immediately from Equations (1) and (2), because

κ↓ /0⊕λ ↓ /0 = κ↓ /0 .λ ↓ /0 = 1.
Ad. 4. Assume (K∩L)⊆M ⊆ K∪L, and κ⊕λ is defined. Then

(κ⊕λ )↓M =
((

κ
↓K∩L⊕λ

↓K∩L
)
·κ↓K\L|K∩L ·λ ↓L\K|K∩L

)↓M
=
(

κ
↓K∩L⊕λ

↓K∩L
)
·
(

κ
↓K\L|K∩L ·λ ↓L\K|K∩L

)↓M
=
(

κ
↓K∩L⊕λ

↓K∩L
)
·κ↓(K∩M)\L|K∩L ·λ ↓(L∩M)\K|K∩L = κ

↓K∩M⊕λ
↓L∩M.

The respective assertion for the operator of composition was formulated (and
proven) as Lemma 5.10 in [10], however, using Equation 2 it can easily be proven
analogously to the preceding part of the proof.

Ad. 5. Assume κ⊕λ is defined. Then due to already proven Property 4 (Simple
marginalization)
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(κ⊕λ )↓K = κ⊕λ ↓K∩L

(κ⊕λ )↓L = κ↓K∩L⊕λ

(κ⊕λ )↓K∩L = κ↓K∩L⊕λ ↓K∩L,

and therefore one can easily verify the validity of the equality defining the required
conditional independence: For each x ∈ XK∪L

(κ⊕λ )(x) · (κ⊕λ )↓K∩L(x↓K∩L)

=Const−1
κ(x↓K)λ (x↓L) ·Const−1

κ
↓K∩L(x↓K∩L)λ ↓K∩L(x↓K∩L)

=Const−1
κ(x↓K)λ ↓K∩L(x↓K∩L) ·Const−1

κ
↓K∩L(x↓K∩L)λ (x↓L)

= (κ⊕λ )↓K · (κ⊕λ )↓L,

which proves the required property for the operator of combination (notice that
Const = ∑x∈XK∪L κ(x↓K)λ (x↓L) = ∑y∈XK∩L κ↓K∩L(y)λ ↓K∩L(y)).

The respective assertion for the operator of composition was formulated (and
proven) as Lemma 5.2 in [10], however, it can be proven analogously to the preced-
ing part of the proof. �

Conditioning

Consider arbitrary two distributions κ({Xi}i∈K) and λ ({Xi}i∈L). From formulae (1)
and (2) it immediately follows that κ ⊕λ = κ .λ if and only if κ↓K∩L⊕λ ↓K∩L =
κ↓K∩L . λ ↓K∩L. As expressed in Property 3 of the previous theorem, it holds if
K ∩L = /0. However it holds also in other situations. In this paragraph we are go-
ing to show that this happens also in the case when one of these distributions is a
degenerate one-dimensional distribution expressing certainty. Consider variable Xk
and its value a ∈ Xk. The probability distribution δa(Xk) expressing for certain that
variable Xk = a is defined for each x ∈ Xk as

δa(x) =
{

1, if x = a;
0, otherwise.

Let us now show that, using the respective definitions, δa(Xk)⊕ λ ({Xi}i∈L) =
δa(Xk).λ ({Xi}i∈L). In case that k 6∈ L this equality holds because of Property 3 of
Theorem 1. Therefore, consider the case when k ∈ L. Then for each x ∈ XL

(δa⊕λ )(x) =Const−1
δa(x↓{k})λ (x) =

{
Const−1λ (x), if x↓{k} = a;
0, otherwise,

(3)

where

Const = ∑
x∈XL

δa(x↓{k})λ (x) = ∑
x∈XL:x↓{k}=a

λ (x) = λ
↓{k}(a). (4)
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Notice that δa⊕λ is a probability distribution when λ ↓{k}(a) is positive; otherwise
δa and λ are in total conflict and their combination is not defined.

Using Equation (4) we can rewrite formula (3) into the form

(δa⊕λ )(x) =
δa(x↓{k})λ (x)

λ ↓{k}(a)
=

{
δa(x↓{k})λ (x)
λ ↓{k}(x↓{k})

, if x↓{k} = a;

0, otherwise,

which obviously equal (δa . λ )(x) in case that λ ↓{k}(a) is positive (otherwise
λ ↓{k} 6� δa and the composition is not defined), because

(δa .λ )(x) =
δa(x↓{k})λ (x)
λ ↓{k}(x↓{k})

=

{
δa(x↓{k})λ (x)
λ ↓{k}(x↓{k})

, if x↓{k} = a;

0, otherwise.

So, let us summarize the proven equality along with what was proven about the
composition operator in Theorem 2.3 in [2].

Theorem 2. Consider a distribution λ ({Xi}i∈L), variable Xk ∈{Xi}i∈L, its value a∈
Xk, and K⊆ L\{k}. If λ ↓{k}(a)> 0, then the corresponding conditional distribution
λ ({Xi}i∈K |Xk = a) can be computed

λ ({Xi}i∈K |Xk = a) = (δa(Xk)⊕λ )↓K = (δa(Xk).λ )↓K .

It is worth mentioning that this assertion formally justifies what is often called
“Dempster conditioning”. Recall that, for example, Dubois and Denœux describe
it in [5] as a special case of Dempster rule of combination, which, widely used in
evidence theory, can be viewed as a revision process, understood as a prioritized
merging of a sure piece of information with an uncertain one.

3.2 Differences

Commutativity

From Definition 1 it is obvious that the operator of combination is commutative.
On the other hand, it is equally evident that, generally, the operator of composi-
tion is not commutative. To show it, it is enough to consider a pair of distributions
κ({Xi}i∈K), λ ({Xi}i∈L), for which κ↓K∩L 6= λ ↓K∩L. Let us express the respective
property precisely in the following assertion, the proof of which can be found in
[10].

Theorem 3. For arbitrary two probability distributions κ({Xi}i∈K) and λ ({Xi}i∈L),
for which either λ ↓K∩L � κ↓K∩L, or λ ↓K∩L � κ↓K∩L, it holds that κ and λ are
consistent if and only if κ .λ = λ .κ .
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Associativity

The associativity of the operator of combination is again obvious from the definition.
The corresponding properties of the operator of composition are expressed in the
following assertion.

Theorem 4. Consider three probability distributions κ({Xi}i∈K), λ ({Xi}i∈L) and
µ({Xi}i∈M).

1. (Non-associativity): In general, (κ .λ ).µ 6= κ . (λ .µ).
2. (Associativity under RIP): Let κ . (λ . µ) be defined. If K ⊃ (L∩M), or L ⊃

(K∩M), then (κ .λ ).µ = κ . (λ .µ).
3. (Exchangeability): If K ⊃ (L∩M), then (κ .λ ).µ = (κ .µ).λ .

Proof. Ad. 1. To show non-associativity, it is enough to consider κ(X),λ (Y ), and
µ(X ,Y ), such that X 6⊥⊥Y [µ]. Then, it is easy to show that X ⊥⊥Y [(κ .λ ).µ] (this is
because it follows from the definition that (κ(X).λ (Y )).µ(X ,Y ) = κ(X).λ (Y )),
and X 6⊥⊥ Y [κ . (λ . µ)]. The latter relation follows from the fact that for the given
choice of distributions

X ⊥⊥ Y [κ . (λ .µ)] ⇐⇒ X ⊥⊥ Y [λ .µ] ⇐⇒ X ⊥⊥ Y [µ].

Ad. 2. This property was proven in [10] as Theorems 7.2. and 7.3.
Ad. 3. This property was proven in [10] as Lemma 5.7. �

Notice that from the commutativity and associativity of the operator of com-
bination it follows that (κ ⊕ λ )⊕ µ = (κ ⊕ µ)⊕ λ holds always true. Thus, the
exchangeability property holds for the combination operator trivially.

Idempotency of composition

The following assertion summarizes the basic properties of the operator of compo-
sition, neither of which, generally, hold for the operator of combination. The respec-
tive proofs can be found in [10, 9].

Theorem 5. Suppose κ({Xi}i∈K) an λ ({Xi}i∈L) are probability distributions such
that κ↓K∩L� λ ↓K∩L. Then the following statements hold true:

1. (Extension): If M ⊆ K then, κ↓M .κ = κ .
2. (Composition preserves first marginal): (κ .λ )↓K = κ .
3. (Reduction): If L⊆ K then, κ .λ = κ .
4. (Perfectization): κ .λ = κ . (κ .λ )↓L.
5. (Stepwise composition): If (K∩L)⊆M ⊆ L then, (κ .λ ↓M).λ = κ .λ .

All these properties are, in a way, connected with the fact that the operator of
composition is idempotent. This fact supports the explanation of the difference be-
tween the combination and the composition.
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The composition assembles (composes) pieces of knowledge that are supposed
to have their origin by decomposition of global knowledge. So it corresponds, for
example, to the reconstruction of a picture that was torn into pieces. Having one
piece of the picture twice does not help us to reconstruct the picture better than if
we have this very piece of picture only once.

In contrast, the combination operator combines pieces of knowledge from inde-
pendent sources. So, in this case, one cannot have the same piece of knowledge
twice. Though the two pieces of knowledge can (formally) be expressed in the same
way, being from independent sources they are not (they cannot be) identical. Learn-
ing from two independent physicians that I am healthy makes me feel better than
when I hear this message just from one of them. Hearing the same message re-
peatedly from independent sources decreases my uncertainty, and this is exactly the
property, which is expressed in the following assertion. Using Shannon entropy of a
probability distribution κ(X)

H(κ) =−∑
x∈X

κ(x) log2 κ(x)

as a measure of uncertainty connected with the distribution κ , the following asser-
tion says that getting the same amount of information from another independent
source decreases our uncertainty. This, in a way, corresponds to what is often un-
derstood by the Latin proverb “Repetitio est mater studiorum”.

Theorem 6. For an arbitrary probability distribution π

H(π⊕π)≤ H(π). (5)

Proof. In the proof, we will use an obvious property of Shannon entropy: For two
probability distributions κ(X) and λ (X), such that κ(x) = λ (x) for all x∈X\{a,b},
κ(a)−λ (a) = λ (b)−κ(b)> 0, and κ(a)≤ κ(b) it holds that

H(κ)> H(λ ). (6)

This property can be proven by the following simple consideration. Denote ε =
κ(a)−λ (a), and

f (ε) = H(κ)−H(λ ) = −κ(a) log2(κ(a))−κ(b) log2(κ(b))

+(κ(a)− ε) log2(κ(a)− ε)+(κ(b)+ ε) log2(κ(b)+ ε).

Since f (0) = 0, and

f ′(α) = log2

(
κ(b)+α

κ(a)−α

)
· (ln(2))−1

is nonnegative for all α ∈ [0,ε], it is clear that f (ε)> 0, and therefore strict inequal-
ity (6) holds true.

To prove inequality (5) for π(X) notice that
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(π⊕π)(x) = (π(x))2 ·Const−1,

where Const = ∑x∈X (π(x))
2, and therefore

(π⊕π)(x)< π(x) iff π(x)<Const,
(π⊕π)(x)> π(x) iff π(x)>Const. (7)

To finish the proof we will construct a finite sequence of probability distributions,
such that π = π0,π1,π2, . . . ,πk = π⊕π , and H(πi)< H(πi−1) for all i = 1,2, . . . ,k.

Consider πi (starting with π0), and denote Ai = {x ∈ X : πi({x}) 6= (π⊕π)(x)}.
Let a be the element of Ai, for which the difference between πi(x) and (π ⊕π)(x)
is minimal, i.e.,

|πi(a)− (π⊕π)(a)| ≤ |πi(x)− (π⊕π)(x)| ∀x ∈ Ai. (8)

Naturally, there must exist b ∈ Ai such that

sign(πi(b)− (π⊕π)(b)) =−sign(πi(a)− (π⊕π)(a)), (9)

and, because of (8), |πi(b)− (π⊕π)(b)| ≥ |πi(a)− (π⊕π)(a)|. Therefore we can
define distribution πi+1:

πi+1(a) = (π⊕π)(a),

πi+1(b) = πi(b)+(πi(a)− (π⊕π)(a)) ,

πi+1(x) = πi(x) for all x ∈ X\{a,b}.

We immediately see that |Ai+1| > |Ai|, and therefore the sequence π = π0,π1,
π2, . . . ,πk = π ⊕ π must be finite. We also can see that, because of inequalities
(7), each pair πi and πi+1 meets the assumptions of the property presented at the
beginning of this proof. Therefore H(πi+1)< H(πi), which completes the proof. �

Factorization/Decomposition

Property 5 of Theorem 1 says that a relation of conditional independence holds for
distributions that are created as a combination or composition of two probability
distributions κ({Xi}i∈K) and λ ({Xi}i∈L). The following assertion expresses the fact
that for the operator of composition the assertion may be strengthen. For this oper-
ator it can be formulated in a form of equivalence that was proven as Corollary 5.3.
in [10].

Theorem 7. For arbitrary probability distribution µ({Xi}i∈M) and K,L ⊂ M such
that K \L 6= /0 6= L\K

{Xi}i∈K\L ⊥⊥ {Xi}i∈L\K |{Xi}i∈K∩L[µ]

if and only if µ↓K∪L = µ↓K .µ↓L.
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Let us conclude this section by saying that combining Property 5 of Theorem 1
with Theorem 7 we get the following assertion, which casts a new viewpoint to the
relation between the two studied operators.

Corollary. Assume that K \ L 6= /0 6= L \K. For any two probability distribution
κ({Xi}i∈K) and λ ({Xi}i∈L), which are not in total conflict, their combination κ⊕λ

can be expressed in the following way

κ⊕λ = (κ⊕λ )↓K . (κ⊕λ )↓L.

4 Summary & Conclusions

In this paper, we studied the properties of the operators of combination and compo-
sition. Though these operators were designed to solve different tasks, both of them
may be used in the process of knowledge integration, and both of them were de-
fined not only in classical probability theory but also in some alternative uncertainty
theories like the possibility and belief functions theories. Since both these operators
were introduced in Shenoy’s valuation-based system framework[18, 12], it means
that they can directly be applied in other uncertainty theories such as Spohn’s epis-
temic belief theory [20], Dempster-Shafer theory [17], and others.

The purpose, for which the two operators were designed, is explained in Sec-
tion 1. The remainder of the paper studies the formal (algebraic) properties of these
operators stressing their common features and differences. To make the presenta-
tion as simple as possible, we restricted the exposition to classical probability the-
ory. The readers familiar with alternative uncertainty theories should keep in mind
that analogous results can be formulated in all the theories that meet the axioms of
Shenoy’s valuation-based systems [18, 19], and also in a general possibility theory
[21]. It concerns also the important formulae (1) and (2), which help us to reveal
surprisingly many similarities of the studied operators, the similarities that may ex-
plain why some researchers do not properly distinguish between the combination
and composition. From the formal point of view, an interesting result is formulated
as a corollary in the last section. It says that if a distribution is a combination of
two independent distributions then it may be expressed also as a composition of its
marginals.
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9. Jiroušek, R. Decomposition of multidimensional distributions represented by perfect se-
quences. Annals of Mathematics and Artificial Intelligence 35, 1-4, 215-226, 2002.
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